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Abstract

This paper introduces SAMAT, a Stereotype-Aware Multimodal Alignment Transformer
for detecting and explaining implicit misogyny in memes, where harm arises from sub-
tle visual-textual incongruity and cultural stereotypes. SAMAT integrates three compo-
nents: a Stereotype Subspace Projection Module (SSPM) that structures representations; a
fidelity-based retrieval mechanism aligned with a curated Rationale Bank; and an evidence-
conditioned explanation generator. For evaluation, we extend the MEE corpus with 8,000
explanations and define Stereotype Alignment (SAS) and Contextual Faithfulness (CFS)
scores. Experiments show that SAMAT achieves a Macro-F1 of 87.3%, surpassing MLLM
baselines, while improving retrieval faithfulness (SAS: 0.78) and explanation grounding
(CFS: 0.68). Ablations confirm gains stem from structured stereotype projection and evi-
dential retrieval, not scale. SAMAT offers a transparent, culturally grounded framework for
accountable content moderation, aligning with Responsible Al objectives. E]

1 Introduction

Multimodal memes have become a pervasive vector for online communication, where meaning, and often
harmful intent, is constructed through the complex interaction of visual scenes, textual overlays, and cul-
turally embedded stereotypes. Detecting implicit harms, such as misogyny, in this medium is an essential
information fusion challenge [Baltrusaitis et al.[ (2019); Poria et al.| (2017). The toxicity rarely resides in any
single modality but emerges from subtle cross-modal dynamics: sarcasm, euphemism, and visual-textual
incongruity that activate prejudicial associations |[Waseem & Hovyl (2016); |Vidgen & Derczynski| (2021)).
Therefore, effective detection requires models to fuse information in a manner sensitive to these latent socio-
cultural structures.

While contemporary Multimodal Large Language Models (MLLMs) like LLaVALiu et al.| (2023]), Qwen-
VILBai et al.[(2023), and BLIP-2 demonstrate strong general-purpose capabilities|Li et al.| (2023)), they exhibit
limitations for this nuanced task. First, their fusion mechanisms are optimized for broad semantic alignment
and fail to isolate the low-rank, stereotype-relevant feature directions along which implicit harm is expressed
Muti et al.| (2022)); Rizzi et al| (2023). Second, their explanatory outputs are typically unconstrained,
often producing generic or ungrounded rationales that lack evidential fidelity [Jacovi & Goldberg| (2020);
Wiegreffe et al.| (2021). This opacity is a bottleneck for human-in-the-loop moderation systems, which
demand auditability, accountability, and culturally contextualized reasoning |Doshi-Velez & Kim| (2017));
Holzinger et al.| (2019).

To bridge this gap, we introduce the Stereotype-Aware Multimodal Alignment Transformer (SAMAT), a
novel fusion architecture designed for interpretable and robust detection of implicit harmful content. SAMAT
is built on three core principles: First, harmful intent is encoded along structured, low-dimensional manifold
corresponding to stereotypes, which can be recovered via targeted subspace learning Belkin & Niyogi| (2003));
Bengio et al.| (2013). Second, culturally grounded evidence can act as a prior to stabilize fusion and anchor

1We used LLM-based tools only for editorial assistance, such as rewriting for clarity, shortening text,
improving grammar, and ensuring stylistic consistency. No part of the conceptual methodology, experimental
design, theoretical framing, or results interpretation was generated by LLMs.
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reasoning, particularly when semantic signals are weak or ambiguous [Lewis et al.| (2020)); |Guu et al.| (2020)).
Third, explanation faithfulness is dramatically improved when text generation is explicitly conditioned on
retrieved evidence and structured internal attention patterns DeYoung et al. (2020)); Atanasova et al.| (2020).

These principles are instantiated in SAMAT’s three interconnected components: (i) a Stereotype Subspace
Projection Module (SSPM) that learns a compact, orthonormal subspace capturing stereotype-relevant ge-
ometry; (ii) a fidelity-based retrieval mechanism that aligns inputs with a curated 32k-item Rationale Bank of
stereotype exemplars; and (iii) a Stereotype-Modulated Cross-Attention (SMCA) block that injects geomet-
ric and evidential priors directly into the fusion process. A final generator produces explanations conditioned
on this structured evidence, ensuring traceability.

Our work is rigorously evaluated against a three-tiered benchmark: (i) capacity-matched classical models
(e.g., SVM with RBF kernel, Random Fourier Features (RFF-1024)), (ii) strong fine-tuned MLLM baselines,
and (iii) targeted ablations of SAMAT’s core components. Results confirm that performance gains stem
from our principled fusion design, not increased parameter count. To enable stereotype-aware evaluation,
we also introduce MEE, 8k explanations with validated stereotype cues.

On the WBMS and MEE benchmarks, SAMAT achieves state-of-the-art performance in classification accu-
racy, stereotype alignment (SAS), retrieval fidelity (measured using Mean Reciprocal Rank (MRR),
which captures whether the correct stereotype rationale appears among the top retrieved evi-
dences Manning et al.| (2008)), and explanation faithfulness (measured using Contextual Faithfulness
Score (CFS), which quantifies whether generated explanations correctly reference retrieved ev-
idence DeYoung et al.| (2020); Wiegreffe et al.| (2021])). Ablation studies trace these improvements directly
to the structured stereotype subspace and the fidelity-based retrieval mechanism. SAMAT thus establishes
a new paradigm for principled, interpretable multimodal fusion in high-stakes social computing applications.

Beyond technical contributions, this work addresses pressing societal challenges. The proliferation of misog-
ynistic multimodal content undermines digital safety, participation, and institutional trust [Fulper et al.
(2014). By providing an auditable framework grounded in interpretable evidence, SAMAT aligns with key
United Nations Sustainable Development Goals: it directly supports SDG 5 (Gender Equality) by mitigat-
ing gender-based online harms [UN Women| (2020), and SDG 16 (Peace, Justice and Strong Institutions) by
enabling transparent, accountable decision-support systems for human moderators UNESCO)| (2021)).

Overall, we make the following four contributions:

1. A Stereotype Subspace Projection Module (SSPM): A novel module that learns a low-dimensional,
interpretable subspace to restructure multimodal embeddings along stereotype-relevant geometric
directions, enhancing separability and fusion stability.

2. A Fidelity-Based Stereotype-Grounded Retrieval Mechanism: A retrieval framework that uses a
curated Rationale Bank as an evidential prior, improving model robustness and enabling explicit
socio-cultural alignment through a truncated-softmax posterior.

3. An Evidence-Conditioned Explanation Generator: An explanation system conditioned on retrieved
rationales and modulated attention cues, coupled with a faithfulness classifier to ensure grounded,
non-generic, and culturally contextualized outputs.

4. A Comprehensive, Capacity-Matched Evaluation Suite: A rigorous evaluation protocol comparing
SAMAT to classical fusion models, adapted MLLMs, and targeted ablations, supported by the new
MEE corpus and stereotype-focused metrics.

2 Related Work

The development of the Stereotype-Aware Multimodal Alignment Transformer (SAMAT) is situated at the
intersection of three core research streams: (1) multimodal information fusion architectures Hangloo & Arora
(2025); [Phukan et al.| (2024aid|), (2) stereotype-aware and harmful content detection, and (3) the pursuit of
trustworthy and explainable AI systems. This section reviews seminal and contemporary works in these
areas to delineate SAMAT’s contributions.
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2.1 Multimodal Information Fusion Architectures

The field of information fusion is dedicated to synergistically combining data from multiple sources or modal-
ities to achieve more accurate, and comprehensive inferences than is possible with a single source [Hangloo
& Aroral (2025); |Phukan et al.| (2024b)); [Phukan & Ekbal (2023). A foundational taxonomy distinguishes
between early (feature-level), late (decision-level), and intermediate (model-level) fusion strategies . While
early fusion methods like simple concatenation or canonical correlation analysis (CCA) can integrate raw
data, they often struggle with modality heterogeneity and asynchronous data streams. Late fusion meth-
ods aggregate decisions from unimodal classifiers but may fail to capture crucial cross-modal interactions
Hangloo & Arora (2025).

Recent paradigms have shifted towards deep intermediate fusion, leveraging neural architectures to learn
joint representations [Yang et al.| (2019)). Transformer-based models, in particular, have become dominant
due to their ability to model long-range dependencies and complex interactions through self-attention and
cross-attention mechanisms |[Shukor & Cord| (2024)); |Gerych et al.| (2024)). Studies in Information Fusion have
showcased transformer applications in diverse multimodal tasks, such as physiology signals fusion for emotion
recognition [Phukan & Guptal (2022ajb; 2024)) and video-based text generation |Khan et al.| (2024)); Phukan
et al.[(2024a)) However, as noted in broad surveys Hangloo & Arora| (2025), a key challenge remains designing
fusion mechanisms that are not merely generic but are explicitly structured to capture domain-specific, often
subtle, semantic relationships Wu & Zang| (2025), such as the incongruity and implicit cues prevalent in
harmful memes Duan et al.| (2025). SAMAT addresses this by moving beyond generic cross-attention to a
stereotype-modulated fusion process, conditioning attention on a learned, culturally grounded subspace.

2.2 Stereotype-Aware and Harmful Content Detection

Detecting implicit harms like misogyny in memes is a specialized case of multimodal classification that
extends beyond literal content analysis. Prior work in multimodal hate speech Kiela et al.| (2020); Hee et al.
(2024) has established the superiority of multimodal approaches over unimodal ones, as visual and textual
elements often provide complementary or contradictory signals that are essential for accurate identification
Arya et al.| (2024); [Koushik et al.| (2025)).

However, most contemporary systems, including adapted Multimodal Large Language Models (MLLMs)
Kumari et al.| (2024)), treat this as a standard classification problem. They often rely on large-scale pre-
training for general semantic alignment but lack explicit mechanisms to model the low-rank stereotype
structures that govern how harm is implicitly communicated through sarcasm, euphemism, and visual-
textual incongruity Maity et al.| (2025). This creates a gap in both accuracy and interpretability. Recent
work has emphasized that for trust and actionable moderation, it is crucial for models not only to detect
hate speech but to generate explanations by identifying the underlying stereotypical bias Maity et al.| (2025)).
SAMAT introduces a dedicated Stereotype Subspace Projection Module (SSPM) to directly address this,
learning a compact, orthonormal manifold where stereotype classes become linearly separable. This approach
is philosophically aligned with advanced fusion system design, which advocates for transitioning from purely
model-driven systems to those incorporating structured, knowledge-enabled components to improve reasoning
Zhu et al.| (2023).

2.3 Trustworthy and Explainable Al for Social Good

The imperative for Al systems to be transparent, accountable, and fair is now paramount, especially in
high-stakes social applications |Afroogh et al. (2024); Brintrup et al.| (2025). Explainable AT (XAI) and the
development of trustworthy systems are active themes in the information fusion community, with special
issues dedicated to “Data-Centric AI” [Wang et al.| (2025)) and “Explainable AT (XAI)” Barredo Arrieta et al.
(2019), and “Responsible (RAI) Artificial Intelligence” |Bach et al.| (2025)).

Current explanation techniques for multimodal models, such as attention visualization or post-hoc feature
attribution, are often critiqued for being unfaithful or ungrounded |[Achtibat et al. (2023). For content
moderation, an explanation must be culturally contextualized and traceable to specific evidence |Ferrario
(2024). SAMAT’s integration of a fidelity-based retrieval mechanism from a curated Rationale Bank provides
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Table 1: Summary of related works

Research Area Key Related Works & Approaches SAMAT’s Advancement

tures multimodal tasks |Shukor & Cord| (2024)); space geometry and external evidence priors into the fusion logits.
|Gerych et al.| (2024

Fusion Architec- Transformer-based cross-attention for Stereotype-Modulated Cross-Attention (SMCA) that injects learned sub-

MLLMs for hate speech the low-rank geometry of implicit harm for superior separability.

Harm Detection Multimodal classifiers &  fine-tuned Stereotype Subspace Projection Module (SSPM) that explicitly models

(2024
Explainable Al Attention visualization, post-hoc attribu- Evidence-Conditioned Explanation Generation via retrieval from a curated
(XAI) tion methods; frameworks for trustwor- Rationale Bank, providing faithful, culturally grounded, and auditable
thy AT . rationales.

an explicit evidential trail, ensuring explanations are grounded in stereotype exemplars rather than generated
as plausible-sounding but generic text. This design directly responds to the identified challenges in deploying
trustworthy AI, where a lack of transparency and accountability can lead to unfair outcomes and erode
institutional trust. Table [T] summarizes how SAMAT relates to and advances these key research areas.

3 Datasets and Rationale Bank
We evaluate SAMAT using three complementary resources:

1. The WBMS multimodal misogyny meme dataset for stereotype-aware classification,
2. The MEE corpus for stereotype-grounded explanation modeling, and

3. A large 32k-item Rationale Bank used exclusively as retrieval-based evidential prior. These
resources jointly support SAMAT’s three core modules, SSPM projection, evidential retrieval, and
stereotype-modulated cross-attention (SMCA).

3.1 WBMS: Multimodal Misogyny Meme Dataset

The What’s Beneath Misogynous Stereotyping (WBMS) dataset comprises 2,130 misogynous internet memes,
systematically collected from diverse social media platforms. Each meme is annotated with a primary
stereotype domain and a text—image relation subtype, making it a structured benchmark for analyzing
multimodal bias. A representative sample is shown in Fig. [I]

—— Me and my bestie out shopping after

{Honey” | IR | THINKS WORLD Wl]llll] BE BETTER OFF har, ] ‘ complaining that we have no money
_Can ou get the foo 3 > - - - W n
Exrren 'WITH ALL-WOMEN LEADERS o
[ = T T e

.

SEES| OTHER WOMEN AS INFERIOR |
(a) Kitchen (b) Leadership (c) Working (d) Shopping

Figure 1: Sample memes from the WBMS dataset (faces blurred for privacy).

To model the subtleties of multimodal sarcasm and incongruity, each meme is further annotated with one of
three relation subtypes: Different (61.5%): Text and image convey distinct but complementary signals,
often relying on implicit cultural knowledge for interpretation. Same (6.1%): Text directly reiterates
or literally describes the visual content. Image Only (32.4%): The meme contains no textual overlay,
requiring inference from visual cues and context alone.

Distributional statistics are summarized in Table [2.

Memes are categorized into four prevalent misogynistic stereotype domains, reflecting common gendered
tropes:
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Table 2: WBMS category and subtype statistics.

Category | Count | Proportion | Ratio | (Different, Same, Image)
Kitchen 1076 0.51 50.5% (780, 125, 171)
Leadership 534 0.25 25.1% (262, 0, 272)
Working 321 0.15 15.1% (151, 0, 170)
Shopping | 199 0.09 9.3% (118, 4, 77)
Total 2130 1.0 100% (1311, 129, 690)

Kitchen: Depictions reinforcing domesticity and traditional gender roles (1,076 samples, 50.5%).

Leadership: Portrayals undermining women’s authority or competence in professional settings (534 samples,
25.1%).

Working: Stereotypes related to women’s capability or role in the workplace (321 samples, 15.1%).

Shopping: Memes reducing women to materialistic or consumerist clichés (199 samples, 9.3%).

3.2 MEE: Stereotype-Grounded Explanation Corpus

To support the development and evaluation of faithful, stereotype-grounded explanations, we introduce
Multimodal Explanation Evaluation (MEE) corpus, which comprises of 8,000 expert-annotated explanations,
each paired with a misogynistic meme and an analysis of its stereotype-triggering elements.

Annotation protocol and agreement: Fach sample was independently explained by two trained annotators
who identified: (i) the harmful mechanism (e.g., sarcasm, euphemism), (ii) the specific stereotype invoked,
and (iii) the visual or textual cue responsible for activating the stereotype. A third expert adjudicator
resolved disagreements. Inter-annotator semantic alignment, measured via Krippendorft’s a, reached 0.71,
indicating substantial agreement. All explanations were screened to remove identity-based slurs, prescriptive
moralizing language (e.g., “should not say”), or harmful reproductions of toxic content. Annotators operated
under the same safety and ethical protocols as those for the WBMS dataset.

Statistics and Coverage: The average explanation length is 18.3 tokens (90th percentile: 42 tokens). The cor-
pus comprehensively covers major categories of implicit harm, including explicit insults, implicit stereotype
activation, sarcasm, euphemisms, and visual-textual incongruity. Example: For a meme depicting burnt food
with a textual punchline about a wife’s cooking, a typical explanation is: “The meme implies women are
inherently incompetent at domestic tasks, using the burnt food as visual ‘evidence’ to reinforce a stereotype
of female ineptitude in household management.”

MEE serves three critical, non-classification roles: (1) it supervises the explanation generator via direct
sequence-to-sequence training, (2) provides data for faithfulness calibration of the classifier (CFS), and (3)
informs stereotype alignment within the SMCA block. Crucially, MEE explanations are never used for
classification supervision, ensuring a clear separation between detection and justification tasks.

3.3 Rationale Bank: 32k Retrieval-Only Evidential Resource

To provide an external, culturally grounded knowledge base for retrieval, we constructed a Rationale Bank
containing 32,000 stereotype-relevant textual snippets (6-28 tokens each). This resource is used
exclusively as a non-parametric evidential prior via the retrieval module; its entries are not used as training
labels. The bank was built through a rigorous, four-stage pipeline designed to ensure quality, relevance, and
diversity while mitigating toxicity and redundancy.

1. Seed collection: An initial set of 14,870 items was gathered from diverse, ethically vetted sources, includ-
ing: Open-license stereotype research corpora, Curated examples from gender-studies literature, Moderated
feminist discourse platforms, and Public-domain datasets on hate speech and misogyny.

2. Controlled paraphrase expansion: To increase lexical and pragmatic diversity, we used Mistral-7B-Instruct
to generate 6,620 synthetic candidates. These included syntactic variants, euphemistic reformulations, sar-
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castic twists, and culture-conditioned phrasings. Crucially, these synthetic items serve only as retrieval
anchors to improve match coverage and do not function as ground-truth labels.

8. Multi-layer filtering:
All candidates passed through successive filters:

Toxicity Filtering: Removed overtly harmful language using a classifier trained on the HateXplain dataset
Mathew et al.| (2021)).

Relevance Filtering: Retained items with a stereotype prototype similarity score > 0.55.

Hallucination Filtering: Applied self-consistency checks to eliminate nonsensical or contradictory syn-
thetic paraphrases.

4. Deduplication and final curation: Perceptual and semantic near-duplicates were removed using a two-
stage process: (i) pHash-based image deduplication (Hamming distance < 8) and (ii) SigLIP embedding
similarity pruning (> 0.92). This step eliminated 2,134 redundant items.

The final bank contains 32,000 curated rationales. We maintained an approximate balance across major
stereotype families (within +12% per category) to prevent retrieval bias toward any single stereotype type.
For example, a typical rationale snippet is: “Women waste money on unnecessary shopping.”

3.4 Sanity Checks Against Leakage

We conducted three rigorous tests to verify that the Rationale Bank functions as a genuine evidential prior
and does not trivially leak classification labels.

Rationale-only classifier test:

To rule out direct label encoding, we constructed a degenerate baseline that feeds only the top-3 retrieved
rationale embeddings into a linear classifier. This model achieved a Macro-F1 of 0.42, only marginally
above the majority-class baseline and over 30 points lower than the full SAMAT model. This confirms that
the bank cannot serve as a proxy labeler.

Semantic overlap test: We computed the cosine similarity between WBMS OCR text and all Rationale
Bank items. The resulting distribution was statistically indistinguishable from a null model using random
Wikipedia snippets, indicating the bank does not simply mirror surface-level features of the test data.

Paraphrase ablation:

Removing all synthetic paraphrases from the bank reduced SAMAT’s Macro-F1 by only 0.7% and its CFS
score by 1.2%, variations within standard run-to-run variance. This demonstrates that synthetic items act
solely as auxiliary retrieval anchors without artificially boosting core performance metrics.

3.5 Cultural Scope and Bias Considerations

The meme content in WBMS and the stereotype knowledge in the Rationale Bank predominantly reflect
online ecosystems from Western, Indian, and Middle Eastern contexts. We explicitly acknowledge limited
representation of East Asian, African, and Latin American cultural nuances. Consequently, SAMAT is
presented primarily as a methodological framework for stereotype-aware multimodal fusion. To facilitate
cultural adaptation and extension, we will release full annotation guidelines, evaluation templates, and
model code. The summary of the datasets are highlighted in Table [3|

4 Methodology

We introduce the Stereotype-Aware Multimodal Alignment Transformer (SAMAT), a unified framework
for detecting implicit harmful content through principled fusion of visual, textual, and retrieved evidential
information. SAMAT is built on three core operations: (1) projection of input tokens into a shared, low-
dimensional stereotype manifold; (2) retrieval of stereotype-relevant rationales as an evidential prior; and
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Table 3: Summary of datasets used in SAMAT.

Dataset Size Labels Purpose

WBMS 2,130  Multi-label stereotypes Classification + SSPM
MEE 8,000 Human explanations  Faithfulness + Generator training
Rationale Bank 32,000 Stereotype snippets Retrieval-only evidential prior
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Figure 2: Schematic overview of the SAMAT architecture. The model projects visual and textual tokens into
a learned stereotype subspace, retrieves relevant evidential rationales, and fuses modalities via stereotype-
modulated cross-attention (SMCA) to produce classification and faithful explanations.

(3) conditional fusion via Stereotype-Modulated Cross-Attention (SMCA), which explicitly incorporates
subspace geometry and retrieved evidence. The complete training procedure is summarized in Algorithm

Given an input meme, we extract frozen visual tokens V = {v;}M, using SigLIP-B/16 and frozen textual
tokens T' = {t; }]L:1 using Mistral-7B, where v;,t; € R%. The core fusion operator is a 6-layer transformer
with a hidden dimension of 512 and 8 attention heads. All learnable components are trained from scratch
unless otherwise specified.

4.1 Unified Fusion Principle

SAMAT formulates multimodal fusion as the conditional modeling of visual evidence given text and a
retrieved rationale prior Rj. The attention logits in our fusion mechanism are derived from the following
factorization:
p(vj | ti, Ri) o< p(v; | t:) p(Ry | L), (1)
under the assumption that the retrieved evidence Ry provides supplementary information conditionally
independent of the visual token v; given the text ¢;. This leads to a log-additive modification of the standard
attention scores:
lij = 51(';)) + Blzi, uz) +ymy, (2)

where g;, k; are query and key projections from the transformer, z; = PTt; and z; = PIv; are projections
into the stereotype subspace, and M(-) is a learned match function. The coefficients 8,7 € R are learned
scalars. The final attention weights are a;; = softmax;(¢;;).

4.2 Stereotype Subspace Projection (SSPM)

Empirical analysis of stereotype representations reveals they occupy approximately linear clusters within the
multimodal embedding space (PCA explained variance: 71.3%; silhouette score: 0.42). The SSPM learns a
compact, discriminative manifold for these structures. We learn an orthonormal projection matrix P, € R4*F
(with & = 64) onto a k-dimensional stereotype subspace. Orthonormality P, P, = I is maintained using
Cayley—QR retraction during optimization: P; = QR(Q) where @ is an unconstrained parameter matrix.

The subspace is trained with an angular-margin contrastive loss Lgy, that pulls token projections toward
their corresponding class prototype p,, and pushes them away from other prototypes:
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eXp((COS(ﬁ7 :ay) _ m)/T) (3)
exp((cos(, fy) —m)/7) + 3, 4, exp(cos(@, fiy)/T)

Lswy = — IOg

where /i, and @ denote Lo-normalized vectors, m is a margin, and 7 is a temperature. Prototypes {u,} are
initialized from class means and updated via exponential moving average (EMA) during training to stabilize
learning. A regularization term \o| P,’ P — I||%. prevents subspace collapse. The dimensionality k = 64 was
selected via variance analysis; performance remained stable for k € {32, 64, 128}.

4.3 Differentiable Evidential Retrieval

The Rationale Bank (Section [3.3) provides an external, non-parametric knowledge base of stereotype cues.
Each rationale p; is encoded once as e; = Enc(p;). Crucially, its subspace projection is recomputed dynami-
cally:

r, = P;rei, (4)

ensuring alignment with the current stereotype geometry as Py evolves. Given a mean-pooled query projec-
tion z = % Zle zj, we use FAISS to efficiently retrieve the top-512 candidate rationales 7 based on cosine
similarity s; = cos(z;,r;) A differentiable truncated softmax posterior is computed over this candidate set:

el
p(pi | @) ZjGTGXP(TrSjV (5)

where 7,. is a retrieval temperature. The evidential prior vector Ry is then formed as a weighted sum:

R = Zp(pi | ) r;. (6)

i€T

Gradients flow through the posterior weights p(p; | «) into Ps and the encoder, while a stop-gradient is
applied to the FAISS top-K selection, making retrieval end-to-end trainable.

4.4 Stereotype-Modulated Cross-Attention (SMCA)

The SMCA block integrates the three information streams. A small, two-layer MLP match function M (-)
processes each text token ¢; with the evidential prior Ry, to produce a scalar alignment score m; = M (t;, Ry).

These scores modulate the base transformer attention. The final logit between text token ¢; and visual token
v is:

bij = EE;.)) + B(zi, uj) +ym;, (7)

The terms [3(z;,u;) and ym; inject stereotype geometry and evidence alignment directly into the fusion
process. The scalar coefficients [, are learned and clipped early in training for stability. The added
computational complexity is O(M Lk), which is negligible relative to standard O(M Ld) attention.

4.5 Classification and Explanation Generation

The transformer’s output is pooled to form a final representation h, which is passed through a softmax
classifier to predict stereotype labels. To generate faithful explanations, we condition a frozen Mistral-7B
LLM on three sources: (1) the original text tokens T', (2) a projected evidence token v (Rj) (via a linear
layer to 64-d), and (3) an attention summary token () (obtained by pooling the SMCA attention maps
and projecting to 32-d). The LLM is fine-tuned to produce an explanation e. Faithfulness is enforced via
an auxiliary faithfulness classifier Crajep, trained on balanced positive /negative (e, Ry) pairs from MEE, with
the loss:

Liaith = — log Chaitn (e, Ri). (8)
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4.6 Alignment and Training Objective

We employ an alignment loss to ensure the match scores m; reflect the actual influence of evidence on
attention:

Latign = KL(softmax(m) || softmax; (yM (t;, Rx))) (9)

This is equivalent to a cross-entropy loss between the predicted and realized evidence-attention distributions.
The total training objective combines all components:

L= Lcls + )\sLsub + )\rLalign + )\foaith + )\OHPSTPS - I”% (10)

where A-terms are balancing hyperparameters.

Training Details and Optimization: We use the AdamW optimizer. Key hyperparameters include retrieval
temperature 7, € [5, 30], number of rationales K € {1, 3}, and the loss coefficients A, Ay, Af, Ao. To monitor
training stability, we track retrieval posterior entropy and the alignment loss Laign to detect posterior
collapse.

Ethical Implementation Note: The Rationale Bank contains stereotype-bearing text curated for detection.
In any deployment scenario, this resource must be maintained and audited by human experts to prevent
misuse and ensure it aligns with evolving cultural and ethical standards.

4.7 Algorithm

Algorithm 1 SAMAT Unified-Fusion Training Loop

Require: Dataset D; rationale encodings {Enc(p;)}; parameters ©, Q, M, G, Craitn; prototypes {u, }; hyper-
parameters.
1: for all epoch do

2 for each minibatch (I,7T,y) do

3 Extract tokens V,T.

4 P QR(Q), U; = PSTUi, Zj = Ps—rtj.

5 Z4 1%

6: Retrieve T via FAISS; recompute r; = P, Enc(p;) for i € T.
7 Compute similarities s; and posterior p(p; | ) (log-sum-exp).
8 Ry =2 icrp(pi | 2)7i.

9: m; = M(t;, Ry).

10: gij = qlkJT + ﬂ<21, Uj> + ym;.

11: Qij = SOftman (6”)

12: Fuse tokens via transformer — h.

13: Compute all losses and L.

14: Update Q,0, M, G, Caitn via AdamW.

15: Update prototypes p, via EMA.

16: end for

17: end for

5 Experimental Setup

Our experimental design is structured to rigorously evaluate the efficacy and components of the proposed
SAMAT framework. We conduct evaluations on two primary tasks: (1) multimodal misogyny classification
using the WBMS benchmark, and (2) stereotype-grounded explanation generation using the MEE corpus. A
comprehensive suite of baselines and ablations is employed to isolate and quantify the contribution of each
core innovation: the Stereotype Subspace Projection Module (SSPM), the fidelity-based retrieval mechanism,
and the Stereotype-Modulated Cross-Attention (SMCA).
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5.1 Datasets

Our experiments utilize the datasets detailed in Section [3} WBMS (Classification): Contains 2,130 memes
annotated with multi-label stereotype categories. MEE (Explanation): Contains 8,000 expert-authored
explanations for misogynistic memes, used exclusively for training and evaluating the explanation generator.

Rationale Bank (Retrieval): A curated, static corpus of 32,000 stereotype-relevant textual snippets, serving
as a non-parametric, external knowledge base for the retrieval module. For efficient storage and access, each
rationale p; is pre-encoded as a frozen embedding e; = Enc(p;). During training, only the top-512 retrieved
candidates 7 are dynamically re-projected into the current stereotype subspace via r; = P, e;, ensuring
geometric alignment with the evolving P.

5.2 Implementation Details

All experiments were conducted on NVIDIA A100 40GB GPUs using PyTorch 2.3 and CUDA 12. Key
implementation choices are as follows:

Feature Extraction: We extract 512-dimensional visual token embeddings using a frozen SigLIP-B/16 image
encoder and 4096-dimensional textual token embeddings using a frozen Mistral-7B text encoder. These
frozen features provide a strong, stable representation base.

Stereotype Subspace Projection Module (SSPM): The projection dimension is set to k = 64, selected via an
ablation study over {32,64, 128}. Orthonormality of the projection matrix P is enforced via a combination
of a gradient penalty term (A\g = 1 x 1073) and periodic QR decomposition. The modulation scalars 3 and
~ are learnable parameters, initialized to 0.1 and clipped to the range [—2, 2] for training stability.

Fusion Backbone and SMCA: The fusion backbone is a 6-layer transformer with a hidden dimension of
512, 8 attention heads, and a feed-forward dimension of 4096. The SMCA mechanism modifies the stan-
dard attention logits, adding the geometric (5(z;, u;)) and evidential (ym;) terms. This incurs a negligible
O(M Lk)overhead compared to standard O(M Ld) attention.

Retrieval Mechanism: We use a FAISS IVFPQ index (4096 Voronoi cells, 8-byte PQ sub-vectors) for effi-
cient approximate nearest neighbor search over the 32k rationale embeddings. For each input, the top-512
candidates are retrieved. A differentiable, truncated softmax posterior is computed over these candidates
using a retrieval temperature 7,.. The final evidential prior Ry is the weighted sum of the top-3 rationale
projections based on this posterior. A stop-gradient is applied to the FAISS retrieval step, while gradients
flow through the posterior weights into Ps.

Ezplanation Generation: We fine-tune a pretrained Mistral-7B-Instruct model (with LoRA rank=16) to serve
as the explanation generator. The model is conditioned on the original text tokens 7, a 64-dimensional linear
projection of the evidential prior ¥ (Ry), and a 32-dimensional summary of the final-layer SMCA attention
maps &(«). During inference, we use nucleus sampling (p=0.9, temperature=0.7) with a maximum length
of 80 tokens.

Reproducibility: All results are reported as the mean and standard deviation over three independent training
runs with random seeds 42,2024, 777. Full code and checkpoints will be released post acceptance to ensure
reproducibility.

5.3 Training Protocol

We train SAMAT for 10 epochs using the AdamW optimizer (81 = 0.9, S2 = 0.98) with a learning rate of
2 x 10~*, a 2000-step linear warmup, and cosine decay. Training uses a global batch size of 64, implemented
with gradient accumulation when necessary. Weight decay is set to 0.05 and dropout to 0.1. The class
prototypes i, for the SSPM loss are initialized from class means, kept frozen for the first 500 steps, and
subsequently updated via an exponential moving average (EMA) with a momentum of 7 = 0.05. Total
training time is approximately 13-14 hours on a single A100 GPU.

10
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5.4 Baseline Models and Ablations

To contextualize SAMAT’s performance, we compare against strong contemporary baselines and conduct
targeted ablations.

Strong Multimodal Baselines: We include state-of-the-art Multimodal Large Language Models (MLLMs)
fine-tuned on our task:

LLaVA-1.5 (7B): Fine-tuned end-to-end on the WBMS classification task.
Qwen-VL-Chat (7B): Fine-tuned similarly with LoRA for parameter efficiency.
BLIP-2 (FlanT5-XL): Fine-tuned in a similar multimodal classification setup.

Classical and Projection-Based Baselines: To disentangle gains from architectural novelty versus simple
increased capacity, we compare against classical models:

MLP-3L: A 3-layer Multilayer Perceptron on concatenated image-text features, serving as a strong, non-
retrieval, projection-based baseline.

RBF-SVM: A Support Vector Machine with a Radial Basis Function kernel.

Random Fourier Features (RFF-1024): A 1024-dimensional RFF projection followed by a linear clas-
sifier, providing a kernelized baseline.

Ablation Studies: We perform systematic ablations to evaluate the necessity of each SAMAT component.
(1) Retrieval Ablations:

w /o Retrieval: Removes the evidential prior Ry entirely (y = 0).

Cosine-Only: Replaces the truncated softmax posterior with a simple top-1 cosine similarity selection.
Random Retrieval: Retrieves random rationales from the bank as a control.

(2) Fusion Mechanism Ablations:

B = 0: Disables the geometric modulation from the SSPM.

~ = 0: Disables the evidential modulation from retrieval.

Vanilla XA: Sets § = v =0, reducing SAMAT to a standard cross-attention transformer.

5.5 Evaluation Metrics

We employ a comprehensive set of automatic and human metrics.

Classification Performance: Reported on the WBMS test set using Macro-F1 (primary metric), Weighted
F1, Accuracy, and Expected Calibration Error (ECE).

Retrieval Quality: Evaluated using Mean Reciprocal Rank (MRR) and the Stereotype Alignment Score
(SAS), which measures the semantic relevance of retrieved rationales to the ground-truth stereotype label.

Ezxplanation Quality: For the MEE test set, we report standard text generation metrics: METEOR,
BERTScore-F1, and BLEU-4. Crucially, we evaluate faithfulness using the Contextual Faithfulness Score
(CFS), a learned classifier that measures alignment between the generated explanation and the retrieved
evidence Ry.

Human FEvaluation: Three domain experts rated 300 randomly sampled meme-explanation pairs on a 5-point
Likert scale across three dimensions: Faithfulness (to the meme’s harmful intent), Stereotype Accuracy, and
Clarity. Inter-annotator agreement is reported using Fleiss’ x.

11
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Table 4: Classification performance on the WBMS test set. SAMAT significantly outperforms
both contemporary MLLMs and classical baselines.

Model Macro-F1 (%) Weighted F1 (%) ECE
LLaVA-1.5 (fine-tuned) 83.4 85.1 0.081
Qwen-VL-Chat (fine-tuned) 82.1 84.2 0.094
BLIP-2 + FlanT5-XL 80.7 83.9 0.102
MLP-3L (param-matched) 84.2 86.0 0.076
RBF Kernel SVM 83.9 85.7 0.079
RFF-1024 4 Linear 84.0 85.9 0.082
SAMAT (no retrieval) 85.2 86.7 0.067
SAMAT (no SSPM) 84.6 86.1 0.071
SAMAT (full) 88.1 89.4 0.049

5.6 Computational Efficiency

SAMAT’s training time of 14 hours on a single A100 GPU is dominated by the FAISS-enhanced retrieval
step; a naive brute-force retrieval would increase this by 3-4x. During inference, the FAISS index allows
for sub-millisecond retrieval, making the overhead negligible. The model’s peak GPU memory usage is
approximately 24 GB with mixed precision training enabled.

6 Results and Discussion

This section presents a comprehensive evaluation of the SAMAT framework. We systematically analyze
its performance across four axes: (1) multimodal stereotype classification, (2) stereotype-grounded retrieval
fidelity, (3) quality and faithfulness of generated explanations, and (4) human perceptual judgments. The
results confirm that SAMAT’s superior performance is directly attributable to its core innovations, the
structured stereotype subspace (SSPM), the fidelity-based evidential retrieval, and the stereotype-modulated
fusion (SMCA). Detailed ablation studies isolate the contribution of each component.

6.1 Multimodal Classification Performance

Table [4] presents classification results on the WBMS benchmark. SAMAT achieves state-of-the-art per-
formance, surpassing both fine-tuned Multimodal Large Language Models (MLLMs) and capacity-matched
classical baselines. With a Macro-F1 of 88.1% and a significantly reduced Expected Calibration Error (ECE)
of 0.049, SAMAT demonstrates not only higher accuracy but also better-calibrated uncertainty estimates.

Analysis of Superior Performance:

The performance gap between SAMAT and the fine-tuned MLLMs (LLaVA-1.5, Qwen-VL-Chat) highlights
a key limitation of generic-scale models: they lack the inductive bias to isolate the low-rank, stereotype-
specific feature directions crucial for detecting implicit harm. While classical models like MLP-3L and
RBF-SVM perform competitively, they are inherently unimodal in their fusion logic and cannot leverage
external cultural knowledge. SAMAT bridges this gap through its structured fusion mechanism. Ablation
Insights: The internal ablations in Table [4 reveal the source of SAMAT’s gains:

SAMAT (no retrieval): Removing the evidential prior causes a 2.9-point drop in Macro-F1, underscoring
the importance of stereotype-grounded contextual information.

SAMAT (no SSPM): Disabling the subspace projection reduces performance and increases ECE, con-
firming that the learned stereotype geometry is essential for robust separability of nuanced harm categories.
These results validate our hypothesis that implicit harm detection is fundamentally a structured subspace
learning problem augmented by external evidence.

12
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Table 5: Retrieval performance on the MEE validation set. Fidelity-based retrieval outperforms standard
similarity metrics.

Retrieval Method MRR SAS

Cosine Similarity 0.612 £0.008 0.71 £0.01
Dot-Product 0.598 £0.010 0.69 £0.02
RFF Kernel Similarity 0.624 £0.009 0.73 £0.01

Fidelity-based (SAMAT) 0.662 +£0.006 0.78 +0.01

Table 6: Explanation quality results on MEE.

Model METEOR BERTScore-F1 BLEU-4 CFS
LLaVA-1.5 (zero-shot) 0.18 0.62 0.041 0.37
Qwen-VL (zero-shot) 0.20 0.64 0.047 0.41
Retrieval-only prompting 0.25 0.68 0.052 0.55
SAMAT (no SSPM) 0.26 0.69 0.051 0.52
SAMAT (no retrieval) 0.22 0.64 0.039 0.33
SAMAT (full) 0.31 0.73 0.058 0.68

6.2 Stereotype-Grounded Retrieval Fidelity

The quality of the evidential prior is paramount to SAMAT’s reasoning capabilities. Table [f] evaluates
retrieval performance using Mean Reciprocal Rank (MRR) and the Stereotype Alignment Score (SAS).
SAMAT’s fidelity-based retrieval mechanism achieves an MRR of 0.662 and an SAS of 0.78, significantly
outperforming standard similarity-based methods.

Why Fidelity Retrieval Ezxcels: The superiority of our method stems from its foundation in the learned
stereotype subspace (SSPM). Unlike cosine or dot-product similarity, which operate on raw embedding
space and are sensitive to surface-level lexical matches, fidelity retrieval measures distributional alignment
within the semantically structured SSPM manifold. This enables three key advantages:

Mechanism-Level Matching: Tt retrieves rationales based on shared harm mechanisms (e.g., “euphemistic
financial shaming”) rather than keyword overlap.

Robustness to Incongruity: It remains stable for memes relying on sarcasm or visual-textual irony, where
literal text is misleading.

Improved Cluster Separation: It better discriminates between semantically proximate stereotypes (e.g.,
“domestic incompetence” vs. “generalized incompetence”) by leveraging local subspace geometry.

Impact on Downstream Tasks: We find a strong, near-linear correlation between retrieval quality (SAS) and
explanation faithfulness CFS = 0.84 - SAS 4 0.04. This empirical relationship confirms that high-fidelity
retrieval is the primary enabler of grounded, non-hallucinatory explanations. When retrieval fails, the model
defaults to generic or literal interpretations, severely compromising interpretability.

6.3 Explanation Quality and Faithfulness

The ultimate test of an interpretable system is the quality of its explanations. Table [6] reports results on the
MEE corpus using both automatic metrics and the Contextual Faithfulness Score (CFS). SAMAT achieves
the best performance across all metrics, with a particularly notable CFS of 0.68, indicating strong grounding
in retrieved evidence.

(0.68) reflects its ability to integrate contextual cues rather than producing vague moral judgments or literal
surface descriptions. Metric Analysis. The gains in METEOR and BERTScore-F1 reflect explanations that

13



Under review as submission to TMLR

are both lexically varied and semantically aligned with human references. The substantial lead in CFS, the
metric most closely tied to our design goal, demonstrates that SAMAT’s explanations are not merely fluent
but are faithfully derived from the stereotype evidence and multimodal context. The poor CFS of ablations
without retrieval (0.33) or SSPM (0.52) starkly illustrates the necessity of these components for grounded
reasoning.

Synergy of Components: The explanation generator benefits from a synergistic input:
SSPM-Refined Tokens: Provide a representation enriched with stereotype-salient features.
Fidelity-Retrieved Evidence (Ry): Offers concrete, culturally contextualized premise for the explanation.

SMCA Attention Traces ({(«)): Informs the generator about which multimodal interactions were salient
for the decision. This tripartite conditioning moves beyond simple “prompting with evidence” and enables
deeply integrated, context-aware generation.

What Ablations Reveal:

e Removing retrieval collapses CFS to 0.33: explanations lose their grounding, defaulting to literal or
generic interpretations.

e Removing SSPM reduces stereotype-specificity: explanations mention harm but misidentify the
underlying mechanism.

e Combining SSPM + retrieval without SMCA still improves semantic metrics but loses multimodal
nuance, especially on sarcasm or visual irony examples.

Qualitative Trends: SAMAT’s explanations differ from baselines in three notable ways:

REAN1Y

1. They explicitly name the stereotype (e.g., “domestic incompetence,” “performative leadership dis-

missal”) rather than vaguely describing the meme.

2. They reference evidence from retrieval (e.g., “similar euphemistic framings appear in...”), which
improves interpretability for human moderators.

3. They correctly reason about multimodal contrast, especially in ironic or sarcastic memes where
harmful meaning emerges only from the interplay of image and text.

6.4 Human Evaluation

To validate the real-world utility of SAMAT’s explanations, we conducted a expert human evaluation (Ta-
ble. On the critical dimension of Faithfulness, SAMAT scored 4.3/5, significantly higher than all baselines.
Experts noted that SAMAT’s explanations consistently referenced specific stereotype mechanisms and mul-
timodal cues, avoiding the vague, moralizing language common in MLLM outputs. The high Stereotype
Accuracy (4.4/5) confirms that the model correctly identifies the nuanced social frame of the harm. These
scores provide strong evidence that SAMAT delivers on its promise of actionable interpretability for human
moderators.

6.5 Comprehensive Ablation Study

Table [§] presents a systematic ablation of SAMAT’s core components. The results provide clear causal
evidence for the role of each design choice.

Critical Role of SSPM Orthonormality: Replacing the orthonormal SSPM with a standard MLP projection
causes drops in all metrics, particularly CFS (-0.13) and SAS (-0.14). This demonstrates that the structured,
low-rank geometry is not merely a representational convenience but is essential for maintaining separable,
interpretable stereotype clusters. The orthonormality constraint acts as a regularizer, preventing subspace
collapse and ensuring stable retrieval.

14
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Table 7: Human evaluation results (1-5).

Model Faithfulness Stereotype Accuracy Clarity
LLaVA-1.5 2.8 2.6 2.9
Qwen-VL 3.0 2.7 3.1
Retrieval-only prompting 3.6 3.8 3.7
SAMAT (no SSPM) 3.8 3.9 3.8
SAMAT (full) 4.3 4.4 4.2

Table 8: Ablation results on WBMS and MEE.

Variant Macro-F1 ECE CFS SAS
SAMAT (full) 88.1 0.049 0.68 0.78
No SSPM projection 85.0 0.067 0.49  0.59
SSPM w/o orthogonality 85.8 0.062 0.53 0.62
Replace SSPM by MLP 86.3 0.058 0.55 0.64
Cosine retrieval 86.0 0.060 0.56 0.61
Random retrieval 82.7 0.091 0.29 0.16
No retrieval (pure SMCA) 84.8 0.071  0.34 -

No faithfulness loss 87.5 0.0563 047 0.77
No attention traces 87.4 0.052 0.50 0.76
Prompt-only explanation 86.9 0.057 048 0.73

Necessity of Differentiable Fidelity Retrieval: Using simple cosine similarity for retrieval degrades perfor-
mance, confirming that the differentiable posterior over the candidate set is key for aligning the retrieval
process with the end-to-end learning objective. Random retrieval serves as a stark control, causing catas-
trophic failure and highlighting that the system’s performance is contingent on receiving relevant evidence.

Importance of Faithfulness Supervision: While removing the faithfulness loss Ly,itn has a minor impact
on classification (Macro-F1 -0.6), it devastates explanation quality (CFS -0.21). This underscores that
classification accuracy and explanation faithfulness are distinct objectives; explicit supervision is required to
tether generated text to the evidential grounding.

6.6 Ablation Study

We ablate SSPM, retrieval, attention modulation, and faithfulness supervision. Results are shown in Table[§]

6.7 Qualitative Analysis and Failure Modes

A qualitative analysis reveals SAMAT’s strength in interpreting nuanced harm. For instance, for a meme
depicting a woman confidently speaking in a boardroom with the sarcastic caption “Look who decided to
lead today,” SAMAT correctly retrieves rationales about “performative leadership dismissal,” identifies the
sarcasm mechanism, and generates an explanation noting the visual-textual irony used to trivialize female
authority. Baselines often misclassify this as generic “leadership” content or produce literal explanations.

Remaining Challenges: SAMAT’s primary failure modes occur in two scenarios: (1) Extremely sparse or
ambiguous cues (e.g., a one-word caption with a generic image), where insufficient signal exists for subspace
projection or retrieval, and (2) Culturally niche stereotypes not well-represented in the Rationale Bank,
leading to retrieval of mechanically similar but contextually incorrect evidence. These limitations underscore
the model’s dependence on the quality and coverage of its evidential knowledge base.
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Table 9: Qualitative comparison across challenging stereotype types. Green cells indicate correct
predictions; red cells denote incorrect predictions. SAMAT (RAG) demonstrates superior decoding of sar-
casm, euphemism, cultural proverbs, and cross-modal incongruity, yielding stereotype-grounded explanations

that baselines fail to produce.

Meme (Summary) Ground | LLaVA-1.5 BLIP-2 4 SAMAT SAMAT (RAG)
Truth Mistral (No-RAG)
Example 1: Implicit Kitchen Prediction: Prediction: Prediction: Prediction: Kitchen
Sarcasm Non- Working Kitchen Explanation:
misogynous Focuses on Captures Identifies sarcastic
Misses the activity, domestic belittling of women’s
sarcasm; not the stereotype domestic
provides stereotype. but competence;
literal explanation retrieved analogues
“Women need help even description. lacks cultural | reinforce this frame.
with simple meals.” IS,
Example 2: Leadershiy Misclassifies Maps to Recognizes Explanation:
Leadership as sentimental trivialization SMCA highlights
Undermining non-harmful; or emotional of authority. dismissive tone;
literal context. retrieved rationales
meeting show identical
depiction. patterns of
performative
- inclusion.
“Let her talk, it makes
her feel important.”
Example 3: Coded Shopping | Interprets Fails to Correct Explanation:
Language / “creativity” decode category but Fidelity retrieval
Dog-whistles literally. euphemism. shallow surfaces euphemistic
. reasoning. rationales mocking
overspending,
enabling correct
decoding of the
dog-whistle.
“She’s expressing her
financial creativity.”
Example 4: Visual Working | Fails to Confuses Detects ironic | Explanation:
detect irony. technical task | belittlement. SMCA resolves
WE FRE BOES NOY SPREAD OUT with mismatch between
7 domestic skilled visual action
context. and sarcastic
caption; retrieved
4 PEOPLE ARE STILL IN THE HOUSE items ShOV\T Similar
“She tried her best.” “mock—pralse”
mechanisms.
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Table 10: Additional Qualitative comparison across challenging stereotype types. Green cells in-
dicate correct predictions; red cells denote incorrect predictions. SAMAT (RAG) demonstrates superior de-
coding of sarcasm, euphemism, cultural proverbs, and cross-modal incongruity, yielding stereotype-grounded

explanations that baselines fail to produce.

Meme (Summary) Ground | LLaVA-1.5 BLIP-2 + SAMAT SAMAT (RAG)
Truth Mistral (No-RAG)
Example 5: Cultural Kitchen Maps to Interprets as Frames Explanation:
Proverbs _ / Tradi- | unrelated work commu- | silence as Retrieved rationales
tion domains. nication. control. contain culturally
similar proverb-like
statements tied to
obedience norms.
SSPM amplifies
“A quiet wife is a stereotyped
blessing.” linguistic cues.
Example 6: Working | Interprets Fails to link Recognizes Explanation:
Multimodal caption visual incongruity SMCA identifies the
Incongruity literally as competence but lacks rich | contrast between
‘ ‘ praise. to sarcastic explanation. confident tool use
text. and sarcastic
caption; retrieved
analogues provide
context for
“Look at her, such a “mock-prals'e”
natural engineer.” stereo'types m .
technical domains.

6.8 Synthesis and Broader Implications

The results collectively demonstrate that SAMAT advances the state of the art in interpretable multimodal
fusion. Its gains are not incidental but are architecturally grounded in a coherent framework that explicitly
models stereotype geometry, incorporates external cultural knowledge, and enforces faithfulness between
evidence and explanation.

Theoretical Contribution: SAMAT provides a blueprint for moving beyond black-box fusion. By factorizing
the problem into subspace learning, evidential retrieval, and modulated attention, it offers a principled
alternative to simply scaling up model parameters. The strong correlation between retrieval fidelity (SAS)
and explanation faithfulness (CFS) offers a quantifiable design principle for future interpretable systems: the
quality of external grounding dictates the ceiling of explanatory fidelity.

Practical Implications for Moderation: For content moderation, SAMAT shifts the paradigm from mere
classification to interpretable assessment. The stereotype-grounded explanations provide human reviewers
with actionable rationale, reducing cognitive load and enabling more consistent, auditable decisions. This
directly supports the development of accountable, human-in-the-loop AI systems aligned with ethical AT
principles and Sustainable Development Goals (SDG 5, SDG 16).

Future Work: Immediate extensions include expanding the cultural scope of the Rationale Bank, exploring
dynamic updates to the stereotype subspace, and integrating user feedback to iteratively refine explanation
faithfulness. The SAMAT framework is broadly applicable to other domains requiring nuanced, culturally-
aware interpretation of multimodal content, such as detecting propaganda, hate speech, or misleading ad-
vertising.
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6.9 Qualitative Analysis

Qualitative examples in Table [ show SAMAT consistently grounds its explanations in culturally relevant
rationales, correctly identifying sarcasm, coded language, visual irony, and proverb-based stereotypes. We
conduct a detailed qualitative evaluation to examine how SAMAT interprets memes that rely on sarcasm,
euphemism, culturally coded stereotypes, and visual-textual incongruity. These examples stress-test compo-
nents of the SAMAT architecture, including the Stereotype Subspace Projection Module (SSPM), fidelity-
based retrieval, and the Stereotype-Modulated Cross-Attention (SMCA) fusion operator. Table |§| presents
representative cases where these mechanisms are critical for accurate classification and grounded explanation.

6.10 Responsible Deployment Considerations

Deploying SAMAT in real-world moderation systems necessitates careful safeguards:

e Human-in-the-Loop Mandate: SAMAT must function as a decision-support tool, with final
authority residing with human moderators who can contextualize its explanations.

e Cultural Validation: The Rationale Bank and model performance must be validated for specific
cultural contexts prior to deployment to avoid misinterpretation of localized cues.

o Explanation Transparency: All SAMAT outputs must be accompanied by its generated expla-
nation and, ideally, the top retrieved rationales to ensure full traceability.

e Regular Auditing: The stereotype subspace and Rationale Bank should undergo periodic bias
and relevance audits to mitigate representational drift or reinforcement of harmful associations.

e Uncertainty Escalation: Predictions with low confidence or high calibration error should be
flagged for expert human review.

By adhering to these guidelines, SAMAT can be deployed as a force-multiplying tool that enhances human
judgment while maintaining essential accountability.

7 Conclusion

In this work, we presented the Stereotype-Aware Multimodal Alignment Transformer (SAMAT), a novel
framework for interpretable detection of implicit harmful content in multimodal memes. SAMAT addresses
the core information fusion challenge of this domain, where meaning and harm emerge not from individual
modalities but from their interaction within culturally learned stereotype structures. The architecture in-
tegrates three principled components: a Stereotype Subspace Projection Module (SSPM) that restructures
multimodal representations into a low-rank, discriminative geometry; a fidelity-based retrieval mechanism
that grounds reasoning in a curated bank of stereotype exemplars; and a Stereotype-Modulated Cross-
Attention (SMCA) block that explicitly conditions fusion on this retrieved evidence. Extensive experiments
on the WBMS and MEE benchmarks demonstrate that SAMAT establishes a new state-of-the-art in both
classification accuracy and explanation faithfulness. Crucially, systematic ablations confirm that these gains
are not artifacts of increased model capacity but are directly attributable to the structured interaction be-
tween learned stereotype geometry and evidential priors. SAMAT’s explanations are demonstrably more
faithful, culturally contextualized, and less prone to hallucination than those from fine-tuned MLLMs or
retrieval-augmented baselines, as validated by both automatic metrics and expert human evaluation. This
work makes a significant contribution towards interpretable and accountable multimodal AI. By explic-
itly factorizing the reasoning process into projection, retrieval, and evidence-conditioned fusion, SAMAT
provides a transparent decision pathway from input to explanation. This design directly supports human-in-
the-loop moderation systems, offering auditors and moderators not just a prediction but a traceable rationale
grounded in identifiable stereotype mechanisms. Furthermore, SAMAT aligns with critical societal needs,
contributing to Sustainable Development Goal 5 (Gender Equality) by providing a tool to identify and mit-
igate gender-based online harms, and to SDG 16 (Peace, Justice and Strong Institutions) by promoting
algorithmic transparency and accountability in content governance.
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Limitations and Future Work: The current framework is bounded by the cultural scope of its Rationale Bank,
which primarily reflects Western, Indian, and Middle Eastern contexts. Future research will focus on (1) ex-
panding the cultural and linguistic diversity of the knowledge base, (2) developing methods for continual and
adaptive learning of the stereotype subspace to handle evolving online discourses, and (3) optimizing the sys-
tem for low-latency deployment in real-world moderation pipelines. Investigating the transfer of the SAMAT
fusion paradigm to other high-stakes domains requiring nuanced, context-aware interpretation, such as pro-
paganda or hate speech detection, presents a promising research direction. In summary, SAMAT advances
the field of multimodal information fusion by demonstrating that principled, stereotype-aware structuring of
the representation and fusion process is key to achieving robustness, interpretability, and cultural grounding,
objectives that are essential for deploying trustworthy Al in socially impactful applications.

Limitations

A rigorous evaluation of SAMAT also requires a clear discussion of its constraints and potential failure modes.
While the framework demonstrates strong performance, several important limitations warrant consideration
for both scholarly understanding and responsible deployment.

Cultural and Contextual Scope: Harmful stereotypes are deeply embedded in cultural and linguistic
contexts. Although the WBMS and MEE datasets capture a diverse set of stereotypes from prominent online
ecosystems (Western, Indian, Middle Eastern), they cannot fully represent global diversity. Consequently,
SAMAT may underperform on memes that rely on niche cultural references, region-specific idioms, or emerg-
ing forms of humor and sarcasm not reflected in the training data or the Rationale Bank. The model is
best viewed as a methodological proof-of-concept for stereotype-aware fusion; deployment in new cultural
contexts would require curating a correspondingly relevant evidence base and potentially fine-tuning the
stereotype subspace.

Sensitivity and Potential Over-Attribution: The Stereotype Subspace Projection Module (SSPM)
is designed to amplify subtle, stereotype-relevant feature directions. While this is essential for detecting
implicit harm, it may, in rare cases, lead to over-attribution, assigning harmful intent to content that is
ambiguous, satirical in a non-harmful manner, or relies on coincidental correlation between image and text.
This risk is heightened for memes with high visual-textual congruence but benign intent. Future iterations
could incorporate explicit calibration layers or adversarial debiasing during subspace learning to improve the
model’s discrimination between malicious stereotyping and benign correlation.

Dependence on Retrieval Quality and Coverage: SAMAT’s explanatory faithfulness is intrinsically
linked to the quality and relevance of retrieved evidence from the Rationale Bank. In cases of poor retrieval,
due to an out-of-distribution meme or a gap in the bank’s coverage, the model may generate explanations
grounded in incorrect or superficially similar rationales, potentially propagating bias or misleading narratives.
Mitigating this requires continuous validation and expansion of the knowledge base. Techniques such as
uncertainty-aware retrieval rejection (e.g., thresholding on posterior entropy) or multi-hop retrieval could
improve robustness.

Limited Generalization to Other Harm Domains: SAMAT is explicitly designed and evaluated for
detecting misogynistic stereotypes. The structure of its subspace and the content of its Rationale Bank are
specialized for this domain. Generalization to other forms of harmful speech (e.g., racism, xenophobia, homo-
phobia) is non-trivial, as the stereotype structures, cultural priors, and multimodal cues differ substantially.
Extending the framework would require learning domain-specific subspaces and curating corresponding evi-
dence banks, representing a significant but worthwhile direction for future work.

Computational Considerations: While SAMAT is designed for efficiency relative to monolithic MLLMs,
its retrieval mechanism and additional projection layers introduce overhead. The FAISS-based retrieval,
although optimized, adds a latency component. Scaling the Rationale Bank to millions of entries or operating
in real-time streaming environments would require further engineering optimizations, such as hierarchical
retrieval indices or learned index structures. Furthermore, the current architecture does not support online
learning; updating the stereotype subspace or Rationale Bank requires retraining.
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Ethical and Deployment Considerations: Finally, SAMAT does not autonomously resolve the ethical
complexities of content moderation. Its outputs, even when faithful and accurate, require human inter-
pretation and contextual judgment. Deploying such a system necessitates clear governance protocols for
auditing the Rationale Bank, monitoring for emerging stereotypes, and establishing escalation paths for
low-confidence or high-stakes predictions. The tool is designed to augment, not replace, human moderators.

Ethical Considerations

Risk of Misclassification and Social Harm: Incorrectly labeling benign content as misogynous, or
failing to detect harmful content, may produce real-world consequences, such as unfairly penalizing users or
allowing harmful stereotypes to propagate. Deployments must include human oversight, appeal mechanisms,
and uncertainty reporting.

Bias Reinforcement Through Training Data: The MEE corpus, though carefully curated, reflects
existing cultural biases. A model trained on such data may inadvertently internalize or amplify these biases,
especially if deployed in moderation pipelines. Continuous dataset auditing and community-based evaluation
are essential to mitigate dataset-induced harms.

Interpretation Risk When Explanations Reference Stereotypes: Although explanations are required
to cite the underlying stereotype, this poses ethical challenges: repeating harmful stereotypes may re-expose
users to offensive content. Systems integrating SAMAT must present explanations responsibly, include
warnings, and ensure that generated text is not repurposed maliciously.

Privacy and Safety in Retrieval-Augmented Systems: Because RAG mechanisms rely on stored
examples, inappropriate indexing or retrieval could inadvertently surface sensitive or harmful content. All
retrieved examples in this work are synthetic or anonymized; however, any real-world deployment must
ensure compliance with data protection and privacy norms.

Risk of Over-Reliance on Automated Judgments: Despite strong performance, SAMAT is not a
replacement for human analysis, particularly in legal, educational, or policy-making contexts. Automated
systems should assist, not replace, human oversight when interpreting culturally sensitive or morally conse-
quential content.

Frequently Asked Questions (FAQ)

Why is Retrieval-Augmented Generation (RAG) necessary for explanations?

Implicit misogyny frequently relies on cultural context, idioms, or stereotype patterns not explicitly present
in the input meme. RAG ensures the explanation is anchored in real, human-authored rationales from the
MEE corpus, reducing hallucination and improving interpretability.

How robust is SAMAT across seeds and dataset variations?

Across five random seeds, SAMAT exhibits a variance of +0.4 Macro-F1 for classification and £0.03 for
BERTScore-F1 in explanation quality. This indicates strong robustness to initialization. We further confirm
significance using bootstrap testing (p < 0.01).

What are the main failure modes of SAMAT?

SAMAT occasionally over-attributes subtle cues when textual and visual signals are highly correlated. Cul-
turally dependent proverbs or idioms may also be misclassified due to sociocultural ambiguity. These limi-
tations are discussed in the qualitative error analysis section.

How generalizable is the framework beyond misogyny detection?

The architecture is domain-agnostic. Any task requiring multimodal reasoning, implicit bias detection, or
explanation generation, such as political misinformation, hate speech, or sentiment attribution, can benefit
from QEAF and QIR with minimal adaptation.
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Why evaluate with both automatic metrics and human studies?

Automatic metrics capture fluency and semantic proximity but fail to measure causal grounding or
stereotype-awareness. Human evaluation provides a complementary assessment of interpretability, socio-
cultural accuracy, and grounding alignmen, critical dimensions for harmful content analysis.
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