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ABSTRACT

We present the first mini-batch algorithm for maximizing a non-negative monotone decompos-

able submodular function, F' = Zfil f  under a set of constraints. We consider two sampling
approaches: uniform and weighted. We first show that mini-batch with weighted sampling
improves over the state of the art sparsifier based approach both in theory and in practice.
Surprisingly, our experimental results show that uniform sampling is superior to weighted
sampling. However, it is impossible to explain this using worst-case analysis. Our main
contribution is using smoothed analysis to provide a theoretical foundation for our experimental
results. We show that, under very mild assumptions, uniform sampling is superior for both the
mini-batch and the sparsifier approaches. We empirically verify that these assumptions hold for
our datasets. Uniform sampling is simple to implement and has complexity independent of IV,
making it the perfect candidate to tackle massive real-world datasets.

1 INTRODUCTION

Submodular functions capture the natural property of diminishing returns which often arises in
machine learning, graph theory and economics. For example, imagine you are given a large set of
images, and your goal is to extract a small subset of images, that best represent the original set (e.g.,
creating thumbnails for a Youtube video). Intuitively, this is a submodular optimization problem, as
the more thumbnails we have, the less we gain by adding an additional thumbnail.

Formally, a set function F' : 2 5 Rt  ona ground set E, is submodular if for any subsets
SCTCFEandeec E\T,itholds that F(S +e) — F(S) > F(T +¢) — F(T).

Decomposable submodular functions In many natural scenarios F' is decomposable: F =
ZZN:l f*, where each 7 : 2P — RT is a non-negative submodular function on the ground set £ with
|E| = n. That is, F' can be written as a sum of “simple” submodular functions. We assume that every
fis represented by an evaluation oracle that when queried with S C E returns the value f¢(.S). For
ease of notation we assume that f()) = 0 (our results hold even if this not the case). Our goal is to
maximize F' under some set of constraints while minimizing the number of oracle calls to { f Z} An
excellent survey of the importance of decomposable functions is given in (Rafiey & Yoshida, 2022),
which we summarize below.

Decomposable submodular functions are prevalent in both machine learning and economics. In
economics, they play a pivotal role in welfare optimization during combinatorial auctions (Dobzinski
& Schapiral, |2006; |[Feige, 2009; |[Feige & Vondrakl 2006; Papadimitriou et al., [2008} |Vondrakl, 2008).
In machine learning, these functions are instrumental in tasks like data summarization, aiming to
select a concise yet representative subset of elements. Their utility spans various domains, from
exemplar-based clustering by (Dueck & Frey, [2007) to image summarization (Tschiatschek et al.,
2014), recommender systems (Parambath et al.l 2016) and document summarization (Lin & Bilmes,
2011). The optimization of these functions, especially under specific constraints (e.g., cardinality,
matroid) has been studied in various data summarization settings (Mirzasoleiman et al., 2016ajbzc)
and differential privacy (Chaturvedi et al.| 2021} [Mitrovic et al., 2017} Rafiey & Yoshidal 2020). In
many of the above applications N (the number of underlying submodular functions) is extremely
large, making the evaluation of F' prohibitively slow. We illustrate this with a simple example.

Example (Welfare maximization) Imagine you are tasked with deciding on a meal menu for a
large group of NV people (e.g., all students in a university, all high school students in a country). You
need to choose k ingredients to use from a predetermined set (chicken, fish, beef, etc.) of size n.
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Every student has a specific preference, modeled as a monotone submodular function f i, Our goal is
to maximize the “social welfare”, F'(S) = >_ f*(.9), over all students.

The greedy algorithm Going forward we focus on the case where Vi, f* is monotone (V.S C
T C E,f{(T) > f%(S)), which in turn means F is monotone. This is applicable to the above
example (e.g., students are happier with more food varieties). For ease of presentation let us first
focus on maximizing F' under a cardinality constraint k, i.e., max F'(S), |S| < k. The classical
greedy algorithm (Nemhauser et all, [1978)) achieves an optimal (1 — 1/e)-approximation for this
problem. For S, A C F we define Fs(A) = F(S + A) — F(S). We slightly abuse notation and
write Fg(e), F(e) instead of Fs({e}), F'({e}).

Greedy: Start by initializing an empty set S;. Then for each j from 1 to k, perform the following
steps: First, identify the element e’ not already in S; that maximizes the function Fs; (e). Add this
element e’ to set S; to form the new set S 1. After completing all iterations, return the set Sy 1.

When F' is decomposable, and each evaluation of f i is counted as an oracle call, the above algorithm
requires O(Nnk) oracle calls. This can be prohibitively expensive if N > n. Looking back at our
example, Greedy will require asking every student k questions. That is, we would start by asking
all students: “Rate how much you would like to see food = on the menu” for n possible options. We
would then need to wait for all of their replies, and continue with “Given that chicken is on the menu,
rate how much you would like to see food y on the menu” for n — 1 possible options and so on. Even
if we do an online poll, this is still very time-consuming (as we must wait for everyone to reply in
each of the k steps). If we could sample a representative subset of the students, we could greatly
speed up the above process. Specifically, we would like to eliminate the dependence on V.

A sparsifier based approach Recently, Rafiey & Yoshida (2022) were the first to consider
constructing a sparsifier for F'. That is, given a parameter ¢ > 0 they show how to find a vector
w € RY such that the number of non-zero elements in w is small in expectation and the function
F =N w,f satisfies with high probability (w.h.pf| that VS C E, (1 — e)F(S) < F(S) <
(14€)F(S). Where the main bottleneck in the above approach is computing the sampling probabilities
for computing w. They treat this step as a preprocessing step. The current state of the art construction
is due to (Kenneth & Krauthgamer, |2023) where a sparsifier of size O(ane’Q) (where k bounds the
size of the solution) can be constructed using O(Nn) oracle calls (see Appendix for an in-depth
overview of existing sparsifier constructions).

Weighted mini-batch  Mini-batch methods are at the heart of several fundamental machine learning
algorithms (e.g., mini-batch k-means, SGD). Surprisingly, a mini-batch approach for this problem
was not considered. We present the first mini-batch algorithm for this problem, and show that it is
superior to the sparsifier based approach both in theory and in practice. Roughly speaking, we show
that sampling a new batch every iteration of the algorithm is “more stable” compared to the sparsifier
approach. This allows us to sample less elements in total and reduce the overall complexity. The
main novelty in our analysis is using the greedy nature of the algorithm and carefully balancing an
additive and a multiplicative error term. Our sampling probabilities are the same as those of (Kenneth
& Krauthgamer, 2023)), and therefore, this algorithm pays the expensive O(Nn) preprocessing time.

Beyond worst-case analysis When conducting our experiments, we added a simple baseline for
both the sparsifier and the mini-batch algorithm — instead of using weighted sampling we used uniform
sampling (previous results neglected this baseline (Rafiey & Yoshida,|2022)). Surprisingly, we observe
that it outperforms weighted sampling both for the sparsifier and mini-batch algorithms. This is
remarkable, as uniform sampling is extremely simple to implement, and requires no preprocessing
which removes the dependence on NV altogether.

Unfortunately, we cannot get worst-case theoretical guarantees for uniform sampling. Consider the
case where only a single f7 takes non-zero values (all other f%’s are always 0). Clearly, uniform
sampling will almost surely miss f7. However, this is a pathological case that is very unlikely to
occur in practice. To bridge this gap we go beyond worst-case analysis and consider the smoothed
complexity of this problem.

Smoothed analysis was introduced by (Spielman & Teng, 2004) in an attempt to explain the fast
runtime of the Simplex algorithm in practice, despite its exponential worst-case runtime. In the

'Probability at least 1 — 1/n° for an arbitrary constant ¢ > 1. The value of ¢ does affect the asymptotics of
the results we state (including our own).
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smoothed analysis framework, an algorithm is provided with an adversarial input that is perturbed by
some random noise. The crux of smoothed analysis is often defining a realistic model of noise.

Our main contribution is defining two very natural smoothing models. The reason we define two
models is because the first allows us to provide theoretical guarantees both for our mini-batch
algorithms and for all existing sparsifier algorithms (under uniform sampling), but only lines up
empirically with some of the datasets we use. For the second model we are only able to show
theoretical guarantees for our mini-batch algorithm, but it agrees empirically with all of our datasets.

To define our models of smoothing we assume w.log that Vi € [N],e € E, fi(e) € [0,1] (we can
always achieve this by normalization if { f?(e)} are upper bounded). Let ¢ € [0,1],d € [N] be

parameters and let us denote A, = {f*(e) }ie[N].

Model 1 It holds that N = Q(§ log(nd)), and for every e € E the following two conditions

hold: (1) Every fi(e) € A, is a random variable such that E[f?(e)] > ¢. (2) Elements in A, have
dependency at most d (every f*(e) depends on at most d other elements in A.). Note that we can
have arbitrary dependencies between elements in A, A., e # €.

Model 2 Identical to Model 1, except that there exists e € E such that conditions (1) and (2) hold.

Intuition Going back to our lunch menu example, Assumption (1) of Model 1 means that every
possible food on the menu is not universally hated by the students. Assumption (2) means that the
preference of a student for any specific food is sufficiently independent of the preferences of other
students. Assuming that N = Q(% log(nd)) means that we have a sufficiently large student body —
note that increasing N should not change ¢ and d. Model 2 only requires assumptions (1) and (2)
to hold for a single menu item. Intuitively, Model 1 assumes that all food choices are “not too bad”
while Model 2 assumes that there exists at least one such choice.

Comparison to other model of smoothing Perhaps the most general smoothing approach when
dealing with weighted inputs (e.g., in [0,1]) is to assume that the weights are taken from some
distribution whose density is upper bounded by a smoothing parameter ¢ (Etscheid & Roglin, 2017
Angel et al.,2017). This generalizes the approach of |Spielman & Teng (2004), where Guassian noise
was added to the weights. Our approach is even more general, as the above immediately implies that
the expectation is lower bounded by ¢. Furthermore, we only assume bounded independence and
Model 2 only partially smoothes the input.

While our primary contribution lies in providing theoretical guarantees for the uniform mini-batch
algorithm (which empirically outperforms all other methods), we begin by presenting our results for
weighted sampling. This will lay the groundwork to seamlessly prove our main results in Section 4}

1.1 THE MINI-BATCH ALGORITHM

We focus on the greedy algorithm for constrained submodular maximization. We show that instead of
sparsifying F’, better results can be achieved by using mini-batches during the execution of the greedy
algorithm. That is, rather than sampling a large sparsifier F and performing the optimization process,
we show that if we sample a much smaller sparsifier (a mini-batch), Fi_ for the j-th step of the greedy
algorithm, we can achieve improved results both in theory (Table E]) and in practice (Section . Most
notably, we observe that the mini-batch approach is superior to the sparsifier approach for small batch
sizes on various real world datasets. This is also the case when we combine our approach with the
popular stochastic-greedy algorithm (Buchbinder et al., [2015; [Mirzasoleiman et al., [2015]).

While the mini-batch approach results in an improvement in performance, the sparsifier approach
has the benefit of being independent of the algorithm. That is, while any approximation algorithm
executed on a sparsifier immediately achieves (nearly) the same guarantees for the original function,
we need to re-establish the approximation ratio of our mini-batch algorithm for different constraints.
Although these proofs are often straightforward, compiling an exhaustive list of where the mini-batch
method is applicable is both laborious and offers limited insights.

We focus on two widely researched constraints: the cardinality constraint and the p-system constraint.
The cardinality constraint was chosen for its simplicity, while the p-system constraint was chosen for
its broad applicability.
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Theoretical results We compare our results with the state of the art sparsifier results and the naive
algorithm (without sampling or sparsification) in Table We can get improved performance if the
curvature of F' is bounded’l Note that the “Uniform” column requires no preprocessing, and the
query complexity differs by a multiplicative ©(1/n¢)-factor. In Section 2| we prove our results for
the “Weighted” column and in Section 4| we prove our results for the “Uniform” column. Under
Model 2 our results for the unbounded curvature mini-batch case still hold for uniform sampling (all
other results hold under Model 1). We empirically observe that ¢ = O(1) for our datasets (Section E]),
which explains the superior performance of the uniform mini-batch algorithm in practice.

Preprocessing Oracle queries
. . . Uniform
Weighted | Uniform Weighted (Model 1)
Naive None O(Nnk)
Kenneth & Krauthgamer| | O(Nn) None 9) (ki;lz ) 9] (’:j g)
Our results Card. O (ki§2) Card. O (gg)
Uniform holds for O(Nn) None ~ P2 ~ /2
Model 1 & 2 p-sys. O ( & ) p-sys. O ( 62’;")
Our results =~ kn2 ~ kn
(bounded curvature) O(Nn) None 0 ((1—6)62) 0 ((1—6)62¢)

Table 1: Comparison of the number of oracle queries during preprocessing and during execution.
Results are for the greedy algorithm under both a cardinality constraint and a p-system constraint.
Unless explicitly stated the number of queries is the same for both constraints. All results achieve the
near optimal approximation guarantees of (1 — 1/e — ¢) for a cardinality constraint and (;1)4:) for a
p-system constraint.

Meta greedy algorithm  Our starting point is the meta greedy algorithm (Algorithm [T). The
algorithm executes for & < n iterations where & is some upper bound on the size of the solution. At
every iteration, the set A; C E'\ S; represents some constraint that limits the choice of potential
elements to extend S;. The algorithm terminates either when the solution size reaches k or when
no further extensions to the current solution are possible (i.e., A; = (). Furthermore, the algorithm
does not have access to the exact incremental oracle, FSJ., at every iteration, but only to some
approximation (which may differ between iterations). Before we formally define “approximation”,

Algorithm 1: Meta greedy algorithm with an approximate oracle

51 0

Let k£ be an upper bound on the size of the solution

for j =1t k do
Let A; C E\S; > Problem specific constraint (e.g., A; = E \ S, for card. constraint)
if A; = () then return S

Let Fé} be an approximation for Fg;, > Problem specific approximation

ej = argmaxee4, Féj (e)
Sjt1 =55 +¢;

end

return Sy

let us note that when we have access to exact values of Fy, Algorithmcaptures many variants of
the greedy submodular maximization algorithm. For example, setting A; = E \ S; we get Greedy.
This meta-algorithm also captures the case of maximization under a p-system constraint. For ease of
presentation we defer the discussion about p-systems to Appendix [B

>Where O hides log n factors.
3The curvature of a submodular function F is defined as ¢ = 1 — min SCE,ecE\S
bounded-curvature if ¢ < 1.

%(:)). We say that F" has
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Approximate oracles In many scenarios we do not have access to exact values of Fs,, and instead
we must make do with an approximation. We start with the notion of an approximate incremental

oracle introduced in (Goundan & Schulz, 2007). We say that ﬁ‘éj is an (1 — €)-approximate
incremental oracle if Ve € A;, (1 —¢€)Fs; (e) < ng (e) < (1+¢€)Fs,(e). It was shown in (Goundan
& Schulz, 2007; |Calinescu et al., 2011 ﬂ that given a (1 — ¢)-approximate incremental oracle, the
greedy algorithm under both a cardinality constraint and a p-system constraint achieves almost the
same (optimal) approximation ratio as the non-approximate case.

Theorem 1.1. Algorithm |I| with an (1 — €)-approximate incremental oracle has the following
guarantees w.h.p: (1) It achieves a (1 — 1/e — €)-approximation under a cardinality constraint
k (Goundan & Schulz, |2007)). (2) It achieves a (%;;)-approximation under a p-system constraint
(Cdlinescu et al.| |2011).

We introduce a weaker type of approximate incremental oracle, which we call an additive approximate
incremental oracle. We extend the results of Theorem [I.1] for this case. Let S* be some optimal

solution for F' (under the relevant set of constraints). We say that ng is an additive €' -approximate
incremental oracle if Ve € Aj, Fs,(e) — € F(S*) < Fé} (e) < Fs,(e) + € F(S%).

This might seem problematic at first glance, as it might be the case that F'(S*) > FJs, (e). Luckily,
the proofs guaranteeing the approximation ratio are linear in nature. Therefore, by the end of the proof
we end up with an expression of the form: F'(Si41) > F(S*)8 — €' F(S*). Where 3 is the desired
approximation ratio and «y depends on the parameters of the problem (e.g., 8 = (1 — 1/e),y = 2k
for a cardinality constraint). We can achieve the desired result by setting ¢’ = ¢/. We state the
following theorem (the proofs are similar to those of (Goundan & Schulz, 2007} (Calinescu et al.,
2011), and we defer them to the Appendix).

Theorem 1.2. Algorithm with an additive €'-approximate incremental oracle has the following
guarantees w.h.p: (I) If € < €/2k, it achieves a (1 — 1/e — €)-approximation under a cardinality

constraint k. (2) If € < €/2kp, it achieves a ( he )-approximation under a p-system constraint.

Mini-batch sampling Although we use the same sampling probablhtles as the sparsifier approach,
instead of sampling a smgle F at the beglnmng, we sample anew FY (mini-batch), for every step of
the algorithm. Recall that ng (e) = F9(S; +e) — FI(S;).

We show that when FéJ is sampled using mini-batch sampling we indeed get, w.h.p, an (additive)

approximate incremental oracle for every step of the algorithm. We present our sampling procedure
in Algorithm [2)and the complete mini-batch algorithm in Algorithm 3]

Algorithm 2: Sample(a, {p;}- ;) Hortihon &2 Minharch greedy
o Vi € [N],pi  maXeen, re)£0
fori =110 N do // Uniform sampling: p;=1/N

a; < min{1, ap;} 2 (v is a batch parameter
w; < 1/a; with probability «; 315« 0
end 4 |k is an upper bound on the size of the solution
returanZfilwifi s for j = 1tokdo
6 Let Aj CFE \ Sj
7|| if A; = () then return S;

8 Let Fj < Sam}?le(av {pl}fil)

_ [J
9 ej = arg MaXee A, st (e)
10 Sj+1 = Sj + €5
1 end

12 freturn Sk 1

4Strictly speaking, both |Goundan & Schulz| (2007) and |Cilinescu et al. (2011) define the approximate
incremental oracle to be a function that returns e; at iteration j of the greedy algorithm such that Ve €
Aj, Fs;(ej) > (1 — €)Fs;(e). Our definition guarantees this property while allowing easy analysis of the
mini-batch algorithm.
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In Section 2] we analyze the relation between the batch parameter, «, and the the type of approximate
incremental oracles guaranteed by our sampling procedure. We state the main theorem for the section
below.

Theorem 1.3. The mini-batch greedy algorithm (Algorithm [5) maximizing a non-negative monotone
submodular function has the following guarantees:

1. If F has curvature bounded by ¢, and oo = O( z%2) it holds w.h.p that Vj € [k] that F§ is an

(1 — €)-approximate incremental oracle.

2. If o = O(e2ylogn) it holds w.h.p that ¥j € [k| that FéJ is an additive (e/~)-approximate
incremental oracle, for any parameter vy > 0.

Furthermore, the number of oracle evaluations during preprocessing is O(nN) and an expected
O‘(Z;\;1 pi)(2§:1 |A;|) = O(akn?) during execution.

Combining Theorem (setting v = k for a cardinality constraint and v = kp for a p-system
constraint) with Theorem[I.1]and Theorem[I.2] we state our main result.

Theorem 1.4. The mini-batch greedy algorithm maximizing a non-negative monotone submodular
Sunction requires O(nN) oracle calls during preprocessing and has the following guarantees:

1. If F has curvature bounded by c, it achieves w.h.p a (1 — 1/e — €)-approximation under a

cardinality constraint and (i;; )-approximation under a p-system constraint with an expected

kn?logn .
O( Z—0) ) oracle evaluations for both cases.

2. It achieves whp a (1 — 1/e — €)-approximation under a cardinality constraint and
(%;;)—approximation under a p-system constraint with an expected O(k*(n/e)?logn) and

O(k*p(n/€)? logn) oracle evaluations respectively.

1.2  RELATED WORK

Approximate oracles  Apart from the results of (Goundan & Schulz, |2007; |Calinescu et al., 2011)
there are works that use different notions of an approximate oracle. Several works consider an

approximate oracle F', such that VS C E, ‘13'(8) - F(S)’ < eF'(S) (Crawford et al., [2019; Horel &

Singer, 2016} |Qian et al.,|2017). The main difference of these models to our work is the fact that they

do not assume the surrogate function, F', to be submodular. This adds a significant complication to
the analysis and degrades the performance guarantees.

Mini-batch methods The closest result resembling our mini-batch approach is the stochastic-
greedy algorithm (Buchbinder et al. 2015} Mirzasoleiman et al., [ 2015)). They improve the expected
query complexity of the greedy algorithm under a cardinality constraint by only considering a small
random subset of E \ S; at the j-th iteration. We note that their approach can be combined into our
mini-batch algorithm, reducing our query complexity by a ©(k) factor, resulting in an approximation
guarantee in expectation instead of w.h.p.

Smoothed analysis To the best of our knowledge, (Rubinstein & Zhao} 2022) is the only result
that considers smoothed analysis in the context submodular maximization. They consider submod-
ular maximization under a cardinality constraint, where the cardinality parameter k£ undergoes a
perturbation according to some known distribution.

2 ANALYSIS OF THE MINI-BATCH GREEDY ALGORITHM

We start by with the following lemma from (Kenneth & Krauthgamer, 2023), which bounds the
expected size of F'. We present a proof in the appendix for completeness.

Lemma 2.1. The expected size ofF is o Zivzl p; < an.
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Note that the above yields a tighter bound of « for uniform sampling (p; = 1/N). Next, let us show

that F' returned by Algorithm is indeed an (additive) approximate incremental oracle w.h.p. We
make use of the following Chernoff bound.

Theorem 2.2 (Chernoff bound (Motwani & Raghavan| [1995)). Let X1, ..., Xy be independent
random variables in the range [0, a]. Let X = Zi\il X;. Then for any € € [0,1] and p > E[T] it
holds that P(|X — E[X]| > ep) < 2exp (—€*p/3a).

The following lemma provides concentration guarantees for Fin Algorithm

Lemma 2.3. Forevery S C FE (F sampled after S is fixed) and for every e € E and 1 > Fg(e), it
holds that P {|f7‘g(e) — Fs(e)| > 6[1,} < 2exp (—Jﬁ)

Proof. Fix some e € E. Let G = Y, ., f', where I = {i € [N] | a; = 1}. Let F§(e) =
Fs(e) — Gs(e) and Fi(e) = Fs(e) — Gg(e). Let J = [N] \ I. It holds that:

P[|Fs(c) — Fs(e)l = eu| =P ||Fs(e) + Gs(e) = Fi(e) — Gs(e)| = en] =P [[Fy(e) ~ Fi(e)| =

Due to the fact that E [w;] = 1 we have E[F%(e)] = E[} ;e wif(e)] = Fé(e). As f¥s are
monotone, it holds that y > Fs(e) > F¢(e). Applying a Chernoff bound (Theorem 2.2) we have

B [|F(e) — Fi(e)| > e < 2exp (~¢2p/30)

where a = max{w; fi(e) };cs. Recall that w; = 1/a; where a; = min{1, ap;} and o; < 1 for all
1 € J. Let us upper bound a.

a:maxwifg(e):maxfsi(e):max% gmafo): (e)
icJ icd ap; i€ o . maxie) ied o . L) o
BIEE F(el) F(E)

Where the inequality is due to submodularity and non-negativity in the numerator and maximality in
the denominator. Note that the above is also correct if we only have some approximation to p; —i.e.,
given p, > p; A for A € (0, 1), we can increase « by a 1/ factor and the above still holds. Given the
above upper bound for a we get:

P[1Fs(e) - Fs(e)] > en] <2 (—3“) < 2exp <—3F‘(“‘)) O

Using the above we are ready to prove Theorem|[I.3]

Proof of Theorem|[L.3] The number of oracle evaluations is due to Lemma[2.T]and the fact that the
algorithm executes for k iteration and must evaluate |A;| < n elements per iteration.
Let us prove the approximation guarantees. Let us start with the bounded curvature case. Fix some .S}.

As FJ is sampled after S ; is fixed, we can fix some e € F and apply Lemmawith p = Fs,(e).
We get that:

. eaFg (e 20(1 —

B[ 173, (¢) ~ F,(6)] > eFs, (0)] < 2exp (‘3Ff>()> < 2exp (—“(3’) <1/
Where the second inequality is due to the fact that Fs, (e)/F(e) > mingc g crcp\s Fs(e')/F(e') =
1 — ¢, and the last transition is by setting an appropriate constant in o = O( 61;’(%(2) ). When the
curvature is not bounded, we break the analysis into cases.

F(e) <~Fg,;(e): Setting = Fg,(e) we get:

P (174, (¢)  Fis, (0] 2 eF,(¢)] < 2exp (-g‘;s;)) <20 (-52) <1/
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F(e) > vFs,(e): Here we can set u = F(e)/v > Fs,(e) and get:

e2aF(e)

P17, (¢)  Fs,(6)] > eFle) /4] < 2exp (‘ww) < 2exp (—33) <1/n®

Where in both cases the last inequality is by setting an appropriate constant in o = O (e~ 2vlogn).
Note that in the first case we get an (1 — ¢€)-approximate incremental oracle and in the second an
additive (e/~y)-approximate incremental oracle. The second case is the worse of the two for our
analysis. For both bounded and unbounded curvature, we take a union bound over all e € E and
Jj € [K] (at most n? values), which concludes the proof. O

Note that in the above we use the fact that Fi(e) < F(S*) (recall that S* is the optimal solution for
F’) to get the second result. This is sufficient for our proofs to go through, however, the theorem has a
much stronger guarantee which might be useful in other contexts (as we will see in Section ).

3 EXPERIMENTS

We perform experiments on the following datasets, where the goal for all datasets is to maximize
F(S) subject to | S| < k.

Uber pickups This dataset consists of Uber pickups in New York city in May 2014E1 The set
contains 652, 434 records, where each record consists of a longitude and latitude, representing a
pickup location. Following (Rafiey & Yoshidal 2022) we aim to find % positions for idle drivers
to wait from a subset of popular pickup locations. We formalize the problem as follows. We run
Lloyd’s algorithm on the dataset, X, and find 100 cluster centers. We set these cluster centers to
be the ground set . We define the goal function F : 28 — Rt as F(S) = > _y fu(S) where

fo(S) = max.cp d(v,e) — min.cgs d(v, e), and d(v, ) is the Manhattan distance between v and e.

Discogs (Kunegis, 2013)  This dataselﬂ provides audio record information structured as a bipartite
graph G = (L, R; E’). The left nodes represent labels and the right nodes represent styles. Each
edge (u,v) € L X R signifies the involvement of a label w in producing a release of a style v. The
dataset comprises | R| = 383 labels, | L| = 243, 764 styles, and |E’| = 5,255, 950 edges. We aim to
select k styles that cover the activity of the maximum number of labels. We construct a maximum
coverage function F' : 2% — R, where F'(S) = Y o, f.(5), and f,(S) equals 1 if v is adjacent to
some element of .S and O otherwise.

Examplar-based clustering We consider the problem of selecting representative subset of k£ images
from a massive data set. We present experiments for both the CIFAR100 and the FashionMNIST
datasets. For each dataset we consider a subset of 50, 000 images, denoted by X. We flatten every
image into a one dimensional vector, subtract from it the mean of all images and normalize it to unit
norm. We take the distance between two elements in X as d(z,2’) = ||z — 2’||?. Here the ground
set is simply the dataset, £ = X. Similarly to the Uber pickup dataset we define the goal function
F:28 5 RTas F(S) =Y, cx fo(S) where f,(S) = maxcg d(v,e) — mineeg d(v, €).

Experimental setup We compare the sparsifier approach with the mini-batch approach for each
of the above datasets as follows. We first compute the p;’s and fix a parameter 5 € (0,1). We

take « in the algorithm such that « ZZV p; = BN. That is, (3 is the desired fraction of data (in our
experiments the elements that make up F’ correspondent to elements in the dataset) we wish to sample
for the sparsifier / mini-batch. Note that the p;’s are the same for the sparsifier and the mini-batch
approach, and the only difference is whether we sample one time in the beginning (sparsifier) or
for every iteration of the greedy algorithm (mini-batch). For example, setting 8 = 0.01 means that
the sparsifier will sample 1% of the data and execute the greedy algorithm, while the mini-batch
algorithm will sample 1% of the data for every iteration of the greedy algorithm.

In practice the naive algorithm is usually augmented with the following heuristic called lazy-greedy
(Minoux, [2005). The algorithm initially creates a max heap of E ordered according to a key p(e),
where initially p(e) = F(e). During the j-th iteration it repeatedly pops e from the top of the heap,

Shttps://www.kaggle.com/fivethirtyeight/uber-pickups—in-new-york-city
®http://konect.cc/networks/discogs_lstyle/
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updates its key p(e) = Fls; (e) and inserts it back to the heap. Due to submodularity, if e remains at
the top of the heap after the update we know it maximizes Fi, (). While this does not change the
asymptotic number of oracle queries, it often leads to significant improvement in practice.

We also consider stochastic-greedy (Buchbinder et al.| 2015} Mirzasoleiman et al., 2015)), which
further reduces the number of oracle evaluations by greedily choosing the next element added to .S

from a subset of E'\ S; of size 7 log % sampled uniformly at random.

We apply both of the above to the sparsifier / mini-batch approach and compare them against lazy-
greedy and stochastic-greedy, respectively. Finally, for every mini-batch / sparsifier variant we
execute we also run a baseline where Vi, p; = 1/N.

In Figure|l| we plot results for different 5 values for both the sparsifier and the mini-batch approach
for different values of k. Every point on the graph is the average of 20 executions with the same
k, 5. For every dataset we present three plots: (a) the relative utility (value of F) of the mini-batch /
sparsifier approach compared to lazy-greedy, (b) the relative number of oracle evaluations excluding
the preprocessing step, and (c) relative number of oracle evaluations including the preprocessing step.
To allow different 3 values to fit on the same plot we use a logarithmic scale in (b). On the other
hand, the preprocessing step dominates in (c), therefore, we use a linear scale. We use “u” / “w”
prefixes for uniform / weighted sampling.

In Figure 2] (Appendix [D)) we compare the sparsifier and mini-batch algorithm (augmented with the
sampling scheme of stochastic-greedy) to the stochastic-greedy algorithm. As the ground sets for
both Uber pickup and Discogs are rather small, we only run experiments on the image datasets.

Results We observe that the mini-batch algorithm is superior to the sparsifier approach for small
values of 8 while using about the same number of queries. What is perhaps most surprising is that
uniform sampling outperforms over weighted sampling. We provide a theoretical explanation for this
in the next section.
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Figure 1: Sparsifier and mini-batch compared with lazy-greedy.

4 SMOOTHED ANALYSIS

In this section we show that uniform sampling achieves better results than weighted sampling under
our models of smoothing. We start by noting that under uniform sampling it holds that >, e Pi =1
which in turn results in a bound of « in Lemma[21]instead of na for the weighted case. This explains
one part of the ©(1/n¢) factor in the transition from the “Weighted” to “Uniform” column in Tablem
For the rest of this section we explain the 1/¢ factor.
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We start by stating the following useful Chernoff bound:

Theorem 4.1 (Bounded dependency Chernoff bound (Pemmarajul 2001)). Let X1, ..., X be identi-
cally distributed random variables in the range [0, 1] with bounded dependancy d. Let X = Zf\;l X;.
Then for any € € [0,1] and o = E[T] it holds that P(|X — E[X]| > en) < O(d) - exp (—O(e*n/d)).

Model1 We show that Model 2 maintains the theoretical guarantees of both the sparsifier algorithm
and the mini-batch algorithm under uniform sampling, with a multiplicative ©(1/n¢) factor in the
query complexity.

Theorem 4.2. Assuming uniform sampling (p; = 1/N) and Model 1, the sparsifier construction of
(Kenneth & Krauthgamer, |2023) and our mini-batch algorithm achieve the same guarantees, with an
O(1/n¢) multiplicative factor in the query complexity.

Proof. Assumption (1) of Model 1 implies that E[F(e)] = 3=,y E[f*(e)] > N¢. Applying the
above Chernoff bound with e = 1/2, u = E[F(e)] we get that:

P[|F(e) = E[F(e)]| > /2] < O(d) exp(~O(p/d)) < O(d) exp(~O(N¢/d)) < 1/n?

Where the last inequality is due to the fact that N = Q((d/¢) log(nd)). Finally, applying a union
bound over all e € E we get that wh.p Ve € E, F(e) > N¢/2.

The above implies that w.h.p p; = max, fi(e)/F(e) < 2/¢N, which implies that uniform sampling
approximates the weights of weighted sampling up to a O(1/¢)-factor. It was already noted by |Rafiey
& Yoshida (2022) that when given a multiplicative approximation of {p; } the sparsifier construction
goes through with a respective multiplicative increase in the size of the sparsifier. This observation
also applies to the results of Kenneth & Krauthgamer|(2023) and for our results (Lemma[2.3).  [J

Empirical validation ~We can empirically evaluate ¢ by computing max. - >, f*(e). The
empirical values are as follows: CIFAR100: 0.34, FashionMNIST: 0.31, Uber pickup: 2.36 x 104,
Discogs: 4.10 x 106, While Model 1 manages to explain the experimental results for some of the
datasets, it appears that the model assumptions are a bit too strong.

Model 2 We show that Model 2 maintains the theoretical guarantees of the mini-batch algorithm
under uniform sampling, with a multiplicative ©(1/n¢) factor in the query complexity.

Lemma 4.3. Under Model 2, item (2) of Theorem |1.4|still holds with a ©(1/n¢) multiplicative
factor in the query complexity for the mini-batch algorithm with uniform sampling.

Proof. Similar to Theorem [4.2]it holds w.h.p that F(e) > N¢/2, but now this is only guaranteed
for a single element e* € E. We can use this fact to lower bound the optimum solution w.h.p:
F(5%) > F(e") > No/2.

Recall a = max{w; fi(e)}ies from Lemma where w; = 1/«; and o; = min{1, ap; }. Under
uniform sampling it holds that p; = 1/N. We conclude that a < N/a < 2F(e*)/¢pa. We get an
analogue to Lemma [2.3

~6F(e¥)

Plugging this into the second case (non-bounded curvature) of Theorem [I.3| we get that the same
result still holds with an additional multiplicative 1/¢ factor in a. O

Empirical validation @ Under Model 2 we can empirically evaluate ¢ by computing
min, % >, f%(e). The empirical values are as follows: CIFAR100: 0.38, FashionMNIST: 0.35, Uber
pickup: 0.61, Discogs: 0.13. We conclude that ¢ = ©(1) and indeed Model 2 is able to explain the
empirical success of the uniform mini-batch algorithm on all datasets.

Discussion We observe that Model 2 manages to explain why uniform sampling outperforms in
our experimental results. The empirical ¢ values are constant with respect to n. This means that the
query complexity is actually less by about a ©(n) factor for the uniform sampling case. We conclude
that, given its speed and simplicity, the uniform mini-batch algorithm should be the first choice when
tackling massive real-world datasets.

10
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A SPARSIFIER BACKGROUND AND RELATED WORK

Rafiey & Yoshida|(2022) were the first to showe how to construct a sparsifier for F'. That is, given a
parameter € > 0 they show how to find a vector w € R such that the number of non-zero elements

in w is small in expectation and the function F= Zf\il w; f* satisfies with high probability (W.h.p
that VS C E, (1 — €)F(S) < F(S) < (1 + €)F(S).

"Probability at least 1 — 1/n° for an arbitrary constant ¢ > 1. The value of c does affect the asymptotics of
the results we state (including our own).
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Specifically, every f* is sampled with probability a;; proportional to p; = max SCE,F(S)#0 % It
it is sampled, it is included in the sparsifier with weight 1/a;, which implies that E [w;] = 1. While
calculating the p;’s exactly requires exponential time, Rafiey & Yoshida (2022)) make do with an
approximation, which can be calculated using interior point methods (Bai et al., 2016).

Rafiey & Yoshidal (2022) show that if all f*’s are non-negative and monotonﬂ the above sparsifier
can be constructed by an algorithm that requires poly(N) oracle evaluations and the sparsifier will
have expected size O(e~2Bn?®logn), where B = max;c[n] B; and B; is the number of extreme
points in the base polyhedron of f. They extend their results to matroid constraints of rank r and
show that a sparsifier with expected size O(e~2Brn'-® log n) can be constructed.

For the specific case of a cardinality constraint k, this implies a sparsifier of expected size
O(e~2Bkn'-5logn) can be constructed using poly(N) oracle evaluations. The sparsifier construc-
tion is treated as a preprocessing step, and therefore the actual execution of Greedy on the sparsifier
requires only O(e~2Bk?n?®logn) oracle evaluations to get a (1 — 1/e — €) approximation. This is
an improvement over Greedy when N > n, B.

Recently, Kudla & Zivny|(2023) showed improved results for the case of bounded curvature. The

curvature of a submodular function F' is defined as ¢ = 1 — mingc g ccp\s 1;5((5) . We say that F' has
bounded-curvature if ¢ < 1. Submodular functions with bounded curvature (Conforti & Cornuéjols,
1984)) offer a balance between modularity and submodularity, capturing the essence of diminishing

returns without being too extreme.

They show that when the curvature of all f*’s and of F is constant it is possible to reduce the
preprocessing time to O(NNn) oracle queries and to reduce the size of the sparsifier by a factor of y/n.
Furthermore, their results extend to the much more general case of k-submodular functions. While
this significantly improves over the number of oracle calls compared to (Rafiey & Yoshidal [2022]),

the runtime of the preprocessing step depends on log (maxie[ N minmaxee_E ! 1(6;1-((,)
ecE,f*(e)>0 -

Note that the B factor in (Kudla & Zivny, 2023 Rafiey & Yoshida,|2022) can be exponential in n in
the worst-case.

The current state of the art is due to|Kenneth & Krauthgamer (2023) where they show that by sampling
according to p; = MaX.e g, F(e)£0 J;’T(;) it is possible to get both a fast sparsifier construction time
of O(Nn) and a small sparsifier size of O(Z—j) Their analysis also implies that if the solution size

is bounded by £ (e.g., a cardinality constraint) a sparsifier of size O("!;'2 ) is sufficient. They also

present results for general submodular functions, however we only focus on their results for monotone
functions which are relevant for this paper.

B p-SYSTEMS

p-systems The concept of p-systems offers a generalized framework for understanding inde-
pendence families, parameterized by an integer p. We can define a p-system in the context of an
independence family Z C 2F and E’ C E. Let B(E’) be the maximal independent sets within Z that
are also subsets of E’. Formally, B(E') = {A € Z|AC E' andno A’ € T existsst A C A’ C E'}.
A distinguishing characteristic of a p-system is that for every E’ C E, the ratio of the sizes of the
max 4 cp(gp/) |A| <

largest to the smallest sets in B(E") does not exceed p: Wi cp(p) JA] =
e ’

The significance of p-systems lies in their ability to encapsulate a variety of combinatorial structures.
For instance, when the intersection of p matroids can be described using p-systems. In graph theory,
the collection of matchings in a standard graph can be viewed as a 2-system. Extending this to
hypergraphs, where edges might have cardinalities up to p, the set of matchings therein can be viewed
as a p-system.

8Raﬁey & Yoshidal (2022) also present results for non-monotone functions, however, |[Kudla & Zivny| (2023)
point out an error in their calculation and note that the results only hold when all f*’s are monotone.
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The greedy algorithm for p-systems Formally, the optimization problem can be expressed as:
maxger F(S) where the pair (E, T) characterizes a p-system and F' : 2 — R* denotes a non-
negative monotone submodular set function. It was shown by Nemhauser et al.| (1978) that the natural
greedy approach achieves an optimal approximation ratio of —— p ;- Setting A; = {e | S; +ec I}
(i.e., S; remains an independent set after adding e) in Algonthm. 1| we get the greedy algorithm of
Nembhauser et al.[(1978)). Note that for general p-systems it might be that k = n, however, there are
very natural problems where k& < n. For example, for maximum matching F corresponds to all
edges in the graph, which can be quadratic in the number of nodes, while the solution is at most linear
in the number of nodes.

C MISSING PROOFS

Proof of Lemma We start by showing that Zf\il p; < n. Let us divide the range [N] into
i
Aez{i€N|e— arg max f(e)}

ecr,Fer)20 Fle')

If 2 elements in E achieve the maximum value for some 4, we assign it to a single A, arbitrarily.

N Ip I LIS AEPBEL

i=1 i=1 ecEicA, eclE

Let X; be an indicator variable for the event w; > 0. We are interested in 31 ,—1 E[X;]. It holds that:
N N N N
DEX] =) <> api=a) p;<an
i=1 i=1 i=1 i=1

Proof of Theorem[I.2] Theorem|[I.2]directly follows from the two lemmas below.

Lemma C.1. Ler ¢ < €/2k. Algorithm |l with an additive € -approximate incremental oracle
achieves a (1 — 1/e — €)-approximation under a cardinality constraint k.

Proof. Let S* be some optimal solution for F'. We start by proving that the following holds for every
j €[k

F(Sjt1) = E(Sj) 2 (1 =) F(S7) = F(5;))

Fix some j € [k] and let S* \ S; = {e},...,e;} where £ < k. Let S} = {e],..., e}, and S§ = 0.
Let us first use submodularity and monotonicity to upper bound F'(S*).

F(S*) < F(S* +5))

T =

+Z (S; +8F) — F(S; + 8 ))]

< i (ef) <
_F(SJ)—F;FSJ(Q)_F Zeér};a\? Fs,(e)
<
,F(S)—kkeg]lza\é Fs,(e)
< F(S;) + k( rr}ﬂa\x Fs (€) + € F(S*))

e€E\S;

Where the last inequality is due to the fact that Féj is an additive ¢ -approximate incremental oracle.
Noting that e; = arg max.c g\ g, Fgl (e) we get that:

F(S%) < F(S;) + K(EL (e)) + ¢'F(S7))
(1= €R)F(S7) = F(S;))

= Fg;j(ey)

w\)—‘
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The above lower bounds the progress on the j-th mini-batch. Now, let us bound the progress on F.
Again, we use the fact that F’ gj is an additive ¢’ -approximate incremental oracle.

F(Sj41) = F(S)) > F (e;) — € F(S%)
> (L= €k)F(S*) = F(S;)) — €F(S7)

> 2 ((1 = 2¢'k)F(S7) = F(S;))

El =

Finally, using the fact that € < €/2k we get:

F(Sj41) = F(8;) = 2 (1 = ) F(S%) = F(S5;))

1
z

Rearranging, the result directly follows using standard arguments.

F(Si) > & - ) Ry + (1 - %)F(Sk)

k
> Lo Dp(s)(> o0 - )0+ FO)
=0

1-e0 -4
k(1—(1-3))
> (1—e)(1—1/e)F(S*) > (1 —1/e — )F(S*)

> F(s°) = (1- (1~ P)FF(S")

O

Lemma C.2. Let ¢ < €/2kp. Algorithm|l|with an additive ¢'-approximate incremental oracle

achieves a ( %;;)-approximation under a p-system constraint.

Proof. Let S* be some optimal solution for F. Assume without loss of generality that the solution
returned by the algorithm consists of k elements Si11 = {e1,...,ex}.
We show the existence of a partition S}, S5,...,S; of S* such that Fg,(e;) > %FSHI(S;) -
2¢' F(S*). Note, we allow some of the sets in the partition to be empty.
Define Ty, = S*. For j = k,k —1,...,2 execute: Let B; = {e € T} | S; + e € I}. If | B;| < p set
S} = Bj; else pick an arbitrary S7 C B; with |S]*] = p. Thenset T 1 = T} \ S before decreasing

j. After the loop set S} = T7. It is clear that for j = 2, ..., k, |S]* <np.

We prove by induction over j = 0,1, ...,k — 1 that |Tj_;| < (k — j)p. For j = 0, when the greedy
algorithm stops, Sk+1 is a maximal independent set contained in F, therefore any independent
set (including Ty, = S*) satisfies |Tx| < p|Sk+1| = pk. We proceed to the inductive step for

j > 0. There are two cases: (1) |Bx_j+1| > p, which implies that ‘S;_jﬂ‘ = p and using the
induction hypothesis we get that [T, ;| = [Tk—j41| — ‘S’;_jﬂ‘ <(k—-j4+p—p=(k—Jp.

(2) |Br—j+1| < p,itholds that Ty, j = T_j41 \ Bg—jt1. LetY = Si_; 11 + Tj—;. Due to the
definition of Bj,_ ;4 it holds that S;,_ ;4 is a maximal independent set in Y. It holds that T},_; is
independent and contained in Y, therefore |T;,_;| < p |Sk—;+1| = p(k — 7).
Finally, we get that |T;| = [Sf| < p. By construction it holds that Vj € [k],Ve € S},S; +
e is independent. From the choice made by the greedy algorithm and the fact that Féj is an additive
€’ -approximate incremental oracle it follows that for each e € S5

Fs,(ej) = F{ (e;) — € F(S7)

> F§ (e) — €F(S*) > Fs, () — 2¢ F(S7)
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Hence,
|S5] Fs,(ej) = D (Fs, () = 2¢'F(S57))
eES”f

> FS (S* —26 ’S*

(5%) > Fs,,, (S7) — 2¢'|S3| F(S7)

Using submodularity in the last two inequalities.

Forall j € {1,2,..., k} it holds that |S*| < p, and thus Ff; (e;) > FskH(S ) — 2¢'F(S*). Using
the partition we get that:

k k
F(Sky1) > Z Z

%Fsm (S*) — 2¢ kF(S*)

Fs,..(S7) —2¢'F(S™))

”SM—*

Y

1
> ~(F(S) = F(Si) = 2 KF(S")
Where the second to last inequality is due to submodularity and the last is due to monotonicity.

Rearranging we get that:
(1 —2pe’k)

*
F(Span) > 2 F(S7)
As ¢ < 55 we get the desired result. O
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Figure 2: Sparsifier and mini-batch compared with stochastic-greedy for € = 0.1 and € = 0.2.
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