
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MINI-BATCH SUBMODULAR MAXIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We present the first mini-batch algorithm for maximizing a non-negative monotone decompos-
able submodular function, F =

∑N
i=1 f

i, under a set of constraints. We consider two sampling
approaches: uniform and weighted. We first show that mini-batch with weighted sampling
improves over the state of the art sparsifier based approach both in theory and in practice.
Surprisingly, our experimental results show that uniform sampling is superior to weighted
sampling. However, it is impossible to explain this using worst-case analysis. Our main
contribution is using smoothed analysis to provide a theoretical foundation for our experimental
results. We show that, under very mild assumptions, uniform sampling is superior for both the
mini-batch and the sparsifier approaches. We empirically verify that these assumptions hold for
our datasets. Uniform sampling is simple to implement and has complexity independent of N ,
making it the perfect candidate to tackle massive real-world datasets.

1 INTRODUCTION

Submodular functions capture the natural property of diminishing returns which often arises in
machine learning, graph theory and economics. For example, imagine you are given a large set of
images, and your goal is to extract a small subset of images, that best represent the original set (e.g.,
creating thumbnails for a Youtube video). Intuitively, this is a submodular optimization problem, as
the more thumbnails we have, the less we gain by adding an additional thumbnail.

Formally, a set function F : 2E → R+, on a ground set E, is submodular if for any subsets
S ⊆ T ⊆ E and e ∈ E \ T , it holds that F (S + e)− F (S) ≥ F (T + e)− F (T).

Decomposable submodular functions In many natural scenarios F is decomposable: F =∑N
i=1 f

i, where each f i : 2E → R+ is a non-negative submodular function on the ground set E with
|E| = n. That is, F can be written as a sum of “simple” submodular functions. We assume that every
f i is represented by an evaluation oracle that when queried with S ⊆ E returns the value f i(S). For
ease of notation we assume that f i(∅) = 0 (our results hold even if this not the case). Our goal is to
maximize F under some set of constraints while minimizing the number of oracle calls to

{
f i
}

. An
excellent survey of the importance of decomposable functions is given in (Rafiey & Yoshida, 2022),
which we summarize below.

Decomposable submodular functions are prevalent in both machine learning and economics. In
economics, they play a pivotal role in welfare optimization during combinatorial auctions (Dobzinski
& Schapira, 2006; Feige, 2009; Feige & Vondrák, 2006; Papadimitriou et al., 2008; Vondrák, 2008).
In machine learning, these functions are instrumental in tasks like data summarization, aiming to
select a concise yet representative subset of elements. Their utility spans various domains, from
exemplar-based clustering by (Dueck & Frey, 2007) to image summarization (Tschiatschek et al.,
2014), recommender systems (Parambath et al., 2016) and document summarization (Lin & Bilmes,
2011). The optimization of these functions, especially under specific constraints (e.g., cardinality,
matroid) has been studied in various data summarization settings (Mirzasoleiman et al., 2016a;b;c)
and differential privacy (Chaturvedi et al., 2021; Mitrovic et al., 2017; Rafiey & Yoshida, 2020). In
many of the above applications N (the number of underlying submodular functions) is extremely
large, making the evaluation of F prohibitively slow. We illustrate this with a simple example.

Example (Welfare maximization) Imagine you are tasked with deciding on a meal menu for a
large group of N people (e.g., all students in a university, all high school students in a country). You
need to choose k ingredients to use from a predetermined set (chicken, fish, beef, etc.) of size n.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Every student has a specific preference, modeled as a monotone submodular function f i. Our goal is
to maximize the “social welfare”, F (S) =

∑
f i(S), over all students.

The greedy algorithm Going forward we focus on the case where ∀i, f i is monotone (∀S ⊆
T ⊆ E, f i(T) ≥ f i(S)), which in turn means F is monotone. This is applicable to the above
example (e.g., students are happier with more food varieties). For ease of presentation let us first
focus on maximizing F under a cardinality constraint k, i.e., maxF (S), |S| ≤ k. The classical
greedy algorithm (Nemhauser et al., 1978) achieves an optimal (1 − 1/e)-approximation for this
problem. For S,A ⊆ E we define FS(A) = F (S + A) − F (S). We slightly abuse notation and
write FS(e), F (e) instead of FS({e}), F ({e}).
Greedy: Start by initializing an empty set S1. Then for each j from 1 to k, perform the following
steps: First, identify the element e′ not already in Sj that maximizes the function FSj (e). Add this
element e′ to set Sj to form the new set Sj+1. After completing all iterations, return the set Sk+1.

When F is decomposable, and each evaluation of f i is counted as an oracle call, the above algorithm
requires O(Nnk) oracle calls. This can be prohibitively expensive if N ≫ n. Looking back at our
example, Greedy will require asking every student k questions. That is, we would start by asking
all students: “Rate how much you would like to see food x on the menu” for n possible options. We
would then need to wait for all of their replies, and continue with “Given that chicken is on the menu,
rate how much you would like to see food y on the menu” for n− 1 possible options and so on. Even
if we do an online poll, this is still very time-consuming (as we must wait for everyone to reply in
each of the k steps). If we could sample a representative subset of the students, we could greatly
speed up the above process. Specifically, we would like to eliminate the dependence on N .

A sparsifier based approach Recently, Rafiey & Yoshida (2022) were the first to consider
constructing a sparsifier for F . That is, given a parameter ϵ > 0 they show how to find a vector
w ∈ RN such that the number of non-zero elements in w is small in expectation and the function
F̂ =

∑N
i=1 wif

i satisfies with high probability (w.h.p)1 that ∀S ⊆ E, (1 − ϵ)F (S) ≤ F̂ (S) ≤
(1+ϵ)F (S). Where the main bottleneck in the above approach is computing the sampling probabilities
for computing w. They treat this step as a preprocessing step. The current state of the art construction
is due to (Kenneth & Krauthgamer, 2023) where a sparsifier of size O(k2nϵ−2) (where k bounds the
size of the solution) can be constructed using O(Nn) oracle calls (see Appendix A for an in-depth
overview of existing sparsifier constructions).

Weighted mini-batch Mini-batch methods are at the heart of several fundamental machine learning
algorithms (e.g., mini-batch k-means, SGD). Surprisingly, a mini-batch approach for this problem
was not considered. We present the first mini-batch algorithm for this problem, and show that it is
superior to the sparsifier based approach both in theory and in practice. Roughly speaking, we show
that sampling a new batch every iteration of the algorithm is “more stable” compared to the sparsifier
approach. This allows us to sample less elements in total and reduce the overall complexity. The
main novelty in our analysis is using the greedy nature of the algorithm and carefully balancing an
additive and a multiplicative error term. Our sampling probabilities are the same as those of (Kenneth
& Krauthgamer, 2023), and therefore, this algorithm pays the expensive O(Nn) preprocessing time.

Beyond worst-case analysis When conducting our experiments, we added a simple baseline for
both the sparsifier and the mini-batch algorithm – instead of using weighted sampling we used uniform
sampling (previous results neglected this baseline (Rafiey & Yoshida, 2022)). Surprisingly, we observe
that it outperforms weighted sampling both for the sparsifier and mini-batch algorithms. This is
remarkable, as uniform sampling is extremely simple to implement, and requires no preprocessing
which removes the dependence on N altogether.

Unfortunately, we cannot get worst-case theoretical guarantees for uniform sampling. Consider the
case where only a single f j takes non-zero values (all other f i’s are always 0). Clearly, uniform
sampling will almost surely miss f j . However, this is a pathological case that is very unlikely to
occur in practice. To bridge this gap we go beyond worst-case analysis and consider the smoothed
complexity of this problem.

Smoothed analysis was introduced by (Spielman & Teng, 2004) in an attempt to explain the fast
runtime of the Simplex algorithm in practice, despite its exponential worst-case runtime. In the

1Probability at least 1− 1/nc for an arbitrary constant c > 1. The value of c does affect the asymptotics of
the results we state (including our own).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

smoothed analysis framework, an algorithm is provided with an adversarial input that is perturbed by
some random noise. The crux of smoothed analysis is often defining a realistic model of noise.

Our main contribution is defining two very natural smoothing models. The reason we define two
models is because the first allows us to provide theoretical guarantees both for our mini-batch
algorithms and for all existing sparsifier algorithms (under uniform sampling), but only lines up
empirically with some of the datasets we use. For the second model we are only able to show
theoretical guarantees for our mini-batch algorithm, but it agrees empirically with all of our datasets.

To define our models of smoothing we assume w.log that ∀i ∈ [N], e ∈ E, f i(e) ∈ [0, 1] (we can
always achieve this by normalization if

{
f i(e)

}
are upper bounded). Let ϕ ∈ [0, 1], d ∈ [N] be

parameters and let us denote Ae =
{
f i(e)

}
i∈[N]

.

Model 1 It holds that N = Ω(dϕ log(nd)), and for every e ∈ E the following two conditions
hold: (1) Every f i(e) ∈ Ae is a random variable such that E[f i(e)] ≥ ϕ. (2) Elements in Ae have
dependency at most d (every f i(e) depends on at most d other elements in Ae). Note that we can
have arbitrary dependencies between elements in Ae, Ae′ , e ̸= e′.

Model 2 Identical to Model 1, except that there exists e ∈ E such that conditions (1) and (2) hold.

Intuition Going back to our lunch menu example, Assumption (1) of Model 1 means that every
possible food on the menu is not universally hated by the students. Assumption (2) means that the
preference of a student for any specific food is sufficiently independent of the preferences of other
students. Assuming that N = Ω(dϕ log(nd)) means that we have a sufficiently large student body –
note that increasing N should not change ϕ and d. Model 2 only requires assumptions (1) and (2)
to hold for a single menu item. Intuitively, Model 1 assumes that all food choices are “not too bad”
while Model 2 assumes that there exists at least one such choice.

Comparison to other model of smoothing Perhaps the most general smoothing approach when
dealing with weighted inputs (e.g., in [0,1]) is to assume that the weights are taken from some
distribution whose density is upper bounded by a smoothing parameter ϕ (Etscheid & Röglin, 2017;
Angel et al., 2017). This generalizes the approach of Spielman & Teng (2004), where Guassian noise
was added to the weights. Our approach is even more general, as the above immediately implies that
the expectation is lower bounded by ϕ. Furthermore, we only assume bounded independence and
Model 2 only partially smoothes the input.

While our primary contribution lies in providing theoretical guarantees for the uniform mini-batch
algorithm (which empirically outperforms all other methods), we begin by presenting our results for
weighted sampling. This will lay the groundwork to seamlessly prove our main results in Section 4.

1.1 THE MINI-BATCH ALGORITHM

We focus on the greedy algorithm for constrained submodular maximization. We show that instead of
sparsifying F , better results can be achieved by using mini-batches during the execution of the greedy
algorithm. That is, rather than sampling a large sparsifier F̂ and performing the optimization process,
we show that if we sample a much smaller sparsifier (a mini-batch), F̂ j , for the j-th step of the greedy
algorithm, we can achieve improved results both in theory (Table 1) and in practice (Section 3). Most
notably, we observe that the mini-batch approach is superior to the sparsifier approach for small batch
sizes on various real world datasets. This is also the case when we combine our approach with the
popular stochastic-greedy algorithm (Buchbinder et al., 2015; Mirzasoleiman et al., 2015).

While the mini-batch approach results in an improvement in performance, the sparsifier approach
has the benefit of being independent of the algorithm. That is, while any approximation algorithm
executed on a sparsifier immediately achieves (nearly) the same guarantees for the original function,
we need to re-establish the approximation ratio of our mini-batch algorithm for different constraints.
Although these proofs are often straightforward, compiling an exhaustive list of where the mini-batch
method is applicable is both laborious and offers limited insights.

We focus on two widely researched constraints: the cardinality constraint and the p-system constraint.
The cardinality constraint was chosen for its simplicity, while the p-system constraint was chosen for
its broad applicability.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Theoretical results We compare our results with the state of the art sparsifier results and the naive
algorithm (without sampling or sparsification) in Table 12. We can get improved performance if the
curvature of F is bounded3. Note that the “Uniform” column requires no preprocessing, and the
query complexity differs by a multiplicative Θ(1/nϕ)-factor. In Section 2 we prove our results for
the “Weighted” column and in Section 4 we prove our results for the “Uniform” column. Under
Model 2 our results for the unbounded curvature mini-batch case still hold for uniform sampling (all
other results hold under Model 1). We empirically observe that ϕ = O(1) for our datasets (Section 4),
which explains the superior performance of the uniform mini-batch algorithm in practice.

Preprocessing Oracle queries

Weighted Uniform Weighted Uniform
(Model 1)

Naive None O(Nnk)

Kenneth & Krauthgamer O(Nn) None Õ
(

k3n2

ϵ2

)
Õ
(

k3n
ϵ2ϕ

)
Our results

Uniform holds for
Model 1 & 2

O(Nn) None
Card. Õ

(
k2n2

ϵ2

)
p-sys. Õ

(
k2pn2

ϵ2

) Card. Õ
(

k2n
ϵ2ϕ

)
p-sys. Õ

(
k2pn
ϵ2ϕ

)
Our results

(bounded curvature) O(Nn) None Õ
(

kn2

(1−c)ϵ2

)
Õ
(

kn
(1−c)ϵ2ϕ

)
Table 1: Comparison of the number of oracle queries during preprocessing and during execution.
Results are for the greedy algorithm under both a cardinality constraint and a p-system constraint.
Unless explicitly stated the number of queries is the same for both constraints. All results achieve the
near optimal approximation guarantees of (1− 1/e− ϵ) for a cardinality constraint and (1−ϵ

p+1) for a
p-system constraint.

Meta greedy algorithm Our starting point is the meta greedy algorithm (Algorithm 1). The
algorithm executes for k ≤ n iterations where k is some upper bound on the size of the solution. At
every iteration, the set Aj ⊆ E \ Sj represents some constraint that limits the choice of potential
elements to extend Sj . The algorithm terminates either when the solution size reaches k or when
no further extensions to the current solution are possible (i.e., Aj = ∅). Furthermore, the algorithm
does not have access to the exact incremental oracle, FSj , at every iteration, but only to some
approximation (which may differ between iterations). Before we formally define “approximation”,

Algorithm 1: Meta greedy algorithm with an approximate oracle

1 S1 ← ∅
2 Let k be an upper bound on the size of the solution
3 for j = 1 to k do
4 Let Aj ⊆ E \ Sj ▷ Problem specific constraint (e.g., Aj = E \ Sj for card. constraint)
5 if Aj = ∅ then return Sj

6 Let F̂ j
Sj

be an approximation for FSj
▷ Problem specific approximation

7 ej = argmaxe∈Aj F̂
j
Sj
(e)

8 Sj+1 = Sj + ej
9 end

10 return Sk+1

let us note that when we have access to exact values of FSj
, Algorithm 1 captures many variants of

the greedy submodular maximization algorithm. For example, setting Aj = E \ Sj we get Greedy.
This meta-algorithm also captures the case of maximization under a p-system constraint. For ease of
presentation we defer the discussion about p-systems to Appendix B.

2Where Õ hides logn factors.
3The curvature of a submodular function F is defined as c = 1−minS⊆E,e∈E\S

FS(e)
F(e)

. We say that F has
bounded-curvature if c < 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Approximate oracles In many scenarios we do not have access to exact values of FSj
, and instead

we must make do with an approximation. We start with the notion of an approximate incremental
oracle introduced in (Goundan & Schulz, 2007). We say that F̂ j

Sj
is an (1 − ϵ)-approximate

incremental oracle if ∀e ∈ Aj , (1− ϵ)FSj
(e) ≤ F̂ j

Sj
(e) ≤ (1+ ϵ)FSj

(e). It was shown in (Goundan
& Schulz, 2007; Călinescu et al., 2011)4 that given a (1 − ϵ)-approximate incremental oracle, the
greedy algorithm under both a cardinality constraint and a p-system constraint achieves almost the
same (optimal) approximation ratio as the non-approximate case.
Theorem 1.1. Algorithm 1 with an (1 − ϵ)-approximate incremental oracle has the following
guarantees w.h.p: (1) It achieves a (1 − 1/e − ϵ)-approximation under a cardinality constraint
k (Goundan & Schulz, 2007). (2) It achieves a (1−ϵ

1+p)-approximation under a p-system constraint
(Călinescu et al., 2011).

We introduce a weaker type of approximate incremental oracle, which we call an additive approximate
incremental oracle. We extend the results of Theorem 1.1 for this case. Let S∗ be some optimal
solution for F (under the relevant set of constraints). We say that F̂ j

Sj
is an additive ϵ′-approximate

incremental oracle if ∀e ∈ Aj , FSj
(e)− ϵ′F (S∗) ≤ F̂ j

Sj
(e) ≤ FSj

(e) + ϵ′F (S∗).

This might seem problematic at first glance, as it might be the case that F (S∗)≫ FSj
(e). Luckily,

the proofs guaranteeing the approximation ratio are linear in nature. Therefore, by the end of the proof
we end up with an expression of the form: F (Sk+1) ≥ F (S∗)β − γϵ′F (S∗). Where β is the desired
approximation ratio and γ depends on the parameters of the problem (e.g., β = (1− 1/e), γ = 2k
for a cardinality constraint). We can achieve the desired result by setting ϵ′ = ϵ/γ. We state the
following theorem (the proofs are similar to those of (Goundan & Schulz, 2007; Călinescu et al.,
2011), and we defer them to the Appendix).
Theorem 1.2. Algorithm 1 with an additive ϵ′-approximate incremental oracle has the following
guarantees w.h.p: (1) If ϵ′ < ϵ/2k, it achieves a (1− 1/e− ϵ)-approximation under a cardinality
constraint k. (2) If ϵ′ < ϵ/2kp, it achieves a (1−ϵ

1+p)-approximation under a p-system constraint.

Mini-batch sampling Although we use the same sampling probabilities as the sparsifier approach,
instead of sampling a single F̂ at the beginning, we sample a new F̂ j (mini-batch), for every step of
the algorithm. Recall that F̂ j

Sj
(e) = F̂ j(Sj + e)− F̂ j(Sj).

We show that when F̂ j
Sj

is sampled using mini-batch sampling we indeed get, w.h.p, an (additive)
approximate incremental oracle for every step of the algorithm. We present our sampling procedure
in Algorithm 2 and the complete mini-batch algorithm in Algorithm 3.

Algorithm 2: Sample(α, {pi}Ni=1)

1 w ← 0⃗
2 for i = 1 to N do
3 αi ← min{1, αpi}
4 wi ← 1/αi with probability αi

5 end
6 return F̂ =

∑N
i=1 wif

i

Algorithm 3: Mini-batch greedy

1 ∀i ∈ [N], pi ← maxe∈E,F(e) ̸=0
fi(e)
F(e)

// Uniform sampling: pi = 1/N
2 α is a batch parameter
3 S1 ← ∅
4 k is an upper bound on the size of the solution
5 for j = 1 to k do
6 Let Aj ⊆ E \ Sj

7 if Aj = ∅ then return Sj

8 Let F̂ j ← Sample(α, {pi}Ni=1)

9 ej = argmaxe∈Aj
F̂ j
Sj
(e)

10 Sj+1 = Sj + ej
11 end
12 return Sk+1

4Strictly speaking, both Goundan & Schulz (2007) and Călinescu et al. (2011) define the approximate
incremental oracle to be a function that returns ej at iteration j of the greedy algorithm such that ∀e ∈
Aj , FSj (ej) ≥ (1 − ϵ)FSj (e). Our definition guarantees this property while allowing easy analysis of the
mini-batch algorithm.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

In Section 2 we analyze the relation between the batch parameter, α, and the the type of approximate
incremental oracles guaranteed by our sampling procedure. We state the main theorem for the section
below.

Theorem 1.3. The mini-batch greedy algorithm (Algorithm 3) maximizing a non-negative monotone
submodular function has the following guarantees:

1. If F has curvature bounded by c, and α = Θ(logn
ϵ2(1−c)) it holds w.h.p that ∀j ∈ [k] that F̂ j

Sj
is an

(1− ϵ)-approximate incremental oracle.

2. If α = Θ(ϵ−2γ log n) it holds w.h.p that ∀j ∈ [k] that F̂ j
Sj

is an additive (ϵ/γ)-approximate
incremental oracle, for any parameter γ > 0.

Furthermore, the number of oracle evaluations during preprocessing is O(nN) and an expected
α(

∑N
i=1 pi)(

∑k
j=1 |Aj |) = O(αkn2) during execution.

Combining Theorem 1.3 (setting γ = k for a cardinality constraint and γ = kp for a p-system
constraint) with Theorem 1.1 and Theorem 1.2 we state our main result.

Theorem 1.4. The mini-batch greedy algorithm maximizing a non-negative monotone submodular
function requires O(nN) oracle calls during preprocessing and has the following guarantees:

1. If F has curvature bounded by c, it achieves w.h.p a (1 − 1/e − ϵ)-approximation under a
cardinality constraint and (1−ϵ

1+p)-approximation under a p-system constraint with an expected

O(kn
2 logn

ϵ2(1−c)) oracle evaluations for both cases.

2. It achieves w.h.p a (1 − 1/e − ϵ)-approximation under a cardinality constraint and
(1−ϵ
1+p)-approximation under a p-system constraint with an expected O(k2(n/ϵ)2 log n) and
O(k2p(n/ϵ)2 log n) oracle evaluations respectively.

1.2 RELATED WORK

Approximate oracles Apart from the results of (Goundan & Schulz, 2007; Călinescu et al., 2011)
there are works that use different notions of an approximate oracle. Several works consider an
approximate oracle F̂ , such that ∀S ⊆ E,

∣∣∣F̂ (S)− F (S)
∣∣∣ < ϵF (S) (Crawford et al., 2019; Horel &

Singer, 2016; Qian et al., 2017). The main difference of these models to our work is the fact that they
do not assume the surrogate function, F̂ , to be submodular. This adds a significant complication to
the analysis and degrades the performance guarantees.

Mini-batch methods The closest result resembling our mini-batch approach is the stochastic-
greedy algorithm (Buchbinder et al., 2015; Mirzasoleiman et al., 2015). They improve the expected
query complexity of the greedy algorithm under a cardinality constraint by only considering a small
random subset of E \ Sj at the j-th iteration. We note that their approach can be combined into our
mini-batch algorithm, reducing our query complexity by a Θ̃(k) factor, resulting in an approximation
guarantee in expectation instead of w.h.p.

Smoothed analysis To the best of our knowledge, (Rubinstein & Zhao, 2022) is the only result
that considers smoothed analysis in the context submodular maximization. They consider submod-
ular maximization under a cardinality constraint, where the cardinality parameter k undergoes a
perturbation according to some known distribution.

2 ANALYSIS OF THE MINI-BATCH GREEDY ALGORITHM

We start by with the following lemma from (Kenneth & Krauthgamer, 2023), which bounds the
expected size of F̂ . We present a proof in the appendix for completeness.

Lemma 2.1. The expected size of F̂ is α
∑N

i=1 pi ≤ αn.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Note that the above yields a tighter bound of α for uniform sampling (pi = 1/N). Next, let us show
that F̂ returned by Algorithm 2 is indeed an (additive) approximate incremental oracle w.h.p. We
make use of the following Chernoff bound.
Theorem 2.2 (Chernoff bound (Motwani & Raghavan, 1995)). Let X1, ..., XN be independent
random variables in the range [0, a]. Let X =

∑N
i=1 Xi. Then for any ϵ ∈ [0, 1] and µ ≥ E[T] it

holds that P(|X − E[X]| ≥ ϵµ) ≤ 2 exp
(
−ϵ2µ/3a

)
.

The following lemma provides concentration guarantees for F̂ in Algorithm 2.

Lemma 2.3. For every S ⊆ E (F̂ sampled after S is fixed) and for every e ∈ E and µ ≥ FS(e), it

holds that P
[
|F̂S(e)− FS(e)| ≥ ϵµ

]
≤ 2 exp

(
− ϵ2µ

3F(e)/α

)
.

Proof. Fix some e ∈ E. Let G =
∑

i∈I f
i, where I = {i ∈ [N] | αi = 1}. Let F ′

S(e) =

FS(e)−GS(e) and F̂ ′
S(e) = F̂S(e)−GS(e). Let J = [N] \ I . It holds that:

P
[
|F̂S(e)− FS(e)| ≥ ϵµ

]
= P

[
|F̂ ′

S(e) +GS(e)− F ′
S(e)−GS(e)| ≥ ϵµ

]
= P

[
|F̂ ′

S(e)− F ′
S(e)| ≥ ϵµ

]
Due to the fact that E [wi] = 1 we have E[F̂ ′

S(e)] = E[
∑

i∈J wif
i
S(e)] = F ′

S(e). As f i’s are
monotone, it holds that µ ≥ FS(e) ≥ F ′

S(e). Applying a Chernoff bound (Theorem 2.2) we have

P
[
|F̂ ′

S(e)− F ′
S(e)| ≥ ϵµ

]
≤ 2 exp

(
−ϵ2µ/3a

)
where a = max{wif

i
S(e)}i∈J . Recall that wi = 1/αi where αi = min{1, αpi} and αi < 1 for all

i ∈ J . Let us upper bound a.

a = max
i∈J

wif
i
S(e) = max

i∈J

f i
S(e)

αpi
= max

i∈J

f i
S(e)

α ·max
e′∈E

fi(e′)
F(e′)

≤ max
i∈J

f i(e)

α · f
i(e)

F(e)

=
F(e)

α

Where the inequality is due to submodularity and non-negativity in the numerator and maximality in
the denominator. Note that the above is also correct if we only have some approximation to pi – i.e.,
given p′i > piλ for λ ∈ (0, 1), we can increase α by a 1/λ factor and the above still holds. Given the
above upper bound for a we get:

P
[
|F̂S(e)− FS(e)| ≥ ϵµ

]
≤ 2

(
−ϵ2µ

3a

)
≤ 2 exp

(
− ϵ2αµ

3F(e)

)
Using the above we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. The number of oracle evaluations is due to Lemma 2.1 and the fact that the
algorithm executes for k iteration and must evaluate |Aj | ≤ n elements per iteration.

Let us prove the approximation guarantees. Let us start with the bounded curvature case. Fix some Sj .
As F̂ j is sampled after Sj is fixed, we can fix some e ∈ E and apply Lemma 2.3 with µ = FSj

(e).
We get that:

P
[
|F̂ j

Sj
(e)− FSj (e)| ≥ ϵFSj (e)

]
≤ 2 exp

(
−
ϵ2αFSj

(e)

3F(e)

)
≤ 2 exp

(
−ϵ2α(1− c)

3

)
≤ 1/n3

Where the second inequality is due to the fact that FSj
(e)/F(e) ≥ minS⊆E,e′∈E\S FS(e

′)/F(e′) =

1 − c, and the last transition is by setting an appropriate constant in α = Θ(log(n)
ϵ2(1−c)). When the

curvature is not bounded, we break the analysis into cases.

F(e) ≤ γFSj
(e): Setting µ = FSj

(e) we get:

P
[
|F̂ j

Sj
(e)− FSj

(e)| ≥ ϵFSj
(e)

]
≤ 2 exp

(
−
ϵ2αFSj (e)

3F(e)

)
≤ 2 exp

(
−ϵ2α

3γ

)
≤ 1/n3

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

F(e) > γFSj
(e): Here we can set µ = F(e)/γ ≥ FSj

(e) and get:

P
[
|F̂ j

Sj
(e)− FSj

(e)| ≥ ϵF(e)/γ
]
≤ 2 exp

(
−ϵ2αF(e)

3γF(e)

)
≤ 2 exp

(
−ϵ2α

3γ

)
≤ 1/n3

Where in both cases the last inequality is by setting an appropriate constant in α = Θ(ϵ−2γ log n).
Note that in the first case we get an (1 − ϵ)-approximate incremental oracle and in the second an
additive (ϵ/γ)-approximate incremental oracle. The second case is the worse of the two for our
analysis. For both bounded and unbounded curvature, we take a union bound over all e ∈ E and
j ∈ [k] (at most n2 values), which concludes the proof.

Note that in the above we use the fact that F(e) ≤ F (S∗) (recall that S∗ is the optimal solution for
F) to get the second result. This is sufficient for our proofs to go through, however, the theorem has a
much stronger guarantee which might be useful in other contexts (as we will see in Section 4).

3 EXPERIMENTS

We perform experiments on the following datasets, where the goal for all datasets is to maximize
F (S) subject to |S| ≤ k.

Uber pickups This dataset consists of Uber pickups in New York city in May 20145. The set
contains 652, 434 records, where each record consists of a longitude and latitude, representing a
pickup location. Following (Rafiey & Yoshida, 2022) we aim to find k positions for idle drivers
to wait from a subset of popular pickup locations. We formalize the problem as follows. We run
Lloyd’s algorithm on the dataset, X , and find 100 cluster centers. We set these cluster centers to
be the ground set E. We define the goal function F : 2E → R+ as F (S) =

∑
v∈X fv(S) where

fv(S) = maxe∈E d(v, e)−mine∈S d(v, e), and d(v, e) is the Manhattan distance between v and e.

Discogs (Kunegis, 2013) This dataset6 provides audio record information structured as a bipartite
graph G = (L,R;E′). The left nodes represent labels and the right nodes represent styles. Each
edge (u, v) ∈ L×R signifies the involvement of a label u in producing a release of a style v. The
dataset comprises |R| = 383 labels, |L| = 243, 764 styles, and |E′| = 5, 255, 950 edges. We aim to
select k styles that cover the activity of the maximum number of labels. We construct a maximum
coverage function F : 2R → R, where F (S) =

∑
v∈L fv(S), and fv(S) equals 1 if v is adjacent to

some element of S and 0 otherwise.

Examplar-based clustering We consider the problem of selecting representative subset of k images
from a massive data set. We present experiments for both the CIFAR100 and the FashionMNIST
datasets. For each dataset we consider a subset of 50, 000 images, denoted by X . We flatten every
image into a one dimensional vector, subtract from it the mean of all images and normalize it to unit
norm. We take the distance between two elements in X as d(x, x′) = ∥x− x′∥2. Here the ground
set is simply the dataset, E = X . Similarly to the Uber pickup dataset we define the goal function
F : 2E → R+ as F (S) =

∑
v∈X fv(S) where fv(S) = maxe∈E d(v, e)−mine∈S d(v, e).

Experimental setup We compare the sparsifier approach with the mini-batch approach for each
of the above datasets as follows. We first compute the pi’s and fix a parameter β ∈ (0, 1). We
take α in the algorithm such that α

∑N
i pi = βN . That is, β is the desired fraction of data (in our

experiments the elements that make up F correspondent to elements in the dataset) we wish to sample
for the sparsifier / mini-batch. Note that the pi’s are the same for the sparsifier and the mini-batch
approach, and the only difference is whether we sample one time in the beginning (sparsifier) or
for every iteration of the greedy algorithm (mini-batch). For example, setting β = 0.01 means that
the sparsifier will sample 1% of the data and execute the greedy algorithm, while the mini-batch
algorithm will sample 1% of the data for every iteration of the greedy algorithm.

In practice the naive algorithm is usually augmented with the following heuristic called lazy-greedy
(Minoux, 2005). The algorithm initially creates a max heap of E ordered according to a key ρ(e),
where initially ρ(e) = F(e). During the j-th iteration it repeatedly pops e from the top of the heap,

5https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city
6http://konect.cc/networks/discogs_lstyle/

8

https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city
http://konect.cc/networks/discogs_lstyle/

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

updates its key ρ(e) = FSj
(e) and inserts it back to the heap. Due to submodularity, if e remains at

the top of the heap after the update we know it maximizes FSj
(e). While this does not change the

asymptotic number of oracle queries, it often leads to significant improvement in practice.

We also consider stochastic-greedy (Buchbinder et al., 2015; Mirzasoleiman et al., 2015), which
further reduces the number of oracle evaluations by greedily choosing the next element added to Sj

from a subset of E \ Sj of size n
k log 1

ϵ sampled uniformly at random.

We apply both of the above to the sparsifier / mini-batch approach and compare them against lazy-
greedy and stochastic-greedy, respectively. Finally, for every mini-batch / sparsifier variant we
execute we also run a baseline where ∀i, pi = 1/N .

In Figure 1 we plot results for different β values for both the sparsifier and the mini-batch approach
for different values of k. Every point on the graph is the average of 20 executions with the same
k, β. For every dataset we present three plots: (a) the relative utility (value of F) of the mini-batch /
sparsifier approach compared to lazy-greedy, (b) the relative number of oracle evaluations excluding
the preprocessing step, and (c) relative number of oracle evaluations including the preprocessing step.
To allow different β values to fit on the same plot we use a logarithmic scale in (b). On the other
hand, the preprocessing step dominates in (c), therefore, we use a linear scale. We use “u” / “w”
prefixes for uniform / weighted sampling.

In Figure 2 (Appendix D) we compare the sparsifier and mini-batch algorithm (augmented with the
sampling scheme of stochastic-greedy) to the stochastic-greedy algorithm. As the ground sets for
both Uber pickup and Discogs are rather small, we only run experiments on the image datasets.

Results We observe that the mini-batch algorithm is superior to the sparsifier approach for small
values of β while using about the same number of queries. What is perhaps most surprising is that
uniform sampling outperforms over weighted sampling. We provide a theoretical explanation for this
in the next section.

Figure 1: Sparsifier and mini-batch compared with lazy-greedy.

4 SMOOTHED ANALYSIS

In this section we show that uniform sampling achieves better results than weighted sampling under
our models of smoothing. We start by noting that under uniform sampling it holds that

∑
i∈[N] pi = 1

which in turn results in a bound of α in Lemma 2.1 instead of nα for the weighted case. This explains
one part of the Θ(1/nϕ) factor in the transition from the “Weighted” to “Uniform” column in Table 1.
For the rest of this section we explain the 1/ϕ factor.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

We start by stating the following useful Chernoff bound:
Theorem 4.1 (Bounded dependency Chernoff bound (Pemmaraju, 2001)). Let X1, ..., XN be identi-
cally distributed random variables in the range [0, 1] with bounded dependancy d. Let X =

∑N
i=1 Xi.

Then for any ϵ ∈ [0, 1] and µ = E[T] it holds that P(|X −E[X]| ≥ ϵµ) ≤ Θ(d) · exp
(
−Θ(ϵ2µ/d)

)
.

Model 1 We show that Model 2 maintains the theoretical guarantees of both the sparsifier algorithm
and the mini-batch algorithm under uniform sampling, with a multiplicative Θ(1/nϕ) factor in the
query complexity.
Theorem 4.2. Assuming uniform sampling (pi = 1/N) and Model 1, the sparsifier construction of
(Kenneth & Krauthgamer, 2023) and our mini-batch algorithm achieve the same guarantees, with an
Θ(1/nϕ) multiplicative factor in the query complexity.

Proof. Assumption (1) of Model 1 implies that E[F(e)] =
∑

i∈[N] E[f i(e)] ≥ Nϕ. Applying the
above Chernoff bound with ϵ = 1/2, µ = E[F(e)] we get that:

P [|F(e)− E[F(e)]| ≥ µ/2] ≤ Θ(d) exp(−Θ(µ/d)) ≤ Θ(d) exp(−Θ(Nϕ/d)) ≤ 1/n2

Where the last inequality is due to the fact that N = Ω((d/ϕ) log(nd)). Finally, applying a union
bound over all e ∈ E we get that w.h.p ∀e ∈ E,F(e) ≥ Nϕ/2.

The above implies that w.h.p pi = maxe f
i(e)/F(e) ≤ 2/ϕN , which implies that uniform sampling

approximates the weights of weighted sampling up to a O(1/ϕ)-factor. It was already noted by Rafiey
& Yoshida (2022) that when given a multiplicative approximation of {pi} the sparsifier construction
goes through with a respective multiplicative increase in the size of the sparsifier. This observation
also applies to the results of Kenneth & Krauthgamer (2023) and for our results (Lemma 2.3).

Empirical validation We can empirically evaluate ϕ by computing maxe
1
N

∑
i f

i(e). The
empirical values are as follows: CIFAR100: 0.34, FashionMNIST: 0.31, Uber pickup: 2.36× 10−4,
Discogs: 4.10× 10−6. While Model 1 manages to explain the experimental results for some of the
datasets, it appears that the model assumptions are a bit too strong.

Model 2 We show that Model 2 maintains the theoretical guarantees of the mini-batch algorithm
under uniform sampling, with a multiplicative Θ(1/nϕ) factor in the query complexity.
Lemma 4.3. Under Model 2, item (2) of Theorem 1.4 still holds with a Θ(1/nϕ) multiplicative
factor in the query complexity for the mini-batch algorithm with uniform sampling.

Proof. Similar to Theorem 4.2 it holds w.h.p that F(e) ≥ Nϕ/2, but now this is only guaranteed
for a single element e∗ ∈ E. We can use this fact to lower bound the optimum solution w.h.p:
F(S∗) ≥ F(e∗) ≥ Nϕ/2.

Recall a = max{wif
i
S(e)}i∈J from Lemma 2.3, where wi = 1/αi and αi = min{1, αpi}. Under

uniform sampling it holds that pi = 1/N . We conclude that a ≤ N/α ≤ 2F(e∗)/ϕα. We get an
analogue to Lemma 2.3:

P
[
|F̂S(e)− FS(e)| ≥ ϵµ

]
≤ 2 exp

(
−ϵ2µ

3a

)
≤ 2 exp

(
− ϵ2αϕµ

6F(e∗)

)
Plugging this into the second case (non-bounded curvature) of Theorem 1.3 we get that the same
result still holds with an additional multiplicative 1/ϕ factor in α.

Empirical validation Under Model 2 we can empirically evaluate ϕ by computing
mine

1
N

∑
i f

i(e). The empirical values are as follows: CIFAR100: 0.38, FashionMNIST: 0.35, Uber
pickup: 0.61, Discogs: 0.13. We conclude that ϕ = Θ(1) and indeed Model 2 is able to explain the
empirical success of the uniform mini-batch algorithm on all datasets.

Discussion We observe that Model 2 manages to explain why uniform sampling outperforms in
our experimental results. The empirical ϕ values are constant with respect to n. This means that the
query complexity is actually less by about a Θ(n) factor for the uniform sampling case. We conclude
that, given its speed and simplicity, the uniform mini-batch algorithm should be the first choice when
tackling massive real-world datasets.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Omer Angel, Sébastien Bubeck, Yuval Peres, and Fan Wei. Local max-cut in smoothed polynomial
time. In STOC, pp. 429–437. ACM, 2017.

Wenruo Bai, Rishabh K. Iyer, Kai Wei, and Jeff A. Bilmes. Algorithms for optimizing the ratio of
submodular functions. In ICML, volume 48 of JMLR Workshop and Conference Proceedings, pp.
2751–2759. JMLR.org, 2016.

Niv Buchbinder, Moran Feldman, and Roy Schwartz. Comparing apples and oranges: Query tradeoff
in submodular maximization. In SODA, pp. 1149–1168. SIAM, 2015.

Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone submodular
function subject to a matroid constraint. SIAM J. Comput., 40(6):1740–1766, 2011.

Anamay Chaturvedi, Huy Le Nguyen, and Lydia Zakynthinou. Differentially private decomposable
submodular maximization. In AAAI, pp. 6984–6992. AAAI Press, 2021.

Michele Conforti and Gérard Cornuéjols. Submodular set functions, matroids and the greedy
algorithm: Tight worst-case bounds and some generalizations of the rado-edmonds theorem.
Discret. Appl. Math., 7(3):251–274, 1984.

Victoria G. Crawford, Alan Kuhnle, and My T. Thai. Submodular cost submodular cover with an
approximate oracle. In ICML, volume 97 of Proceedings of Machine Learning Research, pp.
1426–1435. PMLR, 2019.

Shahar Dobzinski and Michael Schapira. An improved approximation algorithm for combinatorial
auctions with submodular bidders. In SODA, pp. 1064–1073. ACM Press, 2006.

Delbert Dueck and Brendan J. Frey. Non-metric affinity propagation for unsupervised image catego-
rization. In ICCV, pp. 1–8. IEEE Computer Society, 2007.

Michael Etscheid and Heiko Röglin. Smoothed analysis of local search for the maximum-cut problem.
ACM Trans. Algorithms, 13(2):25:1–25:12, 2017.

Uriel Feige. On maximizing welfare when utility functions are subadditive. SIAM J. Comput., 39(1):
122–142, 2009.

Uriel Feige and Jan Vondrák. Approximation algorithms for allocation problems: Improving the
factor of 1 - 1/e. In FOCS, pp. 667–676. IEEE Computer Society, 2006.

Pranava R Goundan and Andreas S Schulz. Revisiting the greedy approach to submodular set function
maximization. Optimization online, (1984):1–25, 2007.

Thibaut Horel and Yaron Singer. Maximization of approximately submodular functions. In NIPS, pp.
3045–3053, 2016.

Yotam Kenneth and Robert Krauthgamer. Cut sparsification and succinct representation of submodular
hypergraphs. CoRR, abs/2307.09110, 2023.

Jannik Kudla and Stanislav Zivný. Sparsification of monotone k-submodular functions of low
curvature. CoRR, abs/2302.03143, 2023.

Jérôme Kunegis. KONECT: the koblenz network collection. In WWW (Companion Volume), pp.
1343–1350. International World Wide Web Conferences Steering Committee / ACM, 2013.

Hui Lin and Jeff A. Bilmes. A class of submodular functions for document summarization. In ACL,
pp. 510–520. The Association for Computer Linguistics, 2011.

Michel Minoux. Accelerated greedy algorithms for maximizing submodular set functions. In
Optimization Techniques: Proceedings of the 8th IFIP Conference on Optimization Techniques
Würzburg, September 5–9, 1977, pp. 234–243. Springer, 2005.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and Andreas
Krause. Lazier than lazy greedy. In AAAI, pp. 1812–1818. AAAI Press, 2015.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, and Amin Karbasi. Fast constrained submodu-
lar maximization: Personalized data summarization. In ICML, volume 48 of JMLR Workshop and
Conference Proceedings, pp. 1358–1367. JMLR.org, 2016a.

Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed submodular
maximization. J. Mach. Learn. Res., 17:238:1–238:44, 2016b.

Baharan Mirzasoleiman, Morteza Zadimoghaddam, and Amin Karbasi. Fast distributed submodular
cover: Public-private data summarization. In NIPS, pp. 3594–3602, 2016c.

Marko Mitrovic, Mark Bun, Andreas Krause, and Amin Karbasi. Differentially private submodular
maximization: Data summarization in disguise. In ICML, volume 70 of Proceedings of Machine
Learning Research, pp. 2478–2487. PMLR, 2017.

Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press,
1995.

George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of approximations
for maximizing submodular set functions - I. Math. Program., 14(1):265–294, 1978.

Christos H. Papadimitriou, Michael Schapira, and Yaron Singer. On the hardness of being truthful.
In FOCS, pp. 250–259. IEEE Computer Society, 2008.

Shameem Puthiya Parambath, Nicolas Usunier, and Yves Grandvalet. A coverage-based approach to
recommendation diversity on similarity graph. In RecSys, pp. 15–22. ACM, 2016.

Sriram V. Pemmaraju. Equitable coloring extends chernoff-hoeffding bounds. In RANDOM-APPROX,
volume 2129 of Lecture Notes in Computer Science, pp. 285–296. Springer, 2001.

Chao Qian, Jing-Cheng Shi, Yang Yu, Ke Tang, and Zhi-Hua Zhou. Subset selection under noise. In
NIPS, pp. 3560–3570, 2017.

Akbar Rafiey and Yuichi Yoshida. Fast and private submodular and k-submodular functions maxi-
mization with matroid constraints. In ICML, volume 119 of Proceedings of Machine Learning
Research, pp. 7887–7897. PMLR, 2020.

Akbar Rafiey and Yuichi Yoshida. Sparsification of decomposable submodular functions. In AAAI,
pp. 10336–10344. AAAI Press, 2022.

Aviad Rubinstein and Junyao Zhao. Budget-smoothed analysis for submodular maximization. In
ITCS, volume 215 of LIPIcs, pp. 113:1–113:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022.

Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. J. ACM, 51(3):385–463, 2004.

Sebastian Tschiatschek, Rishabh K. Iyer, Haochen Wei, and Jeff A. Bilmes. Learning mixtures of
submodular functions for image collection summarization. In NIPS, pp. 1413–1421, 2014.

Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle model.
In STOC, pp. 67–74. ACM, 2008.

A SPARSIFIER BACKGROUND AND RELATED WORK

Rafiey & Yoshida (2022) were the first to showe how to construct a sparsifier for F . That is, given a
parameter ϵ > 0 they show how to find a vector w ∈ RN such that the number of non-zero elements
in w is small in expectation and the function F̂ =

∑N
i=1 wif

i satisfies with high probability (w.h.p)7

that ∀S ⊆ E, (1− ϵ)F (S) ≤ F̂ (S) ≤ (1 + ϵ)F (S).

7Probability at least 1− 1/nc for an arbitrary constant c > 1. The value of c does affect the asymptotics of
the results we state (including our own).

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Specifically, every f i is sampled with probability αi proportional to pi = maxS⊆E,F (S)̸=0
fi(S)
F (S) . If

it is sampled, it is included in the sparsifier with weight 1/αi, which implies that E [wi] = 1. While
calculating the pi’s exactly requires exponential time, Rafiey & Yoshida (2022) make do with an
approximation, which can be calculated using interior point methods (Bai et al., 2016).

Rafiey & Yoshida (2022) show that if all f i’s are non-negative and monotone8, the above sparsifier
can be constructed by an algorithm that requires poly(N) oracle evaluations and the sparsifier will
have expected size O(ϵ−2Bn2.5 log n), where B = maxi∈[N] Bi and Bi is the number of extreme
points in the base polyhedron of f i. They extend their results to matroid constraints of rank r and
show that a sparsifier with expected size O(ϵ−2Brn1.5 log n) can be constructed.

For the specific case of a cardinality constraint k, this implies a sparsifier of expected size
O(ϵ−2Bkn1.5 log n) can be constructed using poly(N) oracle evaluations. The sparsifier construc-
tion is treated as a preprocessing step, and therefore the actual execution of Greedy on the sparsifier
requires only O(ϵ−2Bk2n2.5 log n) oracle evaluations to get a (1− 1/e− ϵ) approximation. This is
an improvement over Greedy when N ≫ n,B.

Recently, Kudla & Zivný (2023) showed improved results for the case of bounded curvature. The
curvature of a submodular function F is defined as c = 1−minS⊆E,e∈E\S

FS(e)
F(e) . We say that F has

bounded-curvature if c < 1. Submodular functions with bounded curvature (Conforti & Cornuéjols,
1984) offer a balance between modularity and submodularity, capturing the essence of diminishing
returns without being too extreme.

They show that when the curvature of all f i’s and of F is constant it is possible to reduce the
preprocessing time to O(Nn) oracle queries and to reduce the size of the sparsifier by a factor of

√
n.

Furthermore, their results extend to the much more general case of k-submodular functions. While
this significantly improves over the number of oracle calls compared to (Rafiey & Yoshida, 2022),

the runtime of the preprocessing step depends on log

(
maxi∈[N]

maxe∈E fi(e)
mine∈E,fi(e)>0 fi(e)

)
.

Note that the B factor in (Kudla & Zivný, 2023; Rafiey & Yoshida, 2022) can be exponential in n in
the worst-case.

The current state of the art is due to Kenneth & Krauthgamer (2023) where they show that by sampling
according to pi = maxe∈E,F (e) ̸=0

fi(e)
F (e) it is possible to get both a fast sparsifier construction time

of O(Nn) and a small sparsifier size of O(n
3

ϵ2). Their analysis also implies that if the solution size
is bounded by k (e.g., a cardinality constraint) a sparsifier of size O(nk

2

ϵ2) is sufficient. They also
present results for general submodular functions, however we only focus on their results for monotone
functions which are relevant for this paper.

B p-SYSTEMS

p-systems The concept of p-systems offers a generalized framework for understanding inde-
pendence families, parameterized by an integer p. We can define a p-system in the context of an
independence family I ⊆ 2E and E′ ⊆ E. Let B(E′) be the maximal independent sets within I that
are also subsets of E′. Formally, B(E′) = {A ∈ I|A ⊆ E′ and no A′ ∈ I exists s.t A ⊂ A′ ⊆ E′}.
A distinguishing characteristic of a p-system is that for every E′ ⊆ E, the ratio of the sizes of the
largest to the smallest sets in B(E′) does not exceed p:

maxA∈B(E′) |A|
minA∈B(E′) |A| ≤ p.

The significance of p-systems lies in their ability to encapsulate a variety of combinatorial structures.
For instance, when the intersection of p matroids can be described using p-systems. In graph theory,
the collection of matchings in a standard graph can be viewed as a 2-system. Extending this to
hypergraphs, where edges might have cardinalities up to p, the set of matchings therein can be viewed
as a p-system.

8Rafiey & Yoshida (2022) also present results for non-monotone functions, however, Kudla & Zivný (2023)
point out an error in their calculation and note that the results only hold when all f i’s are monotone.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

The greedy algorithm for p-systems Formally, the optimization problem can be expressed as:
maxS∈I F (S) where the pair (E, I) characterizes a p-system and F : 2E → R+ denotes a non-
negative monotone submodular set function. It was shown by Nemhauser et al. (1978) that the natural
greedy approach achieves an optimal approximation ratio of 1

p+1 . Setting Aj = {e | Sj + e ∈ I}
(i.e., Sj remains an independent set after adding e) in Algorithm 1 we get the greedy algorithm of
Nemhauser et al. (1978). Note that for general p-systems it might be that k = n, however, there are
very natural problems where k ≪ n. For example, for maximum matching E corresponds to all
edges in the graph, which can be quadratic in the number of nodes, while the solution is at most linear
in the number of nodes.

C MISSING PROOFS

Proof of Lemma 2.1 We start by showing that
∑N

i=1 pi ≤ n. Let us divide the range [N] into

Ae =

{
i ∈ N | e = argmax

e′∈E,F(e′) ̸=0

f i(e′)

F(e′)

}
If 2 elements in E achieve the maximum value for some i, we assign it to a single Ae arbitrarily.

N∑
i=1

pi =

N∑
i=1

max
e∈E

f i(e)

F(e)
=

∑
e∈E

∑
i∈Ae

f i(e)

F(e)
=

∑
e∈E

∑
i∈Ae

f i(e)

F(e)
≤

∑
e∈E

1 ≤ n

Let Xi be an indicator variable for the event wi > 0. We are interested in
∑N

i=1 E[Xi]. It holds that:
N∑
i=1

E[Xi] =

N∑
i=1

αi ≤
N∑
i=1

αpi = α

N∑
i=1

pi ≤ αn

Proof of Theorem 1.2 Theorem 1.2 directly follows from the two lemmas below.
Lemma C.1. Let ϵ′ ≤ ϵ/2k. Algorithm 1 with an additive ϵ′-approximate incremental oracle
achieves a (1− 1/e− ϵ)-approximation under a cardinality constraint k.

Proof. Let S∗ be some optimal solution for F . We start by proving that the following holds for every
j ∈ [k]:

F (Sj+1)− F(Sj) ≥
1

k
((1− ϵ)F (S∗)− F (Sj))

Fix some j ∈ [k] and let S∗ \ Sj = {e∗1, . . . , e∗ℓ} where ℓ ≤ k. Let S∗
t = {e∗1, . . . , e∗t }, and S∗

0 = ∅.
Let us first use submodularity and monotonicity to upper bound F (S∗).

F (S∗) ≤ F (S∗ + Sj)

= F (Sj) +

ℓ∑
t=1

[F (Sj + S∗
t)− F (Sj + S∗

t−1)]

≤ F (Sj) +

ℓ∑
t=1

FSj
(e∗t) ≤ F (Sj) +

ℓ∑
t=1

max
e∈E\Sj

FSj
(e)

≤ F (Sj) + k max
e∈E\Sj

FSj (e)

≤ F (Sj) + k(max
e∈E\Sj

F̂ j
Sj
(e) + ϵ′F (S∗))

Where the last inequality is due to the fact that F̂ j
Sj

is an additive ϵ′-approximate incremental oracle.

Noting that ej = argmaxe∈E\Sj
F̂ j
Sj
(e) we get that:

F (S∗) ≤ F (Sj) + k(F̂ j
Sj
(ej) + ϵ′F (S∗))

=⇒ F̂ j
Sj
(ej) ≥

1

k
((1− ϵ′k)F (S∗)− F (Sj))

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

The above lower bounds the progress on the j-th mini-batch. Now, let us bound the progress on F .
Again, we use the fact that F̂ j

Sj
is an additive ϵ′-approximate incremental oracle.

F (Sj+1)− F (Sj) ≥ F̂ j
Sj
(ej)− ϵ′F (S∗)

≥ 1

k
((1− ϵ′k)F (S∗)− F (Sj))− ϵ′F (S∗)

≥ 1

k
((1− 2ϵ′k)F (S∗)− F (Sj))

Finally, using the fact that ϵ′ ≤ ϵ/2k we get:

F (Sj+1)− F (Sj) ≥
1

k
((1− ϵ)F (S∗)− F (Sj))

Rearranging, the result directly follows using standard arguments.

F (Sk+1) >
(1− ϵ)

k
F (S∗) + (1− 1

k
)F (Sk)

≥ (1− ϵ)

k
F (S∗)(

k∑
i=0

(1− 1

k
)i) + F (∅)

≥ F (S∗)
(1− ϵ)(1− 1

k)
k

k(1− (1− 1
k))

= (1− ϵ)(1− 1

k
)kF (S∗)

≥ (1− ϵ)(1− 1/e)F (S∗) ≥ (1− 1/e− ϵ)F (S∗)

Lemma C.2. Let ϵ′ ≤ ϵ/2kp. Algorithm 1 with an additive ϵ′-approximate incremental oracle
achieves a (1−ϵ

1+p)-approximation under a p-system constraint.

Proof. Let S∗ be some optimal solution for F . Assume without loss of generality that the solution
returned by the algorithm consists of k elements Sk+1 = {e1, . . . , ek}.
We show the existence of a partition S∗

1 , S
∗
2 , . . . , S

∗
k of S∗ such that FSj

(ej) ≥ 1
pFSk+1

(S∗
j) −

2ϵ′F (S∗). Note, we allow some of the sets in the partition to be empty.

Define Tk = S∗. For j = k, k − 1, ..., 2 execute: Let Bj = {e ∈ Tj | Sj + e ∈ I}. If |Bj | ≤ p set
S∗
j = Bj ; else pick an arbitrary S∗

j ⊂ Bj with
∣∣S∗

j

∣∣ = p. Then set Tj−1 = Tj \S∗
j before decreasing

j. After the loop set S∗
1 = T1. It is clear that for j = 2, ..., k,

∣∣S∗
j

∣∣ ≤ p.

We prove by induction over j = 0, 1, ..., k − 1 that |Tk−j | ≤ (k − j)p. For j = 0, when the greedy
algorithm stops, Sk+1 is a maximal independent set contained in E, therefore any independent
set (including Tk = S∗) satisfies |Tk| ≤ p |Sk+1| = pk. We proceed to the inductive step for
j > 0. There are two cases: (1) |Bk−j+1| > p, which implies that

∣∣∣S∗
k−j+1

∣∣∣ = p and using the

induction hypothesis we get that |Tk−j | = |Tk−j+1| −
∣∣∣S∗

k−j+1

∣∣∣ ≤ (k − j + 1)p − p = (k − j)p.
(2) |Bk−j+1| ≤ p, it holds that Tk−j = Tk−j+1 \ Bk−j+1. Let Y = Sk−j+1 + Tk−j . Due to the
definition of Bk−j+1 it holds that Sk−j+1 is a maximal independent set in Y . It holds that Tk−j is
independent and contained in Y , therefore |Tk−j | ≤ p |Sk−j+1| = p(k − j).

Finally, we get that |T1| = |S∗
1 | ≤ p. By construction it holds that ∀j ∈ [k],∀e ∈ S∗

j , Sj +

e is independent. From the choice made by the greedy algorithm and the fact that F̂ j
Sj

is an additive
ϵ′-approximate incremental oracle it follows that for each e ∈ S∗

j :

FSj
(ej) ≥ F̂ j

Sj
(ej)− ϵ′F (S∗)

≥ F̂ j
Sj
(e)− ϵ′F (S∗) ≥ FSj

(e)− 2ϵ′F (S∗)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Hence, ∣∣S∗
j

∣∣FSj
(ej) ≥

∑
e∈S∗

j

(FSj
(e)− 2ϵ′F (S∗))

≥ FSj
(S∗

j)− 2ϵ′
∣∣S∗

j

∣∣F (S∗) ≥ FSk+1
(S∗

j)− 2ϵ′
∣∣S∗

j

∣∣F (S∗)

Using submodularity in the last two inequalities.

For all j ∈ {1, 2, ..., k} it holds that
∣∣S∗

j

∣∣ ≤ p, and thus FSj
(ej) ≥ 1

pFSk+1
(S∗

j)− 2ϵ′F (S∗). Using
the partition we get that:

F (Sk+1) ≥
k∑

j=1

FSj (ej) ≥
k∑

j=1

(
1

p
FSk+1

(S∗
j)− 2ϵ′F (S∗))

≥ 1

p
FSk+1

(S∗)− 2ϵ′kF (S∗)

≥ 1

p
(F (S∗)− F (Sk+1))− 2ϵ′kF (S∗)

Where the second to last inequality is due to submodularity and the last is due to monotonicity.
Rearranging we get that:

F (Sk+1) ≥
(1− 2pϵ′k)

p+ 1
F (S∗)

As ϵ′ < ϵ
2pk we get the desired result.

D ADDITIONAL EXPERIMENTS

Figure 2: Sparsifier and mini-batch compared with stochastic-greedy for ϵ = 0.1 and ϵ = 0.2.

16

	Introduction
	The mini-batch algorithm
	Related work

	Analysis of the mini-batch greedy algorithm
	Experiments
	Smoothed analysis
	Sparsifier background and related work
	p-systems
	Missing proofs
	Additional experiments

