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Fig. 1. Our method generates a high-quality 3D head avatar that can be rendered with unseen expressions and camera viewpoints (left). It is trained using

multi-view data and multiresolution hash encoding and at test it is driven by a monocular RGB video. Our approach generates 2K full-head renderings (top

right) for the first time in literature. It can also run in real time at 480 × 270 (bottom right).

Multi-view volumetric rendering techniques have recently shown great po-

tential in modeling and synthesizing high-quality head avatars. A common

approach to capture full head dynamic performances is to track the un-

derlying geometry using a mesh-based template or 3D cube-based graph-

ics primitives. While these model-based approaches achieve promising re-

sults, they often fail to learn complex geometric details such as the mouth

interior, hair, and topological changes over time. This article presents a

novel approach to building highly photorealistic digital head avatars. Our

method learns a canonical space via an implicit function parameterized by

a neural network. It leverages multiresolution hash encoding in the learned
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feature space, allowing for high quality, faster training, and high-resolution

rendering. At test time, our method is driven by a monocular RGB video.

Here, an image encoder extracts face-specific features that also condition

the learnable canonical space. This encourages deformation-dependent tex-

ture variations during training. We also propose a novel optical flow-based

loss that ensures correspondences in the learned canonical space, thus en-

couraging artifact-free and temporally consistent renderings. We show re-

sults on challenging facial expressions and show free-viewpoint renderings

at interactive real-time rates for a resolution of 480x270. Our method out-

performs related approaches both visually and numerically. We will release

our multiple-identity dataset to encourage further research.
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1 INTRODUCTION

The human face is at the center of our visual communications,

and hence its digitization is of utmost importance for applications
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such as Virtual Telepresence. Learning a high-quality controllable

3D digital head is a long-standing research problem with several

applications in VR/AR, VFX, and media production, among oth-

ers. Solutions to this task progressed significantly over the past

few years, including early works that create a static textured face

model from a monocular RGB camera [Thies et al. 2016], all the

way to recent multi-view methods that learn a highly photorealis-

tic model, which can be rendered from an arbitrary camera view-

point [Lombardi et al. 2021].

Early methods for facial avatar creation are based on explicit

scene representations, such as meshes [Kim et al. 2018; Thies et al.

2019a; Zollhöfer et al. 2018]. While these methods produce photo-

realistic results, they cannot guarantee 3D-consistent reconstruc-

tions, as these approaches use 2D image-to-image translation mod-

els to generate the output RGB reconstructions. Recently, implicit

scene representations have significantly attracted the attention of

the research community [Tewari et al. 2022]. Due to their inherent

characteristics, such as in the case of Neural Radiance Fields

(NeRFs) [Mildenhall et al. 2020], these models exhibit resilience

to alterations in topology (e.g., hairstyles) and are capable of ac-

commodating transparent objects. Moreover, they are inherently

designed to maintain 3D consistency. Furthermore, implicit scene

representations such as NeRF can be learned from multiple 2D

images and produce multi-view consistent renderings. These fea-

tures make implicit representations suitable for the general task

of 3D scene reconstruction and rendering, including human face

digitization.

Neural implicit representations [Mildenhall et al. 2020; Park et al.

2019] and, in particular, NeRF, have been used for face digitiza-

tion due to its high level of photorealism [Athar et al. 2022; Gafni

et al. 2021; Zheng et al. 2022]. Here, one of the main challenges

is how to model complex facial motions. Faces are dynamic ob-

jects and are often influenced by the activation of facial expres-

sions and head poses. An early adaptation of NeRFs, applied to

the human face, represents such motion by simply conditioning

the implicit function, represented as an MLP, on 3DMM parame-

ters [Gafni et al. 2021]. While this produces interesting results, it

has a few limitations, primarily the inability of such 3DMMs to re-

construct high-frequency skin deformations and model the mouth

interior. In follow-up methods, a common approach is to model

motion by learning a canonical space via template-based deforma-

tion supervision [Athar et al. 2022; Zheng et al. 2022]. However,

this kind of supervision limits the ability of these methods to accu-

rately model regions not represented by the underlying parametric

model, e.g., the mouth interior.

Mixture of Volumetric Primitives (MVPs) [Lombardi et al.

2021] combines the advantage of mesh-based approaches with a

voxel-based volumetric representation that allows for efficient ren-

dering. Specifically, it utilizes a template-based mesh tracker to ini-

tialize voxels and prune empty spaces. Here, a primitive motion

decoder modifies the initialized positions of the primitives. This

method produces state-of-the-art results with the highest level

of photorealism, mainly due to its hybrid voxel-NeRF represen-

tation as well as its capability to train on multi-view video data.

However, finding the optimal orientation of the primitives solely

based on a photometric reconstruction loss is highly challenging.

As a result, this method produces inaccurate reconstructions and

artifacts in regions exhibiting fine-scale details such as the hair. It

is also expensive to train, requiring around 2.5 days when trained

on an NVIDIA A40 GPU.

In this article, we present a novel approach for producing high-

quality personalized facial avatars at the state-of-the-art level of

photorealism. Our approach uses a voxelized feature grid and lever-

ages multiresolution hash encoding. It is trained using a multi-

view video camera setup and, at test time, drives the avatar via

a monocular RGB camera. Unlike related methods [Gao et al. 2022;

Lombardi et al. 2021], our approach does not require a template

to aid in modeling scene dynamics or pruning of empty space. In-

stead, we learn a fully implicit canonical space that is conditioned

on features extracted from the driving monocular video. We reg-

ularize the canonical space using a novel optical flow-based loss

that encourages artifact-free reconstructions. Our model can be

rendered under novel camera viewpoints and facial expressions

during inference (see Figure 1, left). It produces highly photoreal-

istic results and outperforms state-of-the-art approaches [Gao et al.

2022; Lombardi et al. 2021; Park et al. 2021b], even on challenging

regions such as the scalp hair.

Our contributions are summarized as follows:

— We present a method that leverages a multiresolution hash

table to generate volumetric head avatars with state-of-the-

art photorealism. The avatar is trained using multi-view

data and is driven by a monocular video sequence at test

time. The core of our method is an implicitly learned canon-

ical space conditioned on features extracted from the driving

video.

— We propose a novel optical flow-based loss to enforce tem-

porally coherent correspondences in the learnable canonical

space, thus encouraging artifact-free reconstructions. We

also show that our proposed optical flow-based loss helps

with novel view synthesis in our sparse camera setup.

— Our model training time is 4–5 times faster than the state-

of-the-art [Lombardi et al. 2021]. We show a result with 2K

resolution for a volumetric head avatar for the first time in

literature. We also show a setting for rendering our results

in real time (see Figure 1, bottom right).

— We have collected a novel dataset of 16 identities performing

a variety of expressions. The identities are captured using a

multi-view video camera setup with 24 cameras. Our multi-

view video dataset is the first full-head dataset to be publicly

released at 4K resolution, and we will release it to encourage

further research.

— We show that the high level of photorealism of our model

can even generate synthetic training data at high fidelity,

opening the door to generalizing the image encoder to arbi-

trary input views for driving the avatar.

We evaluate our approach visually and numerically against ground

truth data. Here, we ablate our method with different design

choices to illustrate their importance in the overall performance.

Our approach outperforms the related approaches [Gao et al. 2022;

Lombardi et al. 2021; Park et al. 2021b] visually and numerically, in-

cluding a multi-view implementation of Gao et al. [2022] and Park

et al. [2021b].
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2 RELATED WORK

This section reviews prior work on photorealistic human head

avatar generation, including approaches using monocular or multi-

view RGB data. Early methods are based on explicit 3D scene rep-

resentations, while recent ones leverage implicit representations.

2.1 Monocular Head Avatar Generation

Several monocular avatar generation methods rely on explicit 3D

models to estimate or regress a 3D face [Gecer et al. 2019; Lattas

et al. 2022; Lin et al. 2020; Ren et al. 2022; Shamai et al. 2019; Tewari

et al. 2018; Thies et al. 2019b; Tran et al. 2019; Yamaguchi et al.

2018] or a 3D head containing the face, ears, neck, and hair [Cao

et al. 2016; Ichim et al. 2015; Nagano et al. 2018] with photoreal-

istic appearance from 2D images. These methods employ a statis-

tical deformable shape model (a.k.a. 3DMM) of human faces [Cao

et al. 2014; Gerig et al. 2018; Li et al. 2017], which provides para-

metric information to represent the global shape and the dynamics

of the face. However, explicit model-based approaches often gen-

erate avatars with coarse expressions or facial dynamics and usu-

ally lack a detailed representation of the scalp hair, eyes, and/or

mouth interior, e.g., tongue. Other approaches attempt to synthe-

size dynamic full head avatars in a video via generative 2D neural

rendering, driven via sparse keypoints [Meshry et al. 2021; Wang

et al. 2021b] or dense parametric mesh priors [Chandran et al. 2021;

Kim et al. 2018; Tewari et al. 2020; Thies et al. 2019a; Wang et al.

2023]. These methods usually utilize GANs to translate parametric

models into photorealistic 2D face portraits with pose-dependent

appearance. Still, these methods struggle with fine-scale facial de-

tails, and they fail to generate 3D-consistent views.

Recent advances in neural implicit models for personalized head

avatar creation from monocular video data have shown great

promise. Most approaches learn deformation fields in a canon-

ical space using dense mesh priors [Athar et al. 2022; Bharad-

waj et al. 2023; Gao et al. 2022; Zheng et al. 2022, 2023; Zielonka

et al. 2023]. Here, Gao et al. [2022], Xu et al. [2023], and Zielonka

et al. [2023] leverage multi-level hash tables to encode expression-

specific voxel fields efficiently. BakedAvatar [Duan et al. 2023]

proposes a hybrid radiance field and rasterization-based frame-

work to produce detailed human head renderings at interactive

run-time rates. Similarly, HAvatar [Zhao et al. 2023] proposes a hy-

brid implicit-explicit rendering framework to produce high-fidelity

head renderings. However, these approaches still need to regress to

an intermediate expression space defined via 3DMM, thus limiting

the representation power.

While the above methods generate photorealistic 3D heads with

full parametric control, reconstructions can lack dynamics and

fine-scale geometrical details, and they cannot handle extreme

expressions. However, our approach is not 3DMM-based and thus

can model complex geometry and appearance under novel views.

This is attributed to our learnable fully implicit canonical space

conditioned on the driving video, as well as a novel scene flow

constraint.

2.2 Multi-view Head Avatar Reconstruction

A number of approaches leverage multi-view video data to create

view-consistent and photorealistic human head avatars with a high

level of fidelity. In the literature, we identify approaches that can

reconstruct avatars from sparse views (<= 10 high-resolution cam-

eras) or require dense multi-camera systems with dozens of high-

resolution views to achieve high-quality results. Due to the large

volume of high-resolution video data, recent approaches have also

focused on reducing computational and memory costs. Strategies

such as efficient sampling [Wang et al. 2021a] and empty space

pruning [Lombardi et al. 2021] have been proposed. We also adopt

these strategies for efficient and highly detailed rendering at high

resolutions.

Sparse multi-view methods. A line of research investigates light-

weight volumetric approaches that aim at reducing the number

of input views while attempting to preserve the reconstruction fi-

delity of dense camera approaches. Sparse methods often resort to

a canonical space representation [Park et al. 2021a], which serves

as a scene template for learning complex non-linear deformations.

Pixel aligned volumetric avatars (PAVA) [Raj et al. 2021] is

a multi-identity avatar model that employs local, pixel-aligned

neural feature maps extracted from 3D scene locations. Keypoint-

NeRF [Mihajlovic et al. 2022] is another generalized volumetric

avatar morphable model that encodes relative spatial 3D informa-

tion via sparse 3D keypoints. At inference, both PAVA and Key-

pointNeRF can robustly reconstruct unseen identities performing

new expressions from 2 or 3 input views. TAVA [Li et al. 2022b] en-

codes non-linear deformations around a canonical pose using a lin-

ear blend skinning formulation. TAVA requires 4–10 input views

to train a personalized model. While these approaches can gen-

erate photorealistic avatars with plausible dynamic deformations

from sparse input views, they cannot generate fine-scale details

and are sensitive to occlusions, producing rendering artifacts. We

demonstrate that regions that undergo sparse sampling can still be

reconstructed at high fidelity by imposing temporal coherency via

optical flow.

Dense multi-view methods. Early work with dense setups, called

Deep Appearance Models (DAM) learn vertex locations and

view-specific textures of personalized face models via Varia-

tional Autoencoders [Lombardi et al. 2018]. Pixel Codec Avatars

(PiCA) [Ma et al. 2021] improve upon DAM by decoding per-

pixel renderings of the face model via an implicit neural func-

tion (SIREN) with learnable facial expression and surface posi-

tional encodings. The work of Cao et al. [2021] and Chen et al.

[2021] demonstrate high-quality textured mesh avatars, especially

for the skin surface, driven from commodity hardware. To allow

for photorealistic representation of fine details like hair, most re-

cent dense approaches adopt volumetric representations, such as

discrete voxel grids [Lombardi et al. 2019], hybrid volumetric mod-

els [Lombardi et al. 2021; Wang et al. 2021a], or NeRFs [Wang

et al. 2022a]. Here, hybrid approaches combine coarse 3D structure-

aware grids and implicit radiance functions, locally conditioned

on voxel grids [Wang et al. 2021a] or template-based head track-

ing with differentiable volumetric raymarching [Lombardi et al.

2021]. In Wang et al. [2022a], a morphable radiance fields frame-

work for 3D head modeling, called MoRF, is proposed. This frame-

work learns statistical face shape and appearance variations from

a small-scale database, though it demonstrates good generaliza-

tion capabilities. The work of Cao et al. [2022] extends MVP

ACM Trans. Graph., Vol. 43, No. 3, Article 27. Publication date: April 2024.
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Fig. 2. Left: To extract a robust encoding that parameterizes the dynamics of the head, we pass a driving image through a CNN encoder to obtain a low

dimensional vector e. A deformation network Aθ conditioned on e deforms the input coordinates γ (x ), where γ (.) denotes positional encoding. We then

use multiresolution hash encoder Aα to encode the deformed points in the canonical space, and feed the features from the hash grid, and encoding e as

input to a radiance field network Aβ , which outputs density and color values. By combining these values through volume rendering, we are able to render

the avatar under unseen input and camera viewpoints. Right: We impose a novel scene flow-based constraint by utilizing the optical flow at frame t and

t + 1 (see Equation (5)). Such constraints enforce good correspondences in the canonical space, thus reducing rendering artifacts.

[Lombardi et al. 2021] to work in a generalized driving setting with

non-subject-specific photorealistic avatars. While dense methods

produce photo-realistic avatars, renderings tend to exhibit inac-

curacies and blur artifacts, especially for complex structures and

in infrequently observed areas, such as the scalp hair and mouth

interior. Besides, most dense approaches rely on head priors, ei-

ther mesh tracking or coarse voxel grids, and thus, they are prone

to reconstruction errors and have limited representation power,

e.g., handling details, mouth interior, and hair. Our approach over-

comes existing limitations by solely relying on a well-constrained

canonical representation that preserves expression semantics and

scene flow correspondences.

2.3 Generalized 3D Consistent Neural Representations

Modeling 3D-aware scenes with implicit models has been active

research in recent years. Popular methods are NeRFs [Mildenhall

et al. 2020] and neural Signed Distance Functions (SDFs) [Park

et al. 2019]; both parameterize the 3D space using multi-layer

perceptrons (MLPs). Since such methods are often computation-

ally expensive, efficient feature and/or scene space encodings, such

as hash grids [Fridovich-Keil et al. 2022; Müller et al. 2022] or

trees [Takikawa et al. 2021; Yu et al. 2021], have been proposed

to boost performance.

In the literature, generalized implicit models for head avatar re-

construction are learned from a large corpus of 2D face images

with varying pose and facial shape using neural SDFs [Or-El et al.

2022; Ramon et al. 2021], GAN-based NeRFs [Bergman et al. 2022;

Chan et al. 2021; Deng et al. 2022; Gu et al. 2022], or hybrid volu-

metric approaches with tensor representations [Chan et al. 2022;

Wang et al. 2021a]. Generalized models often lack personalized de-

tails. However, they have proven themselves to be robust priors

for downstream tasks, such as landmark detection [Zhang et al.

2022], personalized face reenactment [Bai et al. 2022], and 3D face

modeling [Abdal et al. 2023].

We remark that NeRFs have stood out as superior implicit rep-

resentations for head avatar creation, as they excel at reconstruct-

ing complex scene structures. Some recent prior-free NeRF-based

methods focus on generating detailed avatars from very sparse 2D

imagery, e.g., using local pixel-aligned encodings [Mihajlovic et al.

2022; Raj et al. 2021], while others model dynamic deformations

when working with unstructured 2D videos by warping observed

points into a canonical frame configuration [Park et al. 2021a, b] or

modeling time-dependent latent codes [Li et al. 2022a, 2021]. We

remark that dynamic approaches, while achieving impressive re-

sults, are designed to memorize the scene representations and can-

not control the model beyond interpolations. In addition, some ap-

proaches build upon dynamic NeRF approaches by incorporating

parametric models, e.g., 3DMMs [Egger et al. 2020; Li et al. 2017],

as input priors to enable full facial control [Hong et al. 2022; Sun

et al. 2022].

3 METHOD

Let {I ij } (j = 1 . . .N , i = 1 . . .M) be multi-view frames of a per-

son’s head performing diverse expressions, where N is the number

of frames and M is the total number of cameras. Our goal is to cre-

ate a high-quality volumetric avatar of the person’s head, which

can be built in a reasonable time and rendered under novel views

and expressions at unprecedented photorealism and accuracy.

Humans are capable of performing extremely diverse and ex-

treme expressions. Our model should be able to capture these in a

multi-view consistent manner with a high degree of photorealism.

As shown in Figure 2(a), we have four components. Our model

drives the avatar from a monocular image encoded via a CNN-

based image network Eγ . We then have an MLP-based deformation

network Aθ , which can map a point in the world coordinate sys-

tem to a canonical space conditioned on the image encoding. We

learn features in the canonical space using a multiresolution hash

ACM Trans. Graph., Vol. 43, No. 3, Article 27. Publication date: April 2024.
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grid Aα . The features in the grid are interpreted to infer color and

density values using an MLP-based network Aβ . Given any cam-

era parameters, we use volumetric integration to render the avatar.

In the following, we provide details about the capture setup and

data pre-processing step (Section 3.1), describe the scene represen-

tation of our model (Section 3.2), and formulate various objective

functions used for model training (Section 3.4).

3.1 Data Capture

Capture Setting. Our approach is trained using multi-view im-

ages captured from a 360-degree camera rig. The rig is equipped

with 24 Sony RXO II cameras, which are hardware-synced and

record 4K resolution videos at 25 frames per second. The cameras

are positioned in such a way that they capture the entire human

head, including the scalp hair. The rig is covered by LED strips to

ensure uniform illumination. In our setup, we recorded a total of

16 identities performing a wide variety of facial expressions and

head movements. Please see Figure 3 for a sample identity cap-

tured from multiple viewpoints. For a more detailed description of

our dataset, please refer to Section 4.1.

Preprocessing. Cameras are calibrated using a static struc-

ture with a large number of distinctive features. Here, we use

Metashape [2020] to estimate the extrinsic and intrinsic parame-

ters. We also perform background subtraction using the matting

approach of Lin et al. [2021] to remove any static elements from

the scene, e.g., wires, cameras. To simplify background subtraction,

a diffused white sheet was placed inside the rig, with holes for each

of the camera lenses.

3.2 Scene Representation

We parameterize our model using Neural Radiance Fields inspired

by the state-of-the-art novel view synthesis method NeRF [Milden-

hall et al. 2020]. Since the original method is slow to train and ren-

der, we utilize a multiresolution hash grid-based representation to

make our model efficient, akin to instant NGP [Müller et al. 2022].

As both original NeRF and instant NGP were proposed for static

scene reconstruction, we seek to model the dynamic performance

of the head, including facial expressions. To this end, we represent

our model, A as

A : (x, v, e) → (c,σ ) , (1)

where x ∈ R3 is a point in 3D, v ∈ S2 is the viewing direction,

e ∈ R256 represents the latent vector obtained from the image en-

coding network Eγ . This latent vector parameterizes deformations

due to expressions and head movements. Furthermore, c and σ are

the color and density values, respectively. Mathematically, instant

NGP parameterizes A with two modules. The first module is based

on a multiresolution hash grid, denoted Aα , and the second mod-

ule is parameterized by an MLP, denoted Aβ . The latter takes fea-

tures looked up from Aα and decodes a given point x and view

direction v into c and σ . To model dynamic variations of the input

driving performance, we introduce another module, denoted Aθ ,

which takes as input a point in world space and expression latent

vector, and regresses a deformation field that converts the world

point x to a canonical space, as follows:

xo = Aθ (x, e) + x . (2)

Table 1. Different Parameters Used for Defining the

Hash Grid

Parameter Values

Number of levels 16

Max. entries per level (hash table size) 214

Number of feature dimensions per entry 2

Coarsest resolution 16

Finest resolution 2,048

We learn the radiance field in this canonical space using Aα and

Aβ , and we parameterize the operator Aθ using a linear MLP. One

could also naively provide the driving image latent code directly

to Aβ instead of modeling a deformation field to canonical space.

However, we show in our experiments (see Section 4.4) that such

a naive parameterization creates artifacts. Thus, learning a defor-

mation field is critical in reducing the artifacts. Once we have the

radiance field representation of the scene, we use standard volu-

metric integration to synthesize color C for each ray r(t) = o + td,

with near and far bounds tn and tf , as follows:

C(r) =

∫ tf

tn

T (t)σ (r(t))c(r(t))dt ,

where T (t) = exp

(
−

∫ t

tn

σ (r(s))ds

)
. (3)

Efficient ray marching. As in instant NGP, we improve efficiency

by skipping regions that do not contribute to the final color based

on the coarse occupancy grid. The occupancy grid typically spans

643 resolution, with each cell represented by a single bit. The oc-

cupancy grid is updated at regular intervals by evaluating the den-

sity of the model in the corresponding region in space. The high in

each bit represents the corresponding 3D region that has density

above a certain threshold. Note that only these regions contribute

to the final rendering. As our scene is dynamic, we make certain

changes to suit this setting. We initialize G separated occupancy

grids corresponding to G uniformly sampled frames. We update

each of these grids independently for 200, 000 iterations. Then, we

take the union of all the grids to create a single occupancy grid that

we utilize for the rest of the training and novel view synthesis. By

employing the union operation, we enhance the inference speed;

this ensures that only those points exceeding a specified density

threshold are evaluated during inference.

3.3 Encoder

Our model is conditioned on a latent vector e to drive the avatar. In

the literature, some methods use expression parameters obtained

from face tracking using an existing morphable model [Athar et al.

2022; Gafni et al. 2021]. Other methods parameterize the latent vec-

tor obtained from an image encoder [Raj et al. 2021]. While an

image encoder might constrain the range of settings for driving

the avatar, it has certain advantages over 3DMM-based representa-

tions. This includes capturing diverse detailed expressions instead

of coarse expression parameters obtained from a 3DMM. Typically,

tracking pipelines utilize linear morphable models that have lim-

ited expressivity and are prone to tracking errors [B.R. et al. 2021].

In this article, we rely on image encoder Eγ to parameterize the

ACM Trans. Graph., Vol. 43, No. 3, Article 27. Publication date: April 2024.
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Fig. 3. An example of our camera rig capturing the same expression from 16 different viewpoints.

Table 2. Ablation Study: Image Quality and Perceptual Metrics

for Different Design Choices

Metrics Without Without Without Ours

canonical image feature optical flow-

space conditioning based loss

PSNR ↑ 29.24 29.64 29.38 31.23

L1 ↓ 3.61 3.64 3.32 2.79

SSIM ↑ 0.8698 0.8744 0.8517 0.8837

LPIPS ↓ 0.1408 0.1191 0.1200 0.1130

L1 measures the absolute error of unnormalized RGB images. Our full
method produces the best results (see bold text).

dynamics of the human head, because it allows us to capture di-

verse and extreme expressions faithfully, which is the main focus

of our article. We parameterize Eγ using a CNN-based network,

which takes as input an image I of the training subject from a fixed

camera viewpoint, and outputs the encoding vector e. Specifically,

we adopt a pre-trained VGG-Face model [Parkhi et al. 2015] as our

encoder and add a custom linear layer at the end. During training,

we fine-tune all the VGG layers as well as the custom layer.

3.4 Objective Function

Given the above representation of our model, we learn the param-

eters of Eγ ,Aθ ,Aα , andAβ modules in a supervised manner using

multi-view image and perceptual constraints as well as dense tem-

poral correspondences:

L = LL2 + λpercLperc + λof Lof . (4)

Reconstruction Losses. Given camera extrinsic and model repre-

sentation, we render images and employ image reconstruction loss,

LL2 using L2 loss between ground truth and rendered images. This

term introduces multi-view constraints to train our model. How-

ever, L2 loss alone could result in missing some high-frequency

details, which are perceptually very important. As a result, we in-

troduce a widely used patch-based perceptual loss Lperc , based

on a pre-trained VGG Face network [Parkhi et al. 2015]. We use

the output of the first 6 layers obtained from an input patch size of

64 × 64 to compute this loss term.

Optical flow-based Loss. As our dataset consists of sparse views

and hash grid-based representation has localized features, a model

trained only with LL2 and Lperc losses tend to overfit training

views, resulting in artifacts when rendering novel views. To miti-

gate it, we propose a novel loss term Lof based on pre-computed

2D optical flow between concurrent frames. The motivation be-

hind this loss term is to propagate pixel correspondences to the 3D

canonical space with the aim to regularize the dynamic scene and

mitigate the model’s artifacts when trained with sparser views. We

achieve this by enforcing the canonical points of neighboring tem-

poral frames to be close to each other for the points near the sur-

face of the avatar. Mathematically, let pt , pt+1 be the correspond-

ing pixels between consecutive frames obtained using 2D optical
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Fig. 4. Top: Visualization of all identities captured in our multi-view camera setup. Our dataset captures a variety of facial hair, hairstyles, expressions, and

ethnicities, among others. Bottom: Example of meta data released with our dataset.

flow. For these pixels, we first obtain their corresponding expected

depth values through volume rendering. The corresponding 3D
points xt , xt+1 associated with expected depth can be considered

to be close to the surface. We find the corresponding points in the

canonical space using Aθ , as defined in Equation (2). Let xt
o and

xt+1
o be the corresponding points in the canonical space. We en-

force all such points to be close between them by employing an L1

loss, similar to Kasten et al. [2021]:

Lof = ‖xt
o − xt+1

o ‖1 . (5)

While multi-view optical flow has previously been used in HVH

[Wang et al. 2022b], our formulation does not require explicit track-

ing of the subject’s primitives to utilize the optical flow informa-

tion. Our formulation instead leverages the fast density updates

of the underlying hash-grid-based representation, thus ensuring

access to coarse depth information even in earlier stages of the

training. Please refer to Figure 2(b) for an illustration of the pro-

posed loss term.

3.5 Implementation Details

We use a 3-layer MLP with 128 neurons as our deformation net-

work Aθ . To encode the coordinates in the world space, we use

positional encoding as introduced in Mildenhall et al. [2020], with

10 frequency bands. We provide hash encoding parameters used in

our experiments in Table 1. Our radiance field network Aβ is pa-

rameterized by a 5-layer-deep MLP. It comprises a 2-layer network

with 64 neurons that outputs the density feature values σ ∈ R16

and a 3-layer MLP with 64 neurons for regressing the RGB color

values. The RGB color values are conditioned on the density fea-

tures σ and the viewing direction v . The viewing direction v is en-

coded using spherical harmonics projection on the first four basis

functions [Müller et al. 2022]. We set λperc = 0.1 and λof = 0.2 in
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Fig. 5. Qualitative results: Dynamic expression changes. Top to bottom: Subject 1, 2, 3, and 4.

our experiments. We also follow a PyTorch implementation [Tang

2022] of instant NGP [Müller et al. 2022] to employ error map-

based pixel sampling while training, for better convergence. Specif-

ically, we maintain a 128 × 128 resolution error map for each train-

ing image, which is updated in every iteration to reflect the pixel-

wise L2 error. This is then used to sample rays where errors are

the highest at each iteration. Finally, we update our encoder Eγ ,

deformation networkAθ , hash gridAα , and radiance fieldAβ with

learning rates 1e−5, 1e−3, 1e−2, and 1e−3, respectively. Our model

is trained for 500, 000 iterations. We have observed that model con-

vergence is faster than in MVP [Lombardi et al. 2021]. It takes about

12 hours to converge, as opposed to the 50 hours required by MVP

with the same GPU resources.

4 EXPERIMENTS

In this section, we show the effectiveness of our high-quality vol-

umetric head avatar reconstruction method in synthesizing novel

dynamic expressions and views at high fidelity and resolution. We

show two main applications our approach enables, namely, dy-

namic free-view synthesis from arbitrary monocular viewpoints

as well as renderings at different image resolutions, including FHD.

We also perform a thorough analysis of our modeling choices and

conduct quantitative and qualitative evaluations with state-of-the-

art baselines. We refer the reader to the supplemental for video

results.

4.1 Datasets

Our multi-view video dataset consists of 16 subjects, including

14 males and 2 females, and most of them are in their 20s or 30s.

The subjects have short- to long-length hairstyles. Male subjects

either are shaved or have stubble or hairy beards. A collage of the

recorded subjects is shown in Figure 4, top. To build our dynamic

dataset, we instructed subjects to perform random expressive faces

during 2 minutes and/or recite 47 phonetically balanced sentences.

Among the 16 subjects, 4 have only performed expressions, 1 has

only performed reciting, while 11 have performed both. We will
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Fig. 6. Qualitative results: Dynamic novel view synthesis for different subjects. Top to bottom: Subject 5, 2, 3, 6, and 4.

release our full multi-view video dataset to foster future research

on head avatar generation. For all of our experiments reported

next, we utilize 18 views, each containing 1700 consecutive frames

at 960 × 540 resolution. To train our personalized models, we train

on the first 1,500 frames from the dataset and evaluate on the last

200 frames. Additionally, we hold out 2 views for quantitative eval-

uation, while 16 views are used for training. For qualitative results,

we use all 18 views. We processed 9 subjects covering a wide vari-

ety of our dataset, e.g., gender, expressions, facial hair, hairstyles,

ethnicity.

4.2 Qualitative and Quantitative Results

Our experiments involve two types of sequences: extreme expres-

sions and speaking sequences.

(1) Extreme Expressions: Subjects cycle through a predeter-

mined set of expressions.

— Training: Initial 1,500 frames.

— Evaluation: Subsequent 200 frames.

(2) Speaking Sequences: This is further divided into:

(a) Panagram-speaking: Subjects speak 10 predetermined

sentences.
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Fig. 7. Pose and expression control of our avatar. Top: We fix the image input and change the rigid head-pose. Bottom: We change expression while fixing

the rigid head-pose.

— Training: 10 sentences.

— Evaluation: 3 held-out sentences.

(b) Free Speaking: Subjects speak about a topic for about

2 minutes.

— Training: First 1,500 frames.

— Evaluation: Following 400 frames.

Figure 5 shows dynamic expression synthesis of 4 personalized

avatar models on test sequences, while Figure 6 illustrates free

viewpoint synthesis of 5 personalized models. Note that the gener-

ated views represent interpolations from training views. Figure 7

demonstrates that given rigid head-pose information, we can con-

trol the head-pose independently from the expressions by applying

the rigid transformation to the camera parameters. In these figures,

the avatars are driven by a frontal-looking monocular RGB video.

Our approach achieves high-quality renderings of head avatars

under novel camera viewpoints and for challenging novel expres-

sions. Table 2 shows that our approach on average obtains high

PSNR (over 31 dB) and low reconstruction errors on test sequences

based on different image quality and perceptual metrics. Please see

the supplemental for video results.

4.3 Applications

Avatar Synthesis from an Arbitrary Monocular Viewpoint. In pre-

vious experiments, we have shown that we can drive our head

avatar using a monocular video captured from a frontal view. Here,

we further show an application where we can drive our head avatar

from an arbitrary viewpoint. To achieve this, we define a fine-

tuning scheme described as follows: First, we synthesize a train-

ing dataset from a novel viewpoint, say, v̂ , with the personalized

avatar model described in Section 3. This synthetic data genera-

tion at the holdout viewpoint for 1,500 frames takes about 3 min-

utes. This dataset contains the same dynamic expressions used for

training. Then, we fine-tune the image encoder with this synthetic

video stream for 100k iterations, which takes about 2 hours. Note

that the deformation and radiance field networks as well as the

multiresolution hash encoding remain unchanged. Once the image

encoder has been fine-tuned, we can drive the personalized avatar

model with the real data stream coming from the viewpoint v̂ . In

our experiments, v̂ is a held-out viewpoint not used when training

the avatar model.

Figure 8 compares frontal renderings of Subject 3’s avatar model,

driven from two video streams with unseen expressions: one

driven from a frontal view camera and another driven from a held-

out bottom view. Our method produces high-fidelity renderings

regardless of the driving video viewpoint, and the rendered ex-

pressions faithfully reproduce those shown in the driving video.

This demonstrates that our personalized avatar model can gener-

ate photo-realistic renderings from arbitrary viewpoints at high

fidelity. These renderings can be used as a good approximation of

real images to fine-tune the image encoder from arbitrary driving

viewpoints. Note that this experiment paves the way for learning

high-fidelity personalized avatars that can be driven from video

captured in the wild.

FHD Image Synthesis. Our multiresolution hash grid encoding

allows for training a personalized avatar model at full HD res-

olutions, which surpasses the capabilities of state-of-the-art ap-

proaches. Our method can render HD images (960 × 540) at about

10 fps and FHD (1,920 × 1,080) images a bit below 3 fps. Figure 9

compares renderings of personalized models trained at HD and

FHD resolutions. Both models generate visually similar facial fea-

tures and details, though the FHD model produces crisper results,

as expected. Overall, our approach scales well, and the decrease in

runtime is near linear. Figure 10 shows that our approach can also
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Fig. 8. Avatar synthesis from different driving viewpoints. Top: Frontal view driving video and frontal rendering. Bottom: Bottom view driving video and

frontal rendering.

Fig. 9. Avatar synthesis at different resolutions. Left to right : Model trained at HD and FHD resolutions, respectively.

run on a resolution of 480 × 270 in real time (25 fps) while still

maintaining high fidelity in the reconstructions. Note that the re-

ported runtimes are based on a single NVIDIA A100 GPU. Please

see the supplemental video for more results.

Driving using a parametric head model. In our experiments, we

have driven avatars using RGB image inputs. Nonetheless, our

image encoder can be fine-tuned to accommodate the expression

and pose parameters of a parametric head model or 3DMMs. By
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Fig. 10. Real-time rendering (25 fps) at 480 × 270 resolution.

Fig. 11. Avatar synthesis using the rendering of a parametric 3D face model. Top: Input sequence of mesh renderings. Middle: Output renderings of our

personalized head model. Bottom: Ground truth.

rasterizing the tracked mesh for a given pose under fixed illumina-

tion in screen space, we can drive our personalized head model us-

ing rendered mesh images, termed as IMD . To fine-tune our model

for IMD , we initially train our personalized head model following

the procedure in Section 3. Thereafter, we employ IMD as the driv-

ing images for the same training frames. We train our model by

freezing all the components except the image encoder. This fine-

tuning is done with IMD as driving images for 100k iterations.

In adopting this fine-tuning approach, renderings of the paramet-

ric model can drive our personalized head model at test time, as
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Fig. 12. Qualitative comparison of different input representations. Left to right : driving the trained subject using the 3DMM expression parameters directly,

with further MLP encoding, ours, and the ground truth. The highlighted areas in green show the level of details in the mouth region.

shown in Figure 11. Such a driving approach facilitates our model’s

use beyond our training setup, as illustrated in our supplementary

video. For this application, we use MICA [Zielonka et al. 2022]

to estimate the head-pose and expression parameters. Figure 12

shows a qualitative comparison of driving the trained subject di-

rectly with expression parameters, MLP-encoded expression pa-

rameters, and our approach. Training our model directly using the

MICA [Zielonka et al. 2022] expression parameters as encoding
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Fig. 13. Cross-identity expression transfer results. We transfer the facial expressions of the driving subject (top row) to the trained subject (bottom row)

using rasterized 3DMMs (middle row). The regions highlighted in blue show the mouth region expression tracking of the driving subject. The regions

highlighted in green demonstrate the expression alignment between the driving subject and our model’s rendered output.

Table 3. Comparison of Runtimes for Various Rendering Components

Component Eγ Aθ Aα Aβ ray-marching

Time 0.0125 0.0087 0.01386 0.0087 0.0828

The table lists five distinct components and their associated computational
times (in seconds).

fails to produce coherent renderings of the head. This is because

our model requires a translation of the input via an encoder to

produce coherent renderings, as demonstrated in the second and

third columns of Figure 12. Here, the encoded versions of the input

perform better than naively passing the expression parameters di-

rectly as encoding. We also observe that passing the expression pa-

rameters through an MLP-based encoder results in clear artifacts

in the mouth region. For the MLP-based encoder baseline, we em-

ploy a 5 layer deep neural network, each with 128 neurons. Over-

all, our approach of encoding the 3DMM-rasterized images via

our Image Encoder produces the best results. For video results of

this qualitative evaluation, please refer to the supplementary video.

The 3DMM-based driving application also enables cross-identity

expression transfer as shown in Figure 13. This is specifically

the case for some key expressions. However, we observe that the

Table 4. FPS vs. Quality Comparison for Different

Training Design Choices

Configuration PSNR ↑ SSIM ↑ FPS ↑

Ours 32.72 86.60 8.17

Nviews = 12 32.90 86.46 7.48

Nviews = 8 31.97 84.67 7.11

Aθ (5) 32.25 84.18 6.96

Aθ (9) 31.87 82.91 6.17

Ntrain = 350 32.05 83.07 8.05

Ntrain = 750 32.32 84.73 8.14

Nsteps = 512 32.64 85.86 14.17

Nsteps = 768 32.72 86.46 10.79

We show the impact on rendering speed and quality for
different settings: Number of training views Nviews ,
deformation network size Aθ (.) , number of training frames
Nf r ames , and maximum number of ray-marching steps
Nst eps .

expressions can be transferred incorrectly if the 3DMM-based

tracking fails to track the driving subject’s expressions accurately

as shown in Figure 14. For video results of cross-identity expres-

sion transfer application, please refer to the supplemental video.
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Fig. 14. Expression misalignments in the cross-identity performance trans-

fer. Incorrect 3DMM expression tracking (highlighted in blue) of the driv-

ing subjects results in the expression mismatch between the driving sub-

ject and the training subject (highlighted in green).

Table 5. Quantitative Comparison with State-of-the-art Approaches

Metrics HyperNeRF++ MVP NeRFBlendshape++ Ours

PSNR ↑ 26.42 28.72 29.66 31.23

L1 ↓ 5.61 3.64 3.23 2.79

SSIM ↑ 0.8509 0.8283 0.8745 0.8837

LPIPS ↓ 0.1721 0.1432 0.1326 0.1130

L1 measures the absolute error of unnormalized RGB images. Our approach
outperforms related methods (see bold text).

4.4 Ablative Analysis

We demonstrate our main contributions and the influence of de-

sign choices via a number of ablation studies. Specifically, we study

our novel optical flow-based loss, learned image-based feature con-

ditioning of the canonical radiance field network, and canonical

space representation. We also analyze the influence of perceptual

loss and error map-based pixel sampling in the reconstruction qual-

ity. Note that for these experiments, we train our personalized

avatar models on 18 views, while we keep out 2 views for our quan-

titative evaluations.

Figure 15 shows the reconstruction quality of our method and

different modeling choices for a fixed unseen expression and a

novel camera viewpoint rendering (a held-out view). Here, the er-

ror map (bottom row) represents a pixel-wise mean square error

(MSE) of head renderings in RGB color space. Figure 16 further

compares our approach with the same design choices, for a fixed

expression but under dynamic novel viewpoint synthesis. Note

that dynamic viewpoints are interpolated from different camera

viewpoints. From these results, we can observe that without con-

ditioning the canonical space on the driving image features the re-

construction has blurry artifacts all over the mouth. Without the

optical flow-based loss, blocky artifacts and/or inconsistent fine-

scale details appear in sparsely sampled regions, such as hair, eye-

lids, and teeth. Figure 17 shows that our proposed optical flow-

based loss effectively mitigates these artifacts in a static scene re-

construction setting as well. Overall, our optical flow-based formu-

lation achieves better novel-view synthesis in our sparse camera

setup. For this particular comparison, we compare our method’s

reconstruction result on an unseen static frame vs Instant-NGP

[Müller et al. 2022] trained on the same static frame.

Figure 18 shows that while our method with and without opti-

cal flow starts at similar perceptual error, using optical flow quickly

improves in perceptual similarity as iterations increase. Thus, our

optical flow formulation effectively acts as a robust regularizer on

the learned volume. Figure 19 shows the state of visual quality for

both with and without optical flow-based loss settings with iter-

ations. We notice that optical flow-based loss leads to visual im-

provement faster than its without optical flow-based counterpart.

Note that a canonical space representation is required for proper

encoding of facial dynamics; otherwise, artifacts emerge. Table 2

confirms that using the canonical space representation results in

a lower reconstruction error. Please refer to the supplementary

video for RGB rendering results and depth and surface normal vi-

sualizations obtained by our approach.

The error heatmap visualization in Figure 15 (bottom row) pro-

vides a quantitative measurement of the error distribution, show-

ing that our approach with all design choices achieves the best

rendering quality. Table 2 shows the average reconstruction error

over the entire test set (200 frames) for different well-established

image-based quality metrics. We adopt similar metrics to that of

MVP [Lombardi et al. 2021]. We measure the Manhattan distance

L1 in the RGB color space, PSNR, SSIM [Wang et al. 2004], and

LPIPS [Zhang et al. 2018]. Overall, our approach attains the best nu-

merical results. This study confirms that our key modeling choices

optimize the rendering quality. We also show in Figure 20 that the

perceptual loss and error map-based sampling improve the render-

ing results. While we have noticed that these components help in

improving rendering quality, we do not emphasize them as a con-

tribution.

Table 3 summarizes the computational runtimes (in seconds) of

different rendering components. The computational runtime num-

bers are aggregated from 400 test frames, with each frame eval-

uated at a holdout viewpoint and a resolution of 960 × 540. In

Table 4, we analyze various rendering configurations to assess

their impact on image quality and processing speed for a free

speaking sequence at a resolution of 960 × 540. The rendering

configurations include: Number of views Nviews , number of lay-

ers in the deformation network Aθ (.), number of training frames

Nf r ames , and maximum number of ray-marching steps Nsteps .

For the presented image and speed metrics, a higher value indi-

cates better performance. Note that FPS indicates rendering speed
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Fig. 15. Ablation study: Fixed view image synthesis for different design choices. Left to right : Without canonical space, without feature conditioning, without

optical flow-based loss, and ours. The top row shows a rendering of Subject 3 (and ground truth), while the bottom row shows the error map. The error is

computed as the per-pixel mean squared error (MSE), encoded in RGB color space. Here, blue denotes 0 MSE, yellow is 60 MSE, and reddish colors mean

over 100 MSE. Our full method achieves the best results.

as frames per second. We evaluate on 2 holdout views for each ex-

periment. The configuration labeled “Ours” represents our default

setting, with a 5-layer-deep deformation network,Aθ , 1,500 frames

for training, 1,024 maximum ray-marching steps, and 16 views for

training.

4.5 Comparisons with the State-of-the-art

In this section, we compare our approach with a recent multi-

view state-of-the-art method, called MVP [Lombardi et al. 2021],

which produces detailed avatars with high fidelity under a similar

setup to ours. We disregard direct comparisons with state-of-the-

art sparse multi-view approaches, since they tend to lack fine-scale

details or are prone to artifacts for novel viewpoint synthesis (see

Section 2). In addition, we provide baseline comparisons with an

adaptation of a template-free dynamic representation, called Hy-

perNeRF [Park et al. 2021b], and a multi-level hash table-based ap-

proach for expression encoding, called NeRFBlendShape [Gao et al.

2022]. We will call our multi-view and image-driven adaptation of

these approaches HyperNeRF++ and NeRFBlendShape++.

To train NeRFBlendShape++, we pass each entry of the expres-

sion latent vector to a learnable multi-level hash table. We linearly

combine the output of these hash tables and condition the NeRF

network on it. To train HyperNeRF++, we feed the neural features

passed on by the image encoder to an ambient and deformation net-

work and then as appearance conditioning to the NeRF network.

To run MVP, we use 4k primitives. We employ an in-house FLAME-

based tracking to obtain a non-detailed dense reconstruction of the

subject’s head to guide the initialization of the primitives at each

frame.

Figure 21 shows the reconstruction quality of our method

and baseline approaches for a fixed unseen expression and a

novel camera viewpoint rendering (a held-out view), while Fig-

ure 22 compares them in a free-viewpoint synthesis setup. Hy-

perNeRF++ over-smooths regions. Both NeRFBlendShape++ and

HyperNeRF++ exhibit artifacts in regions that undergo recur-

rent topological changes, e.g., the mouth interior, or that have

complex structures, e.g., scalp hair. The latter not only produces

stronger artifacts in the form of grid patterns but also removes fa-

cial details. Overall, these methods generalize poorly due to over-

parameterized representations.

MVP [Lombardi et al. 2021] can sometimes produce wrong fa-

cial expressions in extreme cases or even show unusual block arti-

facts for the same regions mentioned above (see Figure 21 and Fig-

ure 22). One of the main reasons is that MVP relies on very dense

multi-view imagery to supervise volume rendering. However, in

a sparser camera setup, undersampled areas, especially those un-

dergoing disocclusions, become ambiguous without explicit dense

volume deformation constraints. The error heatmap visualization

of Figure 21 (last row), shows that our method reduces reconstruc-

tion errors. Overall, our approach produces sharper, more accurate,

and more photorealistic rendering results. Please refer to the sup-

plementary video for further comparisons in dynamic viewpoint

synthesis.

We perform quantitative evaluations on the 2 held-out views,

with 200 frames each. Quantitative comparisons are reported in

Table 5. Our approach clearly outperforms other baseline ap-

proaches, especially when comparing perceptual metrics, such

as SSIM and LPIPS. L1 reconstruction error is also significantly
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Fig. 16. Ablation study: Novel view synthesis quality. Left to right : Ours, without optical flow-based loss, without image feature conditioning, and without

canonical space. Our full method achieves the best results.

reduced. We remark that our approach attains sharper reconstruc-

tions with faster convergence and efficiency, the latter thanks to

hash-encoding and empty-space pruning techniques.

5 LIMITATIONS AND FUTURE WORK

Our method produces highly photorealistic renderings with novel

viewpoints and expressions. However, it suffers from a number

of limitations. First, we noticed that it can generate artifacts in

motions undergoing strong disocclusions (uncovering occlusions).

For instance, in the case of the tongue, artifacts could occur around

the mouth boundaries as the tongue starts to stick out (see Fig-

ure 23, Frame 1, blue region). The rendering quality, however, sta-

bilizes with good quality as soon as the tongue becomes fully vis-

ible (see Figure 23, Frame 2). In the same figure, we also notice

that the beard might be blurry. This could be a result of opti-

cal flow being unable to track this region to a necessary level of

granularity to produce sharp enough results. Future work could

address these limitations, e.g., by including occlusion-aware pri-

ors and designing a beard-specific synthesis approach. Second, our

solution is currently person-specific. Future work could examine

building a model that generalizes to unseen identities. For this, our

dataset of 16 identities is a good starting point, though it might re-

quire more identities. Here, we could also investigate refining the

model using in-the-wild data. Third, while we have shown real-

time renderings at a resolution of 480 × 270, future avenues could

enable real-time rendering at higher resolutions, e.g., FHD synthe-

sis. Here, we could investigate for instance super-resolution tech-

niques, akin to Chan et al. [2022] and Xiang et al. [2022].

Our encoding framework has certain limitations in avatar con-

trollability due to its sensitivity to RGB input, a challenge also

observed in Lombardi et al. [2021], Lombardi et al. [2018], Lom-

bardi et al. [2019], and Elgharib et al. [2020]. These methods

and ours leverage appearance-based encodings. While it facilitates
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Fig. 17. Comparison of our approach with Instant NGP [Müller et al. 2022] and ours (without optical-flow). We observe that our proposed optical flow-based

loss helps remove artifacts for static reconstruction under our sparse camera-setup.

high-quality renderings, it also makes them vulnerable to vari-

ations in lighting, subjects, or clothing. The auto-encoder style

learning framework of our approach also limits the ability to ren-

der extrapolated expressions, as it does not generally perform well

for data that is significantly different from what is seen during

training [Amodio et al. 2019]. Moreover, our current solution does

not account for controllable neck articulation. This particular limi-

tation could be addressed by solutions that integrate neck tracking

in the deformation module. Finally, we have mostly shown results

driven by monocular RGB videos so far. Theoretically, our image

encoder could be replaced with other pre-trained encoders of dif-

ferent input modalities, such as audio signals. This would increase

the spectrum of applications of our work.

6 CONCLUSION

We presented a novel approach for building high-quality digital

head avatars using multiresolution hash encoding. Our approach

models a full head avatar as a deformation of a canonical space

conditioned on the input image. Our approach utilizes a novel op-

tical flow-based loss that enforces correspondences in the learn-

able canonical space. This encourages artifact-free and temporally

smooth results. Our technique is trained in a supervised manner

using multi-view RGB data and at inference is driven using monoc-

ular input. We have shown results rendered with novel camera

viewpoints and expressions. We have also shown different appli-

cations including driving the model from novel viewpoints. Our

approach also shows the first 2K renderings in literature and can

run in real-time at a 480 × 270 resolution. Overall, our approach

outperforms related methods, both visually and numerically. We

will release a novel dataset of 16 identities captured by 24 cam-

era viewpoints and performing a variety of expressions. We hope

our work brings human digitization closer to reality so we all

can stay in touch with our friends, family, and loved ones, over a

distance.
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Fig. 18. LPIPS distances across iterations: The red curve depicts training with optical flow-based loss, while the blue shows without. The flow-based approach

achieves improved perceptual similarity at earlier iterations.

Fig. 19. Visual comparison of image quality over iterations: Each column represents a distinct iteration, highlighting the evolution of the training process.

Top: Images trained with optical flow-based loss. Bottom: Images trained without optical flow-based loss. As training evolves, differences in detail and

structure become more pronounced. Notably, the use of optical flow-based loss results in enhanced details, e.g., teeth, which emerge at earlier stages.
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Fig. 20. Ablation study: Structural consistency and detail quality. Left to right : No perceptual loss, no error map sampling, ours, and ground truth.

Fig. 21. Quantitative comparison with the state-of-the-art: Left to right : Results of HyperNeRF++ [Park et al. 2021b], MVP [Lombardi et al. 2021], NeRF-

BlendShape++ [Gao et al. 2022], ours, and ground truth. The top row shows visual results, while error maps are shown in the bottom row. The error is

computed as the per-pixel mean squared error (MSE), encoded in RGB color space. Here, blue denotes 0 MSE, yellow is 60 MSE, and reddish colors mean

over 100 MSE. Our method clearly outperforms the state-of-the-art.
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Fig. 22. Qualitative comparisons with the state-of-the-art in a novel view synthesis setting. Left to right : Ours, MVP [Lombardi et al. 2021], NerFBlend-

shape++ [Gao et al. 2022], and HyperNeRF++ [Park et al. 2021b]. Unlike other baseline implementations, our approach produces crisper details and more

accurate results.
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Fig. 23. Our method can struggle to faithfully reconstruct the tongue while transitioning from the mouth interior to the outside of the mouth (Frame 1, see

blue region). Once the tongue is out, our method captures the tongue with good quality (Frame 2).
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