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Abstract001

Recent LLMs like DEEPSEEK-R1 have demon-002
strated state-of-the-art performance by integrat-003
ing deep thinking and complex reasoning dur-004
ing generation. However, the internal mech-005
anisms behind these reasoning processes re-006
main unexplored. We observe reasoning LLMs007
consistently use vocabulary associated with008
human reasoning processes. We hypothesize009
these words correspond to specific reasoning010
moments within the models’ internal mech-011
anisms. To test this hypothesis, we employ012
Sparse Autoencoders (SAEs), a technique for013
sparse decomposition of neural network acti-014
vations into human-interpretable features. We015
introduce ReasonScore, an automatic metric to016
identify active SAE features during these rea-017
soning moments. We perform manual and auto-018
matic interpretation of the features detected by019
our metric, and find those with activation pat-020
terns matching uncertainty, exploratory think-021
ing, and reflection. Through steering experi-022
ments, we demonstrate that amplifying these023
features increases performance on reasoning-024
intensive benchmarks (+13.4%) while produc-025
ing longer reasoning traces (+20.5%). Using026
the model diffing technique, we provide evi-027
dence that these features are present only in028
models with reasoning capabilities. Our work029
provides the first step towards a mechanistic030
understanding of reasoning in LLMs.1031

1 Introduction032

Large Language Models (LLMs) have achieved033

remarkable success in natural language process-034

ing (Brown et al., 2020), evolving beyond simple035

token prediction tasks towards explicit reasoning036

behaviors, such as step-by-step problem-solving037

(Wei et al., 2022; Kojima et al., 2022; Wang et al.,038

2022) and self-reflection (Madaan et al., 2023;039

Shinn et al., 2023). Recently, specialized mod-040

els which we denote as reasoning models, such041

1Code available at https://anonymous.4open.
science/r/emnlp2025-code-anon-7E82

Problem: Convert the point (0, 3) in rectangular
coordinates to polar coordinates. Enter your
answer in the form (r, θ), where r > 0 and
0 ≤ θ < 2π.

Generation (no steering): Okay, so I have this
problem where I need to convert the rectangular
coordinates (0, 3) to polar coordinates.
{... 1500 tokens ...} ← Reasoning trace
So, putting it all together, (0, 3) in

rectangular coordinates is (3, π/2) in polar

coordinates.
Generation (steering): Okay, so I have this problem
here where I need to convert the point (0, 3)
from rectangular (which is the same as Cartesian)
coordinates to polar coordinates.
{... 2000 tokens ...} ← Increased reasoning trace
I think I’ve covered all the bases here.
Calculated r, determined θ, checked using
different methods, and even considered the
quadrant placement. I don’t see any issues with
the reasoning. So, I feel confident that the
polar coordinates for the point (0, 3) are

(3, π/2) .

Figure 1: Illustration of steering (amplifying) reasoning-
specific features during LLM generation. Default
generation (blue) shows standard model reasoning,
whereas steering (green) induces increased reasoning,
self-correction, and graceful transition to the final an-
swer—evidence that the identified features are responsi-
ble for the reasoning concept.

as OpenAI’s o1 (OpenAI, 2024b) and DEEPSEEK- 042

R1 (Guo et al., 2025), have significantly improved 043

performance on complex reasoning tasks. Trained 044

through advanced fine-tuning and reinforcement 045

learning (Shao et al., 2024), these models incorpo- 046

rate reasoning and reflective problem-solving by 047

generating long chains of thought before providing 048

final answers. These advances raise a new research 049

question: How are such reasoning capabilities in- 050

ternally encoded within LLMs? 051

A growing body of work suggests that LLMs 052

represent meaningful concepts as linear directions 053

in their activation spaces (Mikolov et al., 2013; El- 054

hage et al., 2022; Park et al., 2023; Nanda et al., 055
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2023; Jiang et al., 2024). However, identifying056

these directions remains challenging. Sparse Au-057

toencoders (SAEs) offer a principled approach to058

disentangle activations into sparse, interpretable059

features (Cunningham et al., 2023; Gao et al.,060

2024b; Templeton, 2024; Marks et al., 2024).061

Given a trained SAE, the interpretation of its fea-062

tures could be performed by activation analysis063

(Bricken et al., 2023), targeted interventions (Tem-064

pleton, 2024), or automated methods (Paulo et al.,065

2024; Kuznetsov et al., 2025). While SAEs have066

proven effective in discovering features for various067

concepts (Shu et al., 2025), their ability to isolate068

reasoning-specific features remains unexplored.069

In this work, we investigate whether reasoning070

processes in reasoning LLMs can be identified and071

decomposed into interpretable directions within072

their activation spaces. We analyze the outputs073

produced by these models’, and find a consistent074

pattern in which they employ words associated075

with human reasoning processes: uncertainty (e.g.076

“perhaps”), reflection (e.g. “however”), and explo-077

ration (e.g. “alternatively”) (Chinn and Anderson,078

1998; Boyd and Kong, 2017; Gerns and Mortimore,079

2025). We hypothesize that these linguistic patterns080

correspond to the moments of reasoning within the081

models’ internal mechanisms. To test this, we con-082

struct a vocabulary of reasoning words. We then083

use SAEs to decompose LLM activations into in-084

terpretable features and propose ReasonScore, a085

metric that quantifies the degree to which a given086

SAE feature is active on the reasoning vocabulary.087

We evaluate the features found by ReasonScore088

using manual (Bricken et al., 2023) and automatic089

interpretation (Kuznetsov et al., 2025) techniques,090

and find the set of 46 features that demonstrate in-091

terpretable activation patterns corresponding to un-092

certainty, exploratory thinking, and reflection. We093

perform steering experiments and show that ampli-094

fying these reasoning features leads to improved095

performance on reasoning-intensive benchmarks096

(+13.4% on AIME-2024, +2.2% on MATH-500,097

and +4% on GPQA Diamond) while producing098

longer reasoning traces (+18.5% on AIME-2024,099

+20.5% on MATH-500, and +13.9% on GPQA100

Diamond). Through model diffing (Bricken et al.,101

2024), we demonstrate that these reasoning fea-102

tures emerge only in reasoning LLMs and are ab-103

sent in base models. Our results provide mechanis-104

tic evidence that specific, interpretable components105

in LLMs representations are causally linked to rea-106

soning behavior.107

The contributions of this paper are the following: 108

• We introduce ReasonScore, an automatic 109

metric to identify the SAE features responsi- 110

ble for reasoning and confirm its effectiveness 111

using interpretability techniques. 112

• We provide causal evidence from steering 113

experiments, demonstrating that amplifying 114

identified features induces reasoning behavior. 115

• We analyze the emergence of reasoning fea- 116

tures in LLMs through model diffing tech- 117

nique, and confirm their existence only after 118

the reasoning fine-tuning stage. 119

2 Interpretability with SAEs 120

Sparse Autoencoders (SAEs) aim to learn a sparse 121

decomposition of model activations to identify 122

disentangled features that correspond to mean- 123

ingful concepts (Bricken et al., 2023). Here, 124

a feature refers to an individual component of 125

the learned representation that captures specific, 126

human-interpretable characteristics of the input 127

data. 128

The core idea behind SAEs is to reconstruct 129

model activations x ∈ Rn as a sparse linear com- 130

bination of learned feature directions, where the 131

feature dictionary dimensionality m ≫ n. For- 132

mally, we extract LLM activations from some in- 133

termediate state in the model and train a two-layer 134

autoencoder: 135

f(x) = σ(Wencx+ benc),

x̂(f) = Wdecf + bdec.
(1) 136

Here, f(x) ∈ Rm is a sparse vector of feature 137

magnitudes and x̂(f) ∈ Rn is a reconstruction 138

of the original activation x. The columns of Wdec, 139

which we denote by Wdec,i, i = 1, ..., m, represent 140

the dictionary of directions, or features, into which 141

the SAE decomposes x. The activation function σ 142

enforces non-negativity in f(x). 143

The training objective used to train Sparse Au- 144

toencoders minimizes a reconstruction loss Lrecon 145

and an additional sparsity-promoting loss Lsparsity. 146

This objective forces SAE to learn a small set of 147

interpretable features that capture the distinct prop- 148

erties of the activations. 149

In our work, we use vanilla SAE (Bricken et al., 150

2023) with ReLU activation function. Following 151

(Conerly et al., 2024), we use a squared error re- 152

construction loss and a modified L1 penalty as a 153
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sparsity loss:154

L = ∥x− x̂∥22︸ ︷︷ ︸
Lrecon

+λ
∑m

i=1
fi ∥Wdec,i∥2︸ ︷︷ ︸
Lsparsity

, (2)155

where λ is the sparsity penalty coefficient.156

3 Method157

We identify reasoning-specific features through158

a two-step approach. First, we examine the lan-159

guage space of reasoning words used by reasoning160

LLMs, and construct the respective vocabulary R161

(Sec. 3.1). Secondly, we introduce ReasonScore162

to find the sparse autoencoder features responsible163

for reasoning capabilities (Sec. 3.2).164

3.1 Reasoning Vocabulary165

Reasoning words are linguistic features associated166

with exploratory talk as humans talk-to-learn, ex-167

plore ideas, and probe each other’s thinking (Boyd168

and Kong, 2017).169

In the original DEEPSEEK-R1 paper (Guo et al.,170

2025), the authors demonstrated that the model171

spontaneously exhibits sophisticated human-like172

behaviors, such as reflection, where it revisits and173

reevaluates its previous steps, and exploration of174

alternative problem-solving approaches. In particu-175

lar, the model explicitly employs words that mirror176

the introspective language humans use when think-177

ing (such as “maybe”, “but”, “wait”). We hypothe-178

size that these moments correspond directly to the179

internal reasoning process of the models, which is180

consistent with studies on human thinking (Chinn181

and Anderson, 1998; Boyd and Kong, 2017).182

To extract the models’ reasoning vocabulary,183

we use an approach similar to that of (Rayson184

and Garside, 2000). We construct two corpora185

from the OPENTHOUGHTS-114K (OpenThoughts,186

2025) dataset: ground-truth samples containing for-187

mal and step-by-step solutions to the problems, and188

the solutions obtained using DEEPSEEK-R1 for the189

same problems. For each word, we calculate its190

frequency in the tasks solutions psol, and in the191

thinking solutions pthinks. Then, we sort all the192

words by the difference pthinks − psols and filter193

out those with a high presence in the Google Books194

Ngram Corpus (Michel et al., 2011). As the filter-195

ing threshold, we choose the 99.9995-th percentile196

of all n-grams probabilities from the Ngram Cor-197

pus. Figure 2 shows the distribution of the top 40198

words. We then select 10 words indicating reason-199

ing as models’ reasoning vocabulary and denote200

Figure 2: The distribution of top 40 words with the
greatest change in frequency between reasoning traces
of DEEPSEEK-R1 and ground-truth solutions of math
problems. Orange dots show the frequency from Google
Books Ngram Corpus. We remove the words with abso-
lute frequency above the pre-defined threshold (orange
line), and keep those with the high relative frequency
indicating reasoning.

it by R. The exact list of words can be found in 201

Appx. A.1. 202

3.2 ReasonScore 203

To find SAE features that capture reasoning-related 204

behavior, we follow our hypothesis and introduce 205

ReasonScore, which measures the contribution 206

of i-th feature to reasoning. Using a dataset of 207

model’s activations (see details in Sec. 4.1) D = 208

DR ∪ D¬R, where DR contains token activations 209

corresponding to words in R and ¬D¬R contains 210

all other activations, we first define a score: 211

si =
µ(i,DR)∑
j µ(j,DR)

− µ(i,¬DR)∑
j µ(j,¬DR)

, (3) 212

where µ(i,D) = 1
|D|

∑
x∈D fi(x) is the average ac- 213

tivation value of the i-th feature on dataset D. This 214
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Feature #4395

Feature #25953

Feature #46691

Feature #61104

But how to verify this.\n\nLet me re-express

 the inequalities hold. But wait, maybe the constant c

 up to some equivalence.\n\nBut let me check if there

 So this is unclear.\n\nBut looking at the sample

rahedra.\n\nWait, here's another idea.

 (71 pm). Wait, maybe different sources have slightly

 formula has a different sign.\n\nAlternatively, maybe the

 coefficient  low. Let me verify. Another way: I remember

 mass ranges. Hmm.\n\nNow, detection. LIGO

 the starting points. That seems a bit counterintuitive

 trigonometric identities. Hmm, but maybe a synthetic

 regardless of starting values. Interesting.\n\nLet me try to

 some code?), but that's not standard. Alternatively,

 is in a different row. That doesn't make sense

 That's a stretch, but perhaps that's the connection

, then maybe more. Wait, this is getting complicated

(a) Top-activating examples from the manually verified set of
features.

0 2 4 6 8 10 12 14 16
Percentage of Features in Group

Other Behavior

Exploration of Multiple Methods

Symbolic vs Numerical Reasoning

Edge Case and Constraint Handling

Causal Chaining & Scientific Context

Self-Correction and Backtracking

Numerical Accuracy and Validation

Reasoning Depth and Thoroughness

Structural and Logical Organization

Semantic Elaboration & Conceptual Depth

(b) Distribution of manually verified set of features on
function groups generated by GPT-4O.

Figure 3: Interpretability results for manually verified set of features in our SAE: (a) Examples of feature interfaces
used in manual interpretation experiments, (b) Distribution of reasoning features on function groups obtained by
automatic interpretation pipeline by using GPT-4O as a judge.

score is similar to the one in (Cywiński and Deja,215

2025) and identifies features that concentrate the216

most of their activation mass on reasoning words.217

However, analysis of feature activations only on218

individual words may miss important contextual219

information. The words in R are critical indicators220

of the reasoning process and also serve as transi-221

tion points, signaling shifts in the thought process,222

uncertainty, or reflection. Therefore, a feature in-223

volved in reasoning should activate not only on the224

reasoning words, but also as the model approaches225

and continues through these transitions. To capture226

it, we define DW
R as the dataset that contains activa-227

tions within a fixed-width context window around228

tokens corresponding to words in R, and DW
¬R con-229

tains all other activations. We modify Eq. 3 to use230

the new version of the datasets.231

To penalize features that activate only on a232

small fraction of R, we further introduce an en-233

tropy penalty. For i-th feature, we first calcu-234

late µ(i,DW
rj ) for each word rj ∈ R, normal-235

ize these values into a probability distribution236

pi(rj) =
µ(i,DW

rj
)∑

k∈R µ(i,DW
rk

)
, and compute the entropy:237

Hi = − 1

log |R|
·
|R|∑
j

pi(rj) log pi(rj). (4)238

Here, log |R| normalizes the entropy to [0, 1], with239

Hi = 1 indicating perfect uniformity over R. By 240

adding the entropy penalty in Eq. (3), we define the 241

ReasonScore for the i-th SAE feature as: 242

ReasonScorei =
µ(i,DW

R)∑
j µ(j,DW

R)
·Hα

i

−
µ(i,DW

¬R)∑
j µ(j,DW

¬R)
.

(5) 243

where α controls the trade-off between specificity 244

(α → 0) and generalization (α > 1). 245

We identify the set of reasoning features in a 246

SAE based on their ReasonScore and define the 247

corresponding set of feature indices as: 248

FR = {i | i ∈ [1,m], ReasonScorei > τ} (6) 249

where τ is the q-th quantile of the ReasonScore 250

distribution across all features. 251

4 Evaluation 252

In this section, we analyze how effectively our dis- 253

covered features model reflection, uncertainty, and 254

exploration within the reasoning model. We dis- 255

cuss our experimental setup (Sec. 4.1), perform 256

manual and automatic interpretation of the features 257

we find (Sec. 4.2), and conduct steering experi- 258

ments with these features on various benchmarks 259

(Sec. 4.3). Finally, we apply the model diffing tech- 260

nique to demonstrate that these features exist only 261

in models with reasoning capabilities (Sec. 4.4). 262
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4.1 Experimental Setup263

Model. We apply SAE to the output activa-264

tions from the 19-th layer of the DEEPSEEK-R1-265

LLAMA-8B model. This model was selected for its266

reasoning capabilities and open-source availability.267

The 19-th layer (≈ 60% model depth) was chosen268

because at this point LLMs predominately store269

the most of their knowledge (Chen et al., 2023; Jin270

et al., 2024).271

Data. We train SAE on the activations of272

the model generated using text data from the273

LMSYS-CHAT-1M (Zheng et al., 2023) and274

OPENTHOUGHTS-114K (OpenThoughts, 2025)275

datasets. The first provides a broad and diverse276

spectrum of real-world text data, which we denote277

as base data, while the latter provides high-quality278

reasoning traces generated by DEEPSEEK-R1 for279

math, science, code, and puzzle samples, which we280

denote as reasoning data. The SAE is trained on281

1B tokens, evenly split between the two datasets,282

with a context window of 1,024 tokens.283

Training. We set the SAE dictionary dimension-284

ality to m = 65,536, which is 16 times larger than285

the model activation size n = 4,096 following es-286

tablished practices (Lieberum et al., 2024), and287

adopt the same training settings as in the Anthropic288

April update (Conerly et al., 2024). We train with289

the Adam optimizer (Kingma and Ba, 2014) with290

(β1, β2) = (0.9, 0.999), batch size of 4,096, and291

a learning rate η = 5 × 10−5. The learning rate292

is decayed linearly to zero over the last 20% of293

training. The gradient norm is clipped to 1. We use294

a linear warmup for the sparsity coefficient from295

λ = 0 to λ = 5 over the first 5% training steps.296

Evaluation. We use the mean L0-norm of latent297

activations, Ex∥f(x)∥0, as a measure of sparsity.298

To measure reconstruction quality, we use fraction299

of variance of the input explained by the recon-300

struction. Both metrics were computed on 2,048301

sequences of length 1,024.302

At a L0 of 86 the reconstruction of our SAE303

explains 68.5% of the variance in model activa-304

tions. This shows that our SAE achieves reliable305

reconstruction performance at a low sparsity level,306

allowing a decomposition of raw activations into307

interpretable features.308

ReasonScore. We calculate ReasonScore309

(Eq. 5) on 10M tokens from the OPENTHOUGHTS-310

114K dataset. To collect DW
R , we use an311

Feature # AIME 2024 MATH-500 GPQA
Diamond

pass@4 tokens (K) pass@4 tokens (K) pass@4 tokens (K)

No steering 53.3 12.4 93.2 3.9 50.0 7.9

3942 56.7 11.1 93.0 3.4 46.5 6.7
4395 56.7 14.7 95.4 4.1 52.0 8.5
16441 60.0 14.0 95.0 4.1 54.0 8.3
16778 56.7 14.1 94.0 4.7 51.0 9.0
25953 60.0 12.8 94.2 4.2 53.0 8.1
46691 56.7 14.0 94.2 4.2 54.0 8.0
61104 66.7 12.0 95.0 3.6 53.0 7.5

Table 1: Performance and average number of output
tokens for different steering experiments on reasoning-
related benchmarks.

asymmetric window with 2 preceding and 3 312

following tokens. We set α = 0.7 for the entropy 313

penalty as a reasonable default. Based on the 314

empirical analysis of ReasonScore distribution 315

(see Appx. A.2), we set q = 0.997 in Eq. (6), 316

resulting in |FR| = 200 features. 317

4.2 Interpretability of Reasoning Features 318

Manual Interpretation. To evaluate the features 319

we found with ReasonScore, we manually inter- 320

pret each feature from FR (200 in total). For each 321

feature, we find the examples in a subset of the 322

OPENTHOUGHTS-114K corpus that caused the 323

feature to activate, and construct the interface pro- 324

posed in (Bricken et al., 2023). This mainly in- 325

cludes examples of when the feature activates, its 326

effect on the logits when it does, and other statistics. 327

We determine whether a feature qualifies as a good 328

reasoning candidate if: (1) when it is active, the rel- 329

evant concept is reliably present in the context, (2) 330

it triggers in various examples of reasoning tasks, 331

and (3) its activation impacts interpretable logits 332

that correspond to reasoning processes. 333

Our manual analysis reveals a set of 46 features, 334

which we denote as Fmanual
R ⊂ FR, that we believe 335

to be responsible for the reasoning mechanisms 336

of the model. In Fig. 3a, we provide examples 337

of feature interfaces used for interpretation. The 338

results demonstrate features that consistently acti- 339

vate in contexts representing model’s uncertainty 340

(#61104), exploration (#25953), and reflection 341

(#4395,#46691). Additional examples of inter- 342

faces can be found in Appx. B.1. 343

Automatic Interpretation. To complement our 344

manual analysis, we annotate these features with an 345

automatic interpretation pipeline (Kuznetsov et al., 346

2025). This approach employs feature steering, 347

a technique that modulates feature activations to 348

analyze their functional influence. For each i-th 349
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feature, we estimate its maximum activation fmax
i350

using a subset of the OPENTHOUGHTS-114K cor-351

pus. During response generation, we modify model352

activations as follows:353

x′ = x+ γfmax
i Wdec,i, (7)354

where γ controls the steering strength.355

To evaluate the impact of i-th feature on reason-356

ing capabilities, we generate multiple outputs by357

varying α ∈ [−4, 4], pass them to GPT-4O, and358

ask it to generate an explanation or function that359

best describes the semantic influence caused by360

steering a feature. The result, shown in Fig. 3b,361

reveals that the features we found group into dis-362

tinct reasoning-related patterns. Only a small frac-363

tion of features from Fmanual
R (5) was assigned to364

a mixed class “Other Behavior” containing mixed365

explanation. We provide a more comprehensive366

description of auto-interpretability pipeline results367

in Appx. B.2.368

Takeaway 1: Manual interpretation experi-
ments confirm that ReasonScore identifies
features that describe model’s reasoning ca-
pabilities, revealing 46 features that repre-
sent uncertainty, exploration, and reflection.
Automatic interpretation demonstrates that
these features are causally linked to reason-
ing behavior.

369

4.3 Steering Reasoning Features370

To demonstrate whether our interpretations of fea-371

tures describe their influence on model behavior,372

we further experiment with feature steering.373

Our goal is to verify if steering reasoning374

features improve the LLM’s performance on375

reasoning-related benchmarks. Following the376

setup in DEEPSEEK-R1, we evaluate performance377

on AIME 2024 (of America, 2024), MATH-500378

(Hendrycks et al., 2021), and GPQA Diamond379

(Rein et al., 2023). To obtain steering results for380

i-th feature, we modify the activations during re-381

sponse generation according to Eq. (7). To deter-382

mine the optimal steering strength that can influ-383

ence model outputs without significantly damaging384

capabilities, we ran evaluations with a small sub-385

set of 10 reasoning features on MATH-500. We386

varied the steering strength γ from 1 to 8. Based387

on these experiments, we determined the optimal388

range γ ∈ [1, 3], which aligns with the findings in389
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17.0%

78.0%
73.0%

0.0% 0.0%
4.0%

60.0%

51.0%

Feature Sets:
Top-200 ReasonScore Features
46 Manually Verified Features

Figure 4: Percentage of ReasonScore features present
at each stage of the diffing pipeline. The blue bars rep-
resent the features from FR, the orange bars represent
the Fmanual

R features. Features are considered present if
their cosine similarity with any feature in corresponding
stage’s SAE is ≥ 0.7. Stages: (S) Base model + base
data; (S→D) Base model + reasoning data; S→M Rea-
soning model + base data; (S→D/M→F) Reasoning
model + reasoning data.

(Durmus et al., 2024). For all subsequent experi- 390

ments, we set the steering strength γ = 2. 391

We perform a preliminary analysis to identify 392

the most promising features for reasoning enhance- 393

ment from our set of manually chosen features 394

Fmanual
R . For each feature, we measure the accuracy 395

(or pass@1 (Chen et al., 2021)) on MATH-500 and 396

evaluate the results. Of the 46 features, 9 improve 397

performance by ≥ 0.5%, 29 show no or minimal 398

performance degradation (≤ 2.0), and the remain- 399

ing 8 decrease performance by at most 4%. Interest- 400

ingly, we identify feature #3942, which produces 401

substantially shorter responses while maintaining 402

negligible performance degradation. For further 403

analysis, we select the 9 top-performing features 404

and feature #3942. 405

We evaluate these 10 features across all rea- 406

soning benchmarks. We report pass@4 and the 407

average number of tokens generated during the 408

model’s thinking process. The results, shown 409

in Tab. 1, demonstrate that steering 7 out of 410

10 features produces consistent improvements in 411

both performance and reasoning depth. Feature 412

#61104 yields the most significant performance 413

gain on AIME-2024 (+13.4%). Feature #16778 414

produces the longest reasoning traces on average 415

(+13.7% on AIME-2024, +20.5% on MATH-500, 416

and +13.9% on GPQA Diamond) and consistently 417

outperforms the “no steering” baseline. Feature 418

#3942 produces shortest reasoning traces on aver- 419

age (−7.7%) with minor performance degradation. 420
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We provide examples of generated solutions with-421

out and with feature steering in Appx. C.422

Takeaway 2: We find that amplifying cer-
tain reasoning features prolongs the inter-
nal thought process and correlates with in-
creased performance on reasoning-related
tasks.

423

4.4 Stage-wise Emergence of Reasoning424

Features425

Our interpretation experiments (Sec. 4.2) revealed426

that features identified by ReasonScore exhibit427

activation patterns consistent with reasoning pro-428

cesses. The steering experiments (Sec. 4.3) pro-429

vided causal evidence by demonstrating that am-430

plification of these features improves performance431

on reasoning-intensive benchmarks. Given these432

findings, we now aim to answer the next impor-433

tant question: do these reasoning features naturally434

emerge during standard pre-training procedure, or435

are they specifically induced by the reasoning fine-436

tuning process?437

To answer this question, we use the stage-wise438

fine-tuning technique proposed in (Bricken et al.,439

2024). This approach aims to isolate how features440

evolve across different model and dataset combi-441

nations. In our experiments, we examine how the442

features change between two model states: before443

(base model) and after (reasoning model) reason-444

ing fine-tuning stage. We accomplish this by train-445

ing a SAE on the base model before it has been446

fine-tuned, and then fine-tuning it on either the rea-447

soning model or the fine-tuning data. Formally, we448

define four distinct stages:449

Stage S: base model + base data (starting point)450

Stage D: base model + reasoning data (isolating451

dataset effects)452

Stage M: reasoning model + base data (isolating453

model effects)454

Stage F: reasoning model + reasoning data (full455

fine-tuning)456

We analyze these changes through two fine-tuning457

trajectories, each involving two sequential fine-458

tuning stages: (1) S→D→F takes initial SAE459

(Stage S), fine-tunes it on reasoning data (S→D),460

and finally fine-tunes on both reasoning model and461

reasoning data (D→F); (2) S→M→F takes initial462

SAE (Stage S), fine-tunes it on reasoning model 463

(S→M), and finally fine-tunes on both reasoning 464

model and reasoning data (M→F). If reasoning 465

features are present only in reasoning models, we 466

should observe the emergence of these features in 467

response to both reasoning model and reasoning 468

data (Stage F). This corresponds to the final steps 469

of the fine-tuning trajectories: (S→D/M→F). 470

We use LLAMA-3.1-8B (Grattafiori et al., 2024) 471

as base model and SLIMPAJAMA (Soboleva et al., 472

2023) as base data. We select SLIMPAJAMA over 473

LMSYS-CHAT-1M as our base data because it bet- 474

ter matches the pre-training distribution of LLAMA- 475

3.1-8B, which has not undergone instruction- 476

tuning. For each stage, we use the same setup as 477

in Sec. 4.1, with each fine-tuning stage taking 30% 478

of the total number of tokens required for training 479

from scratch. For each i-th feature from FR, we 480

check its existence at each stage by measuring co- 481

sine similarity (cos) between feature vectors. We 482

follow (Bricken et al., 2024) and consider a feature 483

present if cos ≥ 0.7 with any feature in a SAE of 484

the corresponding stage. 485

Fig. 4 shows the percentage of reasoning fea- 486

tures present at each fine-tuning stage. We find 487

that the reasoning features are almost absent in the 488

base model and after switching to the reasoning 489

model (0% of manually verified features Fmanual
R ). 490

When introducing the reasoning data to the base 491

model (S→D), only 4% of the verified reasoning 492

features emerge, indicating that exposure to the rea- 493

soning content alone is insufficient to develop these 494

features. Finally, when we incorporate both the rea- 495

soning data and the reasoning model, we observe 496

that 60% of the verified reasoning features appear 497

in the (S→D→F) stage and 51% in the (S→M→F) 498

stage. The noticeable increase in the presence of 499

features only when both reasoning data and model 500

are combined provides compelling evidence that 501

ReasonScore identifies features associated with 502

the model’s reasoning processes rather than gen- 503

eral capabilities. 504

Takeaway 3: We show that most of the fea-
tures found by ReasonScore emerge only
after the reasoning fine-tuning stage. Ex-
posure to the reasoning data or reasoning
model alone is insufficient to develop these
features.

505
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5 Related Work506

5.1 Mechanistic Interpretability507

Various methods exist to shed light on the inner508

workings of LLMs, including attention analysis,509

which examines the model’s focus on input tokens510

(Vaswani et al., 2017), and gradient-based methods511

that identify influential input features (Simonyan512

et al., 2014). Probing techniques offer insights into513

the information captured within different layers of514

an LLM (Alain and Bengio, 2016). Mechanistic515

interpretability aims to reverse-engineer the com-516

putations of LLMs, employing techniques like ac-517

tivation patching (Meng et al., 2022) and feature518

steering (Cao et al., 2024; Soo et al., 2025) to un-519

derstand and control model behavior. The logit lens520

provides a way to observe the model’s token predic-521

tions at different processing stages (Nostalgebraist,522

2020).523

5.2 Sparse Autoencoders524

Sparse Autoencoders (SAEs) have emerged as a525

key tool for understanding the internal represen-526

tations of LLMs, particularly in the context of in-527

terpretability research (Gao et al., 2024a; Huben528

et al., 2024). By learning a sparse decomposition of529

model activations, SAEs can identify disentangled530

features that correspond to meaningful concepts531

(Marks et al., 2024).532

Previous work has shown that SAE features are533

significantly more monosemantic than individual534

neurons, making them an effective tool for mech-535

anistic interpretability (Leask et al., 2025). A key536

challenge in using SAEs for interpretability is en-537

suring extracted features are monosemantic and538

robust. Yan et al. (Yan et al., 2024) propose using539

feature decorrelation losses to enforce better sep-540

aration between learned latents, preventing redun-541

dancy in feature representations. Furthermore, re-542

cent advances in cross-layer SAEs (Shi et al., 2025)543

have allowed more abstract, high-level reasoning544

patterns by analyzing activations across multiple545

transformer layers.546

SAEs have also proven valuable for studying547

model development across training stages. Cross-548

coders (Lindsey et al., 2024) enable direct map-549

ping of features to model states, while stage-wise550

model diffing (Bricken et al., 2024) compares SAEs551

trained on different checkpoints. In our experi-552

ments, we adopt the diffing approach for its com-553

putational efficiency and intuitive implementation.554

While previous work has applied diffing to sleeper555

agents, our research extends this approach to inves- 556

tigate reasoning behavior. 557

5.3 Reasoning LLMs 558

Recent innovations in LLMs have shifted the fo- 559

cus toward models with explicit reasoning abili- 560

ties. Notable examples include OpenAI’s o1 (Ope- 561

nAI, 2024b), DEEPSEEK-R1 (Guo et al., 2025) and 562

QWQ-32B-PREVIEW (Team, 2024). These meth- 563

ods train LLMs by rule-based reinforcement learn- 564

ing that employs the correctness score (whether the 565

final answer is correct or not) and a format score (to 566

ensure outputs follow a predetermined structure) 567

which leads to the emergence of advanced reason- 568

ing behaviors like self-correction and reflection, 569

denoted as an “aha moment” in the DEEPSEEK-AI 570

(Guo et al., 2025) report. 571

Despite the success of rule-based reinforcement 572

learning and iterative fine-tuning in enabling rea- 573

soning capabilities, how these models encode their 574

internal reasoning remains an open question. In our 575

work, we study this problem by using a Sparse Au- 576

toencoder to find interpretable features responsible 577

for the underlying reasoning mechanisms inside 578

these LLMs, which, to the best of our knowledge, 579

has not been done yet. 580

6 Conclusion 581

In this work, we present a novel methodology for 582

uncovering the internal mechanisms of reasoning 583

in LLMs through the lens of Sparse Autoencoders. 584

We introduce ReasonScore, a metric that identi- 585

fies reasoning-related SAE features based on their 586

activation patterns using a curated introspective 587

vocabulary. Our interpretation experiments reveal 588

a subset of these features that demonstrate inter- 589

pretable activation patterns corresponding to di- 590

verse reasoning behaviors: uncertainty, exploratory 591

thinking, and self-reflection. Through steering ex- 592

periments, we provide causal evidence that certain 593

features selected by ReasonScore directly corre- 594

spond to the model’s reasoning behaviors. Am- 595

plifying them prolongs the internal thought pro- 596

cess and increases performance across multiple 597

reasoning-related benchmarks. Using a stage-wise 598

fine-tuning technique, we confirm that most of the 599

features found by ReasonScore emerge only after 600

the reasoning fine-tuning process. Our work pro- 601

vides the first mechanistic evidence that specific, 602

interpretable components of LLM representations 603

are causally linked to complex reasoning behaviors. 604

8



Limitations605

ReasonScore While ReasonScore has proven to606

identify reasoning-specific features, it has several607

limitations. Our metric depends on multiple hy-608

perparameters, such as context window size and609

entropy penalty coefficient α. Although we ob-610

tained good results with the default parameters,611

ablation studies should be performed to determine612

the optimal values. Our feature selection process613

yielded 46 interpretable features from the top 200614

candidates (23%). While other features can also615

contribute to reasoning, we could not confidently616

classify them due to ambiguous activation patterns.617

Among the unverified features, we also observed618

several token-level features that activate on rea-619

soning words but lack clear conceptual meaning.620

Finally, our reasoning vocabulary might not com-621

prehensively capture all patterns associated with622

diverse forms of reasoning in LLMs. These limita-623

tions suggest opportunities for refinement in future624

work.625

Sparse Autoencoders SAEs provide a power-626

ful framework for interpreting LLMs. However,627

it is known that SAEs suffer from some problems628

that complicate the extraction of fully interpretable629

features (Chanin et al., 2024; Leask et al., 2025).630

While we have found multiple interpretable fea-631

tures with causal influence, we could have also632

missed other interesting features. We also re-633

stricted our analysis to layer 19 of DEEPSEEK-R1-634

LLAMA-8B model, potentially missing reasoning635

mechanisms distributed across other layers. These636

limitations highlight both the strengths and current637

constraints of using SAEs for mechanistic inter-638

pretability.639

Emergence of Reasoning Features While the640

results in Sec. 4.4 support our hypothesis, we ac-641

knowledge certain limitations of the diffing ap-642

proach. First, we choose the cosine similarity643

threshold (0.7) empirically following the initial644

work, which might miss similar features if the rep-645

resentation is rotated during one of the fine-tuning646

stages. A single feature can also be split (or ab-647

sorbed) and does not cross the defined threshold.648

Second, we identify only 60% of the manually veri-649

fied reasoning features (and 78% of FR features) in650

the final stage, with the remaining features missing.651

These incompleteness probably results from fine-652

tuning the SAE rather than training from scratch653

at each stage, and the instability of SAE decom-654

position in preserving features between different 655

runs (Paulo and Belrose, 2025). These limitations 656

show that our approach can result in false negative 657

and false positive predictions. However, we believe 658

that our primary finding remains valid even under 659

these limitations. 660

Ethics Statement 661

Use of AI Assistants We utilize Grammarly to 662

enhance and proofread the text of this paper, cor- 663

recting grammatical, spelling, and stylistic errors, 664

as well as rephrasing sentences. Consequently, cer- 665

tain sections of our publication may be identified 666

as AI-generated, AI-edited, or a combination of 667

human and AI contributions. 668
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A ReasonScore Details939

A.1 Reasoning Vocabulary940

In Fig. 5, we show the complete list of words941

from the reasoning vocabulary R that we obtain942

in Sec. 3.1. For clarity, we list only the lower-943

case forms without spaces (e.g. “alternatively”).944

However, in our implementation, we track multiple945

forms of each word, including capitalized (“Al-946

ternatively”) and space-prefixed variants (“ alter-947

natively”, “ Alternatively”), as the tokenizer can948

assign different tokens for each of the forms.949

["alternatively", "hmm", "maybe", "wait",
"perhaps", "let me", "therefore", "however",
"but", "another"]

Figure 5: The complete list of words from the reasoning
vocabulary R in the lowercase and without spaces form.

A.2 ReasonScore Distribution950

Fig. 6 shows the ReasonScore values sorted in de-951

creasing order of all SAE features for DEEPSEEK-952

R1-LLAMA-8B. We select the 0.997-th quantile953

as a cutoff, yielding approximately 200 features.954

While the plot shows the ReasonScore continues955

to decay below this threshold rather than reaching956

a plateau, this amount is feasible to analyze manu-957

ally and contains all the most important features as958

judged by our metric.
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Figure 6: Distribution of ReasonScore values across all
SAE features for DEEPSEEK-R1-LLAMA-8B, sorted
in decreasing order.

959

B Interpretability Details960

B.1 Feature Interfaces961

Figs. 7,8 display additional activation patterns for962

features we found during manual interpretation963

(Sec. 4.2), highlighting tokens where each feature 964

most strongly activates. 965

B.2 Automatic Interpretation Details 966

We cluster reasoning-related features based on their 967

possible functions and behavioral patterns. To sup- 968

port this process, we provided GPT-4O with a list 969

of existing features, accompanied by a description 970

of its possible function and observed steering be- 971

havior.. The model was asked to identify recurring 972

patterns and group similar features accordingly. To 973

ensure accuracy, the results were then manually 974

reviewed and validated. Table 2 presents the result- 975

ing feature groups, including categories (reasoning 976

depth and thoroughness, self-correction and back- 977

tracking, and others), along with descriptions of 978

their roles and effects. In some cases, even fea- 979

tures grouped together based on shared function 980

exhibited subtle differences in how they influenced 981

responses; for instance, among features encour- 982

aging structural organization, one may focus on 983

logical flow and paragraphing, while another influ- 984

ences transitions between argument steps. Addi- 985

tionally, features often demonstrated overlapping 986

effects with other groups or influenced aspects be- 987

yond reasoning alone. For example, affecting the 988

stylistic tone or structure of the output. This sug- 989

gests that certain features may play a broader role 990

across different types of reasoning and expression, 991

rather than being confined to a single function. 992

C Examples of Feature Steering 993

Tab. 3 show the example of model’s thinking pro- 994

cess on a “how many r’s in the word strawberry” 995

question with and without steering. Tabs. 4,5,6 996

show the examples of model’s thinking processes 997

on reasoning-related benchmarks with and without 998

steering. 999
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Feature #16778

Feature #31052

Feature #43828

Feature #45699

 a lower concentration? Wait, but the initial thought was

 possible of them. Wait, no. Wait, the

 smallest possible. \n\nWait, let's think of it

 number. Wait, no, let's compute that again

 a perfect fit. But I'm not confident. Alternatively

't fit better. But I'm really not sure.

 the answer.\n\nBut I'm not entirely sure. Another

 conquer enemy, but I'm not certain. Alternatively,

 a bit of a dilemma. \n\nWait, let me

 This is a bit ambiguous. To avoid confusion, I

 perspective, disputes might be.\n\nBut without context, the

 So there's a conflict. To resolve this, perhaps

 a_i+1.\n\nBut this is unclear.\n\nAlternatively

 +1=42. But this is speculative.\n\nAlternatively

 of that intersection point. But this seems too abstract.\n\n

*4+3. But this is just a guess

(a) Top-activating examples from the manually verified set of
features. The chosen examples represent “uncertainty”.

Feature #40262

Feature #34967

Feature #1451

Feature #33429

 of a ship, but maybe "keel" relates

coffin" could be a pun on "c

't make sense. Or maybe a homophone. "

'm not sure. Alternatively, 500 in Roman numer

 think of possible groupings.\n\nAlternatively, maybe the groups

 is a guess.\n\nWait, maybe the user expects me

 a missing detail. Alternatively, maybe the pie chart was

'm not certain. Wait, the options are (A

 "exit."\n\nWait, another angle: the room's

 missed something. Let me think again. The standard electrode

't fit.\n\nWait, another thought: maybe the answer

 confusing. Wait, let me try another approach. The

 not the case. Alternatively, maybe the problem is expecting

 is known, so maybe the answer is simply -57

. Alternatively, maybe the problem is testing the knowledge that

.\n\nWait, maybe the problem is a simple application of

(b) Top-activating examples from the manually verified set of
features. The chosen examples represent “exploration”.

Figure 7: Examples of feature interfaces used in manual interpretation experiments.

Feature #506

Feature #9636

Feature #9977

Feature #34370
 seems straightforward. But let me verify with actual numbers to

.\n\nWait, but let me double-check. The problem

 1. But let me try another way to solve

3.\n\nWait, let me check my steps again to

 barycentric coordinates... I think there's a

enter can be given, but I might need to recall

 )\n\nBut this seems complicated. Alternatively, perhaps it's

 external angle bisectors.\n\nBut I'm not sure how

 P and Q.\n\nWait, but we have P(B

 be necessary for our problem. Let's return to the

 help with the inequality?\n\nWait, maybe use Cauch

 would take the triangle.\n\nBut the problem states that the

 of the rows.\n\nBut the problem states "any initial

feasible. However, the problem states that N is

 presence of competitors. But the question specifically asks about
 temperature  done after chlorination. But the question says

(a) Top-activating examples from the manually verified set of
features. The chosen examples represent “reflection”.

Feature #34431

Feature #54382

Feature #56769

Feature #57334

 or Poisson's ratio. This is a problem because

 it's not mentioned here. Hmm. The user might

 knowing the refractive index? Wait, maybe there's

 natural frequency without knowing E. Maybe there is a standard

 not likely.\n\nWait, perhaps I'm making a mistake

 already present.\n\nWait, perhaps the reaction uses a different

 substitution should be meta. Unless there's some steric

 does that happen?\n\nAlternatively, maybe the first Cl goes

121 is the smallest.\n\nBut wait, let's check

 a mistake in the reasoning.\n\nWait, but the problem

 as R=4. Hmm. What about R=

's a different answer.\n\nWait, let's consider another

 is 530 J.\n\nBut another approach: 5

10â »Â .\n\nBut maybe the calculation allows for

 be 17. However, sometimes when the first digit

1680 J.\n\nHowever, in our precise calculation,

(b) Top-activating examples from the manually verified set of
features. The chosen examples represent mixed behaviors.

Figure 8: Examples of feature interfaces used in manual interpretation experiments.
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Group Name Features Possible Function Effect Type Observed Behavior

Reasoning
Depth and
Thoroughness

506, 4395,
9636, 23052,
30288, 33148,
54382, 61935

Controls multi-step
analysis, iteration,
and self-correction
in problem-solving.

Stylistic &
Structural,
Semantic &
Logical Consis-
tency

Strengthening: Extensive step-
by-step reasoning, multiple iter-
ations, self-corrections. Weak-
ening: Direct answers with min-
imal steps.

Numerical Ac-
curacy and Vali-
dation

4990, 3466,
16778, 46379,
34813, 51765

Governs precision
in calculations, unit
conversions, and
error-checking.

Semantic &
Logical Consis-
tency

Strengthening: Meticulous
unit tracking, iterative re-
evaluation. Weakening: Direct
results with potential errors.

Exploration of
Multiple Meth-
ods

22708, 62446 Encourages evaluat-
ing alternative ap-
proaches before final-
izing solutions.

Semantic &
Logical Explo-
ration

Strengthening: Compares mul-
tiple strategies (e.g., DP vs.
greedy). Weakening: Commits
to the first viable method.

Structural and
Logical Organi-
zation

57334, 43828,
45699, 49326,
17726, 46449,
41636, 40262

Ensures clarity, step-
by-step breakdown,
and logical flow. It
may also balance ex-
ecutable code genera-
tion vs. verbal expla-
nations.

Structural, Se-
mantic & In-
struction Clar-
ity

Strengthening: Well-
structured explanations.
Weakening: Disorganized or
fragmented reasoning.

Symbolic vs.
Numerical
Reasoning

48026, 34967,
34589

Balances theo-
retical/symbolic
reasoning with direct
numerical computa-
tion.

Semantic &
Logical Consis-
tency

Strengthening: Alge-
braic/theoretical frameworks.
Weakening: Immediate numer-
ical substitution.

Self-Correction
and Backtrack-
ing

16778, 35337,
42609, 34431,
25953

Controls iterative re-
finement and error-
checking.

Semantic &
Logical Consis-
tency

Strengthening: Multiple
rounds of self-correction.
Weakening: Commits to initial
answers without revision.

Causal Chain-
ing & Scientific
Context

56769, 34370,
3261, 13457

Enforces clear
multi-step causal
linkages in sci-
ence/environmental
scenarios, modulates
temporal reasoning,
hypothetical alterna-
tives and scenario
simulation

Semantic
(Causality)

Strengthening: yields explicit
causal chains, regulates con-
trastive reasoning, gives clearer
timeline-based reasoning.
Weakening results in loosely
linked assertions or missing
intermediate steps, omit histori-
cal or causal context

Edge Case and
Constraint Han-
dling

16343, 46691,
3942

Ensures validation of
edge cases and con-
straints.

Semantic &
Logical Consis-
tency

Strengthening: Explicitly ad-
dresses edge cases. Weaken-
ing: Assumes valid inputs with-
out verification.

Semantic Elab-
oration & Con-
ceptual Depth

1451, 33429,
61104, 25485,
45981, 31052,
16441, 53560

Shapes depth of
domain-specific ex-
planations, analogies,
trade-off discussions,
and interdisciplinary
links

Semantic
(Elaboration &
Breadth)

Strengthening: Adds concep-
tual depth through analogies,
trade-offs, and multi-factor ex-
planations. Weakening: Re-
duces to simple, surface-level
or single-cause statements with
minimal abstraction.

Other Behavior 48792, 9977,
20046, 12036,
32134

Include: influences
engagement and
conversational
tone, assertive-
ness/redundancy/structure
in text and terminol-
ogy

Stylistic &
Structural

Strengthening: Creates a more
formal, robotic style with rigid
structure and a high degree
of confidence in statements.
Weakening: Makes the style
livelier and more conversa-
tional, with informal delivery,
varied structure, and a moder-
ate level of confidence that in-
cludes elements of uncertainty
and flexibility.

Table 2: Reasoning clusters obtained using GPT-4O. Each cluster is defined by a particular type of reasoning (depth
of analysis, numerical checking, code generation), the specific features involved, their hypothesized function in
shaping the models’ output style and logic, and the observed behaviors that emerge when using the feature steering.
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Problem: How many r’s are in the word strawberry?

Generation (no steering): I need to determine how many times the letter "r" appears in the word "strawberry."
First, I’ll write down the word and break it into individual letters: S, T, R, A, W, B, E, R, R, Y. Next,
I’ll identify which of these letters are "r": the third, eighth, and ninth letters. Finally, I’ll count

these "r"s, which gives me a total of three .

Generation (steering): Okay, so I need to figure out how many r’s are in the word "strawberry." Let me think
about this step by step. First, I should probably write down the word and break it down into its
individual letters. The word is spelled S-T-R-A-W-B-E-R-R-Y. Wait, let me make sure I have that right.
Sometimes I get confused with the spelling. I think the correct spelling is "strawberry." So, let me write
it out again: S, T, R, A, W, B, E, R, R, Y. Hmm, now that I write it, I see there are two R’s after the E.
Let me count the letters again to make sure I don’t miss any. S (1), T (2), R (3), A (4), W (5), B (6), E
(7), R (8), R (9), Y (10). So the word has 10 letters in total. Now, focusing on the R’s. The third letter
is R, that’s one. Then after E, which is the seventh letter, there are two more R’s: the eighth and ninth
letters. So that’s two more. Let me double-check the spelling again to make sure I’m not miscounting.
Sometimes I might confuse the letters. I think it’s S-T-R-A-W-B-E-R-R-Y, so yes, the two R’s are towards
the end. Wait, is there another R in the word? Let me think. The word is "strawberry." I think it’s
spelled with an R after the E, and another R after that. So that’s two R’s. I don’t recall any other R’s
in the word. Let me go through each letter again: S, T, R, A, W, B, E, R, R, Y. So, yes, the R’s are the
third, eighth, and ninth letters. Wait, that’s three R’s. Did I miscount earlier? Wait, no, I think I made
a mistake. Let me recount the letters with their positions. Let’s write it out:
1. S
2. T
3. R
4. A
5. W
6. B
7. E
8. R
9. R
10. Y
So, the R’s are at positions 3, 8, and 9. That makes three R’s in total. I think I initially thought it
was two, but upon a closer examination, it’s actually three. Let me check another source or think about
how the word is pronounced. The word "strawberry" is pronounced with a double R sound, so that would
correspond to two R’s, but when I break it down, I see that the letters are R, R. Wait, no, the letters
are E, R, R. So, that’s two R’s after the E. So, the third letter is R, and then the eighth and ninth
letters are R’s as well. So that’s three R’s. Wait, I’m getting confused. Let me visualize the word again:
S-T-R-A-W-B-E-R-R-Y. So, the letters are S, T, R, A, W, B, E, R, R, Y. So, the R appears at the third
position, and then again at the eighth and ninth positions. That makes three R’s. So, the correct count is
three R’s. I think I initially miscounted because I focused on the double R at the end, but there’s
another R earlier in the word. So, to clarify, the word "strawberry" has three R’s: one in the third

position, and two more at the end. So, the correct answer is three R’s.

Table 3: An example of “How many r’s are in the word strawberry?” problem and corresponding full outputs from
DEEPSEEK-R1-LLAMA-8B and its steered version.
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Problem: For how many values of x is the expression x−5
x2−9

not defined?

Generation (no steering): Okay, so I have this problem here: "For how many values of x is the expression
x−5
x2−9

not defined?" Let me try to figure this out step by step. First, I remember that a fraction is

undefined when its denominator is zero because you can’t divide by zero. So, to find where this expression
is not defined, I need to figure out when the denominator equals zero. The denominator here is x2 − 9. So,
I need to solve the equation x2 − 9 = 0. Hmm, how do I solve that? Well, I think it’s a difference of
squares because x2 is like (x)2 and 9 is (3)2. So, the equation factors into (x− 3)(x+ 3) = 0. That makes
sense because when you multiply those two binomials, you get x2 − 3x+ 3x− 9 = x2 − 9, which is correct.
So, setting each factor equal to zero gives the solutions:
1. x− 3 = 0 leads to x = 3
2. x+ 3 = 0 leads to x = −3
Therefore, the denominator is zero when x = 3 or x = −3. That means the expression x−5

x2−9
is undefined at

these two points. Wait, let me double-check. If I plug x = 3 into the denominator: 32 − 9 = 9− 9 = 0. Yep,
that’s zero. Same with x = −3: (−3)2 − 9 = 9− 9 = 0. So, both of these make the denominator zero. Is there
a chance I missed any other values? Hmm, let me think. The denominator is a quadratic equation, which can
have at most two real roots. Since we found both roots, 3 and −3, there are only two values where the
denominator is zero. What about the numerator? The numerator is x− 5. That’s a linear term, so it only
affects the value of the expression, not its definition. So, the numerator doesn’t cause any undefined
behavior on its own. It’s only when the denominator is zero that the whole expression becomes undefined.
Therefore, the only values of x where the expression is not defined are x = 3 and x = −3. That means there
are two values of x for which the expression is undefined. Just to make sure, let me consider the original
expression again: x−5

x2−9
. So, the denominator is x2 − 9, which factors to (x− 3)(x+ 3). So, if I were to

graph this function, it would have vertical asymptotes at x = 3 and x = −3, which are the points where the
function is undefined. There’s no division by zero anywhere else, so these are the only two points where
the function doesn’t exist. I don’t think I made any mistakes here. The problem is pretty straightforward
once you recognize that the denominator needs to be factored and solved. So, yeah, I feel confident that
the answer is two values: x = 3 and x = −3.
**Final Answer**
The expression is not defined for 2 values of x.

Generation (steering): Okay, so I have this problem: I need to find how many values of x make the expression
(x - 5)/(x² - 9) undefined. Hmm, let me think. I remember that a fraction is undefined when its
denominator is zero because you can’t divide by zero. So, I should figure out when x² - 9 equals zero.
Alright, let me write that down. The denominator is x² - 9. So, I need to solve x² - 9 = 0. Hmm, that’s a
quadratic equation. I think I can factor this. Let me recall, the difference of squares formula is a² - b²
= (a - b)(a + b). So, applying that here, x² - 9 is the same as x² - 3². Therefore, it factors into (x -
3)(x + 3). So, now I have (x - 3)(x + 3) = 0. To find the values of x that make this equation true, I can
set each factor equal to zero. That gives me:
x - 3 = 0 or x + 3 = 0
Solving these, I get x = 3 and x = -3. So, these are the values that make the denominator zero, which
would make the entire expression undefined. Therefore, I need to check if these are the only values or if
there are more. Wait, let me make sure. The original expression is a rational expression, so the only way
it’s undefined is if the denominator is zero. There are no other denominators or functions here, so I
think that’s all. Therefore, x cannot be 3 or -3. Let me just double-check my factoring. x² - 9: if I
expand (x - 3)(x + 3), I get x*x + x*3 - 3*x - 3*3, which is x² + 3x - 3x - 9, which simplifies to x² - 9.
Yep, that’s correct. So, are there any other possibilities where the denominator could be zero? Well, if I
consider the quadratic equation x² - 9 = 0, it only has two roots: 3 and -3. There’s no other x-value that
can satisfy this equation because a quadratic equation can have at most two real roots. So, that’s it.
There are only two values of x that make the denominator zero, hence the expression is undefined for those
x. Wait, let me think again. Maybe I should plug these x-values into the original expression to confirm.
Let’s try x = 3 first. Plugging in, the denominator becomes 3² - 9 = 9 - 9 = 0. So, the expression becomes
(3 - 5)/0, which is (-2)/0. That’s undefined, so that’s correct. Now, x = -3. Plugging in, the denominator
is (-3)² - 9 = 9 - 9 = 0 again. So, the expression becomes (-3 - 5)/0, which is (-8)/0. That’s also
undefined. So, both values definitely make the expression undefined. Is there any other way this could be
undefined? For example, sometimes, if the numerator is also zero, I might have an indeterminate form, but
in this case, let’s see. When x = 3, the numerator is 3 - 5 = -2, which is not zero. When x = -3, the
numerator is -3 - 5 = -8, which is also not zero. So, both times, the numerator is a non-zero number, and
the denominator is zero. Therefore, it’s just undefined, not something like 0/0, which is actually
undefined as well, but in that case, both numerator and denominator are zero. But in this case, it’s just
a clear division by zero. Therefore, I can confidently say that the expression is undefined for x = 3 and
x = -3. So, how many values is that? Let me count. 3 and -3. That’s two different values. So, the number
of values where the expression is undefined is 2. Wait, let me just visualize the graph of the function.
If I were to graph y = (x - 5)/(x² - 9), I know that the function will have vertical asymptotes where the
denominator is zero, provided that the numerator isn’t zero there. So, as I found earlier, at x = 3 and x =
-3, there are vertical asymptotes because the denominator is zero, and the numerator isn’t zero. So, those
points are not in the domain of the function. So, that’s another way to confirm. Is there a possibility of
any other points where the function is undefined? Let me think. Since the denominator is a quadratic, it
can have at most two real roots, and we’ve already found both. So, nope, no other points where the
denominator is zero. So, that should be it. So, summarizing, the expression is undefined when x is 3 or -3.
Therefore, there are two values of x where the expression is undefined. So, the answer should be 2. Wait,
just to make sure I didn’t make any mistake in my calculations. Let me go through the steps again.
1. Start with the expression (x - 5)/(x² - 9).
2. To find when it’s undefined, set denominator equal to zero: x² - 9 = 0.
3. Factor the quadratic: (x - 3)(x + 3) = 0.
4. Solve for x: x = 3 and x = -3.
5. Check if these x-values make the numerator zero as well. For x = 3: numerator is 3 - 5 = -2 ̸= 0. For x
= -3: numerator is -3 - 5 = -8 ̸= 0. So, both are valid points where the expression is undefined.
6. Confirm that these are the only points by noting that a quadratic equation can have at most two real
roots, and we found both.
7. Visualize the graph to check for vertical asymptotes at these points, which confirms the function is
undefined there.
Therefore, I’m pretty confident that the number of values is 2.
**Final Answer**
The expression is undefined for 2 values of x.

Table 4: A problem from MATH-500, and corresponding outputs from DEEPSEEK-R1-LLAMA-8B and its steered
version.
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Problem: A regular octagon has the same perimeter as the regular hexagon shown here with side length 16 cm.
How long is each side of the octagon? [asy]size(80); pair A = dir(120); pair B=dir(60); pair M=(A+B)/2;
draw(dir(360)–B–A–dir(180)–dir(240)–dir(300)–cycle); label("16 cm", M, N);[/asy]
Generation (no steering): Okay, so I have this problem where a regular octagon has the same perimeter as a
regular hexagon. The hexagon has a side length of 16 cm, and I need to find the side length of the octagon.
Hmm, let’s break this down step by step. First, I remember that the perimeter of a regular polygon is just
the number of sides multiplied by the length of each side. So, for the hexagon, which is a six-sided
polygon, I can calculate its perimeter by multiplying 6 by 16 cm. Let me write that out:
Perimeter of hexagon = 6 * 16 cm = 96 cm.
Got that. So the perimeter of the octagon must also be 96 cm since it’s equal to the hexagon’s perimeter.
Now, a regular octagon has 8 sides, right? So, if I let ’s’ be the length of each side of the octagon,
then the perimeter of the octagon would be 8 * s. Since we know the perimeter is 96 cm, I can set up the
equation:
8 * s = 96 cm.
To find ’s’, I just need to divide both sides by 8:
s = 96 cm / 8 = 12 cm.
Wait, is that it? It seems straightforward, but let me double-check to make sure I didn’t miss anything.
So, the hexagon has 6 sides, each 16 cm, so 6*16=96 cm. The octagon has 8 sides, so each side is 96/8=12
cm. Yep, that seems correct. Hmm, just to make sure, maybe I should visualize the polygons. A regular
hexagon has six equal sides and six equal angles, and a regular octagon has eight equal sides and eight
equal angles. Since both are regular, all sides and angles are equal, so the calculation should hold.
Another way to think about it: the perimeter is just the sum of all sides. So, for the hexagon, adding up
six sides each of 16 cm gives 96 cm. For the octagon, we need to add up eight sides, each of which is the
same length, so 8 times that length equals 96 cm. Solving for that length gives 12 cm. I don’t see any
mistakes in the logic here. It’s a direct calculation based on the definition of perimeter for regular
polygons. So, I think the side length of the octagon is 12 cm.
**Final Answer**
The length of each side of the octagon is 12 centimeters.

Generation (steering): Okay, so I have this problem here where I need to figure out the length of each side
of a regular octagon. The octagon has the same perimeter as a regular hexagon, and the hexagon is shown
with side length 16 cm. Hmm, okay, let me think step by step about how to approach this. First, I remember
that the perimeter of a shape is the total length around it. For regular polygons, which both octagons and
hexagons are, the perimeter is just the number of sides multiplied by the length of each side. So if I can
figure out how many sides each shape has and then use the given information, I can find the opposite. Wait,
the problem says it’s a regular hexagon. Right, a hexagon has six sides. So, since the side length is 16
cm, the perimeter of the hexagon would be 6 times 16 cm. Let me write that down.
Perimeter of hexagon = 6 * 16 cm = 96 cm.
So, the octagon has the same perimeter, which is 96 cm. Now, an octagon has eight sides. So, if I can find
the length of each side of the octagon, that would be the perimeter divided by 8. Let me write that
formula:
Perimeter of octagon = 8 * (length of each side)
But wait, we know the perimeter is 96 cm, so:
96 cm = 8 * (length of each side)
To find the length of each side, I need to divide both sides by 8. So, length of each side = 96 cm / 8 = 12
cm. Hmm, that seems straightforward. But let me just double-check to make sure I didn’t make a mistake.
Wait, is it correct that the octagon’s perimeter is 96 cm? Because the hexagon’s side is 16 cm, so 6 times
16 is 96. So, yes, the octagon has to have the same perimeter. Since octagons have more sides, each side
should be shorter. So, 96 divided by 8 is 12, which is shorter than 16, so that makes sense. Wait, another
way to think about it: if you have a polygon with more sides, each side is actually shorter for the same
perimeter. So, since an octagon has more sides than a hexagon, each side should be shorter, which aligns
with 12 cm being shorter than 16 cm. So that seems right. Is there another way to approach this problem?
Maybe using the formula for perimeter in terms of side length? Yes, for regular polygons, the perimeter is
just the number of sides multiplied by the side length. So, if I denote the side length of the octagon as
’s’, then:
Perimeter of octagon = 8 * s
But since it’s equal to the perimeter of the hexagon, which is 6 * 16 = 96, then: 8s = 96 Solving for s
gives s = 96 / 8 = 12 cm. Yep, same result. I think I got it. So, the length of each side of the octagon
is 12 cm. Wait, let me think again. Sometimes, when I’m dealing with perimeters, I might confuse side
length with something else, but in this case, since both are regular polygons, it’s straightforward. So,
for regular polygons, the perimeter is directly additive. So, each side contributes equally. Therefore,
inverting the number of sides inversely affects the side length. So, in the hexagon, 6 sides, each 16 cm,
so 16 times 6 is 96. The octagon, which has more sides, 8, so each side is 96 divided by 8, which is 12.
So, that makes sense. Wait, just to make sure, if the octagon had 8 sides, each 12 cm, the perimeter would
be 8*12=96 cm, which is the same as the hexagon. So, that’s correct. I think that’s solid. So, the length
of each side of the octagon is 12 cm.
**Final Answer**
The length of each side of the octagon is 12 cm.

Table 5: A problem from MATH-500, and corresponding outputs from DEEPSEEK-R1-LLAMA-8B and its steered
version.
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Problem: Thirty-five students attend a math club meeting. The number of girls at the meeting is a multiple
of 13, and there are more girls than boys attending the meeting. How many boys are at the meeting?
Generation (no steering): Alright, so I have this problem here: There are 35 students at a math club meeting.
The number of girls is a multiple of 13, and there are more girls than boys. I need to find out how many
boys are at the meeting. Hmm, okay. Let’s break this down. First, total students are 35. Girls are a
multiple of 13, so let’s denote the number of girls as G. Then, the number of boys would be B. So, G + B =
35. Also, it’s given that there are more girls than boys, so G > B. And since G is a multiple of 13, let’s
think about what multiples of 13 are possible here. 13 times 1 is 13, 13 times 2 is 26, 13 times 3 is 39.
Wait, but 39 is more than 35, so that can’t be the number of girls because we only have 35 students in
total. So, possible number of girls are 13 or 26. So, G could be 13 or 26. Let’s check both possibilities.
Case 1: G = 13. Then, B = 35 - 13 = 22. So, number of boys would be 22. But wait, the problem says there
are more girls than boys. So, 13 girls and 22 boys. That would mean more boys than girls, right? Because
22 is more than 13. That contradicts the given condition. So, this case is not possible.
Case 2: G = 26. Then, B = 35 - 26 = 9. So, number of boys would be 9. Now, 26 girls and 9 boys. That means
more girls than boys, which fits the condition. So, this is the valid case.
Wait, let me double-check. If G = 26, which is 2 times 13, then B is 9. 26 + 9 = 35, correct. And 26 > 9,
so the condition holds. So, that seems to be the answer. Is there any other multiple of 13 that I need to
consider? Let’s see. The next multiple is 39, but as I thought earlier, that’s more than 35, so that’s not
possible. So, the only possible number of girls is 26, leading to 9 boys. Alternatively, let’s approach
this algebraically. Let me write the equations:
G + B = 35
G is a multiple of 13, so G = 13k, where k is an integer. Also, G > B, so 13k > B. But since G + B = 35,
then B = 35 - G = 35 - 13k. So, substituting back into G > B:
13k > 35 - 13k
So, let’s solve this inequality:
13k > 35 - 13k
Adding 13k to both sides:
26k > 35
Divide both sides by 26:
k > 35/26
35 divided by 26 is approximately 1.346.
Since k must be an integer, the smallest possible k is 2. So, k = 2, which gives G = 26, then B = 35 - 26 =
9. So, that’s the same result as before. Alternatively, if k was 1, which gives G =13, then B=22, but that
doesn’t satisfy G > B, so k must be 2. Hence, the number of boys is 9. I think that’s thorough. I
considered both cases, checked the algebra, and made sure that the conditions are satisfied. So, the
answer should be 9 boys.
**Final Answer**
The number of boys at the meeting is 9 .

Generation (steering): Okay, so I have this problem here: there are 35 students at a math club meeting. The
number of girls is a multiple of 13, and there are more girls than boys. I need to find out how many boys
are at the meeting. Hmm, let me try to break this down. First, let me note down the given information:
- Total number of students = 35.
- Number of girls is a multiple of 13.
- Number of girls is more than the number of boys.
I need to find the number of boys. Let me denote the number of girls as G and the number of boys as B. So,
G + B = 35.
Since G is a multiple of 13, that means G = 13 * k, where k is a positive integer. Because there are more
girls than boys, G > B. So, since G + B = 35, if G is more than B, then G must be greater than 35/2, which
is 17.5. So, G must be at least 18. But since G is a multiple of 13, let’s see which multiples of 13 are
greater than 17.5.
Multiples of 13: 13, 26, 39, etc. But since the total number of students is 35, G can’t be 39 because that
would mean more students than the total. So, the possible multiples of 13 for G are 13 and 26. But wait,
earlier I thought G must be more than 17.5, so 13 is less than that, which would mean G is 13. But 13 is
less than 17.5, so that would mean B is 22, which is more than G. But the problem says more girls than
boys, so G must be greater than B. So, G can’t be 13 because that would make B = 35 - 13 = 22, which is
more. So, actually, G must be 26. Wait, let me think again. If G is 26, then B would be 35 - 26 = 9. So, G
= 26, B = 9. But is 26 a multiple of 13? Yes, 26 is 13 * 2. So that seems to fit. Also, 26 is more than 9,
which satisfies the condition that there are more girls than boys. But hold on, let me double-check. If G
is 26, then B is 9, so 26 + 9 = 35. Yes, that adds up. So, is 26 the only possible multiple of 13? Let me
check the next multiple. 13 * 3 is 39, which is more than 35, so that can’t be. So, the only possible
multiple of 13 is 26 for G. Therefore, the number of boys is 35 - 26 = 9. Wait, but hold on, is 9 the
number of boys? Let me confirm. If G is 26, which is a multiple of 13, and 26 > 9, so yes, that makes
sense. So, the number of boys is 9. Wait, is there another way to think about this? Let me approach it
algebraically. Let me write G = 13k, where k is a positive integer. So, since G + B = 35, then B = 35 - G
= 35 - 13k. We know that G > B, so 13k > 35 - 13k. Let’s solve for k:
13k > 35 - 13k
Adding 13k to both sides:
26k > 35
Divide both sides by 26:
k > 35 / 26
Calculating 35 / 26, which is approximately 1.346. Since k must be an integer, the smallest possible value
of k is 2. So, k = 2:
G = 13 * 2 = 26
Then, B = 35 - 26 = 9.
If k were 3, G would be 39, which is more than the total number of students, which is 35. So, that’s not
possible. Therefore, the only possible value is k=2, leading to G=26 and B=9. Wait, so is 9 the number of
boys? That seems consistent. Let me just double-check my reasoning. If there are 26 girls, that’s a
multiple of 13, more than the number of boys, which is 9. 26 + 9 is 35, so that adds up. There are no
other multiples of 13 in the opposite direction because the next multiple would be 39, which is too high.
So, I think I’ve got it. The number of boys is 9. But wait, just to make sure, let me think about it again.
If G is 13, then B is 22. But since G has to be more than B, that’s not possible because 13 < 22. So, G
cannot be 13 because that would make more boys than girls, which contradicts the given condition. So, G
must be 26, which makes B 9. Therefore, the number of boys is 9.
**Final Answer**
The number of boys at the meeting is 9 .

Table 6: A problem from MATH-500, and corresponding outputs from DEEPSEEK-R1-LLAMA-8B and its steered
version.
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Problem: A curve is parameterized by
(x, y) = (t3 + 7,−3t2 − 6t− 5).

Find the point the curve passes through at t = 2.

Generation (no steering): Okay, so I have this problem here where a curve is parameterized by the equations
x = t3 + 7 and y = −3t2 − 6t− 5. I need to find the point the curve passes through when t = 2. Hmm, let me
think about how to approach this. First, I remember that when you have a parameterized curve, each value
of t corresponds to a specific point (x, y) on the curve. So, to find the point when t = 2, I just need to
substitute t = 2 into both the equations for x and y and compute the values. That makes sense because each
parameter t defines a unique point on the curve. Alright, let’s start with the equation for x. The
equation is x = t3 + 7. So, substituting t = 2 into this should give me the x-coordinate of the point. Let
me compute that step by step. Calculating t3 when t = 2: 23 = 8. Then, adding 7 to that: 8 + 7 = 15. So, the
x-coordinate is 15. That seems straightforward. Now, moving on to the y-coordinate. The equation is
y = −3t2 − 6t− 5. Again, substituting t = 2 into this equation. Let me break it down. First, compute t2

when t = 2: 22 = 4. Then, multiply that by -3: −3× 4 = −12. Next, compute −6t when t = 2: −6× 2 = −12.
Lastly, we have the constant term, which is -5. So, putting it all together: y = (−12) + (−12) + (−5).
Wait, hold on. Let me double-check that. The equation is y = −3t2 − 6t− 5. So, substituting t = 2, it’s
−3 ∗ (2)2 − 6 ∗ (2)− 5. That is −3 ∗ 4− 12− 5. So, -12 -12 -5. Adding those together: -12 -12 is -24, and -24
-5 is -29. So, the y-coordinate is -29. Let me make sure I did that correctly. So, −3 ∗ (2)2 is
−3 ∗ 4 = −12. Then, -6*2 is -12, and then subtracting 5. So, adding all those up: -12 -12 is -24, minus
another 5 is -29. Yeah, that seems right. So, combining both coordinates, when t = 2, the point on the
curve is (15, -29). Hmm, let me just verify once more in case I made any calculation errors. Starting with
x: t3 + 7. t = 2, so 23 is 8, plus 7 is 15. That’s correct. For y: −3t2 − 6t− 5. t = 2: −3 ∗ (4) = −12,
−6 ∗ 2 = −12, and the constant is -5. So, adding them: -12 -12 is -24, minus 5 is -29. That’s correct.
Okay, so I think that’s the point. Just to visualize, when t = 2, the curve is at (15, -29). I don’t see
any mistakes in my calculations, so I feel confident about this answer.
**Final Answer**
The point the curve passes through at t = 2 is (15,−29) .

Generation (steering): Alright, so I have this problem here where a curve is parameterized by the equations
x = t3 + 7 and y = −3t2 − 6t− 5. I need to find the point the curve passes through when t = 2. Hmm, okay,
let me think about how to approach this. First, I remember that parameterized equations give both the x
and y coordinates in terms of a third variable, which in this case is t. So, when they ask for the point
when t = 2, I need to substitute t = 2 into both equations for x and y and then find the corresponding
(x, y) pair. Let me write that down step by step. So, for x, the equation is x = t3 + 7. If I plug in t = 2,
that should give me the x-coordinate. Similarly, for y, the equation is y = −3t2 − 6t− 5, so substituting
t = 2 there should give me the y-coordinate. Once I have both values, I can combine them into a point.
Okay, let me start with calculating x. Plugging t = 2 into x = t3 + 7:
x = (2)3 + 7.
Calculating 23, that’s 8, right? So, 8 + 7 is 15. So, the x-coordinate when t = 2 is 15. That seems
straightforward. Now, moving on to the y-coordinate. The equation is y = −3t2 − 6t− 5. Plugging in t = 2:
y = −3(2)2 − 6(2)− 5.
Let me compute each term step by step. First, 22 is 4, so multiplying that by −3 gives −12. Next, 6× 2
is 12, so with the negative sign, that term becomes −12. Then, the last term is just −5. So, putting it
all together: −12− 12− 5. Let’s add those numbers. −12− 12 is −24, and then subtracting another 5 gives
−29. So, the y-coordinate is −29. Wait, let me double-check that calculation because sometimes when I
have multiple negative signs, I might mix them up. So, let me recast it:
y = −3(4)− 6(2)− 5.
That’s −12− 12− 5. Yes, that’s correct. −12− 12 is indeed −24, and −24− 5 is −29. So, that seems
right. So, to recap, when t = 2, the x-coordinate is 15 and the y-coordinate is −29. Therefore, the point
the curve passes through is (15,−29). Wait, just to make sure I didn’t make a mistake in the substitution,
let me verify each step again. For x, substituting t = 2 into t3 + 7: 23 = 8, so 8 + 7 = 15. That’s correct.
For y, substituting t = 2 into −3t2 − 6t− 5:
First term: −3 ∗ (2)2 = −3 ∗ 4 = −12.
Second term: −6 ∗ 2 = −12.
Third term: −5.
Adding them up: −12− 12− 5 = (−12− 12)− 5 = −24− 5 = −29. Yep, that’s correct. Hmm, I think that’s
solid. Maybe I should just think about whether the parameterization makes sense or if there’s another way
to represent this curve. Wait, actually, I might recall that sometimes parameterizations can be tricky,
but in this case, it’s pretty straightforward. It’s giving x and y in terms of t, so plugging in t=2
should give the point. Alternatively, I can also compute the values for t=2 in both equations and plot
them mentally or on paper. Let me sketch a rough graph in my mind. So, when t=2, x is 15, which is further
out on the x-axis, and y is -29, which is quite low on the y-axis. That seems plausible for a cubic and
quadratic parameterization. Wait, another thought: sometimes, when I parameterize, especially with higher
powers, I might have to check for consistency, but in this case, since both x and y are given, and the
question is just about plugging in a specific t, I think it’s safe. So, to sum up, substituting t=2 into
both equations gives x=15 and y=-29, so the point is (15, -29). I think that’s the correct answer.
**Final Answer**
The point the curve passes through at t = 2 is (15,−29) .

Table 7: A problem from MATH-500, and corresponding outputs from DEEPSEEK-R1-LLAMA-8B and its steered
version.
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