
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LOGARITHMIC LINEAR UNITS (LOGLUS):
A NOVEL ACTIVATION FUNCTION FOR IMPROVED
CONVERGENCE IN DEEP NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The Logarithmic Linear Unit (LogLU) presents a novel activation function for
deep neural networks by incorporating logarithmic elements into its design, intro-
ducing non-linearity that significantly enhances both training efficiency and ac-
curacy. LogLU effectively addresses common limitations associated with widely
used activation functions include ReLU, Leaky ReLU, and ELU, which suffer
from issues like the dead neuron problem and vanishing gradients. By enabling
neurons to remain active with negative inputs and ensuring effective gradient flow
during backpropagation, LogLU promotes more efficient convergence in gradient
descent. Its capability to solve fundamental yet complex non-linear tasks, such
as the XOR problem, with fewer neurons demonstrates its efficiency in captur-
ing non-linear patterns. Extensive evaluations on benchmark datasets like Cal-
tech 101 and Imagenette, using the InceptionV3 architecture, reveal that LogLU
not only accelerates convergence but also enhances model performance compared
to existing activation functions. These findings underscore LogLU’s potential as
an effective activation function that improves both model performance and faster
convergence.

1 INTRODUCTION

Deep learning has become highly popular in recent years for its ability to recognize complex patterns
within data. LeCun et al. (2015). At the core of deep learning models are layers of neurons, A
neural network processes input data by passing it through layers of weighted connections, where
activation functions are applied to determine the output at each node. The choice of activation
function is critical, as it influences how well a neural network learns, handles non-linearities, and
performs in various tasks Goodfellow et al. (2016). An effective activation function enables the
model to approximate complex relationships, This ability is a key reason for deep learning’s better
performance.

While popular activation function like Rectified Linear Unit (ReLU) Nair & Hinton (2010), Leaky
ReLU Xu et al. (2015), and Exponential Linear Unit (ELU) Clevert et al. (2015) have been widely
used, they each present limitations. For instance, ReLU faces the dead neuron problem, where neu-
rons stop learning if they constantly receive negative inputs. Although Leaky ReLU addresses this
problem by permitting small negative values, it introduces the vanishing gradient problem, limiting
its effectiveness in deep networks Maas (2013). ELU, on the other hand, provides a smooth output
for negative inputs but increases computational complexity due to its exponential calculation.

In this paper, we introduce a new activation function i.e., Logarithmic Linear Unit (LogLU), which
addresses the limitations of existing activation functions. LogLU is designed to solve both the dead
neuron and vanishing gradient problems while maintaining computational simplicity. It enables neu-
rons to remain active even with negative inputs, preventing dead neurons and ensuring that gradients
stay sufficiently large during backpropagation. This enhances the training of deep neural networks,
resulting in quicker convergence and improved overall performance. One of the most notable fea-
tures of LogLU is its ability to solve classic XOR function approximation problems using a single
neuron McCulloch & Pitts (1943). This highlights its efficiency in capturing non-linear relationships
with fewer resources compared to other activation functions. LogLU’s unique properties allow deep

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

learning models to perform complex tasks with fewer neurons, making it an optimal choice for both
small-scale and large-scale applications. In addition to addressing the dead neuron and vanishing
gradient problems, LogLU demonstrates superior computational efficiency. In our experiments, we
compare the time complexity of LogLU against popular activation functions, including Swish and
Mish Ramachandran et al. (2018), across a variety of benchmark datasets. LogLU consistently
outperforms in terms of both training speed and validation accuracy.

The overall analysis of this paper is as follows:

• Introduction of a new activation function, LogLU, that effectively addresses the dead neu-
ron and vanishing gradient and Exploding Gradient problems.

• LogLU has successfully solved the classic XOR problem. This showcases LogLU’s effi-
ciency in handling basic logic operations with simplicity.

• LogLU activation was compared with popular activation functions across a range of bench-
mark datasets, highlighting its superior performance.

2 DIFFERENTIABILITY OF THE LOGLU ACTIVATION FUNCTION

2.1 DEFINITION OF THE LOGLU FUNCTION

The LogLU activation function is defined as:

f(x) =

{
x, if x > 0

− log(−x+ 1), if x ≤ 0
(1)

Case 1: Differentiability for x > 0 For x > 0, the function simplifies to:

f(x) = x

The derivative is:

f ′(x) =
d

dx
(x) = 1

Case 2: Differentiability for x ≤ 0: For x ≤ 0, the function is:

f(x) = − log(−x+ 1)

To find its derivative, use the chain rule. Let g(x) = −x+ 1, then:

f(x) = − log(g(x))

The derivative of − log(g(x)) with respect to x is:

d

dx
[− log(g(x))] = − 1

g(x)
· d

dx
[g(x)] =

1

1− x

Thus, the function is differentiable for x ≤ 0 with:

f ′(x) =
1

1− x

Continuity and Differentiability at x = 0 Evaluating the function at x = 0:

f(0) = − log(0 + 1) = − log(1) = 0

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The derivative from the right of x = 0 (as x → 0+) is:

f ′(0+) = 1

The derivative from the left of x = 0 (as x → 0−) is:

f ′(0−) =
1

1− 0
= 1

Since f ′(0+) = f ′(0−) = 1, the function is both continuous and differentiable at x = 0.

The LogLU activation function is differentiable for all x, including at x = 0.

2.2 NON-LINEARITY OF THE LOGLU ACTIVATION FUNCTION

For x > 0: In this domain, the function is f(x) = x, which is linear and does not exhibit non-
linearity.

For x ≤ 0: In this domain, the function is:

f(x) = − log(−x+ 1)

To verify non-linearity, compute the second derivative.

First Derivative:

f ′(x) =
1

1− x

Second Derivative:

Applying the quotient rule:

f ′′(x) =
d

dx

(
1

1− x

)
=

1

(1− x)2

Since the second derivative is non-zero, f(x) = − log(−x+1) is non-linear for x ≤ 0. The LogLU
activation function introduces non-linearity for negative inputs, which is essential for modeling com-
plex functions in neural networks.

2.3 MITIGATION OF THE VANISHING AND EXPLODING GRADIENT PROBLEMS

For x > 0: The gradient is:
f ′(x) = 1

This constant and bounded gradient in the positive domain prevents both the vanishing and exploding
gradient problems.

For x ≤ 0: The gradient is:

f ′(x) =
1

1− x

As x → 0, f ′(x) → 1, and as x → −∞, f ′(x) → 0. Although the gradient decreases for
large negative values, it remains non-zero, mitigating the vanishing gradient problem. Furthermore,
since the gradient is bounded and decreases for negative values, it avoids the exploding gradient
problem. The LogLU activation function effectively mitigates the vanishing gradient problem by
maintaining a non-zero gradient for negative inputs and a constant gradient for positive inputs, while
also avoiding the exploding gradient problem due to its bounded gradient across all input values.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 LEARNING XOR FUNCTION WITH LOGLU

The XOR function complex operation commonly used to analyze the performance of activation
functions in neural networks. The architecture of the neural network designed to model the XOR
function, as shown in Figure 1, The network consists of three neurons in the hidden layer and one
output neuron. The hidden layer uses the LogLU activation function, while the output layer employs
the sigmoid activation function. This combination allows the network to effectively capture the non-
linearity of the XOR function while ensuring stable output scaling.

X1

X2

H1

H2

H3

Ŷ

w11

w12

w13 w21

w22

w23

o11

o12

o13

Figure 1: Neural Network Architecture for XOR Function for LogLU as Activation Function.

The network undergoes both feedforward Hornik et al. (1989) and backpropagation processes
Rumelhart et al. (1986) during training. In the feedforward pass, the inputs are propagated through
the network to generate a prediction. The weights and biases in the network are adjusted using
the backpropagation algorithm to minimize the error between the actual and predicted outputs. By
iteratively updating the weights through this process, the network learns to approximate the XOR
function accurately.

3.1 FORWARD PROPAGATION FOR XOR FUNCTION

The forward Propagation through the neural network involves computing the activations for the
hidden layer neurons using the LogLU activation function is applied to the summation of the result
obtained by multiplying the inputs and weights using the dot product and their respective biases
Hornik et al. (1989) as shown in Table 1. Specifically, for each hidden neuron Hi, the activation is
given by:

Hi = LogLU(wi1X1 + wi2X2 ++ bi)

where wij are the weights and bi is the bias for neuron Hi Cybenko (1989).

Following the computation of the hidden layer activations, the output neuron activation is calculated
using the sigmoid activation function. The activation for the output neuron Ŷ is given by:

Ŷ = σ (o11H1 + o12H2 + o13H3 ++ bout)

where oij are the weights from the hidden layer to the output neuron, Hi are the activations from
the hidden layer, and bout is the bias for the output neuron Hornik et al. (1989).

3.2 BACKPROPAGATION FOR XOR FUNCTION

During the backpropagation process, The objective is to minimize the error between the predicted
outputs and the actual values by adjusting the weights and biases. By applying the chain rule Rumel-
hart et al. (1986) to compute the gradients of the loss function with respect to each weight and bias
in the neural network.

Output Layer: Specifically, for each output weight oij , the gradient is given by:

∂L

∂oij
=

∂L

∂Ŷ
· ∂Ŷ

∂oij
= δŶ ·Hi

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where L is the loss function, δŶ = Ŷ − Y Bishop (2006) is the error at the output layer (for
sigmoid) Han & Moraga (1995), and Hi is the activation from the hidden layer. The weights are
updated using:

o
(t+1)
ij = o

(t)
ij − η · ∂L

∂oij

where η is the learning rate.

Hidden Layer: Next, we compute the gradients for the hidden layer neurons Bengio (2009). The
gradient of the loss with respect to the activation Hi is given by:

∂L

∂Hi
=

∑
j

∂L

∂Ŷ
· σ′(Ŷ) · oij

The gradient with respect to the weights wij is computed as:

∂L

∂wij
=

∂L

∂Hi
· LogLU′(Hi) ·Xj

where LogLU′(Hi) is the derivative of the LogLU activation function as shown in Table 1.

Table 1: Weights, biases, and predictions for the XOR logic gate using LogLU.

Input (X1, X2) Actual Output / Thresholded Prediction Hidden Layer Weights Output Layer Weights

(0, 0) 0 / 0 w11 = 0.7, w21 = −0.6
w12 = 0.5, w22 = 0.4
w13 = −0.1, w23 = 0.7

o11 = 1.2, o12 = −0.6, o13 = 0.1

(0, 1) 1 / 1 w11 = 0.7, w21 = −0.6
w12 = 0.5, w22 = 0.4
w13 = −0.1, w23 = 0.7

o11 = 1.2, o12 = −0.6, o13 = 0.1

(1, 0) 1 / 1 w11 = 0.7, w21 = −0.6
w12 = 0.5, w22 = 0.4
w13 = −0.1, w23 = 0.7

o11 = 1.2, o12 = −0.6, o13 = 0.1

(1, 1) 0 / 0 w11 = 0.7, w21 = −0.6
w12 = 0.5, w22 = 0.4
w13 = −0.1, w23 = 0.7

o11 = 1.2, o12 = −0.6, o13 = 0.1

4 COMPUTATIONAL TIME COMPLEXITY FOR ACTIVATION FUNCTIONS

The computational time complexity of activation functions plays a crucial role in determining their
efficiency within neural networks. In this study, we assess the execution times of various activation
functions by averaging their performance over 10,000 independent runs. Each run involves applying
the activation function to a vector of length 106, with elements uniformly distributed in the range
[−10, 10], as shown in Figure 2. The results demonstrate that LogLU offers superior computational
efficiency compared to other activation functions. Furthermore, the graphical representations of
the activation functions, along with their respective first derivatives, are illustrated in Figure 3. All
corresponding activation function formulas are provided in detail in Table 2.

LogLU operates linearly for positive values, passing through unchanged, and smoothly transitions
near zero as − log(−x + 1) approaches zero for slightly negative values Figure 3. As x becomes
more negative, LogLU grows logarithmically, resulting in a slower increase in magnitude compared
to Leaky ReLU Xu et al. (2015) or ELU Clevert et al. (2015), which scale negative inputs linearly
or exponentially. This smooth transition and bounded behavior for negative values give LogLU a
unique advantage over ReLU Nair & Hinton (2010), as it retains sensitivity to negative inputs and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Activation Functions and Their Equations

Activation Function Equation
ReLU f(x) = max(0, x)

Leaky ReLU f(x) =

{
x, if x > 0

αx, if x ≤ 0

ELU f(x) =

{
x, if x > 0

α(exp(x)− 1), if x ≤ 0

Sigmoid f(x) = 1
1+exp(−x)

Tanh f(x) = exp(x)−exp(−x)
exp(x)+exp(−x)

Swish f(x) = x · σ(x) where σ(x) = 1
1+exp(−x)

Mish f(x) = x · tanh(softplus(x)) where softplus(x) = log(1 + exp(x))

LogLU f(x) =

{
x, if x > 0

− log(−x+ 1), if x ≤ 0

Log
LU

ReL
U

Lea
ky

ReL
U

ELU

Sigm
oid Tan

h
Swish

M
ish

0.1

0.15

0.2

0.25

A
ve

ra
ge

Ti
m

e
(s

)

Figure 2: Bar Graph of Average Computation Times (s) for Various Activation Functions

captures more features. Compared to Leaky ReLU, LogLU’s slower, logarithmic growth results in
more controlled activations, potentially enhancing gradient flow and stability. Additionally, LogLU
decays faster than Mish Ramachandran et al. (2018) for negative values, offering a more conservative
and efficient approach to managing negative activations, reducing the risk of exploding gradients and
aiding in model convergence Maas (2013).

In the derivative graph, the derivative of LogLU for negative values decreases smoothly, facilitating
some gradient flow unlike ReLU Nair & Hinton (2010), while not maintaining the constancy ob-
served in Leaky ReLU Xu et al. (2015). This characteristic can help mitigate issues such as dead
neurons in ReLU while providing a controlled response to negative inputs. In contrast, Mish allows
even more negative information to pass through than both Swish Ramachandran et al. (2018) and
LogLU. Its gradient decays more slowly than that of Swish and significantly slower than LogLU.
While Swish exhibits a smooth decrease in gradient, it does so much more gradually compared to
the sharper decay seen in LogLU Figure 3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Graphical Comparison of equations Activation Function Curves (Left) vs. First Derivative
Curves (Right)

5 PERFORMANCE EVALUATION ON BENCHMARK DATASETS

We evaluated benchmark datasets to compare activation functions using the Caltech 101 and Ima-
genette datasets. The Caltech 101 Fei-Fei et al. (2004) dataset contains 9,144 images, split into 7,280
for training and 1,864 for validation across 101 classes. The Imagenette dataset Howard (2019), a
subset of ImageNet with 10 classes, includes 13,394 images, with 9,469 for training and 3,925 for
validation. We used the Adadelta optimizer Zeiler (2012) with learning rate of 0.01 and categorical
crossentropy Goodfellow et al. (2016) loss function for both datasets, with a softmax activation func-
tion in the output layer. The InceptionV3 model Szegedy et al. (2016) was trained on both datasets,
utilizing pretrained ImageNet weights PyTorch (2024). The model has over 73M parameters for
Caltech 101 and 37M parameters for Imagenette. Training was conducted for 30 epochs on Caltech
101 and 20 epochs on Imagenette, allowing for a comprehensive comparison of activation functions.

Figure 4: Test Dataset Loss (Left) and Accuracy (Right) on the Caltech 101 Dataset

The results from both the Caltech 101 dataset, illustrated in Figure 4, and the Imagenette dataset,
presented in Figure 5, show consistent trends in model performance across various activation func-
tions. The LogLU activation function significantly improved gradient convergence during training,
leading to enhanced overall performance. Compared to traditional activation functions like ReLU
Nair & Hinton (2010) and Leaky ReLU Xu et al. (2015), LogLU exhibited faster convergence and
greater stability, resulting in improved accuracy and reduced loss values. Specifically, as shown in
Table 3, LogLU enhances the model’s performance to generalize and accurately predict outcomes in
the Caltech 101 dataset. Similarly, Table 4 and Figure 5 indicate that LogLU demonstrates improved
performance on the Imagenette dataset, achieving higher accuracy and lower loss. These findings
suggest that LogLU enhances generalization and learning efficiency across diverse datasets, making

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

it a valuable tool for optimizing neural network performance in image classification by accelerating
convergence and improving model accuracy.

Table 3: Performance Evaluation of Activation Functions on the Caltech 101 Dataset

Dense Layers Accuracy % Val Accuracy % Loss Val Loss
ReLU 84.50 90.93 0.6236 0.3674
Leaky ReLU 86.42 91.26 0.5183 0.3441
ELU 89.82 91.58 0.3832 0.3070
Swish 87.55 91.26 0.4777 0.3570
Mish 87.72 92.49 0.4679 0.3100
LogLU 90.12 92.06 0.3839 0.3126

Table 4: Performance Evaluation of Activation Functions on the Imagenette Dataset

Dense Layers Accuracy % Val Accuracy % Loss Val Loss
ReLU 91.41 94.19 0.2774 0.1770
Leaky ReLU 91.61 94.11 0.2719 0.1772
ELU 91.47 94.04 0.2640 0.1779
Swish 91.86 94.37 0.2640 0.1742
Mish 90.86 94.39 0.2707 0.1780
LogLU 91.71 94.47 0.2518 0.1761

Figure 5: Test Dataset Loss (Left) and Accuracy (Right) on the Imagenette Dataset

6 CONCLUSION

This research study focuses on evaluating the impact of various nonlinear activation functions on
the performance of output neurons in deep learning models. We specifically examine the perfor-
mance of well-established activation functions, including ReLU, Leaky ReLU, and ELU, each of
which presents certain limitations. To overcome these challenges, we introduce a novel activation
function, the Logarithmic Linear Unit (LogLU), designed to enhance the efficiency of model train-
ing. The ability of LogLU to keep neurons active with negative inputs and maintain robust gradient
flow during backpropagation enables more efficient convergence in gradient descent, particularly in
solving complex non-linear tasks. Through extensive evaluations on benchmark datasets, including
Caltech 101 and Imagenette, which are relevant for large-scale applications, we demonstrate that
LogLU accelerates convergence and improves model performance when integrated into the Incep-
tionV3 architecture. The empirical results show that LogLU consistently outperforms traditional
activation functions in terms of convergence speed, stability, accuracy, and loss reduction.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

REFERENCES

Yoshua Bengio. Learning deep architectures for ai. In Foundations and Trends in Machine Learning,
volume 2, pp. 1–127. Now Publishers, 2009. doi: 10.1561/2200000006.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006. doi: 10.1007/
978-0-387-45528-0.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv, 2015. doi: 10.48550/arXiv.1511.07289.

George Cybenko. Approximations by superpositions of a sigmoidal function. Mathematics of Con-
trol, Signals and Systems, 2(4):303–314, 1989. doi: 10.1007/BF02551274.

Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories. In IEEE Conference
on Computer Vision and Pattern Recognition Workshop (CVPRW), 2004. doi: 10.1109/CVPR.
2004.383.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Jun Han and Claudio Moraga. The influence of the sigmoid function parameters on the speed
of backpropagation learning. Proceedings of the International Workshop on Artificial Neural
Networks, 930:195–201, 1995. doi: 10.1007/3-540-59497-3 175.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366, 1989. doi: 10.1016/0893-6080(89)
90020-8.

Jeremy Howard. Imagenette: A smaller subset of 10 easily classified classes from imagenet.
https://github.com/fastai/imagenette, 2019.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015. doi: 10.1038/nature14539.

Andrew L. Maas. Rectifier nonlinearities improve neural network acoustic models. 2013. https:
//ai.stanford.edu/˜amaas/papers/relu_hybrid_icml2013_final.pdf.

Warren S. McCulloch and Walter Pitts. A logical calculus immanent in nervous activity. In The
Bulletin of Mathematical Biophysics, volume 5, pp. 115–133, 1943. doi: 10.1007/BF02478259.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference on Machine Learning (ICML), pp. 807–814,
2010. doi: 10.1145/3104322.3104425.

PyTorch. Torchvision models, 2024. URL https://pytorch.org/vision/stable/
models.html. Accessed: 2024-10-01.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. In Pro-
ceedings of the 6th International Conference on Learning Representations (ICLR), 2018. doi:
10.48550/arXiv.1710.05941.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors, volume 323. Nature Publishing Group, 1986. doi: 10.1038/323533a0.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826, 2016. doi:
10.1109/CVPR.2016.308.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in
convolution network. arXiv, 2015. doi: 10.48550/arXiv.1505.00853.

Matthew D. Zeiler. Adadelta: An adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012. URL https://arxiv.org/abs/1212.5701.

9

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://github.com/fastai/imagenette
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://arxiv.org/abs/1212.5701

	Introduction
	Differentiability of the LogLU Activation Function
	Definition of the LogLU Function
	Non-linearity of the LogLU Activation Function
	Mitigation of the Vanishing and Exploding Gradient Problems

	Learning XOR function with LogLU
	Forward Propagation for XOR function
	Backpropagation for XOR function

	Computational Time Complexity for Activation Functions
	Performance Evaluation on Benchmark Datasets
	Conclusion

