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Boundary-Aware Periodicity-based Sparsification Strategy for
Ultra-Long Time Series Forecasting

Anonymous Authors

ABSTRACT
In various domains such as transportation, resource management,
and weather forecasting, there is an urgent need for methods that
can provide predictions over a sufficiently long time horizon to
encompass the period required for decision-making and implemen-
tation. Compared to traditional time series forecasting, ultra-long
time series forecasting requires enhancing the model’s ability to in-
fer long time series, while maintaining inference costs within an ac-
ceptable range. To address this challenge, we propose theBoundary-
AwarePeriodicity-based sparsification strategy forUltra-Long time
series forecasting (BAP-UL). The periodicity-based sparsification
strategy is a general lightweight data sparsification framework that
captures periodic features in time series and reorganizes inputs
and outputs into shorter sub-sequences for model prediction. The
boundary-aware method, combined with the bounded nature of
time series, improves the model’s capability to predict extreme
peaks and irregular time series by adjusting the prediction results.
We conducted extensive experiments on benchmark datasets, and
the BAP-UL model achieved nearly 90% state-of-the-art results
under various experimental conditions. Moreover, the data sparsi-
fication method based on the periodicity, proposed in this paper,
exhibits broad applicability. It enhances the upper limit of sequence
length for mainstream time series forecasting models and achieves
the state-of-the-art prediction results.

CCS CONCEPTS
• Computing methodologies→ Temporal reasoning.

KEYWORDS
Ultra-Long Time Series, Boundary, Periodic, Sparsification Strategy

1 INTRODUCTION
In multimedia data processing tasks, time series forecasting models
must analyze multiple variables from different dimensions[22]. For
example, in autonomous driving field[1], the models need to simul-
taneously analyze variables including time, vehicle speed, satellite
lane maps, ground height, and sensor images. This imposes sig-
nificant challenges on the model’s capacity to manage multiple
variables. In this scenario, increasing the length of the predicted
time series would result in a significant increase in computational
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costs. This becomes a barrier to extending the model’s predicted
sequence length.

In diverse fields such as transportation, resource management,
and weather forecasting, the prediction horizon offered by conven-
tional models in long time series forecasting (LTSF) frequently falls
short of encompassing the duration necessary for decision-making
and implementation to yield results, owing to the involvement of
numerous factors and intricate adjustment processes[2]. Among
the methods capable of LTSF, the Transformer model relies on the
data sparsification strategy, which may lead to a decline in the
model’s robustness. In contrast, linear models can directly infer
longer sequences, but the current prediction length of 720 points is
already at the performance boundary[19, 30].

On the flip side, while current state-of-the-art (SOTA) models
are capable of forecasting up to 720 time points into the future,
their full potential in LTSF is often hindered by the substantial
computational demands associated with handling multidimensional
and multivariate data. For instance, in the task of predicting daily
advertising costs [22], fine-grained data needs to be aggregated
on a daily basis to achieve cost predictions for each day over the
next 180 days. Clearly, predictions at a finer time granularity are
more helpful for devising advertising placement plans. Therefore,
enhancing the model’s ability to predict longer sequences while
maintaining high performance in handling large-scale datasets
with multiple variables and dimensions is a challenging yet crucial
research area in time series forecasting.

To address this challenge, we propose the Boundary-Aware
Periodicity-based sparsification strategy for Ultra-Long time series
forecasting (BAP-UL). The BAP-UL model exhibits a substantial
enhancement in prediction performance on ultra-long time series,
multi-variable datasets, significantly surpassing existing benchmark
models. As depicted in Figure 1, it presents theMean Squared Error
(MSE) for each model on three benchmark datasets with a higher
number of variables, where the input length is set at 720 and the
prediction length extends to 2880. The periodicity approach is a
lightweight and generalizable framework that captures the periodic
features in sequences using the Fast Fourier Transform (FFT). It
reconstructs the input-output sequences of the model into multiple
shorter sub-sequences with non-overlapping time points, based
on the captured periodic features. The inferred sub-sequences are
then combined using the periodic features to recover the complete
prediction sequence, enabling the processing of the entire ultra-long
time series. The boundary-aware method, leveraging the bounded
nature of time series, introduces maximum and minimum boundary
prediction to enhance the model’s capability in predicting extreme
peaks and irregular time series.

When tested on publicly available benchmark datasets, the BAP-
UL model consistently achieved optimal results of nearly 90% under
different experimental conditions. Furthermore, the data sparsifi-
cation method proposed in this paper exhibits broad generality.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Comparison of MSE between the BAP-UL model
and baseline models. All models have an input length of 720
and a prediction length of 2880.

When combined with mainstream time series forecasting models,
it significantly increases the length of input-output sequences that
can be handled, leading to superior SOTA results in an effective
manner. In summary, our contributions are as follows:

(1) We propose the BAP-UL model, which can perform Ultra-
LongTime Series Forecasting (ULTSF) taskswith an input of
720 and an output of 2880. It can handle large-scale datasets
with multiple dimensions and variables.

(2) We present the periodicity approach, a universal lightweight
data sparsification framework that enhances the prediction
capability of mainstream forecasting models.

(3) Extensive experiments were conducted on three benchmark
datasets containing a larger number of variables. The re-
sults achieved nearly 90% of the state-of-the-art performance
across various experimental configurations.

(4) On the three benchmark datasets, we found that leveraging
periodicity-based sparsity strategy can enhance the predic-
tion capabilities of baseline models on ultra-long time series.

2 RELATEDWORK
2.1 Advancements in Model Architecture
With the development of deep learning, significant successes have
been achieved in various fields, including Natural Language Pro-
cessing (NLP) [9, 25], Computer Vision (CV) [10, 13, 37], and Time
Series Forecasting (TSF) [18, 21, 36].

Early TSF models were based on Recurrent Neural Networks
(RNNs) [3, 20, 24, 26, 29, 33], and the two classic algorithms pro-
posed by researchers, LSTM [11] and GRU [7], are still widely used
to this day [5, 15, 17]. However, due to the issue of gradient van-
ishing or exploding in handling long sequences, the performance
of representative methods based on RNN models, such as DeepAR
[27], is not satisfactory for LTSF. Based on Convolutional Neural
Networks (CNNs) models, the gradient propagation during training
is more stable, leading to the development of numerous models
with strong prediction capabilities, such as LSTnet [14], TCN [4, 28],
etc. Among them, MICN [31] introduces a mechanism for temporal
decomposition, and TimesNet [34] achieves the SOTA results by
combining the time series forecasting task with 2D image.

The Informer model [38] pioneered the task of LTSF by increas-
ing the input length to 96 and the output length to 720, achieving
substantial success. This has stimulated the development of many
variant models based on the Transformer architecture, such as
Reformer [12], Autoformer [35], and FEDformer [39]. These new
models set new SOTA standards for LTSF results. It was not until
the emergence of the DLinear [36], which achieved better results
in LTSF experiments using a simple linear structure, that the appli-
cability of the Transformer architecture to LTSF was questioned.
Subsequent researchers proposed methods such as PatchTST [21],
which segments subsequences, and iTransformer [18], which flips
the time and feature dimensions, both of which once again demon-
strated the superiority of the Transformer architecture in LTSF.
There are also linear-based models for LTSF tasks, such as N-BEATS
[23] and NHiTS [6], which are based on Multi-Layer Perceptron
(MLP) architectures. Among them, the TiDE model [8] proposed
by Google in 2023 achieved the SOTA performance at that time by
utilizing MLP with residual networks.

2.2 Advancements in Time Series Length
In multimedia data processing tasks, time is a commonly used fun-
damental dimension for various prediction tasks, often employed
to support short-term scheduling [1, 2] and long-term planning
[22] . The task of time series forecasting has traditionally focused
on short-term forecasting, with prediction lengths ranging from 1
to 48. Until the proposal of Informer [38], the prediction length was
improved to a range between 96 and 720 by leveraging the long
sequence processing capability of Transformer. In the following
three years, the upper limit for forecast lengths remained at 720.

Although the Transformer architecture has the ability to handle
long sequences, its quadratic computation cost leads to a significant
increase in computational and memory resources as the sequence
length grows. In order to achieve LTSF, many Transformer-based
models adopt the data sparsification strategy. For example, Log-
Trans [16] utilizes logarithmic sparse attention, and Informer [38]
selects a subset of queries based on Kullback-Leibler divergence dur-
ing attention computation. However, [32] has indicated that these
models experience a significant drop in prediction performance
when only the input sequence length is increased.

Currently, prediction models based on linear architectures have
gained significant attention. These models exhibit excellent perfor-
mance in LTSF tasks. However, as the sequence length increases,
the computational cost of these models also grows rapidly. Existing
models in this category are limited to sequence lengths up to 720 for
prediction [19, 30]. One potential approach to tackle this problem
is by employing effective sub-sequence serialization methods that
keep the sequence lengths within the model’s operational limits.
Additionally, these methods should be able to restore the predicted
sub-sequences to the desired prediction length.

3 METHOD
Our BAP-ULmodel consists of twomain components: theperiodicity-
based sparsification strategy and the boundary-awaremethod.
The periodicity-based sparsification strategy forms the foundation
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Figure 2: BAP-UL model overview. The Periodicity part is responsible for capturing periodic features in the sequence and
reorganizing the input and output sequences into short sub-sequences for prediction. The Boundary-Aware part is responsible
for combining the boundedness of the time series to enhance the model’s ability to predict extreme peaks and irregular
sequences. The Aggregation part is responsible for aggregating the prediction results from the Periodicity part and the
Boundary-Aware part to obtain the final result of the BAP-UL model.

for ULTSF. The boundary-aware method enhances the model’s abil-
ity to predict extreme peaks and irregular time series. The overall
architecture of the BAP-UL model is detailed in Figure 2.

3.1 Periodicity-based Sparsification Strategy
In this subsection, we will provide a detailed explanation of the
periodicity-based sparsification strategy proposed in this paper.
It mainly consists of four components, namely Periodic Feature
Extraction, Periodic Reorganization, Sub-sequence Prediction, and
Prediction Result Aggregation.

3.1.1 Periodic Feature Extraction. First, the periodicity-based
sparsification strategy utilizes the Fast Fourier Transform (FFT) to
extract the periodic features of the entire dataset. In this paper, we
utilize the periodic features extracted by FFT to reorganize the input
sequence into multiple shorter sub-sequences with no overlapping
time points, separated by intervals equal to the period, thereby
reducing the sequence length.

The model takes a time series segment 𝑋 ∈ R𝐿×𝑀 as input,
where 𝐿 is the input length, and there are𝑀 variables in total. By
using the FFT operation, we can obtain the amplitudes of various
frequencies in the dataset. Since there is no periodicity when the
frequency is 0, and the frequency cannot be greater than 𝐿, it is
sufficient to calculate the average amplitude 𝐴 corresponding to
frequencies ranging from 0 to 𝐿. Then, the 𝐾 highest amplitude
values {𝐴1, ..., 𝐴𝐾 } and their corresponding frequencies {𝑓1, ..., 𝑓𝐾 }
are selected from this range. The 𝑖-th frequency indicates its occur-
rence 𝑓𝑖 times in the sequence, and the corresponding period length
𝑝𝑖 is the total length of the sequence 𝐿 divided by the frequency 𝑓𝑖 ,
expressed as 𝑝𝑖 = 𝐿/𝑓𝑖 . Using the above equation, the 𝐾 frequen-
cies can be converted into periods within a backtrack window of
length 𝐿, denoted as {𝑝1, ..., 𝑝𝐾 }. The amplitudes 𝐴 and periods 𝑝
constitute the periodic features of the dataset.

3.1.2 Periodic Reorganization. To further enhance the model’s
ability to handle large-scale datasets with a large number of vari-
ables, we map the 𝑀 variables in the original dataset to a low-
dimensional space in the Embedding layer, reducing the number of
parameters in the model. Then, the data within the backtracking
window is reorganized based on periodicity. For the 𝑖-th periodic
feature 𝑝𝑖 , the sequence will be reorganized into 𝑝𝑖 sub-sequences.
At this point, the model only needs to predict each of the 𝑝𝑖 sub-
sequences separately. The principle of periodic reorganization is
illustrated in Figure 3.

In cases where there’s no discernible periodicity in the input
data, it’s regarded as having an infinitely large period, effectively
equating to a frequency of 0. In such instances, rather than allowing
the entire input sequence to degrade themodel’s performance, these
situations will be filtered out. Conversely, if the input data exhibits
periodicitywith a unit period of 1, corresponding to a frequency of𝐿,
the model’s input sequence will be segmented into 𝐿 sub-sequences,
each consisting of a single time point. Consequently, the length of
the model’s input sequence will be reduced to 1, minimizing the
computational complexity of the model.

The periodic reorganization task pads the length of 𝑋 to be an
integer multiple of the period 𝑝𝑖 , with placeholders set to 0 in this
paper. After padding, the data length becomes �̂�𝑖 . Then, the data is
sampled at intervals of the period length 𝑝𝑖 , forming sub-sequences
by grouping points at the same relative positions within different
cycles. After reorganization, 𝑋𝑖 takes the form [𝑝𝑖 , �̂�𝑖 /𝑝𝑖 ], where
0 ≤ 𝑖 ≤ 𝐾 . The output of cyclic reorganization is 𝑋𝑖 , where the
data in the 𝑛-th row 𝑋𝑛

𝑖
, with 0 ≤ 𝑛 ≤ 𝑝𝑖 , represents the time

sub-sequence composed of the 𝑛-th point within each periodic
under the 𝑖-th cycle feature 𝑝𝑖 . The calculation formula for periodic
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Figure 3: The illustration demonstrates time series forecasting using a Periodicity-based Sparsification Strategy.

Figure 4: Comparison of Periodic Data Sparsification Meth-
ods and Traditional Time Series Sparsification Methods

reorganization is as follows:

𝑋𝑖 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒 (𝑃𝑎𝑑𝑑𝑖𝑛𝑔(𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑋 ),
⌈
𝐿

𝑝𝑖

⌉
· 𝑝𝑖 ), 𝑝𝑖 ), 0 ≤ 𝑖 ≤ 𝐾

(1)
Unlike traditional strategies such as selecting only the top-k or

attention-based sparsification, the sub-sequences obtained through
periodic reorganization are ordered, and each sub-sequence has a
fixed length. This type of sparsification strategy can better preserve
the features of the original data while keeping the computational
complexity at an appropriate level.

3.1.3 Sub-sequence Prediction. The input for the subsequence
prediction task is the reorganized subsequence 𝑋𝑛

𝑖
with a length of

�̂�𝑖 / 𝑝𝑖 , and the output is a predicted subsequence with a length of
𝑃𝑖 =

⌈
𝑃
𝑝𝑖

⌉
· 𝑝𝑖 , here 𝑃 is the prediction length. 𝑋𝑛

𝑖
is passed through

an MLP structure for prediction separately, resulting in predicted
subsequences ¤𝑋𝑖 , 0 ≤ 𝑖 ≤ 𝐾 . ¤𝑋𝑖 has a size of [𝑝𝑖 , 𝑃/𝑝𝑖 ]. Then,
the predicted subsequences ¤𝑋𝑖 are reorganized into a predicted
sequence with a length of 𝑃𝑖 , and the first P predicted values are
extracted as the final predicted sequence ¥𝑋𝑖 . The calculation formula

for subsequence prediction is as follows:

¤𝑋𝑛𝑖 = MLP(𝑋𝑛𝑖 ,
⌈
𝑃

𝑝𝑖

⌉
· 𝑝𝑖 ), 0 ≤ 𝑛 ≤ 𝑝𝑖 (2)

¥𝑋𝑖 = Reshape( ¤𝑋𝑖 ), 0 ≤ 𝑖 ≤ 𝐾 (3)
When the prediction length 𝑃 is twice the input length 𝐿, the prin-
ciple of sub-sequence prediction is illustrated in Figure 3.

3.1.4 Prediction Result Aggregation. Using the 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 func-
tion to normalize the periodic feature 𝐴, obtaining K proportion
coefficients for the K predicted results ¥𝑋𝑖 . Then, aggregating the
predicted results of each sub-sequence by multiplying them by their
respective proportion coefficients. After mapping the variables back
to M, the final prediction result 𝑋𝑃𝐹 is obtained. The calculation
formula for periodic forecasting (PF) method is as follows:

𝑋𝑃𝐹 = 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐴) × ¥𝑋 ) (4)

3.2 Boundary-Aware Method
The boundary-aware method decomposes the time series into trend
fluctuations, maximum boundaries, and minimum boundaries. It
predicts future time series transformations from three perspec-
tives, forming a prediction system sensitive to upper and lower
boundaries, overall trends, and fluctuations. In the boundary-aware
method, for input data 𝑋 ∈ R𝐿×𝑀 , when the pooling window size
is 𝑛, the sequence is first padded to a length of 𝐿 + 𝑛 to compute
the moving average. The 𝑅𝑒𝑝𝑒𝑎𝑡 operation is then used to copy the
first and last elements of the sequence 𝑛/2 times each, resulting in
a sequence of length 𝐿 + 𝑛.

𝑋𝐿+𝑛 = 𝑅𝑒𝑝𝑒𝑎𝑡 (𝑋, 𝑛
2
) (5)

Using the 𝐴𝑣𝑔𝑃𝑜𝑜𝑙1𝑑 function with a pooling window size of 𝑛
and a stride of 𝑠 , compute the moving average to obtain the trend
component. Then, subtract the trend component from the input
data to obtain the fluctuation component. Predict each component
separately and add the predicted results together to obtain the pre-
diction result of the trend-fluctuation module𝑋𝑇𝐹𝐹 . The calculation
formula is as follows:

𝑋𝑇𝑟𝑒𝑛𝑑 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙1𝑑 (𝑋𝐿+𝑛, 𝑛, 𝑠) (6)

𝑋𝑇𝐹𝐹 = 𝐿𝑖𝑛𝑒𝑎𝑟 (𝑋𝑇𝑟𝑒𝑛𝑑 ) + 𝐿𝑖𝑛𝑒𝑎𝑟 (𝑋 − 𝑋𝑇𝑟𝑒𝑛𝑑 ) (7)
Themaximumboundary predictionmodule employs the𝑀𝑎𝑥𝑃𝑜𝑜𝑙1𝑑

function to compute the moving maximum of the sequence 𝑋 with
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Algorithm 1: BAP-UL Algorithm Structure
𝐴, 𝑝 ← PF(𝑋 ) ;
𝑋𝐸 ← Embedding(𝑋,𝐶 ) ;
for 𝑖 = 0 to 𝐾 do

�̂�𝑖 ← Reshape(Padding(𝑋𝐸 , 𝑝𝑖 ), 𝑝𝑖 ) ;
for 𝑛 = 0 to 𝑝𝑖 do

�̃�𝑛
𝑖
← MLP(�̂�𝑛

𝑖
) ;

end
end
𝑋𝑃𝐹 ← projection(Softmax(𝐴) × �̃� ) ;
𝑋𝑇𝐹𝐹 , 𝑋𝑀𝑎𝑥𝐹 , 𝑋𝑀𝑖𝑛𝐹 = 𝐿𝑖𝑛𝑒𝑎𝑟𝐹 (𝐷𝑒𝑐𝑜𝑚𝑝 (𝑅𝑒𝑝𝑒𝑎𝑡 (𝑋, 𝑛2 ) ) ) ;
𝑌 = 𝐿𝑖𝑛𝑒𝑎𝑟 (𝑆𝑡𝑎𝑐𝑘 (𝑋𝑇𝑟𝑒𝑛𝑑𝐹 , 𝑋𝐹𝑙𝑢𝐹 , 𝑋𝑀𝑎𝑥𝐹 , 𝑋𝑀𝑖𝑛𝐹 , 𝑋𝑃𝐹 ) ) ;

a pooling window of 𝑛 and a stride of 𝑠 , yielding the maximum
boundary. Subsequently, the maximum boundary is passed through
the Linear function for prediction, resulting in the prediction result
of the maximum boundary module𝑋𝑀𝑎𝑥𝐹 . The calculation formula
for the maximum boundary prediction module is as follows:

𝑋𝑀𝑎𝑥𝐹 = 𝐿𝑖𝑛𝑒𝑎𝑟 (𝑀𝑎𝑥𝑃𝑜𝑜𝑙1𝑑 (𝑋𝐿+𝑛, 𝑛, 𝑠)) (8)

The minimum pooling utilizes the 𝑀𝑖𝑛𝑃𝑜𝑜𝑙 function, with a
pooling window of 𝑛 and a stride of 𝑠 , to compute the moving
minimum of the sequence 𝑋 . The moving minimum 𝑋𝑀𝑖𝑛 [𝑖, 𝑗]
represents the minimum value for the 𝑗-th variable from the 𝑖-th
time step to the 𝑖 +𝑛-th time step. Finally, the minimum boundary is
passed through the Linear function for prediction, resulting in the
prediction result of the minimum boundary module 𝑋𝑀𝑖𝑛𝐹 . The
calculation formula for the minimum boundary prediction module
is as follows:

𝑀𝑖𝑛𝑃𝑜𝑜𝑙 (𝑋 [𝑖, 𝑗], 𝑛, 𝑠) = min (𝑋𝐿+𝑛 [𝑖 · 𝑠 : 𝑖 · 𝑠 + 𝑛, 𝑗]) (9)

𝑋𝑀𝑖𝑛𝐹 = 𝐿𝑖𝑛𝑒𝑎𝑟 (𝑀𝑖𝑛𝑃𝑜𝑜𝑙 (𝑋𝐿+𝑛, 𝑛, 𝑠)) (10)
Finally, the model combines the results of periodic prediction with
those of boundary-aware prediction to obtain the final prediction
result 𝑌 . The computational formula for the model is as follows:

𝑌 = 𝐿𝑖𝑛𝑒𝑎𝑟 (𝑆𝑡𝑎𝑐𝑘 (𝑋𝑇𝐹𝐹 , 𝑋𝑀𝑎𝑥𝐹 , 𝑋𝑀𝑖𝑛𝐹 , 𝑋𝑃𝐹 )) (11)

The method of decomposing and then predicting the time series
described above can be summarized in the following formula:

𝑋𝑇𝐹𝐹 , 𝑋𝑀𝑎𝑥𝐹 , 𝑋𝑀𝑖𝑛𝐹 = 𝐿𝑖𝑛𝑒𝑎𝑟𝐹 (𝐷𝑒𝑐𝑜𝑚𝑝 (𝑅𝑒𝑝𝑒𝑎𝑡 (𝑋, 𝑛
2
))) (12)

The algorithmic structure of the model is illustrated in the 1.

4 EXPERIMENT
In this paper, we have selected six well-acknowledged models with
different structures as our baseline models. These models have been
widely recognized in the literature for their superior performance
in time series forecasting tasks. Given that our data sparsification
strategy is primarily intended to tackle the problem of high com-
putational costs associated with managing ultra-long sequences
and a multitude of variables in forecasting tasks, the experimen-
tal datasets chosen for this paper include Traffic, Electricity, and
Weather datasets, all of which entail a significant number of vari-
ables [35]. When the input length is set to 720, the detailed informa-
tion about the data partitioning for the three benchmark datasets
is presented in Table 1.

Table 1: Details of the three benchmark datasets.

Dataset VaS (Train,Val,Test) Fre Span

Traffic 862 (10526,3510,3508) 1 Hour 120Days
Electricity 321 (31617,10540,10539) 1 Hour 120Days
Weather 21 (15782,5262,5260) 10 MIN 20Days

4.1 Experimental Results
Table 2 presents the complete results for the ultra-long time series
forecasting task. The experimental setup is the same for each model,
with an input length of 720 and prediction lengths of 1440, 2160,
2880. "-" indicates that the model encountered an out-of-memory
(OOM) error in this experimental environment. The number in
brackets below the dataset name represents the number of vari-
ables in the dataset. Lower MSE and MAE values indicate better
prediction performance for the model. The best results are bolded,
and the second-best results are underlined.

It can be observed that our BAP-UL model demonstrates a signifi-
cant advantage in the capability of ultra-long time series forecasting,
achieving optimal prediction performance in nearly 90% of the ex-
perimental settings. Moreover, it exhibits a distinct advantage in
terms of memory complexity. This is evident from the occurrence
of varying degrees of memory overflow in the benchmark models
included in the comparison, especially the TiDE, TimesNet, and
PatchTST models, which are characterized by higher complexity. In
contrast, our BAP-UL model did not encounter such issues during
training.

Further analysis of the memory overflow problem reveals that
some models experienced memory overflow when the prediction
length was set to 1440 on the traffic dataset. However, they were
able to execute properly when the prediction length was increased
to 2160. This can be attributed to the fact that a smaller number of
samples are generated when the prediction length is 2160, resulting
in lower memory consumption.

In the evaluation experiments on the Weather dataset, we ob-
served that existing mainstream models are capable of handling
ultra-long time series forecasting tasks on datasets with a smaller
number of variables.

When the number of variables increased to 862, all benchmark
models experienced OOM errors when the prediction length was
1440 or 2880, demonstrating the superior multivariate processing
capability of our model. The lower half of Figure 5 shows a compar-
ison of the prediction results between the benchmark models that
did not encounter OOM and the BAP-UL model on the Electricity
and Traffic datasets when the number of variables was large. The
BAP-ULmodel is capable of predicting subtle peak variations within
different periods, exhibiting superior forecasting performance.

We also found that none of the models were able to accurately
predict extreme peak values, which hold significant implications in
practical applications. For instance, in the field of transportation,
when certain dates experience excessively high traffic flow that
requires diversion, a forecast that indicates a regular peak value
could miss the opportunity for traffic management, thus failing
to prevent severe congestion. Therefore, finding ways to better
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Table 2: Prediction results of the multivariate Ultra-long time series forecasting task on three benchmark datasets.

Models BAP-UL TiDE TimesNet DLinear iTransformer PatchTST
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather
(21)

1440 0.376 0.398 0.389 0.389 0.395 0.393 0.378 0.397 0.398 0.396 0.401 0.394
2160 0.388 0.410 0.416 0.408 0.440 0.427 0.389 0.420 0.426 0.414 0.407 0.403
2880 0.402 0.428 0.432 0.421 0.463 0.433 0.409 0.439 0.436 0.426 0.431 0.423

Electricity
(321)

1440 0.263 0.366 - - 0.293 0.367 0.275 0.357 0.286 0.356 - -
2160 0.282 0.374 - - - - 0.318 0.387 0.351 0.405 - -
2880 0.339 0.414 - - - - 0.353 0.412 0.380 0.424 - -

Traffic
(862)

1440 0.557 0.366 - - - - - - - - - -
2160 0.570 0.380 - - - - 0.578 0.367 0.527 0.341 - -
2880 0.615 0.390 - - - - - - - - - -

Figure 5: Visualization of the prediction results of all models on the benchmark datasets.

predict datasets with such extreme peak values represents a highly
valuable direction for future research.

4.2 Generalization Study
We further investigated the generality of the periodicity-based
sparsification strategy by combining it with benchmark models
under different experimental settings. Three models were chosen
based on their successful execution in certain experimental settings.
Comparative experiments were conducted by embedding these
models into the periodicity module, and the changes in prediction
performance were evaluated using MSE as the evaluation metric.

Table 3 presents the results of the experiments on the general-
ization of the periodicity framework. In this table, "*" indicates the
model that incorporates the benchmark model with the periodicity-
based sparsification strategy. The experimental setup is the same
for each model, with an input length of 720 and prediction lengths
of 1440, 2160, 2880. "-" indicates that the model encountered an
OOM error in this experimental environment. Lower MSE values
indicate better prediction performance for the model. Blue numbers
indicate an improvement in prediction ability compared to the orig-
inal model. The best prediction performance is bolded. When the
outer layers of different model architectures are embedded with the

periodicity-based method proposed in this paper, the LTSF capabil-
ity of each benchmark model is significantly improved. In 77% of
the experimental settings, a reduction in MSE loss is observed. Ad-
ditionally, the optimal results in 5 experimental settings have been
updated. For example, on the Weather dataset, SOTA is reduced
from 0.376 to 0.365 after incorporating the periodicity framework.

Our proposed periodicity-based method is a lightweight frame-
work. It’s evident from the Traffic dataset that integrating the pe-
riodicity framework does not exacerbate memory overflow issues.
Instead, it aids in reducing the memory consumption of the models.
As shown in the table, the TimesNet, DLinear, iTransformer, and
Transformer models all successfully predict sequences of length
2880 without encountering memory overflow.

We also observed that the iTransformer, which integrates re-
versed variables and temporal dimensions, does not demonstrate
significant advantages in terms of prediction capability compared
to the traditional iTransformer. In one-third of the experimental
settings, the Transformer model outperforms the iTransformer.

4.3 Experimental Analysis
4.3.1 Ablation study. The final prediction results of the BAP-UL
model are derived from four methods: the periodicity framework,
denoted as PF, and three boundary-aware prediction methods (BA),
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Table 3: Generalization experiment results of the periodization framework.

Models BAP-UL TimesNet* TimesNet DLinear* DLinear iTransformer* Transformer* iTransformer

Weather
1440 0.376 0.372 0.395 0.366 0.378 0.365 0.370 0.398
2160 0.388 0.393 0.440 0.389 0.389 0.381 0.397 0.426
2880 0.402 0.382 0.463 0.407 0.409 0.395 0.391 0.436

Electricity
1440 0.265 0.258 0.293 0.275 0.275 0.280 0.262 0.286
2160 0.282 - - 0.294 0.318 0.327 0.322 0.351
2880 0.339 - - 0.305 0.353 0.355 0.367 0.380

Traffic
1440 0.557 0.580 - 0.624 - 0.575 - -
2160 0.570 0.577 - 0.585 0.578 0.590 0.660 0.527
2880 0.615 0.647 - 0.649 - 0.640 0.667 -

namely Trend Fluctuation Forecasting (TFF), Maximum Boundary
Forecasting (MaxF), and Minimum Boundary Forecasting (MinF).
In order to evaluate the effectiveness of our method, we conducted
extensive ablation experiments and the complete results can be
found in Table 4. Each model was evaluated under the same ex-
perimental settings, with an input length of 720 and prediction
lengths of 1440, 2160, 2880. The "N-" prefix indicates that the cor-
responding sub-module (X) was excluded from the overall model
structure. "-" indicates that the model encountered an OOM error in
the experimental environment. Lower MSE values indicate better
prediction performance of the models. The best prediction perfor-
mances are highlighted in bold, and the second-best performances
are underlined.

The ablation experiments indicate that when the periodicity
framework PF is used alone for prediction tasks, the prediction
performance is not satisfactory. The boundary-aware prediction
method BA module itself also has good prediction ability, and the
introduction of the BA module can effectively improve the overall
prediction performance of the model. Furthermore, when exam-
ining the overall results, it can be observed that after selectively
disabling a specific submodule, the prediction results exhibit a cer-
tain degree of decline compared to the BAP-UL model. However,
the overall performance still remains at a suboptimal level, indicat-
ing that each submodule plays a role in correcting and refining the
prediction results.

4.3.2 Feasibility of Periodicity-based Sparsification Strategy. To
analyze the effectiveness of the proposed periodicity-based sparsi-
fication strategy in this paper, visual analysis of the overall dataset
as well as the training, validation, and testing sets was conducted
to examine their respective periodic characteristics, as shown in
Figure 6.

In this figure, darker colors indicate higher amplitudes at cor-
responding frequencies. The amplitudes of frequencies across dif-
ferent sets exhibit a long-tail distribution, with only a very small
number of frequencies having larger amplitudes. The training set,
due to its large volume of data, exhibits consistent characteristics
with the overall dataset. However, slight differences can be observed
in the periodic features of the validation and testing sets compared
to the overall dataset. This suggests that the periodic features in
the testing set accurately reflect the periodic characteristics of the
entire dataset, demonstrating their feasibility.

Figure 6: Visualization of Overall and Training, Validation,
and Test Set Periodic Features for the three benchmark
datasets.

4.3.3 Model Complexity. The BAP-UL model has two parameters:
the number of periodic features, denoted as 𝑘 , and the model di-
mension, denoted as 𝑑𝑚𝑜𝑑𝑒𝑙 . The number of periodic features, 𝑘 ,
corresponds to the number of stacked layers in the MLP structure
within the model. The model dimension, 𝑑𝑚𝑜𝑑𝑒𝑙 , represents the
size to which the variables are compressed within the model. To
compare the effects of different combinations of 𝑘 and𝑑𝑚𝑜𝑑𝑒𝑙 on dif-
ferent datasets, six sets of comparative experiments were conducted.
The experimental results are shown in Figure 7.

It is evident that the impact of different 𝑘 values on the model’s
prediction results is not significant. Surprisingly, lower values of
𝑑𝑚𝑜𝑑𝑒𝑙 , indicating higher compression of variables, result in lower
model loss. The model is capable of significantly compressing the
number of variables to be computed for each dataset. For example,
in the Traffic dataset with 862 variables, the model achieves the
best performance with a 𝑑𝑚𝑜𝑑𝑒𝑙 value of only 128, reducing the
computational complexity by 73%. Therefore, this model is highly
suitable for large-scale prediction datasets with a large number of
variables, such as predicting server resource usage in datasets with
tens of thousands of distributed server nodes.
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Table 4: Ablation Experiment Results.

Models BAP-UL PF BA N-TFF N-MaxF N-MinF iTransformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather
1440 0.376 0.398 0.399 0.394 0.368 0.397 0.386 0.412 0.371 0.401 0.375 0.406 0.398 0.396
2160 0.388 0.410 0.438 0.420 0.388 0.415 0.392 0.416 0.403 0.431 0.399 0.426 0.426 0.414
2880 0.402 0.428 0.463 0.428 0.405 0.433 0.415 0.442 0.427 0.459 0.420 0.450 0.436 0.426

Electricity
1440 0.263 0.366 0.293 0.375 0.286 0.371 0.277 0.381 0.274 0.374 0.294 0.382 0.286 0.356
2160 0.282 0.374 0.341 0.403 0.332 0.402 0.312 0.399 0.326 0.400 0.338 0.412 0.351 0.405
2880 0.339 0.414 0.512 0.495 0.355 0.415 0.405 0.458 0.352 0.418 0.329 0.405 0.380 0.424

Traffic
1440 0.557 0.366 0.746 0.403 - - 0.794 0.463 0.574 0.367 0.669 0.399 - -
2160 0.570 0.380 0.757 0.404 0.624 0.398 0.807 0.449 0.619 0.391 0.645 0.401 0.527 0.341
2880 0.615 0.390 0.797 0.414 0.658 0.401 0.775 0.420 0.628 0.400 0.684 0.440 - -

Figure 7: Comparison of MSE values for different values of
𝑘 (the number of periodic features) and 𝑑𝑚𝑜𝑑𝑒𝑙 (the model
dimension). Comparative experiments were conducted with
𝑘 values of 2 and 3 for all datasets. For the Weather dataset,
𝑑𝑚𝑜𝑑𝑒𝑙 was set to 4, 8, 16. For the Electricity dataset, 𝑑𝑚𝑜𝑑𝑒𝑙
was set to 64, 128, 256. For the Traffic dataset, 𝑑𝑚𝑜𝑑𝑒𝑙 was set
to 128, 256, 512. Lighter colors in the corresponding experi-
mental settings indicate lower MSE values, indicating better
prediction performance of the models.

5 CONCLUSION
In this paper, we propose the Boundary-Aware Periodicity-based
sparsification strategy for Ultra-Long time series forecasting (BAP-
UL), which can perform with an input length of 720 and an out-
put length of 2880. Meanwhile, it can handle large-scale datasets
with multiple dimensions and variables. Furthermore, we introduce
the periodicity approach, a versatile lightweight data sparsifica-
tion framework that enhances the prediction capability of main-
stream forecasting models. Extensive experiments were conducted
on benchmark datasets with a large number of variables. Across
various experimental settings, we achieved optimal results of nearly
90%.
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