
Under review as a conference paper at ICLR 2023

EIGEN MEMORY TREES

Anonymous authors
Paper under double-blind review

ABSTRACT

This work introduces the Eigen Memory Tree (EMT), a novel online memory
model for sequential learning scenarios. EMTs store data at the leaves of a bi-
nary tree and route new samples through the structure using the principal com-
ponents of previous experiences, facilitating efficient (logarithmic) access to rel-
evant memories. We demonstrate that EMT outperforms existing online mem-
ory approaches, and provide a hybridized EMT-parametric algorithm that enjoys
drastically improved performance over purely parametric methods with nearly no
downsides. Our findings are validated using 206 datasets from the OpenML repos-
itory in both bounded and infinite memory budget situations.

1 INTRODUCTION

A sequential learning framework (also known as online or incremental learning (Hoi et al., 2021;
Losing et al., 2018)) considers a setting in which data instances xt ∈ Rd arrive incrementally. After
each instance, the agent is required to make a decision from a set of |A| possibilities, at ∈ A. The
agent then receives scalar feedback yt regarding the quality of the action, and the goal is for the
agent to learn a mapping from xt to at that maximizes the sum of all observed yt.

This general paradigm accommodates a wide array of well-studied machine learning scenarios. For
example, in online supervised learning, A is a set of labels—the agent is required to predict a label
for each xt, and the feedback yt, indicates the quality of the prediction.

In a contextual bandit or reinforcement learning setting, xt acts as a context or state, at is an action,
and yt corresponds to a reward provided by the environment. Contextual Bandits have proven useful
in a wide variety of settings; their properties are extremely well studied (Langford & Zhang, 2007)
and have tremendous theoretical and real-world applications (Bouneffouf et al., 2020).

Regardless of the particulars of the learning scenario, a primary consideration is sample complexity.
That is, how can we obtain the highest-performing model given a fixed interaction budget? This
often arises when agents only receive feedback corresponding to the chosen action at, i.e. partial
feedback. Here, after an interaction with the environment, the agent does not get access to what the
best action in hindsight would have been. As a consequence, learners in a partial-feedback setting
need to explore different actions even for a fixed xt in order to discover optimal behavior.

Recent work in reinforcement learning has demonstrated that episodic memory mechanisms can
facilitate more efficient learning (Lengyel & Dayan, 2007; Blundell et al., 2016; Pritzel et al., 2017;
Hansen et al., 2018; Lin et al., 2018; Zhu et al., 2020). Episodic memory (Tulving, 1972) refers
to memory of specific past experiences (e.g., what did I have for breakfast yesterday). This is in
contrast to semantic memory, which generalizes across many experiences (e.g., what is my favorite
meal for breakfast). Semantic memory is functionally closer to parametric approaches to learning,
which also rely on generalizations while discarding information about specific events or items.

This paper investigates the use of episodic memory for accelerating learning in sequential problems.
We introduce Eigen Memory Trees (EMT), a model that stores past observations in the leaves of a
binary tree. Each leaf contains experiences that are somewhat similar to each other, and the EMT
is structured such that new samples are routed through the tree based on the statistical properties
of previously encountered data. When the EMT is queried with a new observation, this property
affords an efficient way to compare it with only the most relevant memories. A learned “scoring”
function w is used to identify the most salient memory in the leaf to be used for decision making.

1

Under review as a conference paper at ICLR 2023

Figure 1: A schematic of the Eigen Memory Tree
(EMT) algorithm. The outer boxes indicate the two
operations supported by EMT, Learn and Query. The
inner boxes show the high-level subroutines that occur
to accomplish the outer operation.

Table 1: Cells indicate the number of datasets in
which the row algorithm beats the column algorithm
with statistical significance. The stacked algorithm we
propose (PEMT) has the most wins in each column as
indicated by bold.

PE
M

T

EM
T

PC
M

T

C
M

T

Pa
ra

m
et

ric

PEMT — 167 87 196 110
EMT 31 — 42 177 44

PCMT 4 156 — 192 75
CMT 7 11 10 — 17

Parametric 8 151 10 184 —

Specifically, this work

• introduces the Eigen Memory Tree, an efficient tool for storing, accessing, and comparing
memories to current observations (see Figure 1).

• shows that the EMT gives drastically improved performance over comparable episodic
memory data structures, and sometimes even outperforms parametric approaches that have
no explicit memory mechanism.

• proposes a simple combination EMT-parametric (PEMT) approach, which outperforms
both purely parametric and EMT methods with nearly no downsides (see Table 1).

In the following section, we introduce the Eigen Memory Tree and overview the algorithms required
for storing and retrieving memories. A schematic of EMT and its high-level algorithms can be seen
in Figure 1. With this in mind, Section 3 describes related work.

Section 4 follows with an exhaustive set of experiments, demonstrating the superiority of EMT to
previous episodic memory models and motivating the EMT-parametric (PEMT) method, a simple
and powerful hybrid strategy for obtaining competitive performance on sequential learning prob-
lems. Importantly, we show that the PEMT performance advantage holds even when it is constrained
to have a fixed limit on the number of memories it is allowed to store.

All experiments here consider the contextual bandit setting, but EMTs are applicable in broader
domains as well. This section continually references Table 1, identifying which methods outper-
form which other methods by a statistically significant amount over all datasets and replicates. We
consider a substantial number of datasets from the OpenML (Vanschoren et al., 2014) repository.

Section 5 summarizes our findings, discusses limitations, and overviews directions for future work.

2 EIGEN MEMORY TREE

As with episodic memory, EMT is structured around storing and retrieving exact memories. We
formalize this notion as the self-consistency property: if a memory has been previously Inserted,
then a Query with the same key should return the previously inserted value. The self-consistency
property encodes the assumption that the optimal memory to return, if possible, is an exact match
for the current observation.

EMT is a memory model with four key characteristics: (1) self-consistency, (2) incremental memory
growth, (3) incremental query improvement via supervised feedback, and (4) sub-linear computa-
tional complexity with respect to the number of memories in the tree. As we discuss in the literature
review below, this combination of characteristics separates EMT from previous approaches.

Memory. EMT represents memories as a mapping from keys to values, M := Rd → R, where
d is the dimensionality of the context xt, and yt ∈ R corresponds to observed feedback. A query to
the EMT requires an xt and returns a previously observed value ŷ ∈ R from its bank of memories.
EMT learning, which updates both the underlying data structure and the scoring mechanism,
requires a full (xt, yt) observation pairM.

2

Under review as a conference paper at ICLR 2023

Algorithm 1 Primary Functions

1: class Node (router∈ Rd, boundary∈ R, left: Node, right: Node, M⊆ Rd × R):
2: Initialize: root← Node()
3: Initialize: w ← random vector in Rd

4: Initialize: c← leaf capacity

5: function QUERY(x ∈ Rd)
6: n← root
7: while n is not leaf n← n.left if ⟨n.router, x⟩ ≤ n.boundary else n.right
8: return argmin(xm,ym)∈n.M PREDICTSCORER(x, xm)
9: end function

10: function LEARN(x ∈ Rd, y ∈ R)
11: n← root
12: while n is not leaf n← n.left if ⟨n.router, x⟩ ≤ n.boundary else n.right
13: UPDATESCORER(x,y)
14: n.M← n.M ∪ (x, y) ▷ Insert memory into leaf.
15: if |n.M| ≥ c then
16: SPLITLEAF(n)
17: end if
18: end function

Data structure. The underlying data structure used by the EMT is a binary tree. The tree is
composed of a set of nodes, N , each of which is either an internal node or a leaf node. If a node
n ∈ N is internal it possesses two child nodes (n.left ∈ N and n.right ∈ N), a decision boundary
n.boundary ∈ R, and a top eigenvector n.router ∈ Rd. The decision boundary and top eigenvector,
as discussed later, are used to route queries through the tree. If a node n is a leaf node then it will
instead possess a finite set of memories n.M =

{
(x, y) ∈ Rd → R

}
. In addition to the nodes and

routers EMT also possesses a single global scoring function responsible for selecting which memory
to return given a query and leaf node. This function is parameterised in by the weight vector w ∈ Rd.

Learn. Newly acquired information is stored during the learning operation (Line 10 in Algo-
rithm 1), which takes an item M and traverses the tree until a suitable insertion leaf is identified
(Line 14 in Algorithm 1). Immediately before insertion, the scoring function weights w are updated
such that the scores of the insertion leaf’s memories improve with respect to the observed xt and yt
(Line 13 in Algorithm 1)

Scorer. EMT’s scorer, w, ranks candidate memories at query time. The scorer supports both
predictions (see Line 12 Algorithm 2) and updates (see Line 1 Algorithm 2). Intuitively, the scorer
can be thought of as a dissimilarity metric, assigning small values to similar query pairs and large
values to dissimilar query pairs.

A pair of identical query vectors is guaranteed to result in a score of 0, satisfying the self-consistency
property mentioned earlier. This is achieved for any two x1 and x2 by applying the scorer on the
coordinate-wise absolute value difference between pairs, z ← |(x1)i−(x2)i|}di=1, which is all zeros
if the two contexts are identical. Predictions are then made by linearly regressing this vector onto the
scorer’s weights, and clipping predictions ⟨w, z⟩ such that the minimum is 0. The clipping operation
ensures that predictions will be 0 even when weights are negative.

Updating the scoring function is done via a ranking loss, which considers (1) (xbest, ybest), which is
the memory-reward pair that would be retrieved by the scorer currently and (2) (xalt, yalt), an alterna-
tive memory in the same leaf that has a reward most similar to the current observation (omitting the
retrieved memory xbest). If yalt gives a better prediction of the observed reward than ybest, we adjust
the scorer to decrease the learned dissimilarity between xalt and the current target xt. Alternatively,
if the retrieved memory ybest is closer to the observed reward, we do the opposite, emphasizing the
similarity between xt and xbest and making xt and xalt more dissimilar. Specifically, this is done by
taking a gradient step with respect to an L2 loss that encourages more similar pairs to have a score
near 0 and more dissimilar pairs to have a score near 1.

3

Under review as a conference paper at ICLR 2023

Level 1 Level 2 Level 3 Level 4

Figure 2: A t-SNE visualization of an EMT after training on OpenML’s BNG (breast-w) dataset. Each point
represents a memory and is colored to indicate the node at which the memory is stored. Each plot shows memo-
ries colored by how they are allocated at the indicated level of the tree. The level of the tree considered increases
by one from left to right, doubling the number of nodes considered (number of data paths from root to node).

Algorithm 2 Scorer Functions

function UPDATESCORER(M ⊆ Rd × R, x ∈ Rd, y ∈ R)
(xb, yb) = argmin(xm,ym)∈M PREDICTSCORER(x,xm)
(xa, ya) = argmin(xm,ym)∈(M\(xb,yb)) |y − ym|
if |yb − yt| < |ya − yt| then
L =PREDICTSCORER(xb,x)2 + (1−PREDICTSCORER(xa,x))2

w ← w − η ∂L
∂w

else if |yb − yt| > |ya − yt| then
L =PREDICTSCORER(xa,x)2 + (1−PREDICTSCORER(xb,x))2

w ← w − η ∂L
∂w

end if
end function

function PREDICTSCORER(x1 ∈ Rd, x2 ∈ Rd)
z ← {|(x1)i − (x2)i|}di=1 ▷ z ∈ Rd

return max(0, ⟨w, z⟩) ▷ We clip for self-consistency purposes.
end function

Query. To predict yt we can call EMT’s Query operation with xt (see Line 5 in Algorithm 1).
Queries to the EMT trigger a search over the internal data structure, beginning at the root node
and routing through internal nodes until a leaf is eventually reached. When the search procedure is
presented with an internal node n, routing follows a simple rule: if ⟨n.router, xt⟩ ≤ n.boundary we
proceed left, if not we proceed right (see Line 7 in Algorithm 1). When we arrive at a leaf the scorer
is then called to identify the most similar memory available (see Line 8 in Algorithm 1).

Eigen-router initialization. An important hyperparameter in the EMT is the maximum leaf ca-
pacity c, which controls the number of memories stored in a single leaf node. Once the leaf reaches
this capacity, the corresponding node is assigned a left and right child, and its memories are al-
located across them. If c is small, the tree is extended frequently to accommodate new data, and
when it is large, the tree grows more slowly. A large c allows many memories to be scored for
a particular query, which can improve statistical performance but may damage efficiency. Corre-
spondingly, smaller capacities permit fewer memories to be scored for a given query, which may
improve computational efficiency by sacrificing predictive performance.

We check whether a leaf node n is at capacity each time a memory is added to it (i.e., |n.M| ≥ c).
If it is, the leaf is split, turning n into an internal node. The splitting process begins by assigning
routing behavior to the node, which governs how new samples will traverse the tree. This is done
by (1) approximating the first principal component of its stored memories and (2) computing the
median value of memories projected onto this vector. When a new sample arrives, we project it
onto this eigenvector and route the sample left if the corresponding value is less than or equal to this
median and otherwise route it right (see Line 3 in Algorithm 3).

We follow the same rule for distributing memories across the children of a newly split
node—memories with a projection less than or equal to this median are stored in the left child

4

Under review as a conference paper at ICLR 2023

Algorithm 3 Leaf Functions

function SPLITLEAF(n: Node)
n.router←TOPEIGEN(n.M)
n.boundary← median({⟨n.router, xm⟩|(xm, ym) ∈ n.M})
n.left.M← {(xm, ym) ∈ n.M | ⟨n.router, xm⟩ ≤ n.boundary}
n.right.M← {(xm, ym) ∈ n.M | ⟨n.router, xm⟩ > n.boundary}
n.M← ∅

end function

function TOPEIGEN(M ⊆ Rd × R)
X = {xm | (xm, ym) ∈M} ▷ X ∈ Rd×|M |

X = X(I|M | − 1
|M |1|M |) ▷ Mean center the rows of X

v ← random unit vector in R|M |

for n← 1 to |M | do
v ← v+ 1

n (X:,n)(X:,n)
⊤v

||v+ 1
n (X:,n)(X:,n)⊤v||

end for
return v

end function

and others are stored in the right. The approximate eigenvector assigned to n.router is computed us-
ing Oja’s method, a popular approach for performing PCA on streaming data (Balsubramani et al.,
2013) as shown in Algorithm 3. Because the decision boundary n.boundary is the median of the pro-
jected memories, the allocation of data across children in a newly split node is nearly even; hopefully
resulting in a well-balanced tree. A plot of 4, 000 memories within a tree can be seen in Figure 2.

3 RELATED WORK

This section overviews alternative memory structures through the lens of our desiderata: self-
consistency, incremental growth, learning, and sub-linear computational complexity. Two illuminat-
ing extreme points are associative data structures (e.g., hashmaps) that do not learn and only support
exact retrieval; and supervised models (e.g., ordinary least squares) which compile experience into
a structure which supports fast retrieval, but cannot guarantee self-consistency.

Classic nearest-neighbor models (Friedman et al., 1975) are self-consistent and grow incrementally,
but do not learn (the metric) and have poor computational complexity; considerable attention has
unsurprisingly been put towards improving nearest neighbors algorithms along these axes. Exact or
approximate nearest-neighbor methods, e.g., Beygelzimer et al. (2006); Ram & Sinha (2019); Datar
et al. (2004); Dasgupta & Sinha (2013), can reduce computational complexity but (beyond inserting
new memories) do not learn. Weinberger et al. (2005) learn a metric for use with nearest-neighbors
but does not learn incrementally. Analogously, learned hash functions (Salakhutdinov & Hinton,
2009; Rastegari et al., 2012) produce an associative data structure but learning is not incremental.

Differentiable neural memory systems learn an associative mapping using gradient-based optimiza-
tion (Sukhbaatar et al., 2015; Graves et al., 2016). Unfortunately their computational demands are
severe, preventing practical applications with large memories and prompting variants that use cus-
tom hardware (Ni et al., 2019; Ranjan et al., 2019) or exploit sparsity (Karunaratne et al., 2021).

The only memory model in the literature possessing all of EMT’s desiderata is the contextual mem-
ory tree (CMT) (Sun et al., 2019). EMT and CMT both use an internal tree structure with routers and
a global scorer. EMT differs from CMT in three ways (1) EMT uses fixed top-egeinvector routers
while CMT learns routers incrementally, (2) the EMT scorer uses pairwise feature differences rather
than CMT’s feature interactions (the importance of this can be seen in our own ablation studies be-
low) and (3) the EMT scorer is updated with respect to a ranking loss function rather than CMT’s
squared loss. As discussed later, (1) and (2) together ensure a strong self-consistency constraint,
such that exact memories are returned if available. Because CMT updates routing mechanisms,
even exact matches for a particular observation may be inaccessible.

Finally, it remains an open question how to best use episodic memory. For example, the work of
(Lengyel & Dayan, 2007) evaluates directly using memories to decide how to act in a sequential

5

Under review as a conference paper at ICLR 2023

0 51 102 153 206
Dataset

0.0

0.1

0.2

0.3

Re
wa

rd
 D

iff
er

en
ce With Self-Consistency Is Best (180)

Tie (20)
Without Self-Consistency Is Best (6)

Figure 3: A per-dataset comparison of final progres-
sive reward between EMT-CB and a variant of EMT-
CB without self-consistency. Each point is a single
dataset. The y-axis shows the difference between the
two learners. The x-axis is ordered by this difference.

0 1000 2000 3000 4000
Interaction

0.4

0.5

0.6

Re
wa

rd

With Self-Consistency
Without Self-Consistency

Figure 4: Progressive reward for EMT-CB and a
variant of EMT-CB without self-consistency. Each
line is an average over 206 datasets in the OpenML
repository. Progressive reward is shown as a function
of interactions and vertical lines are standard error.

environment. Other work has used episodic memory as a tool to support a supervised learner either
as input into a non-parametric model (Blundell et al., 2016; Pritzel et al., 2017) or as a tool to train
a supervised learner (Lin et al., 2018). Still more has treated episodic memory as a complement to
supervised learning and the goal is to combine the two model’s predictions Hansen et al. (2018);
Feng et al. (2017). Our work evaluates EMT in terms of its performance as a direct predictor (EMT-
CB) and as a complementary predictor to a parametric model (PEMT-CB).

4 EXPERIMENTS

The experiments in this section consider the Contextual Bandit (CB) framework, a setting in which
an agent is sequentially presented with a d-dimensional “context” vector xt and is required to execute
one of |A| actions. For each executed action at ∈ A, the agent receives a corresponding reward yt.
The goal of the agent is to maximize the total reward received over the course of an evaluation.

The EMT algorithm presented above is a general-purpose supervised learning algorithm, and not
an algorithm for solving CB problems specifically. We however can easily adapt EMT for the CB
setting by augmenting it with an exploration algorithm (see Algorithm 4). For our experiments we
used an ϵ-greedy exploration algorithm with ϵ = .1. That is, on each iteration with probability ϵ
an action in A was selected with uniform random probability. Otherwise for each a ∈ A EMT
is queried and the action with the highest predicted reward is taken. We will call this adaptation
EMT-CB. Code to reproduce all results is available at redacted.

Datasets We consider 206 contextual bandit problems derived from OpenML (Vanschoren et al.,
2014) classification datasets via a supervised-to-bandit transformation (Bietti et al., 2021). OpenML
data are released under a CC-BY1 license. For large datasets, we consider a random subset of
4, 000 training examples. We also scale the i-th feature of every sample xi

t in each dataset by
1/(maxt x

i
t−mint x

i
t). For each problem, the action set A is is the set of classification labels. When an

agent correctly classifies an example a reward of one is given otherwise a reward of zero is given.

Evaluation Learners are evaluated online via progressive loss (Blum et al., 1999). Specifically,
each time the agent receives reward, we update the total reward earned, normalized by the total
number of interactions. After T total interactions, the progressive reward is 1/T

∑T
t=0 yt. These pro-

gressive rewards are plotted throughout the course of this section. Additionally, in order to calculate
confidence bounds every data set is evaluated 50 times with a different random seed for each.

4.1 SELF-CONSISTENCY

The EMT incorporates two particular design decisions: (1) using eigenvector routing and (2) using
a scorer where self-consistency is a hard constraint, which as mentioned earlier, guarantees that an
exact-match memory is always retrieved as long as one is available.

To examine the importance of self-consistency, we compare EMT to a variant that does not include
this property. In this variant, we modify Line 13 of Algorithm 2 such that the input to the regressor,

1https://creativecommons.org/licenses/by/2.0/

6

https://creativecommons.org/licenses/by/2.0/

Under review as a conference paper at ICLR 2023

0 1000 2000 3000 4000
Interaction

0.4

0.5

0.6

0.7

Re
wa

rd

Parametric EMT-CB CMT-CB

Figure 5: A progressive reward comparison be-
tween EMT-CB and parametric, where each line
corresponds to an average over 168 datasets in the
OpenML repository. Reward is shown as a function
of the number of environment interactions and ver-
tical lines denote standard error. Parametric actually
outperforms EMT on average, which we address with
the hybridized algorithm discussed in Section 4.4.

0 51 102 153 206
Dataset

0.2

0.0

0.2

Re
wa

rd
 D

iff
er

en
ce EMT-CB Is Best (44)

Tie (11)
Parametric Is Best (151)

Figure 6: A per-dataset comparison of final progres-
sive reward between EMT-CB and parametric. Each
point corresponds to a single dataset, and the vertical
axis shows the difference between the two learners.
The horizontal axis is ordered by this performance
difference. Here we see that while there are many
datasets for which parametric does better, there are
44 datasets where EMT is higher performing.

Algorithm 4 Contextual Bandit EMT (EMT-CB)

Initialize: c and ϵ as desired

function PREDICT(xt ∈ Rd, A)
With probability ϵ return uniform random a ∈ A
Otherwise return argmaxa∈A EMT.Query((xt, a)

end function

function LEARN(xt ∈ Rd, at ∈ A, yt ∈ R)
EMT.Learn((xt, at), yt)

end function

z, is the interaction of features in samples x1 and x2, instead of a dimension-wise difference. As a
consequence, it is not the case that ⟨w, z⟩ is guaranteed to be zero for identical samples.

Figure 3 compares the performance of these algorithms on a dataset-by-dataset basis. The plotted
points show the difference in total progressive reward averaged over random seeds. The plot shows
that in 180 of the 206 datasets considered, self-consistency provides significant improvements. In
the 6 where it does not, the performance difference is negligible.

Figure 4 compares the average progressive reward for these two algorithms over 168 datasets, with
respect to the number of training examples. The number of datasets is slightly smaller here because
we omit datasets with fewer than 4, 000 training examples. We can see that the self-consistent
version has significantly better performance over all interactions on average.

4.2 COMPARISON TO ALTERNATIVE EPISODIC MEMORY DATA STRUCTURES

The most natural comparison to EMT is, as mentioned earlier, Contextual Memory Trees. The CMT
implementation used throughout this work for CMT-CB is the official Vowpal Wabbit (VW) (Lang-
ford et al., 2007) implementation published by Sun et al. (2019). It is also worth noting that the
original CMT paper evaluated the performance of CMT in an online framework with full-feedback,
meaning that the agent receives information about the correct answer for each xt it encounters. In the
partial-feedback scenarios studied here, where the agent only receives information corresponding to
the executed action, we find CMT is far less performant overall.

Specifically, our results demonstrate that EMT’s differences in routing and scoring endow it with
performance superior to CMT in bandit scenarios. We see this both in terms of performance over
time (Figure 5) and total performance on individual datasets (Table 1 and Appendix Figure 6) where
EMT soundly outperforms CMT. This plot also compares to a parametric algorithm discussed in the
proceeding section.

7

Under review as a conference paper at ICLR 2023

0 51 102 153 206
Dataset

0.0

0.1

0.2

0.3

Re
wa

rd
 D

iff
er

en
ce PEMT-CB Is Best (110)

Tie (88)
Parametric Is Best (8)

Figure 7: A per-dataset comparison of
final progressive reward between PEMT-
CB and parametric. Each point corre-
sponds to a single dataset, and the vertical
axis shows the difference between the two
learners. The horizontal axis is ordered by
this performance difference. PEMT-CB
almost always performs at least as well as
the parametric approach.

4.3 COMPARISON TO PARAMETRIC MODEL

Another natural comparison for this analysis is between EMT-CB and a parametric CB learner. A
parametric approach could be thought of as encoding semantic memories, focusing on high-level
concepts rather than specific experiences.

The parametric model is a linear regressor, taking context-action features as inputs and predicting
expected rewards. The model is trained using SGD on the squared loss, as implemented by VW. Like
EMT-CB and CMT-CB, this model is ϵ-greedy, selecting uniform random actions with probability ϵ
and selecting the action that yields the highest predicted reward with probability 1−ϵ. We use VW’s
default hyperparameter values (including ϵ = .1) along with 1st and 2nd-order polynomial features.
Table 1 and Figure 6 shows that EMT beats the parametric model on 44 cases (a minority).

The results here are reminiscent of the “no free lunch” theorem (Wolpert & Macready, 1997) which
states there is no one universal learner that wins in all problems. Rather we must try and determine
the most appropriate learner for each circumstance. The following subsection proposes a simple and
high-performing method that is able to combine parametric and EMT-CB with almost no downsides.

To understand the dataset qualities that result in EMT-CB outperforming the parametric approach,
we conducted a thorough meta-analysis, which is provided in Appendix 6. We find that the qualities
most predictive of whether EMT will outperform parametric are (1) the mutual information between
samples and labels and (2) how well the top eigenvector explains dataset variance. Intuitively, the
former could be thought of as how reasonable it is to compare a new sample with the data stored at
its corresponding leaf and the latter could be thought of as how reasonable it is for EMT to aggregate
leaf samples based on the first principle component.

4.4 COMPARISON OF STACKED TO PARAMETRIC

Due to the mixed results of EMT-CB when compared against the parametric algorithm, we propose a
simple method to combine the two learners, which we call PEMT-CB (and PCMT-CB when applying
this method to CMT-CB). This combination is a simple stacking approach (Wolpert, 1992) where
the rewards for each action predicted by EMT-CB are passed to the parametric CB model as a single
additional feature. The parametric learner has no idea the additional feature came from EMT-CB
and treats it simply as an additional parameter to optimize via SGD.

Figure 7 shows that PEMT-CB is able to outperform the parametric model on 110 individual datasets
and under-performs by a very small margin in only 8 datasets. It is worth noting that stacking two
learners in a partial feedback setting is more challenging than in a full-feedback setting because both
learners may have different data needs for learning and not all actions can be explored. Previous
work has sought to explicitly address this challenge from a statistical perspective (Agarwal et al.,
2017), but here we find the simple stacking approach to be surprisingly powerful.

4.5 BOUNDED MEMORY ANALYSIS

For our final analysis we examine how sensitive EMT is to a memory budget, limiting the amount of
memories EMT is permitted to keep. In order to maintain this limit we use a simple least-recently-
used (LRU) strategy to eject a memory whenever our memory budget is exceeded. To get a sense
of how the loss of memories might impact performance over time we filter our datasets down to the
116 which have 32, 000 or more training examples and evaluate out to 32, 000 iterations rather than
the 4, 000 explored up to this point.

8

Under review as a conference paper at ICLR 2023

1,000

32,000

16,000

Parametric

0.7500

0.7425

0.7350
30250 3200031125

Figure 8: The performance loss between
the unbounded PEMT-CB and bounded
PEMT-CB algorithms is minimal even
with a 3.1% memory budget. Addition-
ally, at no budget level does PEMT-CB
performance drop below the parametric
model. Each line corresponds to an av-
erage over 116 datasets in the OpenML
repository. Reward is a function of the
number of environment inter-actions and
vertical lines denote standard error.

We find that even with a budget of 1, 000 memories (with memory eviction via LRU) PEMT-CB still
outperformed parametric alone with statistical significance on 61 datasets (see Appendix Figure 14
for a per-dataset comparison). Figure 8 shows that a 16, 000-sample memory budget works almost
exactly as well as the no-budget version of PEMT-CB. That is, equivalent performance can be at-
tained despite the fact that the memory can only hold half as much information. Even when using an
extremely conservative memory budget of 1, 000 samples, PEMT-CB only accrues a loss in reward
of .0075 on average. Overall, very few memories are needed to consistently beat the parametric
approach in isolation, and not much is needed to match the performance of the unbounded memory
variant of PEMT-CB.

5 DISCUSSION AND FUTURE DIRECTIONS

Summary As discussed in Section 3, finding methods that effectively use episodic memory is
an important and active area of research. This work proposes a new episodic memory model for
sequential learning called Eigen Memory Trees (EMT). EMT possesses four distinguishing charac-
teristics: (1) self-consistency, (2) incremental growth, (3) incremental learning, and (4) sub-linear
computational complexity. EMT adds to an important but somewhat understudied area in online
learning: efficient, online memory models.

To evaluate the effectiveness of EMT we converted 206 datasets from OpenML into contextual
bandit problems. Using these we compared EMT’s performance to an alternative online memory
model, CMT, and a parametric CB learner. EMT outperformed CMT across the board (see Figure 5)
while outperforming parametric in 44 of the 206 (see Figure 6) datasets.

We further proposed PEMT-CB, a simple extension of EMT that is able to consistently outperform
both EMT and parametric alone, even when forced to use a small memory budget (see Table 1).
The aggregate strategy passes EMT reward predictions as a feature into the parametric learner. This
result is important for a number of reasons. First, it is suggests that EMT offers a no-downside
method for improving existing CB algorithms. Second, to our knowledge, this is the first work
demonstrating that stacking can improve performance in the partial feedback setting of contextual
bandits (cf. (Agarwal et al., 2017)).

Applied machine learning models often have to work with resources constrained by business and
operational requirements. For memory models this is often the amount of memories that can be
stored and efficiently accessed. We evaluated PEMT-CB performance for four memory budgets,
showing that observed performance improvements of PEMT-CB are largely maintained even with
an extremely constrained memory capacity (see Figure 8). Perhaps most importantly, constraining
the memory budget had no negative impact on the performance of the parametric learner.

Applications, limitations and future studies The fast reactivity of memorization, when appropri-
ate, is appealing in real world applications where data acquisition incurs natural costs via acting in
the world. Thus, incorporating memorization in practice can broaden the applicability of contextual
bandits, e.g., to scenarios in information retrieval and dialogue systems (Bouneffouf et al., 2020).

EMT also seems especially well suited for quick-changing environments. Rather than requiring
multiple SGD steps to update, new memories are immediately accessible after insertion, and stale
memories can be directly removed or added when situations change in known ways. This highlights
both a limitation of this study as well as an opportunity: how robust is EMT to non-stationarity?
The fixed nature of EMT’s top-eigen routers along with our simple LRU eviction rule for memory
budgeting likely make the model susceptible to performance degradation when environments shift.

9

Under review as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

We have taken considerable measures to ensure results are as reproducible as possible. We chose to
use a large number of publicly available datasets with many replications. We have also provided our
algorithm code, experiment code, result data, and plotting code in the supplement. The experiment
code we provided, when executed, will download all appropriate datasets, apply all data transfor-
mations described in the paper, and create 50 shuffled replicates for each data set using the same
random seeds used by the authors. Finally, our supplementary code also includes a conda environ-
ment file to help future researchers recreate our development environment on their machines when
running the experiments.

REFERENCES

Sarah Daniel Abdelmessih, Faisal Shafait, Matthias Reif, and Markus Goldstein. Landmarking for
meta-learning using rapidminer. In RapidMiner community meeting and conference. Citeseer,
2010.

Alekh Agarwal, Haipeng Luo, Behnam Neyshabur, and Robert E Schapire. Corralling a band of
bandit algorithms. In Conference on Learning Theory, pp. 12–38. PMLR, 2017.

Akshay Balsubramani, Sanjoy Dasgupta, and Yoav Freund. The fast convergence of incre-
mental pca. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Wein-
berger (eds.), Advances in Neural Information Processing Systems, volume 26. Curran Asso-
ciates, Inc., 2013. URL https://proceedings.neurips.cc/paper/2013/file/
c913303f392ffc643f7240b180602652-Paper.pdf.

Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for nearest neighbor. In Pro-
ceedings of the 23rd international conference on Machine learning, pp. 97–104, 2006.

Alberto Bietti, Alekh Agarwal, and John Langford. A contextual bandit bake-off. Journal of Ma-
chine Learning Research, 22(133):1–49, 2021.

Avrim Blum, Adam Kalai, and John Langford. Beating the hold-out: Bounds for k-fold and progres-
sive cross-validation. In Proceedings of the twelfth annual conference on Computational learning
theory, pp. 203–208, 1999.

Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z Leibo,
Jack Rae, Daan Wierstra, and Demis Hassabis. Model-free episodic control, 2016.

Djallel Bouneffouf, Irina Rish, and Charu Aggarwal. Survey on applications of multi-armed and
contextual bandits. In 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8, 2020.
doi: 10.1109/CEC48606.2020.9185782.

Ciro Castiello, Giovanna Castellano, and Anna Maria Fanelli. Meta-data: Characterization of input
features for meta-learning. In International Conference on Modeling Decisions for Artificial
Intelligence, pp. 457–468. Springer, 2005.

Sanjoy Dasgupta and Kaushik Sinha. Randomized partition trees for exact nearest neighbor search.
In Conference on learning theory, pp. 317–337. PMLR, 2013.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on
Computational geometry, pp. 253–262, 2004.

Yang Feng, Shiyue Zhang, Andi Zhang, Dong Wang, and Andrew Abel. Memory-augmented neural
machine translation. arXiv preprint arXiv:1708.02005, 2017.

Jerome H Friedman, Forest Baskett, and Leonard J Shustek. An algorithm for finding nearest neigh-
bors. IEEE Transactions on computers, 100(10):1000–1006, 1975.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
et al. Hybrid computing using a neural network with dynamic external memory. Nature, 538
(7626):471–476, 2016.

10

https://proceedings.neurips.cc/paper/2013/file/c913303f392ffc643f7240b180602652-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/c913303f392ffc643f7240b180602652-Paper.pdf

Under review as a conference paper at ICLR 2023

Steven Hansen, Alexander Pritzel, Pablo Sprechmann, Andre Barreto, and Charles Blun-
dell. Fast deep reinforcement learning using online adjustments from the past. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
f7bdb0e100275600f9e183e25d81822d-Paper.pdf.

Steven CH Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. Online learning: A comprehensive survey.
Neurocomputing, 459:249–289, 2021.

Geethan Karunaratne, Manuel Schmuck, Manuel Le Gallo, Giovanni Cherubini, Luca Benini, Abu
Sebastian, and Abbas Rahimi. Robust high-dimensional memory-augmented neural networks.
Nature communications, 12(1):1–12, 2021.

John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed bandits with side
information. In J. Platt, D. Koller, Y. Singer, and S. Roweis (eds.), Advances in Neural Information
Processing Systems, volume 20. Curran Associates, Inc., 2007.

John Langford, Lihong Li, and Alex Strehl. Vowpal wabbit online learning project, 2007.

Máté Lengyel and Peter Dayan. Hippocampal contributions to control: The third way. In J. Platt,
D. Koller, Y. Singer, and S. Roweis (eds.), Advances in Neural Information Processing Systems,
volume 20. Curran Associates, Inc., 2007. URL https://proceedings.neurips.cc/
paper/2007/file/1f4477bad7af3616c1f933a02bfabe4e-Paper.pdf.

Zichuan Lin, Tianqi Zhao, Guangwen Yang, and Lintao Zhang. Episodic memory deep q-networks.
In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI-18, pp. 2433–2439. International Joint Conferences on Artificial Intelligence Organiza-
tion, 7 2018. doi: 10.24963/ijcai.2018/337. URL https://doi.org/10.24963/ijcai.
2018/337.

Ana C Lorena, Luís PF Garcia, Jens Lehmann, Marcilio CP Souto, and Tin Kam Ho. How complex
is your classification problem? a survey on measuring classification complexity. ACM Computing
Surveys (CSUR), 52(5):1–34, 2019.

Viktor Losing, Barbara Hammer, and Heiko Wersing. Incremental on-line learning: A review and
comparison of state of the art algorithms. Neurocomputing, 275:1261–1274, 2018.

Kai Ni, Xunzhao Yin, Ann Franchesca Laguna, Siddharth Joshi, Stefan Dünkel, Martin Trentzsch,
Johannes Müller, Sven Beyer, Michael Niemier, Xiaobo Sharon Hu, et al. Ferroelectric ternary
content-addressable memory for one-shot learning. Nature Electronics, 2(11):521–529, 2019.

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adrià Puigdomènech Badia, Oriol Vinyals,
Demis Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control. In Doina Precup
and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learning Research, pp. 2827–2836. PMLR, 06–11
Aug 2017. URL https://proceedings.mlr.press/v70/pritzel17a.html.

Parikshit Ram and Kaushik Sinha. Revisiting kd-tree for nearest neighbor search. In Proceedings of
the 25th acm sigkdd international conference on knowledge discovery & data mining, pp. 1378–
1388, 2019.

Ashish Ranjan, Shubham Jain, Jacob R Stevens, Dipankar Das, Bharat Kaul, and Anand Raghu-
nathan. X-mann: A crossbar based architecture for memory augmented neural networks. In
Proceedings of the 56th Annual Design Automation Conference 2019, pp. 1–6, 2019.

Mohammad Rastegari, Ali Farhadi, and David Forsyth. Attribute discovery via predictable dis-
criminative binary codes. In European Conference on Computer Vision, pp. 876–889. Springer,
2012.

Matthias Reif, Faisal Shafait, Markus Goldstein, Thomas Breuel, and Andreas Dengel. Automatic
classifier selection for non-experts. Pattern Analysis and Applications, 17(1):83–96, 2014.

11

https://proceedings.neurips.cc/paper/2018/file/f7bdb0e100275600f9e183e25d81822d-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/f7bdb0e100275600f9e183e25d81822d-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/1f4477bad7af3616c1f933a02bfabe4e-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/1f4477bad7af3616c1f933a02bfabe4e-Paper.pdf
https://doi.org/10.24963/ijcai.2018/337
https://doi.org/10.24963/ijcai.2018/337
https://proceedings.mlr.press/v70/pritzel17a.html

Under review as a conference paper at ICLR 2023

Ruslan Salakhutdinov and Geoffrey Hinton. Semantic hashing. International Journal of Approxi-
mate Reasoning, 50(7):969–978, 2009.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. Advances
in neural information processing systems, 28, 2015.

Wen Sun, Alina Beygelzimer, Hal Daumé Iii, John Langford, and Paul Mineiro. Contextual mem-
ory trees. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 6026–6035. PMLR, 09–15 Jun 2019.

Endel Tulving. Episodic and semantic memory. In Endel Tulving and Wayne Donaldson (eds.),
Organization of memory, pp. 381–402. Academic Press, Oxford, England, 1972.

Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked science in
machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60, 2014.

Kilian Q Weinberger, John Blitzer, and Lawrence Saul. Distance metric learning for large margin
nearest neighbor classification. Advances in neural information processing systems, 18, 2005.

David H Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.

David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE trans-
actions on evolutionary computation, 1(1):67–82, 1997.

Guangxiang Zhu, Zichuan Lin, Guangwen Yang, and Chongjie Zhang. Episodic reinforcement
learning with associative memory. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=HkxjqxBYDB.

12

https://openreview.net/forum?id=HkxjqxBYDB

Under review as a conference paper at ICLR 2023

Appendix
6 META-DATA ANALYSIS

An analysis was performed to understand the characteristics of the datasets where EMT-CB outper-
formed the parametric CB learner. Twelve dataset features were selected from the meta-learning
literature. These twelve features are described in Table 2.

We trained a random forest (RF) model using the features in Table 2 to predict when EMT would
outperform the parametric learner. This model was able to predict winning CB model with a macro

Table 2: The features used to analyze why EMT outperformed the parametric learner on some datasets.

Feature Reference Description

Top Eigenvector Explained The percentage of dataset
variance explained by the
top eigenvector.

Eigenvector Count To Ex-
plain 95% Var

Lorena et al. (2019) The number of eigenvectors
required to explain 95% of
the feature variance.

Mean Mutual Information
Feature/Label

Castiello et al.
(2005); Reif et al.
(2014)

The average amount of
mutual information between
each feature and the target
label.

1 Nearest Neighbor Accu-
racy

Reif et al. (2014);
Abdelmessih et al.
(2010)

The accuracy of a 1 nearest
neighbors classifier on the
dataset.

Single Node Decision Tree
Accuracy

Reif et al. (2014);
Abdelmessih et al.
(2010)

The accuracy of a single
node decision tree on the
dataset.

Naive Bayes Accuracy Reif et al. (2014);
Abdelmessih et al.
(2010)

The accuracy of a naive
Bayes classifier on the
dataset.

Normed Label Entropy Lorena et al. (2019);
Castiello et al.
(2005); Reif et al.
(2014)

The amount of entropy
in the class distribution
(normed so that 1 is maxi-
mum entropy).

Noise to Signal Ratio Castiello et al. (2005) Ratio extra feature entropy
to mutual information be-
tween features and labels.

Binary Feature Count The count of the number
of binary features in the
dataset. For one hot en-
coded categorical features
this counts every level.

Percent of Nonzero Features Lorena et al. (2019) The percentage of non-zero
features in the dataset.

Efficiency of Best Single
Feature

Lorena et al. (2019) A measure of the single best
feature’s ability to distin-
guish classes. The efficiency
is averaged across all one-v-
one label matchups.

Maximum Fisher’s Discrim-
inant Ratio

Lorena et al. (2019) A Measure of feature over-
lap when discriminating
class labels. The ratio is av-
eraged across all one-v-one
label match-ups.

13

Under review as a conference paper at ICLR 2023

Percent of Variance Explained
by the Top Eigenvector

Dataset

R
ew

ar
d

D
iff

er
en

ce

Figure 9: This plot visualizes the relationship between the variance explained by the top-eigenvector for a
dataset and the performance of EMT-CB versus parametric. The x-axis represents our study datasets. The blue
line shows the difference in performance between EMT-CB and parametric. The yellow points show the feature
values for each dataset and the yellow line show the rolling average of all the yellow points.

Percent of Nonzero Features

Dataset

R
ew

ar
d

D
iff

er
en

ce

Figure 10: This plot visualizes the relationship between the percent of nonzero features in a dataset and and
the performance of EMT-CB versus parametric. The x-axis represents our study datasets. The blue line shows
the difference in performance between EMT-CB and parametric. The yellow points show the feature values for
each dataset and the yellow line show the rolling average of all the yellow points.

Average Number of Bits of Mutual
Information Between Features and
Class Label

R
ew

ar
d

D
iff

er
en

ce

Figure 11: This plot visualizes the relationship between the mutual information metadata feature and the
performance of EMT-CB vs parametric. The x-axis represents our study datasets. The blue line shows the
difference in performance between EMT-CB and parametric. The yellow points show the feature values for
each dataset and the yellow line show the rolling average of all the yellow points.

f1 score of .82 on held-out datasets. Figure 12 shows the average reduction in Gini impurity for each
feature.

We then trained a compact RF model to see the minimum features needed. We used repeated k-fold
cross validation with feature selection applied to the training split before fitting our RF model. The
final reduced model had an f1 score of .79 on held out data using only 3 features: percent of variance
explained by the top eigenvector, percent of nonzero features, average amount of mutual information
between features and labels (measured in bits). We now look at these more closely.

The first of these features measures the explanatory power of the top eigenvector. We can see
that this has a positive correlation with the performance of memory in Figure 9. We believe these
datasets with a more informative top eigenvector for the whole dataset likely have more informative
top eigenvector routers leading to improved tree searches for the EMT.

The second of these features is the percentage of non-zero values in a dataset. For this feature we
observed that the fewer non-zero features in a dataset the better EMT performed (see Figure 10).
When we looked at datasets with a high percentage of zero values the most common cause were
large amounts of one hot encoded categorical features. Categorical variables with a large number of
levels are naturally difficult to compare via a metric since each level is equidistant from every other
level. In this case learning an effective scorer would become very challenging parametric would
have a greater chance of beating EMT-CB.

14

Under review as a conference paper at ICLR 2023

Top Eigenvector Explained

1 Nearest Neighbor Accuracy

Single Node Decision Tree Accuracy

Normed Label Entropy

Binary Feature Count

Percent of Nonzero Features

 Maximum Fisher’s Discrim
inant Ratio

Efficiency of Best Single Feature

Naive Bayes Accuracy

Noise to Signal Ratio

Eigenvector C
ount To Explain 95% Var

Mean Mutual In
formation Feature/Label

Figure 12: The average decrease in impurity in an RF model predicting whether EMT outperforms parametric.

The final feature in our compact model was the mutual information between individual features and
a dataset’s class (see Figure 11). This is a non-normalized value so datasets with more labels and
fewer non-zero features will likely have higher values of this feature. For example, a dataset with a
binary label has an upper limit of 1 for this feature while a dataset with 30 class labels has an upper
limit of 4.91. High values in this variable also indicate that there is a strong statistical relationship
between features and class labels but place no restriction on the functional that relationship may
take.

7 SUPPLEMENTARY FIGURES

0 51 102 153 206
Dataset

0.0

0.1

0.2

Re
wa

rd
 D

iff
er

en
ce EMT-CB Is Best (177)

Tie (18)
CMT-CB Is Best (11)

Figure 13: A per-dataset comparison of final progressive reward. Each point corresponds to a single dataset.
The y-axis shows the difference between the two learners. The x-axis is ordered by this performance difference.

0 30 60 90 116
Dataset

0.000

0.025

0.050

0.075

0.100

Re
wa

rd
 D

iff
er

en
ce Parametric Is Best (2)

Tie (35)
PEMT-CB 32k Memories Is Best (80)

0 30 60 90 116
Dataset

0.000

0.025

0.050

0.075

0.100

Re
wa

rd
 D

iff
er

en
ce Parametric Is Best (4)

Tie (52)
PEMT-CB 1k Memories Is Best (61)

Figure 14: A per-dataset comparison of final progressive reward between memory budgeted PEMT-CB and
parametric. The left plot shows this difference when there is no bounding. The right plot shows the difference
when bounding to 1k memories. Each point corresponds to a single dataset. The y-axis shows the difference
between the two learners. The x-axis is ordered by this performance difference.

15

	Introduction
	Eigen Memory Tree
	Related Work
	Experiments
	Self-Consistency
	Comparison To Alternative Episodic Memory Data Structures
	Comparison to Parametric Model
	Comparison of Stacked to Parametric
	Bounded memory analysis

	Discussion and future directions
	References
	Appendix
	Meta-Data analysis
	Supplementary Figures

