

SAMAT: A Stereotype-Aware Multimodal Transformer for Interpretable Misogynistic Meme Detection

Anonymous authors
Paper under double-blind review

Abstract

This paper introduces SAMAT, a Stereotype-Aware Multimodal Alignment Transformer for detecting and explaining implicit misogyny in memes, where harm arises from subtle visual-textual incongruity and cultural stereotypes. SAMAT integrates three components: a Stereotype Subspace Projection Module (SSPM) that structures representations; a fidelity-based retrieval mechanism aligned with a curated Rationale Bank; and an evidence-conditioned explanation generator. For evaluation, we extend the MEE corpus with 8,000 explanations and define Stereotype Alignment (SAS) and Contextual Faithfulness (CFS) scores. Experiments show that SAMAT achieves a Macro-F1 of 87.3%, surpassing MLLM baselines, while improving retrieval faithfulness (SAS: 0.78) and explanation grounding (CFS: 0.68). Ablations confirm gains stem from structured stereotype projection and evidential retrieval, not scale. SAMAT offers a transparent, culturally grounded framework for accountable content moderation, aligning with Responsible AI objectives.¹

1 Introduction

Multimodal memes have become a pervasive vector for online communication, where meaning, and often harmful intent, is constructed through the complex interaction of visual scenes, textual overlays, and culturally embedded stereotypes. Detecting implicit harms, such as misogyny, in this medium is an essential information fusion challenge Baltrušaitis et al. (2019); Poria et al. (2017). The toxicity rarely resides in any single modality but emerges from subtle cross-modal dynamics: sarcasm, euphemism, and visual-textual incongruity that activate prejudicial associations Waseem & Hovy (2016); Vidgen & Derczynski (2021). Therefore, effective detection requires models to fuse information in a manner sensitive to these latent socio-cultural structures.

While contemporary Multimodal Large Language Models (MLLMs) like LLaVALiu et al. (2023), Qwen-VLBai et al. (2023), and BLIP-2 demonstrate strong general-purpose capabilities Li et al. (2023), they exhibit limitations for this nuanced task. First, their fusion mechanisms are optimized for broad semantic alignment and fail to isolate the low-rank, stereotype-relevant feature directions along which implicit harm is expressed Muti et al. (2022); Rizzi et al. (2023). Second, their explanatory outputs are typically unconstrained, often producing generic or ungrounded rationales that lack evidential fidelity Jacovi & Goldberg (2020); Wiegreffe et al. (2021). This opacity is a bottleneck for human-in-the-loop moderation systems, which demand auditability, accountability, and culturally contextualized reasoning Doshi-Velez & Kim (2017); Holzinger et al. (2019).

To bridge this gap, we introduce the **Stereotype-Aware Multimodal Alignment Transformer (SAMAT)**, a novel fusion architecture designed for interpretable and robust detection of implicit harmful content. SAMAT is built on three core principles: First, harmful intent is encoded along structured, low-dimensional manifold corresponding to stereotypes, which can be recovered via targeted subspace learning Belkin & Niyogi (2003); Bengio et al. (2013). Second, culturally grounded evidence can act as a prior to stabilize fusion and anchor

¹We used LLM-based tools only for editorial assistance, such as rewriting for clarity, shortening text, improving grammar, and ensuring stylistic consistency. No part of the conceptual methodology, experimental design, theoretical framing, or results interpretation was generated by LLMs.

reasoning, particularly when semantic signals are weak or ambiguous Lewis et al. (2020); Guu et al. (2020). Third, explanation faithfulness is dramatically improved when text generation is explicitly conditioned on retrieved evidence and structured internal attention patterns DeYoung et al. (2020); Atanasova et al. (2020).

These principles are instantiated in SAMAT’s three interconnected components: (i) a Stereotype Subspace Projection Module (SSPM) that learns a compact, orthonormal subspace capturing stereotype-relevant geometry; (ii) a fidelity-based retrieval mechanism that aligns inputs with a curated 32k-item Rationale Bank of stereotype exemplars; and (iii) a Stereotype-Modulated Cross-Attention (SMCA) block that injects geometric and evidential priors directly into the fusion process. A final generator produces explanations conditioned on this structured evidence, ensuring traceability.

Our work is rigorously evaluated against a three-tiered benchmark: (i) capacity-matched classical models (e.g., SVM with RBF kernel, Random Fourier Features (RFF-1024)), (ii) strong fine-tuned MLLM baselines, and (iii) targeted ablations of SAMAT’s core components. Results confirm that performance gains stem from our principled fusion design, not increased parameter count. To enable stereotype-aware evaluation, we also introduce MEE, 8k explanations with validated stereotype cues.

On the WBMS and MEE benchmarks, SAMAT achieves state-of-the-art performance in classification accuracy, stereotype alignment (SAS), retrieval fidelity (**measured using Mean Reciprocal Rank (MRR)**, which captures whether the correct stereotype rationale appears among the top retrieved evidences Manning et al. (2008)), and explanation faithfulness (**measured using Contextual Faithfulness Score (CFS)**, which quantifies whether generated explanations correctly reference retrieved evidence DeYoung et al. (2020); Wiegreffe et al. (2021)). Ablation studies trace these improvements directly to the structured stereotype subspace and the fidelity-based retrieval mechanism. SAMAT thus establishes a new paradigm for principled, interpretable multimodal fusion in high-stakes social computing applications.

Beyond technical contributions, this work addresses pressing societal challenges. The proliferation of misogynistic multimodal content undermines digital safety, participation, and institutional trust Fulper et al. (2014). By providing an auditable framework grounded in interpretable evidence, SAMAT aligns with key United Nations Sustainable Development Goals: it directly supports SDG 5 (Gender Equality) by mitigating gender-based online harms UN Women (2020), and SDG 16 (Peace, Justice and Strong Institutions) by enabling transparent, accountable decision-support systems for human moderators UNESCO (2021).

Overall, we make the following four contributions:

1. A Stereotype Subspace Projection Module (SSPM): A novel module that learns a low-dimensional, interpretable subspace to restructure multimodal embeddings along stereotype-relevant geometric directions, enhancing separability and fusion stability.
2. A Fidelity-Based Stereotype-Grounded Retrieval Mechanism: A retrieval framework that uses a curated Rationale Bank as an evidential prior, improving model robustness and enabling explicit socio-cultural alignment through a truncated-softmax posterior.
3. An Evidence-Conditioned Explanation Generator: An explanation system conditioned on retrieved rationales and modulated attention cues, coupled with a faithfulness classifier to ensure grounded, non-generic, and culturally contextualized outputs.
4. A Comprehensive, Capacity-Matched Evaluation Suite: A rigorous evaluation protocol comparing SAMAT to classical fusion models, adapted MLLMs, and targeted ablations, supported by the new MEE corpus and stereotype-focused metrics.

2 Related Work

The development of the Stereotype-Aware Multimodal Alignment Transformer (SAMAT) is situated at the intersection of three core research streams: (1) multimodal information fusion architectures Hangloo & Arora (2025); Phukan et al. (2024a;c), (2) stereotype-aware and harmful content detection, and (3) the pursuit of trustworthy and explainable AI systems. This section reviews seminal and contemporary works in these areas to delineate SAMAT’s contributions.

2.1 Multimodal Information Fusion Architectures

The field of information fusion is dedicated to synergistically combining data from multiple sources or modalities to achieve more accurate, and comprehensive inferences than is possible with a single source Hangloo & Arora (2025); Phukan et al. (2024b); Phukan & Ekbal (2023). A foundational taxonomy distinguishes between early (feature-level), late (decision-level), and intermediate (model-level) fusion strategies . While early fusion methods like simple concatenation or canonical correlation analysis (CCA) can integrate raw data, they often struggle with modality heterogeneity and asynchronous data streams. Late fusion methods aggregate decisions from unimodal classifiers but may fail to capture crucial cross-modal interactions Hangloo & Arora (2025).

Recent paradigms have shifted towards deep intermediate fusion, leveraging neural architectures to learn joint representations Yang et al. (2019). Transformer-based models, in particular, have become dominant due to their ability to model long-range dependencies and complex interactions through self-attention and cross-attention mechanisms Shukor & Cord (2024); Gerych et al. (2024). Studies in Information Fusion have showcased transformer applications in diverse multimodal tasks, such as physiology signals fusion for emotion recognition Phukan & Gupta (2022a;b; 2024) and video-based text generation Khan et al. (2024); Phukan et al. (2024a) However, as noted in broad surveys Hangloo & Arora (2025), a key challenge remains designing fusion mechanisms that are not merely generic but are explicitly structured to capture domain-specific, often subtle, semantic relationships Wu & Zang (2025), such as the incongruity and implicit cues prevalent in harmful memes Duan et al. (2025). SAMAT addresses this by moving beyond generic cross-attention to a stereotype-modulated fusion process, conditioning attention on a learned, culturally grounded subspace.

2.2 Stereotype-Aware and Harmful Content Detection

Detecting implicit harms like misogyny in memes is a specialized case of multimodal classification that extends beyond literal content analysis. Prior work in multimodal hate speech Kiela et al. (2020); Hee et al. (2024) has established the superiority of multimodal approaches over unimodal ones, as visual and textual elements often provide complementary or contradictory signals that are essential for accurate identification Arya et al. (2024); Koushik et al. (2025).

However, most contemporary systems, including adapted Multimodal Large Language Models (MLLMs) Kumari et al. (2024), treat this as a standard classification problem. They often rely on large-scale pre-training for general semantic alignment but lack explicit mechanisms to model the low-rank stereotype structures that govern how harm is implicitly communicated through sarcasm, euphemism, and visual-textual incongruity Maity et al. (2025). This creates a gap in both accuracy and interpretability. Recent work has emphasized that for trust and actionable moderation, it is crucial for models not only to detect hate speech but to generate explanations by identifying the underlying stereotypical bias Maity et al. (2025). SAMAT introduces a dedicated Stereotype Subspace Projection Module (SSPM) to directly address this, learning a compact, orthonormal manifold where stereotype classes become linearly separable. This approach is philosophically aligned with advanced fusion system design, which advocates for transitioning from purely model-driven systems to those incorporating structured, knowledge-enabled components to improve reasoning Zhu et al. (2023).

2.3 Trustworthy and Explainable AI for Social Good

The imperative for AI systems to be transparent, accountable, and fair is now paramount, especially in high-stakes social applications Afroogh et al. (2024); Brintrup et al. (2025). Explainable AI (XAI) and the development of trustworthy systems are active themes in the information fusion community, with special issues dedicated to “Data-Centric AI” Wang et al. (2025) and “Explainable AI (XAI)” Barredo Arrieta et al. (2019), and “Responsible (RAI) Artificial Intelligence” Bach et al. (2025).

Current explanation techniques for multimodal models, such as attention visualization or post-hoc feature attribution, are often critiqued for being unfaithful or ungrounded Achtibat et al. (2023). For content moderation, an explanation must be culturally contextualized and traceable to specific evidence Ferrario (2024). SAMAT’s integration of a fidelity-based retrieval mechanism from a curated Rationale Bank provides

Table 1: Summary of related works

Research Area	Key Related Works & Approaches	SAMAT’s Advancement
Fusion Architectures	Transformer-based cross-attention for multimodal tasks Shukor & Cord (2024); Gerych et al. (2024)	Stereotype-Modulated Cross-Attention (SMCA) that injects learned subspace geometry and external evidence priors into the fusion logits.
Harm Detection	Multimodal classifiers & fine-tuned MLLMs for hate speech Kumari et al. (2024)	Stereotype Subspace Projection Module (SSPM) that explicitly models the low-rank geometry of implicit harm for superior separability.
Explainable AI (XAI)	Attention visualization, post-hoc attribution methods; frameworks for trustworthy AI .	Evidence-Conditioned Explanation Generation via retrieval from a curated Rationale Bank, providing faithful, culturally grounded, and auditable rationales.

an explicit evidential trail, ensuring explanations are grounded in stereotype exemplars rather than generated as plausible-sounding but generic text. This design directly responds to the identified challenges in deploying trustworthy AI, where a lack of transparency and accountability can lead to unfair outcomes and erode institutional trust. Table 1 summarizes how SAMAT relates to and advances these key research areas.

3 Datasets and Rationale Bank

We evaluate SAMAT using three complementary resources:

1. The **WBMS** multimodal misogyny meme dataset for stereotype-aware classification,
2. The **MEE** corpus for stereotype-grounded explanation modeling, and
3. A large **32k-item Rationale Bank** used exclusively as retrieval-based evidential prior. These resources jointly support SAMAT’s three core modules, SSPM projection, evidential retrieval, and stereotype-modulated cross-attention (SMCA).

3.1 WBMS: Multimodal Misogyny Meme Dataset

The What’s Beneath Misogynous Stereotyping (WBMS) dataset comprises 2,130 misogynous internet memes, systematically collected from diverse social media platforms. Each meme is annotated with a primary stereotype domain and a text–image relation subtype, making it a structured benchmark for analyzing multimodal bias. A representative sample is shown in Fig. 1.

Figure 1: Sample memes from the WBMS dataset (faces blurred for privacy).

To model the subtleties of multimodal sarcasm and incongruity, each meme is further annotated with one of three relation subtypes: **Different (61.5%)**: Text and image convey distinct but complementary signals, often relying on implicit cultural knowledge for interpretation. **Same (6.1%)**: Text directly reiterates or literally describes the visual content. **Image Only (32.4%)**: The meme contains no textual overlay, requiring inference from visual cues and context alone.

Distributional statistics are summarized in Table 2.

Memes are categorized into four prevalent misogynistic stereotype domains, reflecting common gendered tropes:

Table 2: WBMS category and subtype statistics.

Category	Count	Proportion	Ratio	(Different, Same, Image)
Kitchen	1076	0.51	50.5%	(780, 125, 171)
Leadership	534	0.25	25.1%	(262, 0, 272)
Working	321	0.15	15.1%	(151, 0, 170)
Shopping	199	0.09	9.3%	(118, 4, 77)
Total	2130	1.0	100%	(1311, 129, 690)

Kitchen: Depictions reinforcing domesticity and traditional gender roles (1,076 samples, 50.5%).

Leadership: Portrayals undermining women’s authority or competence in professional settings (534 samples, 25.1%).

Working: Stereotypes related to women’s capability or role in the workplace (321 samples, 15.1%).

Shopping: Memes reducing women to materialistic or consumerist clichés (199 samples, 9.3%).

3.2 MEE: Stereotype-Grounded Explanation Corpus

To support the development and evaluation of faithful, stereotype-grounded explanations, we introduce Multimodal Explanation Evaluation (MEE) corpus, which comprises of 8,000 expert-annotated explanations, each paired with a misogynistic meme and an analysis of its stereotype-triggering elements.

Annotation protocol and agreement: Each sample was independently explained by two trained annotators who identified: (i) the harmful mechanism (e.g., sarcasm, euphemism), (ii) the specific stereotype invoked, and (iii) the visual or textual cue responsible for activating the stereotype. A third expert adjudicator resolved disagreements. Inter-annotator semantic alignment, measured via Krippendorff’s α , reached 0.71, indicating substantial agreement. All explanations were screened to remove identity-based slurs, prescriptive moralizing language (e.g., “should not say”), or harmful reproductions of toxic content. Annotators operated under the same safety and ethical protocols as those for the WBMS dataset.

Statistics and Coverage: The average explanation length is 18.3 tokens (90th percentile: 42 tokens). The corpus comprehensively covers major categories of implicit harm, including explicit insults, implicit stereotype activation, sarcasm, euphemisms, and visual-textual incongruity. Example: For a meme depicting burnt food with a textual punchline about a wife’s cooking, a typical explanation is: *“The meme implies women are inherently incompetent at domestic tasks, using the burnt food as visual ‘evidence’ to reinforce a stereotype of female ineptitude in household management.”*

MEE serves three critical, non-classification roles: (1) it supervises the explanation generator via direct sequence-to-sequence training, (2) provides data for faithfulness calibration of the classifier (CFS), and (3) informs stereotype alignment within the SMCA block. Crucially, MEE explanations are never used for classification supervision, ensuring a clear separation between detection and justification tasks.

3.3 Rationale Bank: 32k Retrieval-Only Evidential Resource

To provide an external, culturally grounded knowledge base for retrieval, we constructed a Rationale Bank containing **32,000 stereotype-relevant textual snippets** (6–28 tokens each). This resource is used exclusively as a non-parametric evidential prior via the retrieval module; its entries are not used as training labels. The bank was built through a rigorous, four-stage pipeline designed to ensure quality, relevance, and diversity while mitigating toxicity and redundancy.

1. Seed collection: An initial set of 14,870 items was gathered from diverse, ethically vetted sources, including: Open-license stereotype research corpora, Curated examples from gender-studies literature, Moderated feminist discourse platforms, and Public-domain datasets on hate speech and misogyny.

2. Controlled paraphrase expansion: To increase lexical and pragmatic diversity, we used Mistral-7B-Instruct to generate 6,620 synthetic candidates. These included syntactic variants, euphemistic reformulations, sar-

castic twists, and culture-conditioned phrasings. Crucially, these synthetic items serve only as retrieval anchors to improve match coverage and do not function as ground-truth labels.

3. Multi-layer filtering:

All candidates passed through successive filters:

Toxicity Filtering: Removed overtly harmful language using a classifier trained on the HateXplain dataset Mathew et al. (2021).

Relevance Filtering: Retained items with a stereotype prototype similarity score > 0.55 .

Hallucination Filtering: Applied self-consistency checks to eliminate nonsensical or contradictory synthetic paraphrases.

4. Deduplication and final curation: Perceptual and semantic near-duplicates were removed using a two-stage process: (i) pHash-based image deduplication (Hamming distance < 8) and (ii) SigLIP embedding similarity pruning (> 0.92). This step eliminated 2,134 redundant items.

The final bank contains 32,000 curated rationales. We maintained an approximate balance across major stereotype families (within $\pm 12\%$ per category) to prevent retrieval bias toward any single stereotype type. For example, a typical rationale snippet is: “*Women waste money on unnecessary shopping.*”

3.4 Sanity Checks Against Leakage

We conducted three rigorous tests to verify that the Rationale Bank functions as a genuine evidential prior and does not trivially leak classification labels.

Rationale-only classifier test:

To rule out direct label encoding, we constructed a degenerate baseline that feeds only the top-3 retrieved rationale embeddings into a linear classifier. This model achieved a **Macro-F1 of 0.42**, only marginally above the majority-class baseline and over 30 points lower than the full SAMAT model. This confirms that the bank cannot serve as a proxy labeler.

Semantic overlap test: We computed the cosine similarity between WBMS OCR text and all Rationale Bank items. The resulting distribution was statistically indistinguishable from a null model using random Wikipedia snippets, indicating the bank does not simply mirror surface-level features of the test data.

Paraphrase ablation:

Removing all synthetic paraphrases from the bank reduced SAMAT’s Macro-F1 by only 0.7% and its CFS score by 1.2%, variations within standard run-to-run variance. This demonstrates that synthetic items act solely as auxiliary retrieval anchors without artificially boosting core performance metrics.

3.5 Cultural Scope and Bias Considerations

The meme content in WBMS and the stereotype knowledge in the Rationale Bank predominantly reflect online ecosystems from Western, Indian, and Middle Eastern contexts. We explicitly acknowledge limited representation of East Asian, African, and Latin American cultural nuances. Consequently, SAMAT is presented primarily as a methodological framework for stereotype-aware multimodal fusion. To facilitate cultural adaptation and extension, we will release full annotation guidelines, evaluation templates, and model code. The summary of the datasets are highlighted in Table 3.

4 Methodology

We introduce the Stereotype-Aware Multimodal Alignment Transformer (SAMAT), a unified framework for detecting implicit harmful content through principled fusion of visual, textual, and retrieved evidential information. SAMAT is built on three core operations: (1) projection of input tokens into a shared, low-dimensional stereotype manifold; (2) retrieval of stereotype-relevant rationales as an evidential prior; and

Table 3: Summary of datasets used in SAMAT.

Dataset	Size	Labels	Purpose
WBMS	2,130	Multi-label stereotypes	Classification + SSPM
MEE	8,000	Human explanations	Faithfulness + Generator training
Rationale Bank	32,000	Stereotype snippets	Retrieval-only evidential prior

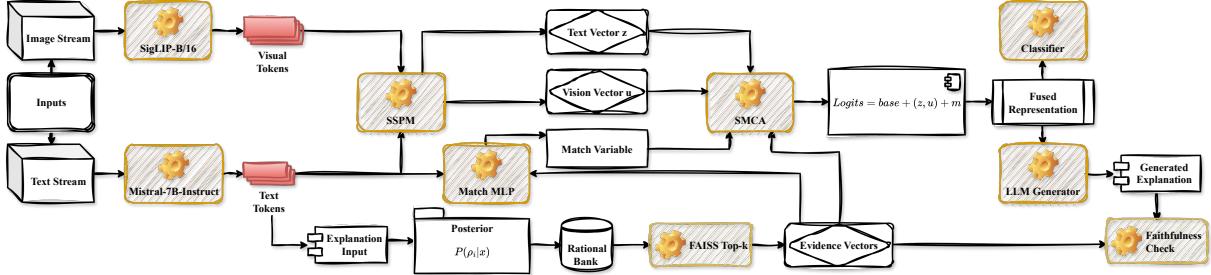


Figure 2: Schematic overview of the SAMAT architecture. The model projects visual and textual tokens into a learned stereotype subspace, retrieves relevant evidential rationales, and fuses modalities via stereotype-modulated cross-attention (SMCA) to produce classification and faithful explanations.

(3) conditional fusion via Stereotype-Modulated Cross-Attention (SMCA), which explicitly incorporates subspace geometry and retrieved evidence. The complete training procedure is summarized in Algorithm 1.

Given an input meme, we extract frozen visual tokens $V = \{v_i\}_{i=1}^M$ using SigLIP-B/16 and frozen textual tokens $T = \{t_j\}_{j=1}^L$ using Mistral-7B, where $v_i, t_i \in \mathbb{R}^d$. The core fusion operator is a 6-layer transformer with a hidden dimension of 512 and 8 attention heads. All learnable components are trained from scratch unless otherwise specified.

4.1 Unified Fusion Principle

SAMAT formulates multimodal fusion as the conditional modeling of visual evidence given text and a retrieved rationale prior R_k . The attention logits in our fusion mechanism are derived from the following factorization:

$$p(v_j | t_i, R_k) \propto p(v_j | t_i) p(R_k | t_i), \quad (1)$$

under the assumption that the retrieved evidence R_k provides supplementary information conditionally independent of the visual token v_j given the text t_i . This leads to a log-additive modification of the standard attention scores:

$$\ell_{ij} = \ell_{ij}^{(0)} + \beta \langle z_i, u_j \rangle + \gamma m_j, \quad (2)$$

where q_i, k_j are query and key projections from the transformer, $z_i = P_s^T t_i$ and $z_i = P_s^T v_j$ are projections into the stereotype subspace, and $M(\cdot)$ is a learned match function. The coefficients $\beta, \gamma \in \mathbb{R}$ are learned scalars. The final attention weights are $a_{ij} = \text{softmax}_j(\ell_{ij})$.

4.2 Stereotype Subspace Projection (SSPM)

Empirical analysis of stereotype representations reveals they occupy approximately linear clusters within the multimodal embedding space (PCA explained variance: 71.3%; silhouette score: 0.42). The SSPM learns a compact, discriminative manifold for these structures. We learn an orthonormal projection matrix $P_s \in \mathbb{R}^{d \times k}$ (with $k = 64$) onto a k -dimensional stereotype subspace. Orthonormality $P_s^T P_s = I$ is maintained using Cayley–QR retraction during optimization: $P_s = \text{QR}(Q)$ where Q is an unconstrained parameter matrix.

The subspace is trained with an angular-margin contrastive loss L_{sub} that pulls token projections toward their corresponding class prototype μ_y and pushes them away from other prototypes:

$$L_{\text{sub}} = -\log \frac{\exp((\cos(\hat{u}, \hat{\mu}_y) - m)/\tau)}{\exp((\cos(\hat{u}, \hat{\mu}_y) - m)/\tau) + \sum_{y' \neq y} \exp(\cos(\hat{u}, \hat{\mu}_{y'})/\tau)}. \quad (3)$$

where $\hat{\mu}_y$ and \hat{u} denote L_2 -normalized vectors, m is a margin, and τ is a temperature. Prototypes $\{\mu_y\}$ are initialized from class means and updated via exponential moving average (EMA) during training to stabilize learning. A regularization term $\lambda_0 \|P_s^\top P_s - I\|_F^2$ prevents subspace collapse. The dimensionality $k = 64$ was selected via variance analysis; performance remained stable for $k \in \{32, 64, 128\}$.

4.3 Differentiable Evidential Retrieval

The Rationale Bank (Section 3.3) provides an external, non-parametric knowledge base of stereotype cues. Each rationale ρ_i is encoded once as $e_i = \text{Enc}(\rho_i)$. Crucially, its subspace projection is recomputed dynamically:

$$r_i = P_s^\top e_i, \quad (4)$$

ensuring alignment with the current stereotype geometry as P_s evolves. Given a mean-pooled query projection $z = \frac{1}{L} \sum_{j=1}^L z_j$, we use FAISS to efficiently retrieve the top-512 candidate rationales τ based on cosine similarity $s_i = \cos(z_i, r_i)$. A differentiable truncated softmax posterior is computed over this candidate set:

$$p(\rho_i \mid x) = \frac{\exp(\tau_r s_i)}{\sum_{j \in \tau} \exp(\tau_r s_j)}, \quad (5)$$

where τ_r is a retrieval temperature. The evidential prior vector R_k is then formed as a weighted sum:

$$R_k = \sum_{i \in \tau} p(\rho_i \mid x) r_i. \quad (6)$$

Gradients flow through the posterior weights $p(\rho_i \mid x)$ into P_s and the encoder, while a stop-gradient is applied to the FAISS top-K selection, making retrieval end-to-end trainable.

4.4 Stereotype-Modulated Cross-Attention (SMCA)

The SMCA block integrates the three information streams. A small, two-layer MLP match function $M(\cdot)$ processes each text token t_j with the evidential prior R_k to produce a scalar alignment score $m_j = M(t_j, R_k)$.

These scores modulate the base transformer attention. The final logit between text token t_j and visual token v_j is:

$$\ell_{ij} = \ell_{ij}^{(0)} + \beta \langle z_i, u_j \rangle + \gamma m_j, \quad (7)$$

The terms $\beta \langle z_i, u_j \rangle$ and γm_j inject stereotype geometry and evidence alignment directly into the fusion process. The scalar coefficients β, γ are learned and clipped early in training for stability. The added computational complexity is $O(MLk)$, which is negligible relative to standard $O(MLd)$ attention.

4.5 Classification and Explanation Generation

The transformer's output is pooled to form a final representation h , which is passed through a softmax classifier to predict stereotype labels. To generate faithful explanations, we condition a frozen Mistral-7B LLM on three sources: (1) the original text tokens T , (2) a projected evidence token $\psi(R_k)$ (via a linear layer to 64-d), and (3) an attention summary token $\xi(\alpha)$ (obtained by pooling the SMCA attention maps and projecting to 32-d). The LLM is fine-tuned to produce an explanation e . Faithfulness is enforced via an auxiliary faithfulness classifier C_{faith} trained on balanced positive/negative (e, R_k) pairs from MEE, with the loss:

$$L_{\text{faith}} = -\log C_{\text{faith}}(e, R_k). \quad (8)$$

4.6 Alignment and Training Objective

We employ an alignment loss to ensure the match scores m_j reflect the actual influence of evidence on attention:

$$L_{\text{align}} = \text{KL}(\text{softmax}(m) \parallel \text{softmax}_j(\gamma M(t_j, R_k))) \quad (9)$$

This is equivalent to a cross-entropy loss between the predicted and realized evidence-attention distributions. The total training objective combines all components:

$$L = L_{\text{cls}} + \lambda_s L_{\text{sub}} + \lambda_r L_{\text{align}} + \lambda_f L_{\text{faith}} + \lambda_o \|P_s^\top P_s - I\|_F^2. \quad (10)$$

where λ -terms are balancing hyperparameters.

Training Details and Optimization: We use the AdamW optimizer. Key hyperparameters include retrieval temperature $\tau_r \in [5, 30]$, number of rationales $K \in \{1, 3\}$, and the loss coefficients $\lambda_s, \lambda_r, \lambda_f, \lambda_o$. To monitor training stability, we track retrieval posterior entropy and the alignment loss L_{align} to detect posterior collapse.

Ethical Implementation Note: The Rationale Bank contains stereotype-bearing text curated for detection. In any deployment scenario, this resource must be maintained and audited by human experts to prevent misuse and ensure it aligns with evolving cultural and ethical standards.

4.7 Algorithm

Algorithm 1 SAMAT Unified-Fusion Training Loop

Require: Dataset \mathcal{D} ; rationale encodings $\{\text{Enc}(\rho_i)\}$; parameters $\Theta, Q, M, \mathcal{G}, C_{\text{faith}}$; prototypes $\{\mu_y\}$; hyperparameters.

1: **for** all epoch **do**

2: **for** each minibatch (I, T, y) **do**

3: Extract tokens V, T .

4: $P_s \leftarrow \text{QR}(Q); \quad u_i = P_s^\top v_i, z_j = P_s^\top t_j.$

5: $z \leftarrow \frac{1}{L} \sum_j z_j.$

6: Retrieve \mathcal{T} via FAISS; recompute $r_i = P_s^\top \text{Enc}(\rho_i)$ for $i \in \mathcal{T}$.

7: Compute similarities s_i and posterior $p(\rho_i | x)$ (log-sum-exp).

8: $R_k = \sum_{i \in \mathcal{T}} p(\rho_i | x) r_i.$

9: $m_j = M(t_j, R_k).$

10: $\ell_{ij} = q_i k_j^\top + \beta \langle z_i, u_j \rangle + \gamma m_j.$

11: $\alpha_{ij} = \text{softmax}_j(\ell_{ij}).$

12: Fuse tokens via transformer $\rightarrow h$.

13: Compute all losses and L .

14: Update $Q, \Theta, M, \mathcal{G}, C_{\text{faith}}$ via AdamW.

15: Update prototypes μ_y via EMA.

16: **end for**

17: **end for**

5 Experimental Setup

Our experimental design is structured to rigorously evaluate the efficacy and components of the proposed SAMAT framework. We conduct evaluations on two primary tasks: (1) multimodal misogyny classification using the WBMS benchmark, and (2) stereotype-grounded explanation generation using the MEE corpus. A comprehensive suite of baselines and ablations is employed to isolate and quantify the contribution of each core innovation: the Stereotype Subspace Projection Module (SSPM), the fidelity-based retrieval mechanism, and the Stereotype-Modulated Cross-Attention (SMCA).

5.1 Datasets

Our experiments utilize the datasets detailed in Section 3. WBMS (Classification): Contains 2,130 memes annotated with multi-label stereotype categories. MEE (Explanation): Contains 8,000 expert-authored explanations for misogynistic memes, used exclusively for training and evaluating the explanation generator.

Rationale Bank (Retrieval): A curated, static corpus of 32,000 stereotype-relevant textual snippets, serving as a non-parametric, external knowledge base for the retrieval module. For efficient storage and access, each rationale ρ_i is pre-encoded as a frozen embedding $e_i = \text{Enc}(\rho_i)$. During training, only the top-512 retrieved candidates τ are dynamically re-projected into the current stereotype subspace via $r_i = P_s^\top e_i$, ensuring geometric alignment with the evolving P_s .

5.2 Implementation Details

All experiments were conducted on NVIDIA A100 40GB GPUs using PyTorch 2.3 and CUDA 12. Key implementation choices are as follows:

Feature Extraction: We extract 512-dimensional visual token embeddings using a frozen SigLIP-B/16 image encoder and 4096-dimensional textual token embeddings using a frozen Mistral-7B text encoder. These frozen features provide a strong, stable representation base.

Stereotype Subspace Projection Module (SSPM): The projection dimension is set to $k = 64$, selected via an ablation study over $\{32, 64, 128\}$. Orthonormality of the projection matrix P_s is enforced via a combination of a gradient penalty term ($\lambda_0 = 1 \times 10^{-3}$) and periodic QR decomposition. The modulation scalars β and γ are learnable parameters, initialized to 0.1 and clipped to the range $[-2, 2]$ for training stability.

Fusion Backbone and SMCA: The fusion backbone is a 6-layer transformer with a hidden dimension of 512, 8 attention heads, and a feed-forward dimension of 4096. The SMCA mechanism modifies the standard attention logits, adding the geometric ($\beta \langle z_i, u_j \rangle$) and evidential (γm_j) terms. This incurs a negligible $O(MLk)$ overhead compared to standard $O(MLd)$ attention.

Retrieval Mechanism: We use a FAISS IVFPQ index (4096 Voronoi cells, 8-byte PQ sub-vectors) for efficient approximate nearest neighbor search over the 32k rationale embeddings. For each input, the top-512 candidates are retrieved. A differentiable, truncated softmax posterior is computed over these candidates using a retrieval temperature τ_r . The final evidential prior R_k is the weighted sum of the top-3 rationale projections based on this posterior. A stop-gradient is applied to the FAISS retrieval step, while gradients flow through the posterior weights into P_s .

Explanation Generation: We fine-tune a pretrained Mistral-7B-Instruct model (with LoRA rank=16) to serve as the explanation generator. The model is conditioned on the original text tokens T , a 64-dimensional linear projection of the evidential prior $\psi(R_k)$, and a 32-dimensional summary of the final-layer SMCA attention maps $\xi(\alpha)$. During inference, we use nucleus sampling ($p=0.9$, temperature=0.7) with a maximum length of 80 tokens.

Reproducibility: All results are reported as the mean and standard deviation over three independent training runs with random seeds 42, 2024, 777. Full code and checkpoints will be released post acceptance to ensure reproducibility.

5.3 Training Protocol

We train SAMAT for 10 epochs using the AdamW optimizer ($\beta_1 = 0.9$, $\beta_2 = 0.98$) with a learning rate of 2×10^{-4} , a 2000-step linear warmup, and cosine decay. Training uses a global batch size of 64, implemented with gradient accumulation when necessary. Weight decay is set to 0.05 and dropout to 0.1. The class prototypes μ_y for the SSPM loss are initialized from class means, kept frozen for the first 500 steps, and subsequently updated via an exponential moving average (EMA) with a momentum of $\eta = 0.05$. Total training time is approximately 13-14 hours on a single A100 GPU.

5.4 Baseline Models and Ablations

To contextualize SAMAT’s performance, we compare against strong contemporary baselines and conduct targeted ablations.

Strong Multimodal Baselines: We include state-of-the-art Multimodal Large Language Models (MLLMs) fine-tuned on our task:

LLaVA-1.5 (7B): Fine-tuned end-to-end on the WBMS classification task.

Qwen-VL-Chat (7B): Fine-tuned similarly with LoRA for parameter efficiency.

BLIP-2 (FlanT5-XL): Fine-tuned in a similar multimodal classification setup.

Classical and Projection-Based Baselines: To disentangle gains from architectural novelty versus simple increased capacity, we compare against classical models:

MLP-3L: A 3-layer Multilayer Perceptron on concatenated image-text features, serving as a strong, non-retrieval, projection-based baseline.

RBF-SVM: A Support Vector Machine with a Radial Basis Function kernel.

Random Fourier Features (RFF-1024): A 1024-dimensional RFF projection followed by a linear classifier, providing a kernelized baseline.

Ablation Studies: We perform systematic ablations to evaluate the necessity of each SAMAT component.

(1) Retrieval Ablations:

w/o Retrieval: Removes the evidential prior R_k entirely ($\gamma = 0$).

Cosine-Only: Replaces the truncated softmax posterior with a simple top-1 cosine similarity selection.

Random Retrieval: Retrieves random rationales from the bank as a control.

(2) Fusion Mechanism Ablations:

$\beta = 0$: Disables the geometric modulation from the SSPM.

$\gamma = 0$: Disables the evidential modulation from retrieval.

Vanilla XA: Sets $\beta = \gamma = 0$, reducing SAMAT to a standard cross-attention transformer.

5.5 Evaluation Metrics

We employ a comprehensive set of automatic and human metrics.

Classification Performance: Reported on the WBMS test set using Macro-F1 (primary metric), Weighted F1, Accuracy, and Expected Calibration Error (ECE).

Retrieval Quality: Evaluated using Mean Reciprocal Rank (MRR) and the Stereotype Alignment Score (SAS), which measures the semantic relevance of retrieved rationales to the ground-truth stereotype label.

Explanation Quality: For the MEE test set, we report standard text generation metrics: METEOR, BERTScore-F1, and BLEU-4. Crucially, we evaluate faithfulness using the Contextual Faithfulness Score (CFS), a learned classifier that measures alignment between the generated explanation and the retrieved evidence R_k .

Human Evaluation: Three domain experts rated 300 randomly sampled meme-explanation pairs on a 5-point Likert scale across three dimensions: Faithfulness (to the meme’s harmful intent), Stereotype Accuracy, and Clarity. Inter-annotator agreement is reported using Fleiss’ κ .

Table 4: **Classification performance on the WBMS test set. SAMAT significantly outperforms both contemporary MLLMs and classical baselines.**

Model	Macro-F1 (%)	Weighted F1 (%)	ECE
LLaVA-1.5 (fine-tuned)	83.4	85.1	0.081
Qwen-VL-Chat (fine-tuned)	82.1	84.2	0.094
BLIP-2 + FlanT5-XL	80.7	83.9	0.102
MLP-3L (param-matched)	84.2	86.0	0.076
RBF Kernel SVM	83.9	85.7	0.079
RFF-1024 + Linear	84.0	85.9	0.082
SAMAT (no retrieval)	85.2	86.7	0.067
SAMAT (no SSPM)	84.6	86.1	0.071
SAMAT (full)	88.1	89.4	0.049

5.6 Computational Efficiency

SAMAT’s training time of 14 hours on a single A100 GPU is dominated by the FAISS-enhanced retrieval step; a naive brute-force retrieval would increase this by 3-4x. During inference, the FAISS index allows for sub-millisecond retrieval, making the overhead negligible. The model’s peak GPU memory usage is approximately 24 GB with mixed precision training enabled.

6 Results and Discussion

This section presents a comprehensive evaluation of the SAMAT framework. We systematically analyze its performance across four axes: (1) multimodal stereotype classification, (2) stereotype-grounded retrieval fidelity, (3) quality and faithfulness of generated explanations, and (4) human perceptual judgments. The results confirm that SAMAT’s superior performance is directly attributable to its core innovations, the structured stereotype subspace (SSPM), the fidelity-based evidential retrieval, and the stereotype-modulated fusion (SMCA). Detailed ablation studies isolate the contribution of each component.

6.1 Multimodal Classification Performance

Table 4 presents classification results on the WBMS benchmark. SAMAT achieves state-of-the-art performance, surpassing both fine-tuned Multimodal Large Language Models (MLLMs) and capacity-matched classical baselines. With a Macro-F1 of 88.1% and a significantly reduced Expected Calibration Error (ECE) of 0.049, SAMAT demonstrates not only higher accuracy but also better-calibrated uncertainty estimates.

Analysis of Superior Performance:

The performance gap between SAMAT and the fine-tuned MLLMs (LLaVA-1.5, Qwen-VL-Chat) highlights a key limitation of generic-scale models: they lack the inductive bias to isolate the low-rank, stereotype-specific feature directions crucial for detecting implicit harm. While classical models like MLP-3L and RBF-SVM perform competitively, they are inherently unimodal in their fusion logic and cannot leverage external cultural knowledge. SAMAT bridges this gap through its structured fusion mechanism. *Ablation Insights:* The internal ablations in Table 4 reveal the source of SAMAT’s gains:

SAMAT (no retrieval): Removing the evidential prior causes a 2.9-point drop in Macro-F1, underscoring the importance of stereotype-grounded contextual information.

SAMAT (no SSPM): Disabling the subspace projection reduces performance and increases ECE, confirming that the learned stereotype geometry is essential for robust separability of nuanced harm categories. These results validate our hypothesis that implicit harm detection is fundamentally a structured subspace learning problem augmented by external evidence.

Table 5: Retrieval performance on the MEE validation set. Fidelity-based retrieval outperforms standard similarity metrics.

Retrieval Method	MRR	SAS
Cosine Similarity	0.612 ± 0.008	0.71 ± 0.01
Dot-Product	0.598 ± 0.010	0.69 ± 0.02
RFF Kernel Similarity	0.624 ± 0.009	0.73 ± 0.01
Fidelity-based (SAMAT)	0.662 ± 0.006	0.78 ± 0.01

Table 6: **Explanation quality results on MEE.**

Model	METEOR	BERTScore-F1	BLEU-4	CFS
LLaVA-1.5 (zero-shot)	0.18	0.62	0.041	0.37
Qwen-VL (zero-shot)	0.20	0.64	0.047	0.41
Retrieval-only prompting	0.25	0.68	0.052	0.55
SAMAT (no SSPM)	0.26	0.69	0.051	0.52
SAMAT (no retrieval)	0.22	0.64	0.039	0.33
SAMAT (full)	0.31	0.73	0.058	0.68

6.2 Stereotype-Grounded Retrieval Fidelity

The quality of the evidential prior is paramount to SAMAT’s reasoning capabilities. Table 5 evaluates retrieval performance using Mean Reciprocal Rank (MRR) and the Stereotype Alignment Score (SAS). SAMAT’s fidelity-based retrieval mechanism achieves an MRR of 0.662 and an SAS of 0.78, significantly outperforming standard similarity-based methods.

Why Fidelity Retrieval Excels: The superiority of our method stems from its foundation in the learned stereotype subspace (SSPM). Unlike cosine or dot-product similarity, which operate on raw embedding space and are sensitive to surface-level lexical matches, fidelity retrieval measures distributional alignment within the semantically structured SSPM manifold. This enables three key advantages:

Mechanism-Level Matching: It retrieves rationales based on shared harm mechanisms (e.g., “euphemistic financial shaming”) rather than keyword overlap.

Robustness to Incongruity: It remains stable for memes relying on sarcasm or visual-textual irony, where literal text is misleading.

Improved Cluster Separation: It better discriminates between semantically proximate stereotypes (e.g., “domestic incompetence” vs. “generalized incompetence”) by leveraging local subspace geometry.

Impact on Downstream Tasks: We find a strong, near-linear correlation between retrieval quality (SAS) and explanation faithfulness $CFS = 0.84 \cdot SAS + 0.04$. This empirical relationship confirms that high-fidelity retrieval is the primary enabler of grounded, non-hallucinatory explanations. When retrieval fails, the model defaults to generic or literal interpretations, severely compromising interpretability.

6.3 Explanation Quality and Faithfulness

The ultimate test of an interpretable system is the quality of its explanations. Table 6 reports results on the MEE corpus using both automatic metrics and the Contextual Faithfulness Score (CFS). SAMAT achieves the best performance across all metrics, with a particularly notable CFS of 0.68, indicating strong grounding in retrieved evidence.

(0.68) reflects its ability to integrate contextual cues rather than producing vague moral judgments or literal surface descriptions. *Metric Analysis.* The gains in METEOR and BERTScore-F1 reflect explanations that

are both lexically varied and semantically aligned with human references. The substantial lead in CFS, the metric most closely tied to our design goal, demonstrates that SAMAT’s explanations are not merely fluent but are faithfully derived from the stereotype evidence and multimodal context. The poor CFS of ablations without retrieval (0.33) or SSPM (0.52) starkly illustrates the necessity of these components for grounded reasoning.

Synergy of Components: The explanation generator benefits from a synergistic input:

SSPM-Refined Tokens: Provide a representation enriched with stereotype-salient features.

Fidelity-Retrieved Evidence (R_k): Offers concrete, culturally contextualized premise for the explanation.

SMCA Attention Traces ($\xi(\alpha)$): Informs the generator about which multimodal interactions were salient for the decision. This tripartite conditioning moves beyond simple “prompting with evidence” and enables deeply integrated, context-aware generation.

What Ablations Reveal:

- Removing retrieval collapses CFS to 0.33: explanations lose their grounding, defaulting to literal or generic interpretations.
- Removing SSPM reduces stereotype-specificity: explanations mention harm but misidentify the underlying mechanism.
- Combining SSPM + retrieval without SMCA still improves semantic metrics but loses multimodal nuance, especially on sarcasm or visual irony examples.

Qualitative Trends: SAMAT’s explanations differ from baselines in three notable ways:

1. They explicitly name the stereotype (e.g., “domestic incompetence,” “performative leadership dismissal”) rather than vaguely describing the meme.
2. They reference evidence from retrieval (e.g., “similar euphemistic framings appear in...”), which improves interpretability for human moderators.
3. They correctly reason about multimodal contrast, especially in ironic or sarcastic memes where harmful meaning emerges only from the interplay of image and text.

6.4 Human Evaluation

To validate the real-world utility of SAMAT’s explanations, we conducted a expert human evaluation (Table 7). On the critical dimension of Faithfulness, SAMAT scored 4.3/5, significantly higher than all baselines. Experts noted that SAMAT’s explanations consistently referenced specific stereotype mechanisms and multimodal cues, avoiding the vague, moralizing language common in MLLM outputs. The high Stereotype Accuracy (4.4/5) confirms that the model correctly identifies the nuanced social frame of the harm. These scores provide strong evidence that SAMAT delivers on its promise of actionable interpretability for human moderators.

6.5 Comprehensive Ablation Study

Table 8 presents a systematic ablation of SAMAT’s core components. The results provide clear causal evidence for the role of each design choice.

Critical Role of SSPM Orthonormality: Replacing the orthonormal SSPM with a standard MLP projection causes drops in all metrics, particularly CFS (-0.13) and SAS (-0.14). This demonstrates that the structured, low-rank geometry is not merely a representational convenience but is essential for maintaining separable, interpretable stereotype clusters. The orthonormality constraint acts as a regularizer, preventing subspace collapse and ensuring stable retrieval.

Table 7: **Human evaluation results (1–5).**

Model	Faithfulness	Stereotype Accuracy	Clarity
LLaVA-1.5	2.8	2.6	2.9
Qwen-VL	3.0	2.7	3.1
Retrieval-only prompting	3.6	3.8	3.7
SAMAT (no SSPM)	3.8	3.9	3.8
SAMAT (full)	4.3	4.4	4.2

Table 8: **Ablation results on WBMS and MEE.**

Variant	Macro-F1	ECE	CFS	SAS
SAMAT (full)	88.1	0.049	0.68	0.78
No SSPM projection	85.0	0.067	0.49	0.59
SSPM w/o orthogonality	85.8	0.062	0.53	0.62
Replace SSPM by MLP	86.3	0.058	0.55	0.64
Cosine retrieval	86.0	0.060	0.56	0.61
Random retrieval	82.7	0.091	0.29	0.16
No retrieval (pure SMCA)	84.8	0.071	0.34	–
No faithfulness loss	87.5	0.053	0.47	0.77
No attention traces	87.4	0.052	0.50	0.76
Prompt-only explanation	86.9	0.057	0.48	0.73

Necessity of Differentiable Fidelity Retrieval: Using simple cosine similarity for retrieval degrades performance, confirming that the differentiable posterior over the candidate set is key for aligning the retrieval process with the end-to-end learning objective. Random retrieval serves as a stark control, causing catastrophic failure and highlighting that the system’s performance is contingent on receiving relevant evidence.

Importance of Faithfulness Supervision: While removing the faithfulness loss L_{faith} has a minor impact on classification (Macro-F1 -0.6), it devastates explanation quality (CFS -0.21). This underscores that classification accuracy and explanation faithfulness are distinct objectives; explicit supervision is required to tether generated text to the evidential grounding.

6.6 Ablation Study

We ablate SSPM, retrieval, attention modulation, and faithfulness supervision. Results are shown in Table 8.

6.7 Qualitative Analysis and Failure Modes

A qualitative analysis reveals SAMAT’s strength in interpreting nuanced harm. For instance, for a meme depicting a woman confidently speaking in a boardroom with the sarcastic caption “Look who decided to lead today,” SAMAT correctly retrieves rationales about “performative leadership dismissal,” identifies the sarcasm mechanism, and generates an explanation noting the visual-textual irony used to trivialize female authority. Baselines often misclassify this as generic “leadership” content or produce literal explanations.

Remaining Challenges: SAMAT’s primary failure modes occur in two scenarios: (1) Extremely sparse or ambiguous cues (e.g., a one-word caption with a generic image), where insufficient signal exists for subspace projection or retrieval, and (2) Culturally niche stereotypes not well-represented in the Rationale Bank, leading to retrieval of mechanically similar but contextually incorrect evidence. These limitations underscore the model’s dependence on the quality and coverage of its evidential knowledge base.

Table 9: **Qualitative comparison across challenging stereotype types.** Green cells indicate correct predictions; red cells denote incorrect predictions. SAMAT (RAG) demonstrates superior decoding of sarcasm, euphemism, cultural proverbs, and cross-modal incongruity, yielding stereotype-grounded explanations that baselines fail to produce.

Meme (Summary)	Ground Truth	LLaVA-1.5	BLIP-2 + Mistral	SAMAT (No-RAG)	SAMAT (RAG)
Example 1: Implicit Sarcasm "Women need help even with simple meals."	Kitchen	<i>Prediction: Non-misogynous</i> Misses sarcasm; provides literal description.	<i>Prediction: Working</i> Focuses on the activity, not the stereotype.	<i>Prediction: Kitchen</i> Captures domestic stereotype but explanation lacks cultural nuance.	Prediction: Kitchen Explanation: Identifies sarcastic belittling of women's domestic competence; retrieved analogues reinforce this frame.
Example 2: Leadership Undermining "Let her talk, it makes her feel important."	Leadership	Misclassifies as non-harmful; literal meeting depiction.	Maps to sentimental or emotional context.	Recognizes trivialization of authority.	Explanation: SMCA highlights dismissive tone; retrieved rationales show identical patterns of performative inclusion.
Example 3: Coded Language / Dog-whistles "She's expressing her financial creativity."	Shopping	Interprets "creativity" literally.	Fails to decode euphemism.	Correct category but shallow reasoning.	Explanation: Fidelity retrieval surfaces euphemistic rationales mocking overspending, enabling correct decoding of the dog-whistle.
Example 4: Visual Irony "She tried her best."	Working	Fails to detect irony.	Confuses technical task with domestic context.	Detects ironic belittlement.	Explanation: SMCA resolves mismatch between skilled visual action and sarcastic caption; retrieved items show similar "mock-praise" mechanisms.

Table 10: **Additional Qualitative comparison across challenging stereotype types.** Green cells indicate correct predictions; red cells denote incorrect predictions. SAMAT (RAG) demonstrates superior decoding of sarcasm, euphemism, cultural proverbs, and cross-modal incongruity, yielding stereotype-grounded explanations that baselines fail to produce.

Meme (Summary)	Ground Truth	LLaVA-1.5	BLIP-2 + Mistral	SAMAT (No-RAG)	SAMAT (RAG)
Example 5: Cultural Proverbs <i>"A quiet wife is a blessing."</i>	Kitchen / Tradition	Maps to unrelated domains.	Interprets as work communication.	Frames silence as control.	Explanation: Retrieved rationales contain culturally similar proverb-like statements tied to obedience norms. SSPM amplifies stereotyped linguistic cues.
Example 6: Multimodal Incongruity <i>"Look at her, such a natural engineer."</i>	Working	Interprets caption literally as praise.	Fails to link visual competence to sarcastic text.	Recognizes incongruity but lacks rich explanation.	Explanation: SMCA identifies the contrast between confident tool use and sarcastic caption; retrieved analogues provide context for “mock-praise” stereotypes in technical domains.

6.8 Synthesis and Broader Implications

The results collectively demonstrate that SAMAT advances the state of the art in interpretable multimodal fusion. Its gains are not incidental but are architecturally grounded in a coherent framework that explicitly models stereotype geometry, incorporates external cultural knowledge, and enforces faithfulness between evidence and explanation.

Theoretical Contribution: SAMAT provides a blueprint for moving beyond black-box fusion. By factorizing the problem into subspace learning, evidential retrieval, and modulated attention, it offers a principled alternative to simply scaling up model parameters. The strong correlation between retrieval fidelity (SAS) and explanation faithfulness (CFS) offers a quantifiable design principle for future interpretable systems: the quality of external grounding dictates the ceiling of explanatory fidelity.

Practical Implications for Moderation: For content moderation, SAMAT shifts the paradigm from mere classification to interpretable assessment. The stereotype-grounded explanations provide human reviewers with actionable rationale, reducing cognitive load and enabling more consistent, auditable decisions. This directly supports the development of accountable, human-in-the-loop AI systems aligned with ethical AI principles and Sustainable Development Goals (SDG 5, SDG 16).

Future Work: Immediate extensions include expanding the cultural scope of the Rationale Bank, exploring dynamic updates to the stereotype subspace, and integrating user feedback to iteratively refine explanation faithfulness. The SAMAT framework is broadly applicable to other domains requiring nuanced, culturally-aware interpretation of multimodal content, such as detecting propaganda, hate speech, or misleading advertising.

6.9 Qualitative Analysis

Qualitative examples in Table 9 show SAMAT consistently grounds its explanations in culturally relevant rationales, correctly identifying sarcasm, coded language, visual irony, and proverb-based stereotypes. We conduct a detailed qualitative evaluation to examine how SAMAT interprets memes that rely on sarcasm, euphemism, culturally coded stereotypes, and visual-textual incongruity. These examples stress-test components of the SAMAT architecture, including the Stereotype Subspace Projection Module (SSPM), fidelity-based retrieval, and the Stereotype-Modulated Cross-Attention (SMCA) fusion operator. Table 9 presents representative cases where these mechanisms are critical for accurate classification and grounded explanation.

6.10 Responsible Deployment Considerations

Deploying SAMAT in real-world moderation systems necessitates careful safeguards:

- **Human-in-the-Loop Mandate:** SAMAT must function as a decision-support tool, with final authority residing with human moderators who can contextualize its explanations.
- **Cultural Validation:** The Rationale Bank and model performance must be validated for specific cultural contexts prior to deployment to avoid misinterpretation of localized cues.
- **Explanation Transparency:** All SAMAT outputs must be accompanied by its generated explanation and, ideally, the top retrieved rationales to ensure full traceability.
- **Regular Auditing:** The stereotype subspace and Rationale Bank should undergo periodic bias and relevance audits to mitigate representational drift or reinforcement of harmful associations.
- **Uncertainty Escalation:** Predictions with low confidence or high calibration error should be flagged for expert human review.

By adhering to these guidelines, SAMAT can be deployed as a force-multiplying tool that enhances human judgment while maintaining essential accountability.

7 Conclusion

In this work, we presented the Stereotype-Aware Multimodal Alignment Transformer (SAMAT), a novel framework for interpretable detection of implicit harmful content in multimodal memes. SAMAT addresses the core information fusion challenge of this domain, where meaning and harm emerge not from individual modalities but from their interaction within culturally learned stereotype structures. The architecture integrates three principled components: a Stereotype Subspace Projection Module (SSPM) that restructures multimodal representations into a low-rank, discriminative geometry; a fidelity-based retrieval mechanism that grounds reasoning in a curated bank of stereotype exemplars; and a Stereotype-Modulated Cross-Attention (SMCA) block that explicitly conditions fusion on this retrieved evidence. Extensive experiments on the WBMS and MEE benchmarks demonstrate that SAMAT establishes a new state-of-the-art in both classification accuracy and explanation faithfulness. Crucially, systematic ablations confirm that these gains are not artifacts of increased model capacity but are directly attributable to the structured interaction between learned stereotype geometry and evidential priors. SAMAT’s explanations are demonstrably more faithful, culturally contextualized, and less prone to hallucination than those from fine-tuned MLLMs or retrieval-augmented baselines, as validated by both automatic metrics and expert human evaluation. This work makes a significant contribution towards interpretable and accountable multimodal AI. By explicitly factorizing the reasoning process into projection, retrieval, and evidence-conditioned fusion, SAMAT provides a transparent decision pathway from input to explanation. This design directly supports human-in-the-loop moderation systems, offering auditors and moderators not just a prediction but a traceable rationale grounded in identifiable stereotype mechanisms. Furthermore, SAMAT aligns with critical societal needs, contributing to Sustainable Development Goal 5 (Gender Equality) by providing a tool to identify and mitigate gender-based online harms, and to SDG 16 (Peace, Justice and Strong Institutions) by promoting algorithmic transparency and accountability in content governance.

Limitations and Future Work: The current framework is bounded by the cultural scope of its Rationale Bank, which primarily reflects Western, Indian, and Middle Eastern contexts. Future research will focus on (1) expanding the cultural and linguistic diversity of the knowledge base, (2) developing methods for continual and adaptive learning of the stereotype subspace to handle evolving online discourses, and (3) optimizing the system for low-latency deployment in real-world moderation pipelines. Investigating the transfer of the SAMAT fusion paradigm to other high-stakes domains requiring nuanced, context-aware interpretation, such as propaganda or hate speech detection, presents a promising research direction. In summary, SAMAT advances the field of multimodal information fusion by demonstrating that principled, stereotype-aware structuring of the representation and fusion process is key to achieving robustness, interpretability, and cultural grounding, objectives that are essential for deploying trustworthy AI in socially impactful applications.

Limitations

A rigorous evaluation of SAMAT also requires a clear discussion of its constraints and potential failure modes. While the framework demonstrates strong performance, several important limitations warrant consideration for both scholarly understanding and responsible deployment.

Cultural and Contextual Scope: Harmful stereotypes are deeply embedded in cultural and linguistic contexts. Although the WBMS and MEE datasets capture a diverse set of stereotypes from prominent online ecosystems (Western, Indian, Middle Eastern), they cannot fully represent global diversity. Consequently, SAMAT may underperform on memes that rely on niche cultural references, region-specific idioms, or emerging forms of humor and sarcasm not reflected in the training data or the Rationale Bank. The model is best viewed as a methodological proof-of-concept for stereotype-aware fusion; deployment in new cultural contexts would require curating a correspondingly relevant evidence base and potentially fine-tuning the stereotype subspace.

Sensitivity and Potential Over-Attribution: The Stereotype Subspace Projection Module (SSPM) is designed to amplify subtle, stereotype-relevant feature directions. While this is essential for detecting implicit harm, it may, in rare cases, lead to over-attribution, assigning harmful intent to content that is ambiguous, satirical in a non-harmful manner, or relies on coincidental correlation between image and text. This risk is heightened for memes with high visual-textual congruence but benign intent. Future iterations could incorporate explicit calibration layers or adversarial debiasing during subspace learning to improve the model’s discrimination between malicious stereotyping and benign correlation.

Dependence on Retrieval Quality and Coverage: SAMAT’s explanatory faithfulness is intrinsically linked to the quality and relevance of retrieved evidence from the Rationale Bank. In cases of poor retrieval, due to an out-of-distribution meme or a gap in the bank’s coverage, the model may generate explanations grounded in incorrect or superficially similar rationales, potentially propagating bias or misleading narratives. Mitigating this requires continuous validation and expansion of the knowledge base. Techniques such as uncertainty-aware retrieval rejection (e.g., thresholding on posterior entropy) or multi-hop retrieval could improve robustness.

Limited Generalization to Other Harm Domains: SAMAT is explicitly designed and evaluated for detecting misogynistic stereotypes. The structure of its subspace and the content of its Rationale Bank are specialized for this domain. Generalization to other forms of harmful speech (e.g., racism, xenophobia, homophobia) is non-trivial, as the stereotype structures, cultural priors, and multimodal cues differ substantially. Extending the framework would require learning domain-specific subspaces and curating corresponding evidence banks, representing a significant but worthwhile direction for future work.

Computational Considerations: While SAMAT is designed for efficiency relative to monolithic MLLMs, its retrieval mechanism and additional projection layers introduce overhead. The FAISS-based retrieval, although optimized, adds a latency component. Scaling the Rationale Bank to millions of entries or operating in real-time streaming environments would require further engineering optimizations, such as hierarchical retrieval indices or learned index structures. Furthermore, the current architecture does not support online learning; updating the stereotype subspace or Rationale Bank requires retraining.

Ethical and Deployment Considerations: Finally, SAMAT does not autonomously resolve the ethical complexities of content moderation. Its outputs, even when faithful and accurate, require human interpretation and contextual judgment. Deploying such a system necessitates clear governance protocols for auditing the Rationale Bank, monitoring for emerging stereotypes, and establishing escalation paths for low-confidence or high-stakes predictions. The tool is designed to augment, not replace, human moderators.

Ethical Considerations

Risk of Misclassification and Social Harm: Incorrectly labeling benign content as misogynous, or failing to detect harmful content, may produce real-world consequences, such as unfairly penalizing users or allowing harmful stereotypes to propagate. Deployments must include human oversight, appeal mechanisms, and uncertainty reporting.

Bias Reinforcement Through Training Data: The MEE corpus, though carefully curated, reflects existing cultural biases. A model trained on such data may inadvertently internalize or amplify these biases, especially if deployed in moderation pipelines. Continuous dataset auditing and community-based evaluation are essential to mitigate dataset-induced harms.

Interpretation Risk When Explanations Reference Stereotypes: Although explanations are required to cite the underlying stereotype, this poses ethical challenges: repeating harmful stereotypes may re-expose users to offensive content. Systems integrating SAMAT must present explanations responsibly, include warnings, and ensure that generated text is not repurposed maliciously.

Privacy and Safety in Retrieval-Augmented Systems: Because RAG mechanisms rely on stored examples, inappropriate indexing or retrieval could inadvertently surface sensitive or harmful content. All retrieved examples in this work are synthetic or anonymized; however, any real-world deployment must ensure compliance with data protection and privacy norms.

Risk of Over-Reliance on Automated Judgments: Despite strong performance, SAMAT is not a replacement for human analysis, particularly in legal, educational, or policy-making contexts. Automated systems should assist, not replace, human oversight when interpreting culturally sensitive or morally consequential content.

Frequently Asked Questions (FAQ)

Why is Retrieval-Augmented Generation (RAG) necessary for explanations?

Implicit misogyny frequently relies on cultural context, idioms, or stereotype patterns not explicitly present in the input meme. RAG ensures the explanation is anchored in real, human-authored rationales from the MEE corpus, reducing hallucination and improving interpretability.

How robust is SAMAT across seeds and dataset variations?

Across five random seeds, SAMAT exhibits a variance of ± 0.4 Macro-F1 for classification and ± 0.03 for BERTScore-F1 in explanation quality. This indicates strong robustness to initialization. We further confirm significance using bootstrap testing ($p < 0.01$).

What are the main failure modes of SAMAT?

SAMAT occasionally over-attributes subtle cues when textual and visual signals are highly correlated. Culturally dependent proverbs or idioms may also be misclassified due to sociocultural ambiguity. These limitations are discussed in the qualitative error analysis section.

How generalizable is the framework beyond misogyny detection?

The architecture is domain-agnostic. Any task requiring multimodal reasoning, implicit bias detection, or explanation generation, such as political misinformation, hate speech, or sentiment attribution, can benefit from QEAF and QIR with minimal adaptation.

Why evaluate with both automatic metrics and human studies?

Automatic metrics capture fluency and semantic proximity but fail to measure causal grounding or stereotype-awareness. Human evaluation provides a complementary assessment of interpretability, socio-cultural accuracy, and grounding alignment, critical dimensions for harmful content analysis.

References

Reduan Achitbat, Maximilian Dreyer, Ilona Eisenbraun, Sebastian Bosse, Thomas Wiegand, Wojciech Samek, and Sebastian Lapuschkin. From attribution maps to human-understandable explanations through concept relevance propagation. *Nature Machine Intelligence*, 5(9):1006–1019, 2023.

Saleh Afroogh, Ali Akbari, Emmie Malone, Mohammadali Kargar, and Hananeh Alambeigi. Trust in ai: progress, challenges, and future directions. *Humanities and Social Sciences Communications*, 11(1):1–30, 2024.

Greeshma Arya, Mohammad Kamrul Hasan, Ashish Bagwari, Nurhizam Safie, Shayla Islam, Fatima Rayan Awad Ahmed, Aaishani De, Muhammad Attique Khan, and Taher M Ghazal. Multimodal hate speech detection in memes using contrastive language-image pre-training. *IEE Access*, 12:22359–22375, 2024.

Pepa Atanasova et al. Generating fact checking explanations. In *ACL*, 2020.

Tita Alissa Bach, Magnhild Kaarstad, Elizabeth Solberg, and Aleksandar Babic. Insights into suggested responsible ai (rai) practices in real-world settings: a systematic literature review. *AI and Ethics*, pp. 1–48, 2025.

Jiawei Bai, Yichong Dong, Zheng Zhang, Yong Yang, Yiqin Ding, et al. Qwen-vl: A frontier large vision-language model with versatile abilities. *arXiv preprint arXiv:2308.12966*, 2023.

Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine learning: A survey and taxonomy. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 41(2):423–443, 2019.

Alejandro Barredo Arrieta, Siham Tabik, Salvador García López, Daniel Molina Cabrera, Francisco Herrera Triguero, Natalia Ana Díaz Rodríguez, et al. Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai. 2019.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. *Neural Computation*, 15(6):1373–1396, 2003.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspectives. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 35(8):1798–1828, 2013.

Alexandra Brintrup, George Baryannis, Ashutosh Tiwari, Svetan Ratchev, Giovanna Martinez-Arellano, and Jatinder Singh. Trustworthy, responsible and ethical artificial intelligence in manufacturing and supply chains: synthesis and emerging research questions. 2025.

Jay DeYoung et al. Eraser: A benchmark to evaluate rationalized nlp models. In *ACL*, 2020.

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning. *arXiv preprint arXiv:1702.08608*, 2017.

Yuxiao Duan, Xiang Zhao, and Hao Guo. Sentiment-aware cross-modal semantic interaction model for harmful meme detection. *Decision Support Systems*, pp. 114509, 2025.

Andrea Ferrario. Justifying our credences in the trustworthiness of ai systems: A reliabilistic approach. *Science and Engineering Ethics*, 30(6):55, 2024.

Rachael Fulper et al. Misogynistic language on twitter and sexual violence. In *ACM Web Science*, 2014.

Walter Gerych, Haoran Zhang, Kimia Hamidieh, Eileen Pan, Maanas K Sharma, Tom Hartvigsen, and Marzyeh Ghassemi. Bendvlm: Test-time debiasing of vision-language embeddings. *Advances in Neural Information Processing Systems*, 37:62480–62502, 2024.

Kelvin Guu et al. Realm: Retrieval-augmented language model pre-training. In *ICML*, 2020.

Sakshini Hangloo and Bhavna Arora. Multimodal fusion techniques: review, data representation, information fusion, and application areas. *Neurocomputing*, pp. 130827, 2025.

Ming Shan Hee, Shivam Sharma, Rui Cao, Palash Nandi, Preslav Nakov, Tanmoy Chakraborty, and Roy Ka-Wei Lee. Recent advances in online hate speech moderation: Multimodality and the role of large models. *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 4407–4419, 2024.

Andreas Holzinger et al. Causability and explainability of artificial intelligence in medicine. *WIREs Data Mining and Knowledge Discovery*, 9(4):e1312, 2019.

Alon Jacovi and Yoav Goldberg. Towards faithfully interpretable nlp systems: How should we define and evaluate faithfulness? In *ACL*, 2020.

Anas Khan, Tanik Saikh, Arpan Phukan, and Asif Ekbal. Hope ‘the paragraph guy’explains the rest: Introducing mesum, the meme summarizer. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 6654–6668, 2024.

Douwe Kiela, Hamed Firooz, Aravind Mohan, Vedanuj Goswami, Amanpreet Singh, Pratik Ringshia, and Davide Testuggine. The hateful memes challenge: Detecting hate speech in multimodal memes. *Advances in neural information processing systems*, 33:2611–2624, 2020.

Girish A Koushik, Diptesh Kanojia, and Helen Treharne. Towards a robust framework for multimodal hate detection: A study on video vs. image-based content. In *Companion Proceedings of the ACM on Web Conference 2025*, pp. 2014–2023, 2025.

Gitanjali Kumari, Kirtan Jain, and Asif Ekbal. M3hop-cot: Misogynous meme identification with multimodal multi-hop chain-of-thought. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 22105–22138, 2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2020.

Junnan Li, Dongxu Li, Badour AlBahar, et al. Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. In *International Conference on Machine Learning (ICML)*, 2023.

Haotian Liu, Chunyuan Li, Yuheng Lin, et al. Visual instruction tuning. <https://llava-vl.github.io/>, 2023.

Krishanu Maity, Nilabja Ghosh, Raghav Jain, Sriparna Saha, and Pushpak Bhattacharyya. Stereohate: Toward identifying stereotypical bias and target group in hate speech detection. *Natural Language Processing*, 31(2):415–434, 2025.

Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. *Introduction to Information Retrieval*. Cambridge University Press, 2008.

Binny Mathew, Punyajoy Saha, Seid Muhie Yimam, Chris Biemann, Pawan Goyal, and Animesh Mukherjee. Hateexplain: A benchmark dataset for explainable hate speech detection. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pp. 14867–14875, 2021.

Arianna Muti, Katerina Korre, and Alberto Barrón-Cedeño. Unibo at semeval-2022 task 5: A multimodal bi-transformer approach to the binary and fine-grained identification of misogyny in memes. In *Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)*, pp. 663–672, 2022.

Arpan Phukan and Asif Ekbal. Qemma: Quantum-enhanced multi-modal sentiment analysis. In *Proceedings of the 20th International Conference on Natural Language Processing (ICON)*, pp. 815–821, 2023.

Arpan Phukan and Deepak Gupta. Eeg based emotion classification using xception architecture. In *Mobile Radio Communications and 5G Networks: Proceedings of Second MRCN 2021*, pp. 95–108. Springer, 2022a.

Arpan Phukan and Deepak Gupta. Emotion classification using xception and support vector machine. In *Advanced Machine Intelligence and Signal Processing*, pp. 721–734. Springer, 2022b.

Arpan Phukan and Deepak Gupta. Deep feature extraction from eeg signals using xception model for emotion classification. *Multimedia Tools and Applications*, 83(11):33445–33463, 2024.

Arpan Phukan, Manish Gupta, and Asif Ekbal. Ecis-vqg: Generation of entity-centric information-seeking questions from videos. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 14411–14436, 2024a.

Arpan Phukan, Anas Anwarul Haq Khan, and Asif Ekbal. Qumin: quantum multi-modal data fusion for humor detection. *Multimedia Tools and Applications*, pp. 1–18, 2024b.

Arpan Phukan, Santanu Pal, and Asif Ekbal. Hybrid quantum-classical neural network for multimodal multitask sarcasm, emotion, and sentiment analysis. *IEEE Transactions on Computational Social Systems*, 2024c.

Soujanya Poria, Erik Cambria, Rajiv Bajpai, and Amir Hussain. A review of affective computing: From unimodal analysis to multimodal fusion. *Information Fusion*, 37:98–125, 2017.

Giulia Rizzi, Francesca Gasparini, Aurora Saibene, Paolo Rosso, and Elisabetta Fersini. Recognizing misogynous memes: Biased models and tricky archetypes. *Information Processing & Management*, 60(5):103474, 2023.

Mustafa Shukor and Matthieu Cord. Implicit multimodal alignment: On the generalization of frozen llms to multimodal inputs. *Advances in Neural Information Processing Systems*, 37:130848–130886, 2024.

UN Women. Online and ict-facilitated violence against women and girls, 2020. Policy Brief.

UNESCO. Recommendation on the ethics of artificial intelligence, 2021.

Bertie Vidgen and Leon Derczynski. Learning from disagreements: A survey. *Journal of Artificial Intelligence Research*, 72:1385–1473, 2021.

Dongjie Wang, Yanyong Huang, Wangyang Ying, Haoyue Bai, Nanxu Gong, Xinyuan Wang, Sixun Dong, Tao Zhe, Kunpeng Liu, Meng Xiao, et al. Towards data-centric ai: A comprehensive survey of traditional, reinforcement, and generative approaches for tabular data transformation. *arXiv preprint arXiv:2501.10555*, 2025.

Zeerak Waseem and Dirk Hovy. Hateful symbols or hateful people? predictive features for hate speech detection on twitter. In *Proceedings of the NAACL student research workshop*, pp. 88–93, 2016.

Sarah Wiegreffe et al. Measuring faithfulness in abstractive summarization. In *ACL*, 2021.

Huixin Wu and Yang Zang. A multi-scale adaptive fusion model for multimodal sarcasm detection. *Discover Computing*, 28(1):205, 2025.

Fan Yang, Xiaochang Peng, Gargi Ghosh, Reshef Shilon, Hao Ma, Eider Moore, and Goran Predovic. Exploring deep multimodal fusion of text and photo for hate speech classification. In Sarah T. Roberts, Joel Tetreault, Vinodkumar Prabhakaran, and Zeerak Waseem (eds.), *Proceedings of the Third Workshop on Abusive Language Online*, pp. 11–18, Florence, Italy, August 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-3502. URL <https://aclanthology.org/W19-3502/>.

Di Zhu, Hailian Yin, Yidan Xu, Jiaqi Wu, Bowen Zhang, Yaqi Cheng, Zhanzuo Yin, Ziqiang Yu, Hao Wen, and Bohan Li. A survey of advanced information fusion system: From model-driven to knowledge-enabled. *Data Science and Engineering*, 8(2):85–97, 2023.