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Figure 1: We introduce LaVA-Man, a self-supervised framework for learning visual-action repre-
sentations for robot manipulation via goal image prediction. We also introduce the Omni-Object
Pick-and-Place dataset to ensure the model learns a diverse, open-vocabulary-based object prior.
The learned representations can be adapted to various downstream robotic perception and manipu-
lation tasks. The samples of the goal image prediction illustrate that the learned representation can
capture the underlying causality of visual state transitions in language-guided manipulation.

Abstract: Visual-textual understanding is essential for language-guided robot ma-
nipulation. Recent works leverage pre-trained vision-language models to measure
the similarity between encoded visual observations and textual instructions, and
then train a model to map this similarity to robot actions. However, this two-step
approach limits the model to capture the relationship between visual observations
and textual instructions, leading to reduced precision in manipulation tasks. We
propose to learn visual-textual associations through a self-supervised pretext task:
reconstructing a masked goal image conditioned on an input image and textual
instructions. This formulation allows the model to learn visual-action represen-
tations without robot action supervision. The learned representations can then be
fine-tuned for manipulation tasks with only a few demonstrations. We also intro-
duce the Omni-Object Pick-and-Place dataset, which consists of annotated robot
tabletop manipulation episodes, including 180 object classes and 3,200 instances
with corresponding textual instructions. This dataset enables the model to ac-
quire diverse object priors and allows for a more comprehensive evaluation of its
generalisation capability across object instances. Experimental results on the five
benchmarks, including both simulated and real-robot validations, demonstrate that
our method outperforms prior art.
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1 Introduction

Language-guided robot manipulation is a fundamental task in robotics, enabling embodied agents
to interpret human instructions and interact with complex environments. This task requires learning
a robust representation that effectively associates visual observations with textual instructions, and
can be readily mapped to the corresponding robot actions.

The key challenge is to learn such representations in a scalable manner without heavily relying on
robot action annotations, such as ground-truth affordance or joint angles. Several works [1, 2, 3, 4]
leverage pre-trained vision-language foundation models, such as CLIP [5], which encode images and
text into a unified embedding space to serve as the visual-textual representations. These methods
compute the cosine similarity between image and text embeddings and learn to map this similarity
to robot actions. However, their representations lack causal grounding as they do not capture how
the input visual state and textual instructions lead to the resulting visual state after the robot executes
an action. Namely, they do not learn true language-guided visual-action representations necessary
for manipulation.

To address this limitation, we propose LaVA-Man, a self-supervised learning approach for learning
Language-guided Visual-Action representations for robot Manipulation. Given textual instructions
and visual observations before and after a manipulation, we mask the goal image and train the
model to predict its masked content, conditioned on the input image and the language instruction,
with minimal guidance from the unmasked regions. Unlike prior approaches that adopt pretext tasks
for general-purpose vision (e.g., masked image reconstruction [6, 7]), our goal-image prediction ob-
jective captures the underlying causality of manipulation: it enables the model to implicitly learn the
association between visual dynamics and action semantics, which is critical for robotic reasoning.

To learn representations that capture diverse and open-vocabulary textual instructions, it is important
to train on sequences involving various object instances. However, existing manipulation datasets,
such as Ravens [8] and VIMA [9], suffer from limited object diversity. To this end, we introduce
the Omni-Object Pick-and-Place (OOPP) dataset, a simulated tabletop manipulation dataset that
consists of 180 object classes and 3,200 unique instances. Built on high-quality real-scanned meshes
with language annotations from OmniObject3D [10], OOPP includes curated, scaled objects suitable
for manipulation, with scene sequences automatically simulated using PyBullet Gym [11]. For a
comprehensive evaluation, we hold out 20 object classes as unseen for inter-class generalisation
evaluation, and reserve a subset of instances from 20 seen categories for intra-class evaluation.

We train LaVA-Man on a mixture of synthetic data from the proposed OOPP dataset and real-world
robot videos from Bridge [12] and DROID [13]. Once pre-trained, our model can be efficiently fine-
tuned with only a few demonstrations for various downstream robotic perception and manipulation
tasks. Our contributions are summarised as:

• We propose a self-supervised approach for learning a robust, versatile visual-action representation
that can be efficiently fine-tuned on various robotic tasks with a few demonstrations.

• We introduce a new dataset based on the existing pick-and-place benchmarks [1, 8, 9]. Our dataset
features 3,200 unique, real-scanned objects from 180 categories.

• We validate our approach on five downstream robotic tasks, including simulated and real-world
environments, and establish state-of-the-art performance.

2 Related work

Vision-based robot manipulation. Classic vision-based manipulation methods usually rely on
a two-stage pipeline, where vision-based perception [14, 15, 16, 17] is utilised first, followed
by a control algorithm [18]. Recent methods have shifted towards end-to-end learning frame-
works [19, 20, 21, 22]. However, these methods often rely on limited training labels and demonstrate
limited generalisation ability. CLIPort [1] and its variants [2, 4] show enhanced generalisation to
open-set problems by leveraging the semantic understanding provided by CLIP [5]. However, their
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CLIP-based representations simply provide visual-textual similarity without causal grounding and
limit their capabilities in capturing the underlying causality of the language-guided manipulation.
Besides CLIP, other recent methods [23, 24, 25] utilise large-scale vision-language models (VLMs)
to achieve generalisation. But the reliance on large-scale models may introduce practical limitations.

Self-supervised visual pre-training. Self-supervised visual pre-training has become a fundamental
approach for learning generalisable visual representations from large-scale, unlabeled data through
various pretext tasks such as solving jigsaw puzzles [26], image colourisation [27], rotation estima-
tion [28], inpainting [29], and instance discrimination [30, 31]. Inspired by masked token prediction
in BERT [32], Masked-autoencoders (MAE) [33] mask portions of input images and train the model
to reconstruct the missing patches. This method shows great success in learning generalisable rep-
resentations and leads to various follow-up works on learning temporal correspondence [34, 35] and
spatial information [36]. We propose goal-image prediction as a pretext task that implicitly learns
the causality in language-guided manipulation, enabling our model to learn visual-action represen-
tations that associate visual states with robot actions conditioned on instructions.

Visual pre-training for robotics. Visual pre-training can be applied to robotic manipulation to
enhance the generalisation ability [7, 37]. They rely on various pre-training methods, such as con-
trastive learning [38, 39], MAE [7, 40, 41], and other perception tasks [42, 43]. For instance, the
approach in [37] pre-trains a visual backbone using classic tasks such as image classification and
object detection. VIP [44], R3M [45], MVP [40, 41], and MCR [46] aim to learn implicit features
for robotic tasks by training on video data, while Thiea [47] and SUSIE [48] try to distil knowledge
from pre-trained vision foundation models. SUGAR [43] and 3D-MVP [49] extend the pre-training
tasks to the 3D domain. To further improve the semantic understanding, Voltron [7] and MPI [42]
combine video-based tasks with text conditioning, enabling generalisation to diverse object manip-
ulation tasks. However, video data often contains temporal redundancy, which may allow models
to exploit smooth temporal transitions rather than learning meaningful representations [50]. On the
other hand, we design a new pretext paradigm to directly predict goal image with textual instructions
via asymmetric masking [34, 36].

3 Method

Given a visual observation os and associated language instruction ls→f , our goal is to learn a policy
that predicts a robot action as→f that leads to a goal observation of . We formulate this problem
into two stages: 1) Visual-action representation learning: We first train a model fθ that outputs the
predicted goal image, ôf , from os and ls→f . This self-supervised task encourages the model to
align visual and textual modalities, capturing how the instruction transforms the scene. 2) Robot
action prediction: We then fine-tune the model by attaching an action prediction head that maps the
learned representation to a robot action âs→f . This action may take various forms depending on the
task setting, e.g., âs→f ∈ SE(2) for tabletop manipulation or âs→f ∈ R9 for joint angle control.

3.1 Learning visual-action representations

We propose a self-supervised approach of asymmetric masking to learn visual-action representations
using the pretext task, which aims to reconstruct a partially masked goal image given os and ls→f .
Fig. 2 shows LaVA-Man’s architecture and the proposed pretext task of goal image prediction.

Vision encoder. Let os and of be two images that capture the scene before and after the robot
manipulation. Both images are firstly divided into N non-overlapping patches, where some patches
in of are randomly masked, transforming of into õf . We design a pretext task that reconstructs of

based on os, õf , and a text embedding es→f obtained from ls→f :

hs→f = Φ(os, õf , es→f ),

ôf = Ψp(hs→f ).
(1)
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Figure 2: Network structure. We use a fixed backbone while adapting different output heads for
pretext and downstream robot tasks. We use a Siamese ViT encoder with asymmetric masking
applied to the goal image only. Visual features from the input are first fused with text features and
then integrated with those extracted from the masked goal image in the decoder. During inference,
the goal image is fully masked as it is unknown. Additional output heads can be incorporated to
support a wider range of downstream tasks. KEY – CA: cross-attention.

Here Φ consists of a siamese Vision Transformer (ViT) encoder that encodes the patches in os and
of into the features vs,vf and a lightweight decoder that decodes vs, vf , and es→f to a feature
vector hs→f . Ψp is the goal-image prediction head that outputs the reconstruction ôf given hs→f .
We use the CLIP text encoder to encode the text embeddings es→f from ls→f .

Visual-textual fusion. Inspired by GLIP [51], we perform a multi-stage cross-attention to fuse
information from different modalities. First, we use text-to-image and image-to-text attention:
cross attn(vs, es→f ) and cross attn(es→f ,vs), to fuse the initial visual state and language. Then,
vf queries this fused feature via cross attn(vs,vf ) to produce hs→f . This enables the model to
condition on both the initial image and the language instruction while grounding the goal image.

Goal-image prediction head. The per-patch feature hs→f is passed to a lightweight MLP head Ψp

to generate the per-pixel RGB values for each patch in the predicted goal image ôf . We supervise
the model using an L2 loss between ôf and the ground-truth of .

3.2 Robot action prediction

Following the previous stage, we fine-tune our model for downstream robot manipulation tasks with
an additional lightweight head Ψa that predicts the robot action as→f :

as→f = Ψa(hs→f ,os). (2)

At test time, the model does not have of and õf . However, our pretext task is designed to learn from
õf with a high mask ratio, and hence our model can still predict hs→f as in Eq. 1 while using fully
masked õf . We therefore include ôf as additional input to the action head Ψa and rewrite Eq. 2 as:

as→f = Ψa(hs→f ,os, ôf ). (3)

For tabletop manipulation tasks, we define the output action as as→f = (Ts, Tf ), where Ts, Tf ∈
SE(2) denote the pick and place poses of the end-effector. The model predicts an affordance map
as an intermediate representation following [1, 8], from which Ts and Tf are extracted via a softmax
operation. For the task of predicting joint angles on specific robot arms, we drop the decoder as
[7, 42] and represent each action as a 9-DoF vector as→f ∈ R9, comprising seven joint angles and
two indicators for grasp status.

4 The Omni-Object Pick-and-Place dataset

Overview. We introduce the OOPP dataset, a tabletop simulation benchmark consisting of 3,200
unique real-scanned objects across 180 distinct categories. As shown in Fig. 3 (a), existing table-
top simulation datasets such as Ravens [8] and VIMA [9] typically exhibit limited object diversity
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Dataset Num of
classes

Num of
instances

Inter-class
variation

Intra-class
variation

Real scanned
objects

RLBench† [52] 100 100 ✔ ✘ ✔
LIBERO† [53] 100 100 ✔ ✘ ✔
Ravens [1] 52 52 ✔ ✘ ✔
VIMA [9] 20 1800∗ ✔ ✔ ✘
OOPP (ours) 180 3200 ✔ ✔ ✔

†RLBench and LIBERO focus on complex manipulation actions rather than diverse ob-
ject interactions. We approximate the object number by the number of tasks as there is
little intra-class object variation.
∗VIMA provides 90 different textures per object. We treat each textured variant as a
distinct instance here.

“Pick a  boxed yoghurt 
drink to the brown box”

“Pick a  rubic_cube  to the 
brown box”

“Pick a light yellow donut 
to the brown box”

(a) Quantitative comparison (b) Visualised examples

Figure 3: We show (a) Quantitative statistics of the proposed OOPP dataset compared to several
existing datasets. (b) Visualised examples of manipulation sequences in OOPP datasets. The first
row shows objects seen by the models and the second row shows unseen objects.

and rely on template-based language instructions. This restricts trained models to fixed, narrow
vocabularies and prevents them from generalising to open-vocabulary settings. In contrast, OOPP
consists of diverse object instances paired with rich language descriptions, enabling models to learn
a broad range of object priors. OOPP also allows a comprehensive evaluation of a model’s ability to
ground diverse, open-vocabulary instructions to visual observations involving both inter-class and
intra-class variations.

Data annotation. OOPP is built upon the previous benchmarks [8, 9] in the Pybullet Gym envi-
ronment [11]. We adopt the real-scanned objects from the OmniObject3D dataset [10], filtering out
the objects unsuitable for tabletop manipulation by retaining only objects with diameters between
4cm and 40cm. During simulation, we allow the robot to perform automatic manipulation with a
pre-defined placeholder for collecting action annotations. These placeholders are then replaced with
real objects. To ensure spatial diversity and prevent overcrowding, we adopt a KDTree-based spatial
partitioning strategy inspired by [1], subdividing scenes into feasible regions for object placement.
Based on the rich language description for each object provided by the original OmniObjects3D
dataset [10], we generate diverse language instructions that are beyond just using object names,
offering more natural and varied descriptions of object appearances as in Fig. 3.

Evaluation. To evaluate both intra- and inter-class generalisation, we partition the dataset into three
mutually exclusive subsets. We use 160 object classes for training. For intra-class generalisation, we
hold out a subset of instances from 20 categories in the training set for testing. For inter-class gen-
eralisation, we reserve 20 object categories that are entirely unseen during training. Unseen classes
are sampled from four high-level semantic groups—Food, Daily-use & Tools, Entertainment, and
Others—with each group contributing 3–8 classes. We define two manipulation tasks: 1) packing-
objects-group, where identical objects are packed simultaneously, and 2) packing-objects-sequence,
where different objects are packed sequentially. Together, these variants yield six different tasks.
Please refer to the supplementary material for more details.

5 Experiments

5.1 Setup

Pre-training datasets. For the pretext task, we train our model using a total of 120k samples from
our synthetic OOPP dataset and real-world robot video episodes from Bridge [12] and DROID [13].
For all robot video episodes, we extract only the first and last frames, paired with language instruc-
tions. The pre-training phase takes 24 hours with 3×A100 GPUs.

Baselines. We compare our method against two types of methods: 1) Foundation model-based
methods such as CLIPort [1], which leverage web-scale vision-language models for pick-and-place
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Table 1: Results on the Ravens benchmark [8]. We report the results of multi-task performance
trained on 1,000 demonstrations.

Seen objects Unseen objects Coloured geometries
Tasks Packing

obj-seq
Packing
obj-grp

Packing
obj-seq

Packing
obj-grp

Put block
in bowl

Stack block
pyramid

Towers
of hanoi

Packing
boxes pairs

Assembling
kits

Separating
piles

Average

Pick-and-place methods

Transporter [8] 0.49 0.59 0.25 0.45 0.23 0.02 0.1 0.43 0.20 0.44 0.32
CLIP only [5] 0.57 0.72 0.49 0.63 0.43 0.11 0.2 0.5 0.36 0.47 0.45
RN50-BERT [1] 0.46 0.64 0.41 0.59 0.45 0.02 0.21 0.47 0.27 0.5 0.40
CLIPort∗ [1] 0.80 0.89 0.55 0.74 0.59 0.38 0.69 0.80 0.60 0.71 0.68
CLIPort [1] 0.78 0.83 0.57 0.77 0.84 0.69 0.82 0.83 0.54 0.58 0.73

Pre-training methods

No pre-training 0.59 0.72 0.40 0.56 0.33 0.22 0.18 0.64 0.55 0.46 0.47
Voltron [7] 0.58 0.7 0.43 0.57 0.80 0.36 0.24 0.70 0.60 0.43 0.54
MPI‡ [42] 0.56 0.75 0.41 0.66 0.67 0.22 0.42 0.42 0.46 0.46 0.50
Ours 0.83 0.84 0.77 0.83 0.98 0.57 0.67 0.94 0.75 0.93 0.81
∗indicates that the model was tested using checkpoints provided by the authors, while others are trained on the same downstream
data. MPI‡ is our reimplementation of MPI, trained in a self-supervised manner. KEY – obj: objects, seq: sequence, grp: group.

Table 2: Results on the OOPP dataset. We report the results trained on 1,000 demonstrations and
tested on 100 demonstrations in the test set.

Method Packing
obj-seq

Packing
obj-intra-seq

Packing
obj-inter-seq

Packing
obj-grp

Packing
obj-intra-grp

Packing
obj-inter-grp Average

CLIPort [1] 0.62 0.60 0.48 0.65 0.57 0.60 58.7
Voltron [7] 0.74 0.68 0.54 0.80 0.71 0.72 69.8
MPI‡ [42] 0.69 0.59 0.58 0.73 0.65 0.67 65.1

Ours 0.84 0.74 0.73 0.84 0.86 0.77 79.6
MPI‡ is our reimplementation of MPI, trained in a self-supervised manner. KEY – obj: objects, seq: sequence, intra: intra-class,
inter: inter-class, grp: group.

tasks; and 2) Self/weakly supervised methods, including Voltron [7] and MPI [42], which learns
representations from human/robot manipulation episodes for grounding language-guided manipula-
tion. Since MPI pre-training also relies on supervision from object bounding boxes, we remove the
detection head and make the pre-training in a fully self-supervised manner, denoted as MPI‡. Unless
specified, we re-train every baseline using our data for fair comparison.

Downstream tasks and benchmarks. We evaluate our model on various downstream tasks, includ-
ing both simulation and real-world environments (see supplementary for details):

• Ravens [8]: This dataset provides ten different tabletop rearrangement tasks. For fair comparison,
we re-train all pre-training methods and fine-tune them using the same set of demonstrations.

• OOPP: We also evaluate our models on our proposed dataset with diverse object classes and
instances for intra- and inter-class evaluation. The training procedure follows that of Ravens.

• Referring expression grounding [7]: This benchmark evaluates target object localisation in clut-
tered scenes based on language instructions, serving as a prerequisite for visuomotor control.

• Franka Kitchen [54]: This popular benchmark provides comparisons with other state-of-the-art
methods on five visuomotor control tasks in a simulated kitchen environment.

• Real-robot experiments: We further evaluated our model on ten different manipulation tasks
using UR5 robot arms to evaluate real-world generalisation. We capture the current observation
from the top-down view and generate the affordance map for action execution accordingly.

5.2 Evaluation

In Ravens and OOPP, the model outputs SE(2) tabletop actions. In Tab. 1, our method outperforms
other pre-training-based models and even the method designed for pick-and-place. Our method
shows strong capability in interpreting actions with real-scanned objects, as demonstrated in the
seen and unseen categories in Tab. 1 and all intra- and inter-class generalisation tasks in Tab. 2. Our
model shows limited performance in coloured geometries, possibly because they are less common
in real-world scenarios in our pre-training data.

6



Table 3: Results on Referring Expression Grounding [7] and Franka Kitchen [54]. Our method
outperforms self-supervised methods and is comparable to leading supervised methods. The results
of existing methods are quoted from [42] and [7]. Minimum, Medium and Maximum in sub-table
(a) denote the scenarios categorised according to the level of clutter.

(a) Referring Expression Grounding
Method Minimum Medium Maximum Total

Supervised pre-training methods
MPI [42] 0.94 0.98 0.95 0.96

SUGAR [43] 0.98 0.97 0.96 0.97
Self-supervised pre-training methods
R-R3M [45] 0.64 0.68 0.55 0.63
MVP [40] 0.51 0.52 0.40 0.49
CLIP [5] 0.67 0.77 0.60 0.68

Voltron [7] 0.88 0.97 0.90 0.91
Ours 0.99 0.96 0.96 0.97

(b) Franka Kitchen
Method Trun knob Open door Flip switch Open microwave Slide door Average

Supervised pre-training methods

MPI [42] 89.0 57.7 93.7 54.0 100.0 78.9

Self-supervised pre-training methods

INSUP [55] 28.0 18.0 50.0 26.7 75.7 39.7
CLIP [5] 26.3 13.0 41.7 24.7 86.3 38.4
R3M [45] 53.3 50.7 86.3 59.3 97.0 69.5
MVP [40] 79.0 48.0 90.7 41.0 100.0 71.7
Voltron [7] 76.0 45.3 91.0 41.0 99.3 70.5

Ours 90.0 50.7 94.0 61.3 100.0 79.2

Stacking blocks Folding cloth Packing objects Packing objects
(unseen objects)

Opening drawer
(unseen task)

Press button Aligning rope Packing blocks Packing blocks
(unseen colours)

Pushing piles
(unseen task)

Figure 4: Real-robot experiments. We report the perceptual score and physical score, which
indicate the success rates for affordance perception and physical robotic tasks, respectively. The
tasks of Opening drawer and Pushing piles are not included in the training demonstrations.

In Franka Kitchen, as in Tab. 3 (b), our method achieves state-of-the-art results even compared with
supervised pre-training methods [42, 43]. Unlike Ravens and OOPP, the model in Franka Kitchen is
required to predict the next timestep’s joint angles of the robot arm. We hence employ the encoder
and fusion module in our model as a frozen backbone and discard the decoder, consistent with other
compared baselines.

Referring expression grounding results in Tab. 3 (a) demonstrate that our method achieves better
or comparable results, even compared with supervised methods [42, 43]. This validates that the
goal-image prediction pretext task can learn the association between the target object and the corre-
sponding language instructions, resulting in accurate object localisation.

In real robot experiments, we evaluate our model on a real robot across ten distinct tasks, as shown
in Fig. 4. Each task contains 5 different scenarios, and we calculate the overall success rates. The
performance is consistent with the results observed in the simulation. Notably, it demonstrated
strong generalisation to unseen colours, unseen objects, and even previously unseen tasks. In Fig. 4
we report both perceptual score and physical score, to account for the case where the model cor-
rectly outputs the affordance but fails during physical execution due to inaccurate control and object
movements, showing the perception-to-physical gap in real-world scenarios (see Sec. 7 for details).
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Pick the yellow
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Input image Zero-shot prediction Pick affordance Place affordance

Figure 5: Qualitative examples from real-robot manipulation. We show qualitative examples in
our real-robot environment. Our goal-image predictions are blurry as in other MAE-based meth-
ods [56, 36, 34], but still show plausible object placement and the results are aligned with the input
text instructions, which leads to accurate manipulation. (Only affordances for translation are shown)

Method Rotation
tasks

Translation
tasks Avg.

w/o fusion module 82 66 72
w/o OOPP data 87 65 74
w/o Asym. mask 91 68 77
Ours 96 71 81
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Figure 6: Ablation analysis. We analyse the effect of pre-training strategies and masking ratios on
the Franka Kitchen benchmark and Ravens benchmark, respectively.

5.3 Analysis

In Fig. 6 (a), we present a set of ablation studies on the Franka Kitchen benchmark to evaluate the
contribution of several key components of our approach. We evaluate the effect of removing the
fusion module, which injects the language embedding directly into the decoder via cross-attention.
The suboptimal results are consistent with other recent works [57, 51], showing the importance of
integrating visual and textual modalities before decoding. We also examine the impact of training
with the proposed OOPP dataset, which introduces a wide variety of object classes. Results show
that the downstream performance can be significantly boosted, indicating the model benefits from
broader object priors in the OOPP dataset to learn generalisable visual-action representations.

Finally, we evaluate the effect of the asymmetric masking strategy and the optimal masking ratio.
Without asymmetric masking, the model may not be able to fully capture the underlying causality in
language-guided manipulation, leading to reduced accuracy in downstream tasks, as shown in Fig. 6
(a). In Fig. 6 (b), we further study the impact of different masking ratios by training models under
four commonly used settings [33, 36, 58]. A 95% masking ratio performs the best. Lower ratios leak
too much information, making learning less effective, while a 100% ratio, where prediction relies
entirely on input, leads to convergence issues due to the future state’s ambiguity.

6 Conclusion

We presented a visual-action representation learning framework for robot manipulation that lever-
ages goal-image prediction as a pretext task to capture the underlying causality in language-guided
robot manipulation. To facilitate learning from diverse object priors, we also proposed the OOPP
dataset, which provides a rich collection of tabletop manipulation episodes. Through extensive eval-
uations in both simulated and real-world settings, our method demonstrates superior performance
over existing baselines, exhibiting strong generalisation and effective knowledge transfer across
tasks. Future work includes scaling training to diverse video datasets to learn a robust and general-
isable representation and extend our learned representations for more complex robotic tasks.
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7 Limitations

Manipulating precision. Our model exhibits limited performance when dealing with small objects
or those with fine-grained structures, such as in Towers-of-Hanoi and Stack-Block-Pyramid (Tab. 1).
This is attributed to the use of ViTs, which process images as patches and may overlook fine details
that are important for accurate manipulation, as shown in Fig 7. Recent methods that enhance the
spatial resolution by learning to upsample ViT features, such as DPT [59] or FeatUp [60], could
potentially mitigate this issue and are promising directions for future exploration.

Pick the yellow
ring to the middle

Figure 7: Visualised affordance of Towers-of-Hanoi task from the top-down view in Ravens.

Pseudo affordance. On the benchmark of Ravens [8] and OOPP, our method predicts a pseudo-
affordance map where the pixel with the highest value is treated as the manipulation point (See
Fig. 7). While this approach simplifies fine-tuning, it can be problematic for objects with complex
geometry. In such cases, the manipulation can fail due to subtle physical interactions even if the
predicted pick-and-place poses are geometrically correct. This leads to a discrepancy between the
perceptual score and the actual physical success rate, as illustrated in Fig. 4. Incorporating self-
supervised learning that accounts for human or robot interaction dynamics could help mitigate this
issue by enabling the model to learn priors over common manipulable regions.

3D awareness. Our model lacks explicit 3D understanding and relies solely on 2D visual cues. As a
result, it can struggle to distinguish between objects with similar textures or appearances but differ-
ing 3D shapes or structures. Incorporating self-supervised learning methods that promote geometric
awareness may help the model learn 3D priors and improve robustness in such cases.

Articulated objects. In real-world scenarios, some objects are composed of multiple rigid parts and
interactable. However, our visual pre-training primarily focuses on rigid object manipulation and
does not explicitly model object-part interactions. Including articulated objects with several new
tasks in our OOPP dataset can potentially help capture these complex interactions.

Blurry prediction results. MAE-based methods are known to produce blurry reconstructions lack-
ing high-frequency details [34, 36, 56]. Our goal image prediction also suffers from the blurry issue,
as shown in Fig 1. However, our objective is not to generate high-quality images, but rather to use
goal image prediction as a pretext task for learning semantic representations. In addition, blurriness
reflects the missing of high-frequency components in the image, which often correspond to percep-
tual details rather than semantic contents. In fact, despite the perceptual blur, the preserved semantic
structure in our predictions demonstrates that the model captures semantic information effectively.
The lack of perceptual fidelity may limit interpretability for humans, and we consider this as future
work.
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Appendix

1 Introduction

We provide additional material that supports our paper.

• We invite readers to visit our website about the proposed pretext task (goal-image prediction),
Omni-Object Pick-and-Place (OOPP) dataset, and real and simulated robot manipulation.

• In Sec. 2, we provide more details about our method, including our backbone and different output
heads utilised in different downstream tasks.

• In Sec. 3, we describe more details of each downstream task, including the real-robot experiment.
• In Sec. 4, we provide additional examples of the proposed pretext task, goal-image prediction, and

our OOPP dataset.

2 Method details

Backbone architecture. We adopt ViT-Base [61] with a patch size of 16 as our backbone. The
original Vit-Base architecture consists of 12 attention blocks with an embedding dimension of 768,
and its the decoder typically comprises of 8 attention blocks with an embedding dimension of 512.
For a fair comparison with other methods using ViT-Base as a backbone, we include 6 attention
blocks and 6 bi-directional attention blocks in our encoder. In the pre-training stage, our goal-image
prediction head is a one-layer fully connected network.

Affordance head. Our affordance head for generating SE(2) robot actions (the 2D location and 1D
rotation) for tabletop manipulation tasks (Ravens, OOPP, and our real robot experiments) consists
of 4 convolutional layers with skip connection to convert the output from the transformer backbone
to the affordance map. To generate a rotation angle, we expand a single affordance map into 36
instances, where each instance represents a 10-degree step. We apply the softmax function to the ex-
panded affordance map, which identifies the position and corresponding rotation angle. Since other
pre-training methods have not been previously evaluated on this benchmark, we reimplemented them
and used a unified action head across all pre-training baselines. For other Pick-and-Place methods,
we retain their original action heads which are structurally similar but typically deeper due to their
use of ResNet backbones. In addition, since our pre-training methods are designed to predict the
goal image, we found that concatenating the goal image into the convolutional layers facilitates
improved affordance generation, as the two tasks are closely correlated.

Action head and detection head. Following the baseline established by Voltron [7] and MPI [42],
we adopt the same shallow MLP policy network to predict joint velocities of R9 (7 degree of free-
dom and two for grasp status) for robot actions in the Franka Kitchen benchmark, and to regress
bounding boxes in the Referring Expression Grounding benchmark. We use features after the fusion
module for two main reasons: First, for fair comparison: previous methods, including R3M [45],
MVP [40] and Voltron [7], only evaluate frozen representations dropping the decoder part. Since we
directly report their results on these benchmarks, we adopt a consistent setting. Second, based on
task requirements, both benchmarks rely on understanding the current state or the next state, while
features after the decoder in our model represent the goal image and correspond to the final state.
Therefore, using features before the decoder is more suitable for these two benchmarks.

3 Benchmark details

3.1 Ravens

Overview. Ravens [8] is a simulated benchmark to evaluate tabletop pick-and-place robot manipula-
tion tasks. We use PyBullet OpenAI Gym [11] based on the configuration described in CLIPort [1].
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We chose 8 language-conditioned tasks for the experiment, as shown in Fig. 8, including Packing
seen or unseen Google objects sequence, Packing seen or unseen Google objects group, Put block in
the bowl, Stack blocking pyramid, Towers of Hanoi, Packing boxes pairs, Assembling kits, and Sep-
arating piles. For details of each task, including the train and test split of objects, and the language
instruction template, please refer to [1, 8]. Note that we did not split the tasks according to seen or
unseen colours, as all the methods have already “seen” all the colours in their pre-train models or the
unsupervised pre-training phase. Therefore, we combine both “seen” and “unseen” splits of colours
into a single task and the scores reflect the model’s perception ability on all the colours.

Evaluation details. We evaluated the capability of the proposed methods on multi-task experiments
in the benchmark. Specifically, we trained the model using 1,000 demonstrations drawn from all
task categories and assessed performance on another 100 test demonstrations per task. Since prior
pre-training methods [7, 42] have not been evaluated on this benchmark, we reimplemented their
models using the original codebases and pre-trained them on the same pre-training data as our ap-
proach. When adapting to the downstream tasks, these pre-training methods were also equipped
with the affordance head described in Sec. 2. Subsequently, all baselines, including the Pick-and-
Place baselines, were fully fine-tuned on the same set of downstream demonstrations, following the
evaluation protocol outlined in [1], to ensure a fair comparison.

3.2 Franka Kitchen

Overview. Franka Kitchen [54] is a well-established benchmark for evaluating the efficacy of visual
representations in facilitating the learning of visuomotor control policies from limited demonstra-
tions. This benchmark comprises five distinct visuomotor control tasks, as shown in Fig. 9, each
captured from two camera viewpoints.

Evaluation details. We use the action head described in Sec. 2 for predicting joint velocities. As
prior works [5, 7, 40, 42, 45], which leverage supervised or unsupervised pre-training for robot
manipulation, commonly adopt this benchmark, we directly report the results stated in their origi-
nal papers and compare our method against these approaches. Following the evaluation protocols
widely adopted in these works, we trained the action head with the backbone frozen using 25 demon-
strations, and report average success rates across five tasks, two viewpoints, and three random seeds.

Towers of Hanoi

Assembling kits

Stacking block Pyramid

Separating piles

Packing google objects group

Packing boxes pairs

Packing google objects sequence

Putting block in the bowl

Move the green ring to 
the middle of the stand

Put the cyan block on the 
lightest brow block

Pack all the mouse in the 
brown box

Pack the dinosaur toy in the 
brown box

Put the blue letter M shape in 
the letter M shape hole

Push pile of cyan blocks into 
the brown square

Pack the blue block in into the 
brown box

Put the cyan blocks in a yellow 
bowl

Figure 8: Examples of eight robot manipulation tasks in the simulator. The language instructions
are on the top of each image and the final states are shown in the green box.
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Open the microwave Turn on the light Slide the right door Turn the stove top knob Open the left door

Figure 9: Tasks in the Franka Kitchen benchmark.

3.3 Referring Expression Grounding

Overview. The goal of this task is to predict a bounding box of an object in a cluttered scene
based on the nature language expression. This task offers the evaluation of language-conditioned
scene understanding and object recognising ability, which serves as an important prerequisite for
language-based robot manipulation. The benchmark is based on OCID-Ref Dataset [62], which
provides representatives scenes in robotics settings. The benchmark also provides splits based on
the clutter level.

Evaluation details. We use a shallow MLP as detection head to regress the bounding box directly.
We use the evaluation codebase provided by [7]. Similar to Franka Kitchen, we report the results
stated in the paper for each baseline [7, 40, 42, 43, 45]. The evaluation metrics are the average
precision at 0.25 IoU under each clutter level.

3.4 Real robot experiments

Overview. We validate the applicability of our method in real-world scenarios. We validate our
model on 10 manipulation tasks: Stacking blocks, Folding cloth, Packing objects, Opening drawer,
Pressing button, Aligning rope, Packing blocks, and Pushing piles. Each task contains 5 different
scenarios that differ in either objects or locations. We manually collected 200 training demos that
contain robot image pairs, language descriptions, and annotations for real-world fine-tuning. Five
colored blocks and five unseen objects were excluded from the training demonstrations, and no
demonstrations from the Opening drawer or Pushing piles tasks were included, although similar
tasks are present in the images used in the self-supervised pre-training phase. This design aims to
evaluate whether the model can effectively generalised from the self-supervised pre-training, rather
than relying on downstream demonstrations.

Evaluation details. Fig. 11 shows our real-robot environment and objects. We train both our model
and CLIPort [1] on our manually collected training demos. We utilise a 6-degree-of-freedom (6-
DoF) UR5 robotic arm, Robotiq 2F-85 two-finger gripper, and an Intel RealSense RGB-D camera for

The timer on the rear left of the 
pudding_box

The blue shampoo on the rear 
left of the cylinder food_can

The cuboid red cereal_box on the 
rear left of the sphere red apple.

Figure 10: Examples of the task of Referring Expression Grounding. This task offers varied
language instructions involving a wide range of objects and scenes.
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Table 4: Real robot tasks settings. We present the language template, variable factors and the
success condition for each real robot task

Task name Language template Variable factors Success condition
Stacking blocks Stack the {color} block on the {color} blocks Block color and position (pick/place) Correct block stacked on target block
Folding cloth Fold the cloth from {direction} to the {direction} Cloth color, initial orientation Grasp and fold directions match the template
Packing objects Pick the {object} into the {object} Object type, distractor objects Target object placed into correct container
Opening drawer Pull out the drawer Drawer position Drawer fully opened
Pressing button Press the {color} button Button color, button location Correct button touched
Aligning rope Align the rope from {direction} to the {direction} Rope position, direction variation Rope aligned from start to target direction
Packing blocks Put the {color} block into the {color} bowl Block color, bowl color Correct block placed into matching bowl
Pushing piles Push the pile of {objects} to the {color} area Object color, target area color Pile reaches target area within five attempts

RGB-D
Camera

Grasp

6-DoF
Robot arm

Real robot setup Seen objects and distractors Unseen objects

Figure 11: Real robot experiment. The figure shows our physical robot setup along with both seen
and unseen objects. Seen and unseen colored blocks are also included.

our real-world experiments. We capture the top-down RGB observation which covers the workspace
of 60 cm × 30 cm, and the image from the camera is resized to 320 × 160 pixels.

Task details. Here we show the language template, variable factors and the success condition for
each real robot task in Tab. 4. Images for each task are presented in the main paper.

4 Additional details

Goal-image prediction. We provide more qualitative examples for the goal-image prediction and
the results during the training of masked auto-encoders, as shown in Fig. 12 and Fig. 13. In Fig. 12
we show examples of the same input image but with different language instructions. The results
show that our model can effectively predict different goal states given different language-based
instructions and the initial observation. Namely, these results show that our model can interpret the
input instructions, factorize different objects that need to be manipulated, and further understand the
spatial location or direction in the scene. This indicates the learned visual-action representations
after the self-supervised learning with the pretext task effectively associate visual states with action.
In Fig. 13, we present example results in our pre-training phase. Our predicted goal images are
blurry as in other MAE-based methods [34, 36, 56]. These results demonstrate that our approach
successfully learns to predict the goal image.

Dataset details. We build our Omni-Object Pick-and-Place (OOPP) dataset upon the previous
benchmarsk [1, 9] in the PyBullet Gym enviornment [11]. We manually selected 180 real-scanned
object classes from the OmniObject3D dataset [10], focusing on those suitable for robotic manipula-
tion, resulting in a total of 3,200 distinct instances. For each object, we reduced the mesh resolution
to 20K faces to enable efficient rendering in simulation. Additionally, we filtered out objects that
were either too large or too small (i.e., with dimensions less than 4cm or greater than 40cm). Our
dataset includes full robot manipulation episodes, comprising of annotated robot actions, language
instructions, and simulation-generated rewards. We use 160 object classes for training. For evaluat-
ing intra-class generalisation, we hold out a subset of instances from 20 categories included in the
training set. For inter-class generalisation, we reserve 20 object categories that are entirely unseen
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Input image
Bring the violet cloth to 

the front edge of the table 
Put the green object on

the violet cloth 
Put the yellow objects on 

the violet cloth 

Input image
Fold cloth from top to 

center
Fold cloth from right to 

center
Fold cloth from bottom to 

center

Input image
Take the steel cover and 

put it over the pot 
Take the yellow corn to 

the pot
Put the steel pot on the 

blue cloth

Input image Close the drawer Put the pink object into 
the drawer

Put the orange object into 
the drawer 

Figure 12: Examples of goal prediction images. Given the same input image with a different lan-
guage, the model effectively understands the diverse language instructions and predicts goal images
aligning with the semantics. Notably, all images belong to the test set and are novel to the model.

Input Target Masked Prediction Input Target Masked Prediction

Fold the cloth from bottom right to the center

Put the pot on top of the cloth.

Place squash inside of the pot

Move the duck toy on the top of the drawer

Sweep into pile

Move the purple cloth to the right of the silver pot.

Close oven

Move pot to top right corner of table

Figure 13: Examples of masked image prediction. We show the qualitative examples of our
masked auto-encoders on the validation set. The text descriptions are shown below each sample.

during training. Fig. 14 illustrates the first 50 examples across different object classes, while Fig. 15
highlights examples of intra-class variation. The held-out categories for inter-class generalisation
are sampled from four high-level semantic groups, as detailed in Table 5.
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Figure 14: Examples of objects from different classes.

Figure 15: Examples of intra-class variance.
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Table 5: Semantic group division of seen and unseen classes. We divided all objects into four
semantic groups. We selected unseen classes from each group in proportion to the number of object
classes it contains, ensuring an even distribution of unseen categories.
Semantic Group Seen Classes Unseen Classes
Food red jujube, corn, strawberry, anise, pizza, longan, loquat, chocolate,

brussels sprout, haw thorn, green bean cake, cucumber, litchi, cake,
dumpling, mooncake, rice cake, puff, water chestnut, mushroom,
broccoli, pastry, egg tart, kiwifruit, fig, cheese, chili, tomato, lemon,
oyster, steamed bun, carrot, mangosteen, bread, ginger, waffle, bun,
peach, apple, pear, potato, zongzi, pomegranate, onion, egg,
banana, chicken leg, sausage, coconut, broccolini, hami melon,
durian, asparagus, walnut, mango, loquat, bucket noodle

orange, biscuit, shrimp,
garlic, donut,
sweet potato, candy,
cherry, pancake

Daily-use thimble, beauty blender, battery, candle, calculator, plug,
watch, nipple, power strip, bottle, medicine bottle, tissue,
belt, dish, flash light, canned beverage, fork, cup, teapot, book,
glasses case, bowl, tape measure, speaker, laundry detergent,
glasses, wallet, insole, bumbag, fan, knife, umbrella, kettle, light,
picnic basket, hammer, shoe, hat, laptop, vase, ornaments, spanner

soap, mouse, scissors,
teapot, shampoo,
toothpaste

Entertainment toy boat, toy plant, toy car, toy plane, timer, whistle, doll,
table tennis bat, toy motorcycle, drum, remote control,
garage kit, china, chess, Chinese chess, rubik cube, dinosaur

toy bus, teddy bear,
toy animals

Others hairpin, lotus root, house (model), plant, dumbbell, package,
bamboo shoots, brush, flute, ornaments, conch, magnet, box

flower pot,
red wine glass
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