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Abstract
In this paper, we use Prior-data Fitted Networks
(PFNs) as a flexible surrogate for Bayesian Op-
timization (BO). PFNs are neural processes that
are trained to approximate the posterior predictive
distribution (PPD) through in-context learning on
any prior distribution that can be efficiently sam-
pled from. We describe how this flexibility can be
exploited for surrogate modeling in BO. We use
PFNs to mimic a naive Gaussian process (GP),
an advanced GP, and a Bayesian Neural Network
(BNN). In addition, we show how to incorporate
further information into the prior, such as allow-
ing hints about the position of optima (user pri-
ors), ignoring irrelevant dimensions, and perform-
ing non-myopic BO by learning the acquisition
function. The flexibility underlying these exten-
sions opens up vast possibilities for using PFNs
for BO. We demonstrate the usefulness of PFNs
for BO in a large-scale evaluation on artificial
GP samples and three different hyperparameter
optimization testbeds: HPO-B, Bayesmark, and
PD1. We publish code alongside trained models
at github.com/automl/PFNs4BO.

1. Introduction
Gaussian processes (GPs) are today's de facto standard
surrogate model in Bayesian Optimization (BO; Frazier,
2018; Garnett, 2022). This dominance can be attributed to
both their strong performance and their mathematical con-
venience. However, a GP can only model priors that can
be encoded as a valid kernel function and is jointly normal-
distributed. Moreover, while kernel hyperparameters could
be treated in a Bayesian manner with Markov chain Monte
Carlo, this is typically not done due to the high computa-
tional cost, even though the fully Bayesian treatment was
already shown to yield stronger results a decade ago (Be-
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Figure 1: Our proposed Prior-data Fitted Network almost ex-
actly approximates a Gaussian Process posterior with fixed
hyperparameters. We plot the exact and approximated GP
prediction for (i) the mean and (ii) expected improvement.
For the simple GP model approximated here, a ground truth
can be exactly calculated, which is generally not the case,
see Section 4.1. PFNs, however, can be extended to approx-
imate any prior one can sample from.

nassi et al., 2011; Snoek et al., 2012; Eriksson & Jankowiak,
2021). Instead, GPs are usually fitted using maximum likeli-
hood, often called “Empirical Bayes”. This makes Bayesian
optimization less principled from a Bayesian perspective.

The recently proposed Prior-data Fitted Networks (PFNs,
Müller et al., 2022) show that fast approximate Bayesian
inference is possible by training a neural network, more
specifically, a specific type of neural process (Garnelo et al.,
2018), to mimic the posterior predictive distribution (PPD)
in a single forward pass using in-context learning. This
is a powerful approach, as it makes approximate Bayesian
inference readily usable in novel applications and allows
using any prior that we can sample from, e.g. a GP kernel
and its hyperparameters, or also a Bayesian neural network.
PFNs can be a robust and generalizable PPD approximation
method, e.g. for tabular data using a prior over different neu-
ral architectures and their weights (Hollmann et al., 2023).

In this work, we demonstrate the flexibility and effective-
ness of PFNs as a Bayesian drop-in replacement for Gaus-
sian Processes. We perform Bayesian optimization with
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three different kinds of priors, which we describe in Sec-
tion 4: a GP-based and a BNN-based prior, as well as a
prior that mimics the state-of-the-art BO implementation,
HEBO (Cowen-Rivers et al., 2022). In Section 3, we show
that standard acquisition functions, such as probability of
improvement (PI), expected improvement (EI), or upper con-
fidence bound (UCB), are easy to implement analytically in
the PFN framework and that PFNs can produce sensible re-
sults for BO, as illustrated in Figure 1 for a PFN trained on a
simple GP prior for which results closely follow the ground
truth GP posterior. We also show that PFNs can readily be
combined with gradient-based optimization techniques to
optimize input warping (Snoek et al., 2014) and acquisition
functions. In Section 5, we show how our approach can
be extended to allow the user to specify prior beliefs about
where optima lie, which in our experiments significantly
improves performance when accurate prior beliefs exist, as
well as an extension towards non-myopic optimization.

In our experiments, we focus on BO for hyperparameter op-
timization (HPO, Feurer & Hutter, 2019). HPO is a crucial
task for achieving top performance with machine learning
algorithms and a key application of BO (Brochu et al., 2010;
Snoek et al., 2012; Garnett, 2022). We show that PFNs
perform strongly across three benchmarks, including tuning
hyperparameters of large neural networks.

2. Bayesian Optimization
BO is a popular technique to find maxima of (noisy) black-
box functions in as few evaluations as possible (Garnett,
2022). BO is an iterative procedure that switches between
modeling outcomes based on all observations Dk up to a
time-step k with a probabilistic model f̂(y|x,Dk), and us-
ing an acquisition function α(f̂(y|x,Dk)) to decide which
point to query next. The acquisition function accepts a dis-
tribution over possible outcomes, typically the predictive
posterior distribution, to trade off exploitation (trying to
improve solutions in known good areas) and exploration (re-
ducing the posterior uncertainty in unknown areas). In this
work, we restrict optimization to real- and integer-valued
inputs x, but BO has been extended to more complex design
spaces (Hutter et al., 2011; Swersky et al., 2013; Korovina
et al., 2020; Ru et al., 2021; Daulton et al., 2022). We show
pseudocode for the BO loop in Algorithm 1 (purple depicts
the standard setting, and green PFN-based models, intro-
duced in Sections 3-5). We refer to Brochu et al. (2010),
Frazier (2018) and Garnett (2022) for thorough introduc-
tions to Bayesian optimization. We will now focus on GPs
for BO and briefly review other models in Appendix K.

Gaussian Processes GPs have been widely adopted as
probabilistic surrogates in BO due to their flexibility and
analytic tractability (Rasmussen & Williams, 2006). How-

Algorithm 1 Bayesian optimization with GPs or PFNs

Input hyperparameter prior settings , PFN qθ trained

on a prior distribution over datasets p(D) , initial obser-
vations D = {(x1, y1), ..., (xk, yk)}, search space X ,
number of BO iterations K, black-box function f to opti-
mize, acquisition function α
Output Best observed input x∗ and response y∗
for i← k + 1 to K do

Fit GP model f̂ to data D

Suggest x ∈ argmaxx̂∈X α(x̂, D, f̂ or qθ(· | D) )
Update history with response D ← D ∪ {(x, f(x))}

end for
Return best configuration: argmax(xi,yi)∈D yi

ever, traditional GPs exhibit a cubic scaling, which limits
their application in large-data settings. They also assume a
joint Gaussian distribution of the data introducing a model
mismatch for long-tailed data. Furthermore, the predomi-
nant use of stationary kernels renders the optimization of
nonstationary and heteroscedastic functions problematic.
Two further problems come from the kernel that defines
the GP’s covariance matrix. First, the model prior must
be encoded as a valid kernel function, which complicates
representing categorical or hierarchical concepts. Second,
the kernel hyperparameters need to be tuned to the data,
which suffers from the curse of dimensionality when using
Empirical Bayes.

The current state-of-the-art BO method using GPs for hy-
perparameter optimization is HEBO (Cowen-Rivers et al.,
2022). We describe HEBO and extend on it in Section 4.2.

3. Bayesian Optimization with PFNs
We will now show how to train and use PFNs, combine
common acquisition functions with them, and incorporate
gradient-based optimization at suggestion time for acquisi-
tion function optimization and input warping (Snoek et al.,
2014).

3.1. Background on Prior-Data Fitted Networks

Prior-data Fitted Networks (PFNs, Müller et al., 2022) are
neural networks trained to approximate the Posterior Pre-
dictive Distribution p(y|x, D) for supervised learning tasks.
We visualize their use in Figure 2a.

Prior-fitting Prior-fitting is the training of a PFN to ap-
proximate the PPD and thus perform Bayesian prediction
for a particular, chosen, prior. We assume that there is a
sampling scheme for the prior s.t. we can sample datasets
of inputs and outputs from it: D ∼ p(D). This require-
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Done once, offline

Sample synthetic datasets Di

from prior: Di ∼ p(D)

Train a PFN qθ on synthetic
datasets {D1, . . . , Dn}

Obtain qθ(ytest|xtest, Dreal)
with a single forward pass

Done per real-world dataset, online

Real-world training dataset Dreal

and test point xtest

(a) Prior-fitting and inference

(x1, y1)(x2, y2)(x3, y3)

q(·|x5, D)q(·|x4, D)

x4 x5

(b) Architecture and attention mechanism

Figure 2: (a) The PFN learns to approximate the PPD of a
given prior offline to yield predictions on new observations
in a single forward pass. (b) The positions representing the
training samples (xi, yi) can attend only to each other; test
positions (for x4 and x5) attend only to the training positions.
Plots based on Müller et al. (2022), with permission.

ment is easy to satisfy for most priors. For a GP, for ex-
ample, this can be achieved by sampling outcomes from
the GP prior. We describe our priors in more detail in
Section 4. We repeatedly sample synthetic datasets D =
{(xi, yi)}i∈{1,...,n} and optimize the PFN's parameters θ
to make predictions for (xtest, ytest) ∈ D, conditioned on
the rest of the dataset Dtrain = D \ {(xtest, ytest)}. Our
PFN qθ is an approximation to the PPD and thus accepts a
training set and a test input and returns a distribution over
outcomes for the test input. The loss of the PFN training is
the cross-entropy on the held-out examples

E(xtest,ytest)∪Dtrain∼p(D)[−log qθ(ytest|xtest, Dtrain)], (1)

and minimizing this loss approximates Bayesian predic-
tion (Müller et al., 2022). Crucially, this synthetic prior-
fitting phase is performed only once for a given prior p(D)
as part of algorithm development. For technical details of
our training procedure, we refer to Appendix E.

Real-World Inference During inference, the trained
model is applied to unseen real-world observations (see
Figure 2a). For a novel dataset with observations D and test
features x, feeding ⟨D,x⟩ as an input to the model trained
above yields an approximation to the PPD qθ(y|x, D)
through in-context learning.

Architecture PFNs rely on a Transformer (Vaswani et al.,
2017) that encodes each feature vector and label as a vector
representation, allowing these representations to attend to
each other, as depicted in Figure 2b. They accept a variable-
length training setD of feature and label vectors (treated as a
set-valued input to exploit permutation invariance) as well as

a variable-length query set of feature vectors {x1, . . . ,xm}
and return estimates of the PPD for each query. This ar-
chitecture also fulfills all requirements for a neural process
architecture (Nguyen & Grover, 2022b).

Regression Head PFNs do not use a standard regres-
sion head, but instead make predictions with a discretized
distribution, the Riemann distribution. Consequently, the
approximated PPD q becomes a discrete distribution. This
allows PFNs to treat regression as a classification problem,
shown to be clearly advantageous for PFNs over a classical
regression head (Müller et al., 2022). Please see Appendix
E.1 for details.

3.2. PFNs as Models in Bayesian Optimization

We contrast Bayesian optimization with surrogates based
on a PFN and a GP with Empirical Bayes in Algorithm 1;
the standard components colored in purple are replaced
by the new ones in green. The trained PFN is passed to
the BO algorithm and used in the acquisition function as a
replacement of the standard GP model.

While PFNs have an up-front cost of fitting the prior, Empir-
ical Bayes incurs the online cost of fitting the hyperparame-
ters in each iteration. Crucially, PFNs incur the training cost
exactly once per prior, and a single trained PFN can be used
for BO on different tasks with varying dimensions, since
the data D is passed to the PFN for in-context learning (in a
single forward pass). The offline training of the PFN can be
compared to developing the code base for GP regression and
tuning its hyperparameter spaces: a one-time investment
that is then generally applicable. We list important details
for BO with PFNs in Appendix D.

3.3. Prior Work using Transformers as Surrogates

Three recent works propose Transformers as surrogates.

Maraval et al. (2022) investigate the feasibility of using
PFNs in Bayesian Optimization (BO) on toy functions in
their early work. They demonstrate that using GP priors
with a PFN can match or outperform GPs while being an
order of magnitude faster. However, their work only eval-
uates a small set of toy functions and does not leverage
the flexibility of PFNs to model extensions to a simple
GP model. Finally, the authors train one PFN per search
space dimensionality, while we share one network across all
search spaces. Their paper reports that (i) models trained on
uniformly distributed inputs impair predictive accuracy on
non-uniform data, and (ii) their PFNs require many novel ob-
servations to adapt posteriors. However, they used extremely
few epochs for training, and we observe that both of these
issues vanish when increasing the number of epochs for
prior-fitting to the magnitude used by Müller et al. (2022).

Similarly, Nguyen & Grover (2022a) used a Transformer to
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do Bayesian Optimization on toy functions. Interestingly,
they did not use a Riemann distribution to predict the output,
but instead parameterized a normal distribution with the
outputs of the neural network.

The only application to real-world data was done with the
recent Optformer (Chen et al., 2022). Optformer is a Trans-
former that utilizes transfer learning on previously recorded
BO optimizations performed by other optimizers. As such,
it is not a Bayesian method; instead, the Optformer mod-
els full BO trajectories, including observations, rather than
acting as a surrogate model. Additionally, the Optformer
incorporates additional user-provided information, such as
the names of the optimization dimensions or of the metric
to optimize.

3.4. Acquisition Functions

When we condition a PFN on new observations, we obtain
an approximation of the PPD in a forward-pass p(y|x, D) ≈
qθ(y|x, D) in the form of a Riemann distribution, that is, a
piece-wise constant distribution over bins spanning a rea-
sonable output range (Müller et al., 2022). The Riemann
distribution allows us to calculate the utility for different ac-
quisition functions exactly, e.g., EI, PI, or UCB, as described
by Chen et al. (2022). To exemplify the general approach,
we outline how to compute PI(y) =

∫∞
−∞[y > f∗]p(y)dy

for the unbounded Riemann distribution in Appendix F. We
experimented with EI, PI and UCB and found simple EI to
work robustly. We show a comparison in Appendix Table 4.

3.5. Gradient-based Optimization at Inference Time

The PFN, being a standard Transformer under the hood,
propagates gradients from its outputs to its inputs. We use
gradient ascent to find the acquisition function's maximum
and to tune our input warping, which we outline below.

Acquisition Function Optimization Our acquisition
functions are optimized with an extensive initial random
search followed by a gradient-based optimization of the
strongest candidates, similar to previous work (Snoek et al.,
2012). We refer to Appendix C for more details.

Input Warping To improve performance on search spaces
with misspecified scales, e.g., a log scale that is not declared
as such, we warp features before passing them to the PFN.
This can be necessary as missing log scaling can result in
almost all values lying in a range that is difficult for the
PFN to handle numerically (e.g., in the lowest percentile of
the search space). We follow Cowen-Rivers et al. (2022)
and use the CDF of a Kumaraswamy distribution w(·; a, b),
where a and b are tuned per feature, to warp features to

w(x; a, b) = 1− (1− xa)b. (2)

Traditionally, the parameters a and b are tuned to maximize

the likelihood of the observed data, i.e., maximize p(D).
While the data likelihood can be computed with a PFN,
this is expensive, as one needs to compute the factorization
p(y1|x1)p(y2|x2, {(x1, y1)}) · · · . Instead, we use the like-
lihood

∏
(x,y)∈D p(y|x, D) of observing the same ys again,

which is cheaper to compute. We view this as a measure
for the amount of noise a PFN uses to explain the data D.
E.g., if a prediction p(y1|x1, {(xi, yi)}i∈{1,...,n}) has a high
probability, the network does not assign a lot of probability
to noise changing the value of y when re-evaluating. While
this approximation works well for our prior, it might fail
in other setups. We ablate the impact of input warping in
Appendix L.

4. Priors for Bayesian Optimization
In this work we use a set of three different priors to show
the flexibility of PFNs as a surrogate.

4.1. A Simple Prior Based on a Simple GP (GP)

We use the prior of a simple GP with fixed hyperparameters
to show-case our method (see Figure 1 and Figures 11 and
12), as it allows us to compare against the ground truth pos-
terior. Here we use an RBF kernel with zero mean. During
prior-fitting, we sample N inputs xi uniformly at random
from the unit-hypercube. Then we sample all outputs y
from the GP prior. We can simply sample y ∼ N (0,K),
where Ki,j = kRBF(xi, xj).

4.2. A HEBO-inspired Prior (HEBO and HEBO+)

HEBO (Cowen-Rivers et al., 2022) is a state-of-the-art
BO method that won the NeurIPS black-box competi-
tion (Turner et al., 2021) and demonstrated excellent per-
formance in a recent empirical evaluation (Eggensperger
et al., 2021). It performs non-linear input and output warp-
ing for robust surrogate modeling and combines it with a
well-engineered GP prior. We use it as a starting point for
our own HEBO-inspired prior for PFN training. Our method
considers a set of parameters ϕ: the lengthscale per dimen-
sion, the output scale and the noise. These are modeled as
independent random variables subject to some distribution
p(ϕ;ψ) that depends on hyperparameters ψ.

To sample functions, we perform the following four steps
per dataset: i) Sample all x from a uniform distribution, ii)
sample the parameters ϕ ∼ p(ϕ;ψ), iii) draw the outputs for
our dataset y ∼ N (0,K(x;ϕ)), where K is the covariance
matrix defined by the 3/2 Matérn kernel, that uses the sam-
pled outputscale, lengthscale and noise. For additional
details on ψ, we refer to Appendix B.

We use this prior in a form that is as close to the original
HEBO as possible and a variant we dub HEBO+ that ex-
tends on HEBO (see Section 5.2) and is tuned to work well
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with PFNs (see Section 7.1).

4.3. Bayesian Neural Network Prior (BNN Prior)

We follow previous work (Müller et al., 2022; Hollmann
et al., 2023) in building our Bayesian Neural Network
(BNN) prior. To sample datasets from this prior, we (i)
first sample one network architecture, i.e., the number of
layers, the number of hidden nodes, the sparseness, the
amount of Gaussian noise added per unit, and the standard
deviation with which to sample weights (ii) sample the net-
work’s weights from a normal distribution. For each dataset,
we first sample a BNN and then sample inputs to the BNN
x uniformly at random from the unit hypercube, feed these
through the network, and use the output values as the target
y. Additionally, we employed input warping as described in
Section 5.1. For more details, see Appendix B.

5. Prior Extensions
PFNs offer versatility, making it simple to explore new pri-
ors for BO, such as the above BNN prior, which incorporates
a distribution over architectures. In this section, we discuss
modifications that can easily be combined with priors, but
would be harder to incorporate in traditional GPs.

5.1. Input Warping

In addition to using input warping after prior-fitting (see
Section 3.5), we can include a Bayesian formulation of
input warping in the prior directly and include it in prior-
fitting. That is, (i) we sample warping hyperparameters
hwarp randomly from a predefined distribution and then (ii)
warp inputs of a synthetic prior dataset with an exponential
transform and hyperparameters hwarp. While we found this
to be beneficial, it was not powerful enough to remove the
need for feature warping after prior-fitting completely.

5.2. Spurious Dimensions

Many real-world tuning tasks contain irrelevant features,
which do not influence the output (Bergstra & Bengio, 2012).
While it would be hard with traditional GPs and Empirical
Bayes to encode a specific chance of a feature being spurious
in the prior, for PFNs, we can do this easily by adding
irrelevant features at random during prior-fitting. These
features are simply not fed to the GP/NN which generates
the outcomes for the dataset. In our final HEBO+ prior we
use 30% irrelevant features. We found that this improves
performance, especially for large search spaces, and show
a steep improvement on the three largest search spaces in
HPO-B in Table 3 of the Appendix.

Feature

p

Feature

Figure 3: An example of the impact of the user prior on the
prior belief about the position of the optimum.

5.3. User Priors

The ability to incorporate practitioner's knowledge is piv-
otal in order to improve the usefulness of automated HPO
approaches for Machine Learning as well as in other BO
applications. Previous work has shown that user knowledge
can improve BO performance tremendously (Ramachandran
et al., 2020; Li et al., 2020; Souza et al., 2021; Hvarfner
et al., 2022). One way to incorporate explicit user knowl-
edge is through a user's belief about the location of the
optimum in the search space. While previous work relies on
warping the space (Ramachandran et al., 2020), reweighting
the posterior (Souza et al., 2021) or reweighting the acqui-
sition function (Hvarfner et al., 2022), PFNs, can integrate
these priors in a more direct and sound way.

In this work we let the user define an interval I ∈ I, in which
they belief the optimum lies, and a weighting ρ ∈ [0, 1],
indicating their confidence. This yields a prior:

p(D|ρ, I) = ρ · p(D|m ∈ I) + (1− ρ) · p(D), (3)

where m is the maximum of the function underlying the
dataset D; y ∼ f(x) for all x, y ∈ D. Figure 3 shows an
exemplary change to the density of the optimum in the prior.

We train a single PFN that can accept any interval I ∈ I
and confidence ρ ∈ [0, 1] and adapt its prior on the fly to
be p(D|ρ, I). The extra inputs, ρ and I , are fed to the PFN
using an extra position with its own linear encoder similar
to style embeddings for language models (Dai et al., 2019).

In Appendix G, we detail how we build a PFN prior
p(D, ρ, I) that is cheap to sample and allows the neural
network to adapt to any interval I out of a set of |I| = 15
different intervals per search space dimension.

5.4. Non-Myopic Acquisition Function Approximation

Non-myopic acquisition functions provide an optimal ex-
ploration and exploitation strategy, optimizing sampling
policies over a rolling horizon. Though promising, comput-
ing them is computationally expensive and thus rarely used
in practice. We demonstrate how to use PFNs to enable an
effective approximation. The Knowledge Gradient (Frazier,
2018) measures the predicted improvement in the maximum
value of the black-box function by obtaining an additional
observation at the candidate point x:

αKG(x;D) = Ep(y|x,D)[τ(D ∪ {(x, y)})− τ(D)], (4)
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# Features 1 2 10

# Wins Empirical Bayes 206 144 169
# Wins PFN 239 154 171
# Ties 555 702 660

Table 1: BO performance with minimal confounding factors
after 50 evaluations. The majority of runs yielded ties,
showing PFNs are a strong alternative to Empirical Bayes.

where τ(D) = maxx∈X E[y|x, D]. Knowledge gradient
is the optimal acquisition function choice when optimizing
for the mean in the following step. It is thus an approxima-
tion for the non-myopic setting with a one step look-ahead.
Traditionally one can approximate αKG with a Monte Carlo
estimate. For this, one needs to sample a set of N outcomes
y at the current position and an additional set ofM positions
x at which to evaluate the mean per y. This incurs costs of
M ·N . Alternatively, this can be solved by a two-level opti-
mization of random batches (Wu & Frazier, 2016; Wu et al.,
2017). With a PFN, we can get away without any prediction
time optimization, though. The PFN can directly learn to
approximate the αKG. In Appendix H we detail this method
and in Appendix H.1 show results, with this non-myopic
method outperforming standard EI on four search spaces
with few dimensions.

6. Bayesian optimization experiments
In this section we analyze the performance of PFNs on prior
samples with as few as possible confounding factors. First,
we verify that the PFN predictions match the true GP poste-
rior without Empirical Bayes; as shown in Figures 11 and 12
in the appendix. This is not the case when training the PFN
on very few (≤100k) prior samples but the approximation
becomes tighter with enough samples (≥ 20M).

Next, we consider prediction performance with the original
HEBO prior, following their hyper-prior setup as close as
possible. We evaluate the HEBO with Empirical Bayes with
our reimplementation of the HEBO model in GPyTorch
(Gardner et al., 2018), which has some slight adaptions
which we detail in Appendix I. Table 8 shows that both,
PFNs and Empirical Bayes, can approximate the posterior
similarly well in terms of likelihood on prior samples.

Finally, we compare BO performance on samples from the
HEBO prior. We create a discrete benchmark with 1 000 dif-
ferent datasets per number of dimensions, each containing
1 000 evaluations sampled uniformly at random in [0.0, 1.0].
Table 1 shows that across dimensionalities, the GP with
empirical Bayes and our PFN approximation perform on
par, most of the time they find the same maxima. We refer
to Appendix I for a more detailed comparison.

7. HPO Experiments
We conduct a large-scale evaluation of PFNs as surrogates
for Hyperparameter Optimization (HPO). We present results
on three diverse benchmarks: HPO-B (Pineda Arango et al.,
2021), a discrete benchmark with a focus on tree-based
ML models including XGBoost (Chen & Guestrin, 2016),
Bayesmark, a continuous HPO benchmark which was used
in the evaluation of the baseline HEBO (Cowen-Rivers et al.,
2022), and PD1 (Wang et al., 2021), a discrete large neural
network tuning benchmark. We run every optimizer for 50
function evaluations per problem. HPO-B provides baseline
results for 5 repetitions, and we therefore also conduct 5
repetitions, except for Bayesmark, where we conduct 10
repetitions because it is considerably more noisy. In total
we evaluated 105 tasks from a total of 19 search spaces. We
describe a set of ablation studies in Appendix L, in which we
analyse our HEBO-inspired model against a set of HEBO
variations to find the changes that improve performance.
Moreover, we study the handling of spurious features and
different acquisition functions.

Model selection Our HEBO and BNN priors contain meta
hyperparameters, which we chose once upfront. This is
similar to the GP meta hyperparameters which are chosen
once and fixed across tasks, e.g. the length scale prior for
HEBO. To determine our global prior hyperparameters, we
split off a set of 7 validation search spaces from our largest
benchmark, HPO-B, as validation search spaces. On these
we performed one random search for each prior and picked
the strongest hyperparameters based on average rank. We
list our search space split in Appendix A.

7.1. HPO-B Benchmark

We perform experiments on the 9 test search spaces of the
HPO-B benchmark (Pineda Arango et al., 2021), which con-
tain a total of 51 different tasks spread across the search
spaces. HPO-B is a discrete benchmark in which the BO
tool can only query recorded function evaluations and con-
tains search spaces for Decision trees, SVMs, linear models,
random forests and XGBoost.

We compare our method to the following baselines (us-
ing the results provided by HPO-B for 1-4): 1) Ran-
dom Search (RS; Bergstra & Bengio, 2012), 2) Gaussian
Processes (GP; (Jones et al., 1998; Snoek et al., 2012)
3) DNGO (Snoek et al., 2015), 4) Deep Kernel Gaus-
sian Processes (DGP; Wistuba & Grabocka, 2021), 5)
HEBO (Cowen-Rivers et al., 2022).

We evaluate both PFN priors in Figure 4 (top). We can see
that the BNN prior performs similar to the best baseline,
while the HEBO+ prior outperforms the baselines. Addi-
tionally, in Figure 9 of the Appendix, we study the impact of
input warping on the PFN model and also compare against
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Figure 4: Aggregated average rank and average regret over time on the HPO-B (top) and PD1 (bottom) benchmarks. Shading
indicates 95% confidence intervals. (Top) Aggregate over all HPO-B test search spaces. We can see that both priors seem to
yield advantages for the PFN, yielding top performance. We provide per-search-space results in Figure 18 in the Appendix.
(Bottom) Aggreate over all PD1 tasks, including user priors. We can see that user priors clearly improve performance.

a BNN baseline and two Optformers (Chen et al., 2022).

Early on we found that HPO-B has many instances of
wrongly scaled hyperparameters, where a log transforma-
tion is missing. We found that approximately 10% of the
hyperparameters are missing log scaling in HPO-B using
a heuristic. We show one example of such a parameter in
the appendix in Figure 15. While this likely is a bug in
the original development of the benchmark, we still include
this benchmark as it is a very important real-world setting.
Users, like the creators of HPO-B, could very well miss to
specify a log scaling. However it is very distinct from the
standard BO setting, where user knowledge is used to apply
logarithms where needed. Thus, we used this benchmark to
show-case our inference time input warping, as described
in Section 3.5, that can find the right transformation for
extremely mis-specified parameters.

7.2. Continuous HPO on BayesMark

We use Bayesmark1 to test the PFN's ability to optimize hy-
perparameters in continuous search spaces, i.e. give the PFN
the ability to propose any hyperparameter, not only previ-
ously queried hyperparameters and show results in Figure 4.
We evaluated 10 seeds on 9 methods from scikit-learn (Pe-
dregosa et al., 2011), i.e. 9 search spaces, training on 4

1https://github.com/uber/bayesmark

different datasets with accuracy as evaluation metric. This
yields a total of 36 different tasks. We compare our PFNs
to the following baselines: 1) HEBO's competition version
for BayesMark (Turner et al., 2021), 2) HyperOpt (Bergstra
et al., 2013), 3) PySOT (Eriksson et al., 2019), and 4) Ran-
dom Search. For this benchmark, the question of initial de-
sign arises. First we used d standard Sobol samples, where
d is the dimensionality of the search space. In this setting,
we can see that the PFN with a BNN prior is outperformed
by HEBO, while outperforming all other baselines, while
the HEBO+ prior helps the PFN to perform comparable or
slightly worse than HEBO.

Since our PFN is fully Bayesian, there should be no need
for an initial design, as the model will never overfit the data.
We thus experimented with two more initial designs of size
one as the PPD cannot be used without a single training
point: We initialize i) at the middle of the search space and
ii) in the lower corner of the search space. The first turned
out to be slightly better than standard Sobol sampling, while
the second was clearly superior to all other approaches.
These results are surprising, especially considering the bad
performance these initializations seem to have at step 0.

7.3. Neural Network HPO with PD1 and User Priors

While the focus of the previous benchmarks was HPO
for traditional machine learning methods, the PD1 bench-
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mark Wang et al. (2021) focuses on real-world large neural
network setups. PD1 is a discrete benchmark, considering
different relevant tuning tasks e.g. of ResNets (He et al.,
2016) or Transformer language models (Vaswani et al.,
2017). All tasks in PD1 share the same five dimensional
search space, which is given in Table 2 of the Appendix.
For each task we ran 5 seeds with a different (shared) sin-
gle initial given evaluation. We do not perform any further
initial design for our PFNs. Figure 4 (bottom) shows that
this time the PFN with BNN prior is clearly outperformed
by the HEBO baseline, but that the PFN with the HEBO+

prior performs better.

User Prior Since PD1 only has a single search space,
we used it to evaluated the performance of a simple user
prior. As we lacked experience with the optimizer setup
used in PD1, we defined a single generic user prior for
the benchmark based on the location of optima across all
18 tasks. We did not choose to make it a very strong prior,
though, as in the most extreme case it places half of the prior
weight on optima in one-fourth of the transformed search
space. This generic user prior does not reveal the exact
location of optima, but rather provides hints towards them.
The definition can be found in Table 2 of the Appendix.

In Figure 4 (bottom), we can see that the user prior yields
strong improvements over our HEBO+ prior. We contrast
our method to a quasi-random search that samples randomly
from the user prior. Although this approach improves upon
random search, it is not competitive with any BO method,
thus the prior clearly does not make the BO problem trivial.

8. Conclusion & Limitations
We showed that PFNs can be trained in a way that they can
be powerful BO surrogates and incorporate function priors
that would be complicated to model otherwise.

Still, we believe that there is a lot of room to improve upon
our work. Unfortunately, our work has several limitations.

First, PFNs tend to work worse for data that has a very
low likelihood in the prior distribution, which is not such a
big problem for GPs. Second, we could not find a setting
that recovers mislabeled log dimensions, but still performs
very strong on correctly specified search spaces. That is
why we use input-warping only for HPO-B, but not for the
other benchmarks. Third, compared to GPs, we cannot draw
joint samples from multiple data points, which prohibits the
straight-forward adaptation of some acquisition functions
such as the noisy EI (Letham et al., 2018). Fourth, we have a
strong focus on accuracy as evaluation metric in HPO tasks,
with only PD-1 having non-accuracy tasks. Our method
seems to work worse for non-accuracy based tasks, as they
typically have very different dynamics, even when using a
power transformation. Fourth, PFNs were only shown to
perform well up to around 1000 data points (Hollmann et al.,
2023) so far, but we are hopeful for future improvements.

Furthermore, we plan to extend our work to contain
more elaborate priors that can handle non-stationary func-
tions (Assael et al., 2014; Martinez-Cantin, 2015; Waber-
sich & Toussaint, 2016), heteroscedastic noise (Griffiths
et al., 2022), discrete and categorical variables (Daulton
et al., 2022), discontinuous functions (Jenatton et al., 2017;
Lévesque et al., 2017) and 100s or 1000s of irrelevant fea-
tures (Wang et al., 2016). In addition, we expect that it will
be easier to use other random processes such as student-t
processes (Shah et al., 2014) or other non-Gaussian output
distributions, like log-normals (Eggensperger et al., 2018).

We have demonstrated how user priors can be added into the
model, and we plan to extend this to allow more flexible user
priors that allow specifying details about the behavior of the
black-box function. Following up on this, a great addition
will be learning user priors via transfer learning (Wistuba
et al., 2016; van Rijn & Hutter, 2018; Vanschoren, 2019;
Feurer et al., 2022) or allowing simpler user priors based on
just a few good starting points.

We would like to end this paper by once again highlighting
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the potential of PFNs as surrogate in BO as they can be
easily adapted to model any efficient to sample prior.
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Masson, C., Häggström, C., Fitzgerald, C., Nicholson,
D., Hagen, D., Pasechnik, D., Olivetti, E., Martin, E.,
Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young,
G., Price, G., Ingold, G.-L., Allen, G., Lee, G., Audren,
H., Probst, I., Dietrich, J., Silterra, J., Webber, J., Slavič,
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A. Search spaces split
For the HPO-B Benchmark, we split search spaces into test, validation, and training search spaces. We make sure to group
similar algorithms into the same split. As validation search spaces, we use HPO-B IDs: 5527, 5891, 5906, 5971, 6767, 6766,
and 5860. As test search spaces, we use HPO-B IDs: 5965, 7609, 5889, 6794, 5859, 4796, 7607, 5636, and 5970.

B. Details on Our Priors
Below we explain implementation details and the hyperparameters used in our priors. We found all hyperparameters using
random search on the distinct validation search spaces of HPO-B, which ensures that we have an unbiased performance on
the test set.

B.1. Our HEBO-inspired Prior

For our final model, not the one used for the direct comparison with HEBO on artificial data shown in Figure 10, we made
some adaptions to the HEBO prior. We do not use a linear kernel and use the following priors, found by using BO on the
validation search spaces of HPO-B, as described in Section 7.1. We use Gamma(concentration, rate) distributions for
length- and outputscale hyperparameters: For the outputscale we use Gamma(0.8452, 0.3993) and for the lengthscale we
use Gamma(1.2107, 1.5212). For the noise we follow the original kernel exactly with log(ϵ) ∼ N (−4.63, 0.5).

B.2. Our BNN prior

We generate the inputs for the BNN via a uniform random sampling scheme from the unit hypercube, akin to the inputs
to our GP priors. We employ a multi-layer perceptron (MLP) for the BNN with a tanh activation function. To account
for model complexity, the number of layers in the MLP is sampled uniformly from the range of 8 to 15. Additionally, the
number of hidden units per layer is uniformly sampled between 36 and 150. The weights of the network are sampled from a
Normal distribution with 0 mean, and a standard deviation sampled uniformly at random from [0.089, 0.193]. Every weight
is zeroed with a probability of 14.5%, and the remaining weights are rescaled by a factor of 1/(1. − .145) ∗ ∗(1/2) to
counteract the changed distribution.

Before any activation, we add a 0-mean Gaussian noise with a standard deviation uniformly sampled between 0.0003 and
0.0014. We add a noise uniformly at random sampled between 0.0004 and 0.0013.

We used a zero-mean Gaussian for sampling the input warping parameter C1 (C2) with a standard deviation of 0.976
(0.8003).

To be more efficient, we sampled the hyperparameters (the standard deviation of the distributions and the architecture) 16
times per batch, but used a batch size of 128. This is more efficient than sampling these per example, but adds correlation to
the gradients inside a batch.

C. Acquisition Function Optimization
Acquisition functions are used in Bayesian optimization to determine the next point to sample in the optimization process.
These functions take into account the current model of the objective function and the uncertainty of the model to determine
the most promising points to sample.

As the PFNs are standard neural networks, they are fully differentiable. Thus, we can compute derivatives of the acquisition
function with respect to the input x via backpropagation. We can then apply gradient-based optimization techniques to find
the candidate x that maximize the acquisition function given a PFN. Here we use standard techniques proposed by Snoek
et al. (2012).

We first create a set of candidates for x by sampling random candidate positions (N=100,000) and combine them with all
observations {x1, . . . ,xk}. Then, we use the 100 candidates with the highest acquisition function values as candidates for a
gradient-based search with scipy's (Virtanen et al., 2020) L-BFGS-B (Zhu et al., 1997). Finally, we used the candidate with
maximum EI after optimization as our proposal.

In the case of integers or boolean hyperparameters we treat the value between the two next legal solutions as the probability
of a coin flip and round in a probabilistic fashion. Furthermore, we skip candidates that we had already evaluated to ensure
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that we do not evaluate the same candidate twice.

D. BO Tricks
We found that the following tricks improve the performance of our PFNs considerably and use them for all our experiments:

• We use a power transform to transform the observed outputs to a distribution more similar to a standard-normal,
as proposed by Cowen-Rivers et al. (2022). They introduce this to handle heteroscedasticity, which might be the
way it is helping the model. We additionally saw that it led to flattening outliers on the non-optimal end of the
spectrum, while increasing the differences between points in magnitude close to the optimum, leading to a different
exploration/exploitation trade-off.

• We found that training on datasets with inputs from the unit hypercube, i.e.X = [0, 1]d, and transforming all observation
values into a unit hypercube based on their min/max and scaling leads to improved consistency.

E. Training Details
We train a single PFN which is shared across search spaces for one particular prior. This PFN is flexible across datasets with
a varying number of features. To do this, we sample datasets with a number of dimensions sampled uniformly at random in
{1, . . . , 18} during PFN training. Following Hollmann et al. (2023), we zero-pad the features when the number of features
k is smaller than the maximum number of features K. We also linearly scale the features by K

k to make sure the magnitude
of the inputs is similar across different numbers of features.

Our PFNs were trained with the standard PFN settings used by Müller et al. (2022): We use an embedding size of 512 and
six layers in the transformer. Our models were trained with Adam (Kingma & Ba, 2015) and cosine-annealing (Loshchilov
& Hutter, 2017) without any special tricks. The lr was chosen based on simple grid searches for minimal training loss in
{1e− 3, 3e− 4, 1e− 4, 5e− 5}. We found that other hyperparameters did not have a large impact on final performance.

Our final models, besides studies on smaller budgets like in Figure 11, trained for less than 24 hours on a cluster node with
eight RTX 2080 Ti GPUs.

E.1. Regression Heads
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Figure 6: A visualisation of the Riemann distribution, with unbounded support. Plot based on (Müller et al., 2022)

Müller et al. (2022) employ a Riemann distribution to model the output of the PFN architecture for regression tasks. Modeling
continuous distributions with neural networks is challenging. In order to achieve robust performance in modeling PPDs,
they utilized a distribution that is particularly compatible with neural networks. Drawing from the understanding that neural
networks excel in classification tasks and taking inspiration from discretizations in distributional reinforcement learning
(Bellemare et al., 2017), they employed a discretized continuous distribution named Riemann Distribution. It discretizes the
space into buckets B, which are selected such that each bucket has equal probability in prior-data: p(y ∈ b) = 1/|B|,∀b ∈ B.
A Riemann distribution with unbounded support is utilized, as suggested by Müller et al. (2022), which replaces the final bar
on each side with a suitably scaled half-normal distribution, as shown in Figure 6. For a more precise definition, we direct
the reader to Müller et al. (2022).
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F. Riemann Distribution and Acquisition Function
We outline how to compute the PI(f∗) =

∫∞
−∞[y > f∗]p(y)dy for the unbounded Riemann distribution.

∫ ∞

−∞
[y > f∗]p(y)dy (5)

=

∫ y1

−∞
[y > f∗]p(y)dy +

M∑
i=1

∫ yi+1

yi

[y > f∗]p(y)dy +

∫ ∞

yM+1

[y > f∗]p(y)dy (6)

= (1− Fl(y1 − f∗)) +
M∑
i=1

{
(yi+1 − f∗) p(bi)

yi+1−yi
, if yi < f∗ < yi+1

[yi ≤ f∗]p(bi) , else

}
+ Fr(f

∗ − yM+1) (7)

= (1− Fl(y1 − f∗)) +
M∑
i=1

(yi+1 −min(yi+1,max(f
∗, yi)))

p(bi)

yi+1 − yi
+ Fr(f

∗ − yM+1), (8)

where Fl (Fr) is the CDF of the half-normal distribution used for the left (right) side. The acquisition function is divided
into three terms: (1) a term that governs the probability mass for values lower than interval b1 and that goes up to values of
y1, (2) a term that summarizes over all intervals b1, . . . , bM , and (3) a term that governs the probability mass for values
larger than the interval bM and that start from values of yM + 1.

G. User Prior Distribution
We will describe our method for a one dimensional search space with a fixed discretization I into intervals I ∈ I.
Nevertheless, the method can be extended to more dimensions and intervals of varying size. As an approximation to the
prior, we will use the estimated maximum m,my = argmax(x,y)∈D y. We will thus from now on assume to be able to
sample from a joint distribution of the dataset D and its maximum input m: p(D,m).

An example of the effect of the form of the prior over the optimum is given in Figure 3. We train a single PFN that can be
conditioned on arbitrary ρ and I on a prior of the form p(D, ρ, I). This yields the training objective:

E{(x,y)}∪D,ρ,I∼p(D,ρ,I)[−log qθ(y|x, D, ρ, I)]. (9)

The extra inputs, ρ and I , are fed to the PFN using an extra position with its own linear encoder similar to style embeddings
for language models (Dai et al., 2019). During training we need p(D, ρ, I) to cover many ρ and I, preserve Equation 3, and
be fast to sample from. To achieve this we actually sample the dataset D first and then a possible interval I. We actually
condition the interval I on our maximumm and not the other way around. We first sampleD,m ∼ p(D,m) and ρ ∼ U(0, 1)
independently at random. Next we sample I using p(I|ρ, f) = ρ[m ∈ I] + (1− ρ)p(I), where p(I) = ED,m∼p(D,m)[m ∈ I].
It is easy to see that this distribution has a good coverage of both I and ρ.

We can now show, rather easily, that this sampling scheme actually models our definition of p(D,m|I):

p(D,m|I) = p(I|D,m)p(D,m)

p(I)
(10)

=
p(I|m)p(D,m)

p(I)
(11)

=
(ρ[m ∈ I] + (1− ρ)p(I))p(D,m)

p(I)
(12)

= ρ
[m ∈ I]p(D,m)

p(I)
+ (1− ρ)p(I)p(D,m)

p(I)
(13)

= ρp(D,m|m ∈ I) + (1− ρ)p(D,m), (14)

where we assume a dependence on the independently distributed confidence ρ everywhere. We used p(D,m|m ∈ I) =
[m∈I]p(D,m)

p(I) , which is trivial to derive, as well as p(I) = Ef [[m ∈ I]], which was introduced in Section 5.3.
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Figure 7: Performance over number of trials for the four search spaces of HPO-B with three or less dimensions. Figure 18
shows per-search-space results.

In our experiments we approximate p(I) with a simple uniform distribution, as we saw Em[m ∈ I] to be close to a
uniform distribution, and use the maximum example in the training set with maximal value as an approximation to the true
maximum of the underlying function generating the dataset. We choose the set of intervals to be I = {[i/k, (i+ 1)/k]|k ∈
{1, . . . , 5}, i ∈ {0, . . . , k − 1}}. In Figure 16 of the Appendix one can see the impact of our user prior on the optimization
behaviour.

H. Non-Myopic Acquisition Function Approximation
In the following we explain how PFNs can learn to directly in one forward pass approximate αKG as defined in Section 5.4.
To do this, we first learn an approximation to the PPD qθ(y|x, D). Based on which we can learn an approximation of the
distribution of means with the following loss

E{(x,y)}∪D∼p(D)[q
(µ)
θ (Eq(y|x,D)[y]|D)], (15)

which yields a q(µ)θ∗ that is an approximation to the distribution of the random variable Ep(y|x,D)[y] with x ∼ p(x|D). We
approximate the maximal mean τ(D) with the upper 1 per mille interval of q(µ)θ∗ (·|D).

Based on this in turn, we can finally approximate α(x;D) by training a second PFN to approximate the new target
y′ = icdf(q(µ)θ∗ (·|{(x, y)} ∪D), .999) in the usual manner

E{(x,y)}∪D∼p(D) − log qlevel1,θ(y′|x, D). (16)

In practice we use the same PFN for both steps and add a style embedding, like for the user priors in Section 5.3. This style
embedding indicates in which mode the PFN should operate, the standard, myopic, setting or the non-myopic setting.

It would be very interesting for future work to generalize this to larger search spaces and multi-step look ahead.

H.1. A Study on Our Knowledge Gradient Approximation

We found that the PFN with the strong GP prior does not perform very well on very small (three or less dimensions) search
spaces. Additionally, we saw that we could train our Knowledge Gradient (KG) models more successfully to approximate
KG for few dimensions. Thus, we decided to show the impact of Knowledge Gradient for these kinds of search spaces. In
Figure 7 we show the impact of KG for the four search spaces with 3 or less dimensions in HPO-B. We ablated how to
exactly use KG for these search spaces on all other search spaces and found that a mixture of KG and EI worked best. That
means, at every step it is a random coin flip whether to use KG or EI.

We can see that this improves performance for small search spaces considerably over plain EI.

I. Approximation Quality on Prior Data
Our Adapted HEBO Prior We stayed as close as possible to HEBO, but had to make some adaptions as one cannot
sample from the HEBO model as it is. Specifically, we had to introduce simple priors for the hyperparameters of both
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Figure 8: Left: For the HEBO prior, fraction of cases in which the PFN gives a higher likelihood to unseen examples than
the original Empirical Bayes approximation by Cowen-Rivers et al. (2022). We aggregate across 1 000 datasets drawn from
the prior. The optimization of the original Empirical Bayes approximation failed in 4.5% of cases. We ignored these cases
to be as fair as possible. Right: BO performance after 50 evaluations on the prior with EI over 1 000 sampled datasets. The
majority of runs yielded ties.
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Figure 9: Average Regret and Rank on the HPO-B Benchmark. We plot a different set of baselines that includes the meta
learned Optformer baseline which was trained on real world data. While for few samples the Optformer baselines performs
strongly (likely due to prior knowledge of the names of optimized parameters, which is only revealed to the Optformer), this
advantage drops quickly.

the kernels used in HEBO (Matérn and linear kernel), as they did not have a prior attached. We introduce uniform priors
(U(0, 1)) for the lengthscale of both the Matérn and the Linear kernel and for the variance of the linear kernel. Next, we
trained a PFN using the HEBO prior with probabilistic distributions over the hyperparameters (see Section 4.2) enabling
PFNs to approximate hyperpriors.

Comparison of the Likelihood of Prior Data For the HEBO prior, we compare the resulting PFN’s fit vs. the Empirical
Bayes approximation, as used in the original HEBO work. Figure 8 shows that the likelihood assigned to held-out outputs is
higher for the PFN in many cases and across a varying number of optimized features; We hypothesize that this is because
HEBO's empirical Bayes approximation becomes too greedy in high dimensions.

BO comparison To assess our method qualitatively, we provide optimization trajectories of the HEBO+ on 1d samples
from the prior in Figure 10 and on a 2d Branin function without initial design in Figures 13 (initialization at lower corner)
and 14 (initialization at middle point).

Additionally, we show comparisons of a PFN approximating a simple RBF-kernel GP, for which we thus have the ground
truth posterior. Figure 11 shows an optimization of a 1d Ackley function and Figure 12 shows an optimization of a
non-continuous function that is chosen to show out-of-distribution performance, as RBF-kernel functions are smooth.

J. User Prior Details
We list the user prior used for PD1 in Table 2. We use this one user prior for all different tasks in PD1. Our PFN, though,
supports specifying any user prior at prediction time, i.e. you can use the weights we share with your specific user prior.
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Figure 10: Examples of optimization trajectories on functions sampled from the our HEBO prior. We compare to our
re-implementation of HEBO

hyper parameter ρ encoded min encoded max
lr decay factor .5 0.74 0.99

lr initial .25 .01 .31
lr power .1 1.5 2.
epoch .5 235 299

activation fn .5 1 1

Table 2: ρ defines what percentage of datasets in the prior should be sampled to explicitly have their maximum between the
specified minimum and maximum. The rest is sampled as usually.

K. Other BO Surrogates
Another popular model class is Bayesian neural networks (BNNs) or approximations of them (Snoek et al., 2015; Schilling
et al., 2015; Springenberg et al., 2016; Perrone et al., 2018; Eggensperger et al., 2020) because they promise better scaling to
large numbers of observations. Two popular approaches, that we also compare against in our experiments, are DNGO (Snoek
et al., 2015) and BOHAMIANN (Springenberg et al., 2016). DNGO trains a standard neural network and then replaces the
output layer by a Bayesian linear regression, while BOHAMIANN adapts a mini-batch Monte Carlo method (Chen et al.,
2014) for a fully Bayesian treatment of the network weights.

Other models that have been investigated aim to strike a middle ground between GPs and BNNs, for example, Deep
GPs (Hebbal et al., 2018), Deep Kernel GPs (Wistuba & Grabocka, 2021), or Manifold GPs (Calandra et al., 2016). However,
these models suffer from the need to adapt hyperparameters online and, similar to the GP, make a parametric assumption
about the distribution of the targets.

Last but not least, trees and ensembles of trees have been used, which despite relying on frequentist uncertainty predictions,
yielded strong results and overcame many of the drawbacks of the GPs (Hutter et al., 2011; Bergstra et al., 2011; Scikit-
Optimize, 2018).

L. Ablation Studies
In this Section we describe additional ablation studies we performed to further the understanding of our method.

HEBO Variants In Section 6 we already showed that two variants of HEBO, one with a PFN as posterior approximation
and one using MLE-II and a traditional GP, perform very similar on data in the prior. The original HEBO prior is slightly
different, though, compared to the prior used there, e.g. there is no prior weighting on the lengthscale and it is unbounded.

To further the understanding in comparison to the full HEBO method, we provide an ablation on HPO-B in Figure 17. Here,
we additionally show the impact of the acquisition function of HEBO, which is mixture of EI, UCB and PI with added
noise, and the initial design. The default initial design on HPO-B is five steps, but for search spaces with more than five
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Figure 11: In this figure, we compare models trained on a simple GP prior (with fixed hyper-parameters), thus we can
compare to the exact posterior of the GP. We show how PFNs behave differently depending on how much they were trained.
Vertical lines mark the maximum of the acquisition function.
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Figure 12: This figure show cases the approximation quality of a PFN on out-of-distribution functions: the to-be-maximized
function is discontinuous, while the RBF kernel consists of continuous functions only. We show the suggested next
evaluation point (horizontal line), the mean and the EI for a RBF-kernel GP and its PFN approximation. This is a special
case, where we can actually compute the exact posterior with the GP. We can see that the mean and EI of the PFN are good
approximations. The EI diverges in some of the later steps, though, but not the suggested next evaluation point.
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Figure 13: This figure showcases the optimization trajectory of a PFN with HEBO+ prior to minimize a Branin function
starting from the lower corner of the search space. The newly queries point is white in all plots. Figure 14 shows the same
experiment, but starting from the center. We can find that for a deterministic, smooth test function both trajectories converge
to similar queries fast.
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Figure 14: This figure showcases the optimization trajectory of a PFN with HEBO+ prior to minimize a Branin function
starting from the center of the search space. The newly queries point is white in all plots. Figure 13 shows the same
experiment, but starting from the lower corner. We can find that for a deterministic, smooth test function both trajectories
converge to similar queries fast.
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Figure 15: In this figure we show a typical search space with a missing log encoding in HPO-B. This is the search space
6766, which has two input dimension. The first dimension has almost almost no impact on the outcome (y), thus we plot only
the second dimension (x). One can see that this hyperparameter clearly lives on a log scale, with all interesting curvature
happening in the lowest 1% of the interval, a minimum (worst outcome) close to 10-6 and a maximum (best outcome)
around 10-7.
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Figure 16: Impact of a user prior on the mean prediction and acquisition function. We can see that adding the user prior for
a maximum in the right-most quarter, increases EI and mean in that region. The important point we can see here is that the
user-prior can be overwritten by the data. The algorithm samples much more outside of the specified interval than inside,
because the actual curve is higher there.
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Figure 17: Ablation on HPO-B test spaces of different features of the HEBO baseline. Additionally, we show the performance
of the PFN (HEBO+) without input warping on HPO-B. We can see that PFN (HEBO+) performs worse without input
warping. We can also see that most ablations on HEBO have little impact on the performance, but removing the initial
design, but for the default 5 seeds of HPO-B, in addition to using EI without any noise improves performance of the standard
HEBO implementation to be more competitive with the PFN (HEBO+).

Method Rank Mean Regret Mean

Random 2.765 0.076
HEBO 2.406 0.070
PFN (HEBO+, no ignored feat's) 2.639 0.103
PFN (HEBO+, 30% ignored feat's) 2.189 0.091

Table 3: Mean rank and mean regret over time on the three search spaces of HPO-B with the most hyperparameters, which
all have XGBoost as method. We can see that for large search spaces it considerably helps to allow the PFN to ignore certain
features.

dimensions, HEBO draws more random samples. While we can see that most of the ablations on HEBO have little impact
on performance, we can improve its performance by removing all initial design on top of the standard HPO-B design and
replacing the acquisition function with simple EI only.

In Figure 17, we also show the impact of disabling input warping for our PFN (HEBO+). While this does make performance
worse, the only non-HEBO baseline that can beat the PFN after 50 trials is DGP, even though the search spaces of HPO-B
contain many ill-conditioned dimensions with missing log transforms.

Ignoring features In Table 3 we show the impact of adding meaningless features to the prior, as described in Section 5.2,
for search spaces with many dimensions. We can see that performance is improved on average. At the same time, we found
no impact on smaller search spaces.

Ablation of the Acquisition Function Table 4 shows a simple ablation of acquisition functions on the test search spaces
of HPO-B. We can see that all EI variants and UCB perform similarly well, while PI seems to be worse choice.
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Figure 18: Average Ranks across search spaces. We can see that the PFN generally works well, but also has clear failure
modes for some search spaces, which need further investigation.
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Method Rank Mean Regret Mean

Random 7.658 0.125
HEBO 5.467 0.092
GP 5.539 0.075
DNGO 5.332 0.057
DGP 5.604 0.059

EI 4.969 0.053
EI(predict mean) 4.883 0.059
PI 5.227 0.071
PI (predicted mean) 5.385 0.071
UCB (0.95 percentile) 4.932 0.053

Table 4: Ablation of different acq functions on HPO-B. We see that we actually did not make the best choice for the test set
(but it is the best on the validation search spaces, so we stuck with it).

M. Software Versions
In this section we list the versions of the optimizers that we benchmarked:

• HEBO: we use the archived submission to the NeurIPS 2020 Black-Box optimization challenge
that is available at https://github.com/huawei-noah/HEBO/tree/master/HEBO/archived_
submissions/hebo for BayesMark (HEBO 0.0.8 a376313), as it is optmized for the challenge, and adapted
the public release to support discrete benchmarks as well as our ablations. We publish our adapted HEBO implementa-
tion with the supplementary material. It is branched off from https://github.com/huawei-noah/HEBO/
tree/405dc4ceb93a79f0d1f0eaa24f5458dd26de1d05.

• GP: We used the results from Pineda Arango et al. (2021) that are available at https://github.com/
releaunifreiburg/HPO-B/tree/main/results.

• DNGO: We used the results from Pineda Arango et al. (2021) that are available at https://github.com/
releaunifreiburg/HPO-B/tree/main/results.

• DGP: We used the results from Pineda Arango et al. (2021) that are available at https://github.com/
releaunifreiburg/HPO-B/tree/main/results.

• HyperOpt: We used the implementation coming with BayesMark (https://github.com/uber/bayesmark/
tree/8c420e935718f0d6867153b781e58943ecaf2338), which is HyperOpt 0.2.7 a376313.

• PySOT: We used the implementation coming with BayesMark (https://github.com/uber/bayesmark/
tree/8c420e935718f0d6867153b781e58943ecaf2338), which is PySOT 0.3.3 a376313.

Moreover, we used the following versions of the benchmark platforms:

• HPO-B: https://github.com/releaunifreiburg/HPO-B/tree/f5d415e45012544c61b0e334a42aa69f6aae5d7f with
mode=”v3”

• BayesMark: https://github.com/uber/bayesmark/tree/8c420e935718f0d6867153b781e58943ecaf2338
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