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ABSTRACT

Transportation has greatly benefited the cities’ development in the modern civi-
lization process. Intelligent transportation, leveraging advanced computer algo-
rithms, further increases commuting efficiency, however, as a cross-discipline, it
often requires practitioners to comprehend complicated algorithms and obscure
neural networks, bringing a challenge for the advanced techniques to be trusted
and deployed in practical industries. Recognizing the expressiveness of the pre-
trained large language models, especially the potential of being augmented to un-
derstand and execute intricate commands, we introduce Open Traffic Intelligence,
Open-TI. As a bridge to mitigate the industry-academic gap, Open-TI is an in-
novative language agent augmented with the capability to harness external anal-
ysis packages according to conversations. Marking its distinction, Open-TI is
the first method capable of conducting exhaustive traffic analysis from scratch
- from map acquisition to execution in complex simulations. Besides, Open-
TI can conduct task-specific embodiment like training and adapting the traffic
signal control policies (TSC), explore demand optimizations, etc. Furthermore,
we explored the viability of LLMs directly serving as control agents to choose
from the action space by understanding the expected intentions of human de-
scriptive policy. We provide the code including the implementation structure and
will invite further community-driven enhancements, the demo video is available:
https://youtu.be/QLiMvyXaQeM.

1 INTRODUCTION

Traffic and Transportation play important roles in the process of human civilization. Intelligent
transportation is casting hope to further benefit people’s daily lives through optimal controlling
and scheduling decisions. The efficient modern transportation comes from joint efforts from many
researchers in various directions like: map modeling (Yukawa & Kikuchi, 1995), traffic simula-
tion (Chao et al., 2020), schedule optimization (Dai et al., 2020), etc., and still, there are multiple
ongoing challenges regarding the multi-resolution traffic simulation (Zhou et al., 2022), optimal
traffic signal control policies (Wei et al., 2019b), dynamic demand dispatch adjustment (Osorio,
2019), etc. More specifically, when it comes to vehicle control, the intelligent traffic signal brings
hope to city-scale congestion mitigation and energy saving, multiple frontier solutions have been
released on different simulators, such as SUMO (Lopez et al., 2018), CityFlow (Zhang et al., 2019),
VISSIM (Fellendorf & Vortisch, 2010). These simulators and algorithms are powerful and efficient,
but hard to operate and implement, thus, introducing a gap from the research to the industry, and
leading to a trustworthy problem for practitioners.

To bridge the gap, two steps are proposed: 1. Unify the simulation and analysis process using
General Modeling Network Specification (GMNS) (Lu & Zhou, 2023), providing a common for-
mat for sharing road network files suitable for multi-modal transportation planning. 2. Develop
an intelligent system with self-explanatory abilities, integrating domain-specific tasks, state-of-the-
art algorithms, and powerful simulators. This system should allow easy execution with interactive
explanations. Leveraging large language models (LLMs) has become crucial in aiding humans, ben-
efiting transportation tasks (Zhang et al., 2023; de Zarzà et al., 2023). Large-scale pre-trained models
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such as Llama (Touvron et al., 2023), GPT-4 (Achiam et al., 2023), and ChatGPT, are endowed with
the capacity to grasp the context, dissect issues, and discern the logic connecting questions with an-
swers, which can deliver in-depth clarifications on specific topics through a sequence of interactive
dialogues. Early explorations are made by leveraging LLMs to benefit domain-specific tasks, such
as: Copilot (Vaithilingam et al., 2022), DrugGPT (Li et al., 2023b), TrafficGPT (Zhang et al., 2023),
GraphGPT (Tang et al., 2023), etc. Due to the limitation of only tackling the context-level questions,
researchers managed to augment the language model on their ability to take action and use tools,
which significantly broadened the application scenarios and enhanced the beneficial impact Mialon
et al. (2023). Defined as Augmented Language Models (ALMs), this refers to ‘language models
(LMs) that are augmented with reasoning skills and the ability to use tools’ (Mialon et al., 2023).

Inspired by ALMs, we propose to design a rudiment of general Traffic Intelligence: Open-TI, an
augmented traffic agent not only able to provide conversational insights, but also able to understand
human intentions, conduct intelligent traffic analysis from scratch, answer questions regarding the
used techniques or tools, and provide an interpretation of the results. By this, it will be more con-
venient for the industrial practitioners or any stakeholders to learn about traffic and transportation
studies, and cast interesting case analyses.

In summary, the contributions of this paper are:

• We propose a pivotal augmented language agent Open-TI, that is integrated with a neat interface to
operate possible tools, thus realizing the language-level operation, it is worth noting that, Open-TI
is able to conduct traffic analysis from scratch (from downloading map to provide simulation on
the interested area).

• We realized multiple domain-specific tasks like traffic signal control policy training and traffic
demand optimization under the unified implementation class.

• We design the ChatZero to realize the meta-control based on the LLM’s inference ability, by agent-
agent communication, the pivotal agent will interact with humans to obtain control requirements
and convey the message to the ChatZero control agent, and the ChatZero will conduct the decision
making based jointly on the observation of current traffic situation and described policies.

• Open-TI is an open-ended platform and encourages researchers to explore more extensions and
augmentation for future study, We have released the code at repository 1.

2 BACKGROUND AND RELATED WORK

This section provides concepts of augmented language agents, traffic simulation, and transportation
research tasks.

2.1 AUGMENTED LANGUAGE MODELS

Large Language Models (LLMs) (Devlin et al., 2018; Brown et al., 2020; Chowdhery et al., 2023)
represent dramatic progress in Natural Language Processing (NLP) and are already core in several
products with millions of users, such as the coding assistant Copilot (Chen et al., 2021), Bert en-
hanced search engine2, ChatGPT and GPT4 (Achiam et al., 2023). LLMs can execute multiple tasks
from language understanding to text generation, thus paving a path towards more intelligent human-
computer interactions, or even benefit other research domains by its inference ability (Da et al.,
2023). But LLMs are not held solely in the text conversation, when LLMs are equipped with the
tools using abilities, it will bring more changes to people’s lives. Some literature shows that by aug-
menting the LLMs with the tool-using ability, it could realize the advanced automation , such as Li
et al. (2023a) design the API bank to execute API calls to meet human needs, Wang et al. (2023) ap-
plied the augmented language models to the medical field to serve as a more flexible knowledge hub
for doctors and patients. Liang et al. (2023) focuses more on using existing foundation models (as a
brain-like central system) and APIs of other AI models and systems (as sub-task solvers) to achieve
diversified tasks in both digital and physical domains. Our work is the first to explore the augmented
language agents on automatic traffic intelligence that realize a throughout traffic analysis.

1Code released at: https://github.com/DaRL-LibSignal/OpenTI
2https://blog.google/products/search/search-language-understanding-bert/
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2.2 TRAFFIC SIMULATION

The continuous growth of urban populations and the increase in vehicular traffic have accentuated
the need for efficient traffic management and planning. Traffic simulation provides a reference for
planning strategies, offering insights into traffic patterns, road network efficiencies, and the potential
impacts of infrastructural changes as shown in Figure 1. The utilization of traffic simulation models
facilitates the analysis of traffic behavior under various conditions without the need for costly real-
world alterations.

(a) (b)

Figure 1: The traffic and transportation simulation in cities, (a) is a real-world traffic image, (b) is the simula-
tion of traffic flow in DTALite (Tong et al., 2019).

With the development of autonomous vehicles (AVs), traffic simulation for safety tests and validation
become important. The simulator developed by NVIDIA (NVIDIA, 2023) tends to provide a more
physically accurate simulation platform and Waymax (Gulino et al., 2023), provides a multi-agent
scene simulator on hardware accelerators to empower the simulation for AVs. In this work, we
provide support to multiple simulators like SUMO (Behrisch et al., 2011), CityFlow (Zhang et al.,
2019), and DLSim (Tong et al., 2019), and further present open-implementation instruction to help
integrate more advanced ones with the development of the research community.

2.3 TRAFFIC DOMAIN SPECIFIC TASKS

Traffic Signal Control Traffic Signal Control (TSC) is crucial for improving traffic flow and re-
ducing congestion in modern transportation systems. Recent advances in reinforcement learning
(RL) techniques have shown superiority over traditional approaches in TSC (Wei et al., 2018). In
RL, an agent aims to learn a policy through trial and error by interacting with an environment to
maximize the cumulative expected reward over time, it can directly learn how to generate adaptive
signal plans by observing the feedback from the environment, so it is beneficial for traffic intelli-
gence to integrate TSC tasks to provide planning insights. This paper presents Open-TI can conduct
multiple RL algorithms for TSC problems and provide insights analysis from the results.

OD Matrix Optimization Origin-destination (O-D) matrix optimization is a critical component
in the field of transportation planning and traffic engineering. It involves the creation and optimiza-
tion of a matrix to represent the number of trips between various origins and destinations in a given
area over a specified time period. Modern techniques tackle this task in two directions, enhance
data representation (Zhou et al., 2013; Krishnakumari et al., 2020a; Fedorov et al., 2019; Pamuła &
Żochowska, 2023; Fu et al., 2022; Kumarage et al., 2023) and improve O-D matrix precision (Kr-
ishnakumari et al., 2020b; Oliveira et al., 2020). This paper implemented a genetic algorithm-based
O-D matrix optimization process that can be controlled by Open-TI.

3 THE ARCHITECTURE OF OPEN-TI

3.1 OVERVIEW OF OPEN-TI

To take a step forward to more general Traffic Intelligence, Open-TI is equipped with human-like
semantic ability and goal-oriented execution ability. Human-like semantic ability is realized by
convenient conversation sessions between users and the agent, and execution ability is guaranteed
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Open-TI

+

1 Analysis & Simulation 2 Task Specific Embodiment 3 Zero Control

…

I want to see bikeable lanes in Tempe, 
also I want to run simulations in this area.

Identify area, show on map, analyze region, 
generate demands and  conduct simulation.

Conduct traffic signal control policy 
training, traffic flow prediction, etc.

Zero control by agent-agent  communications  
after understanding policy principles.

Open - Traffic Intelligence

Figure 2: The overview of Open-TI functionalities.

by agent augmentations. Primarily, a user-friendly interface is designed as shown in Appendix
Figure 7. The core of Open-TI mainly incorporates three modules: Analysis and Simulation, Task
Specific Embodiment and Zero Control to enhance the intelligent traffic analysis and planning, as
shown in Figure 2.

First, Open-TI can manipulate and help practitioners to conduct analysis and simulation from
scratch. Open-TI provides the chance for users to think of a POI (point of interest) or AOI (area
of interest) and present the visualization immediately on a map, users can ask for more geology
information like latitude and longitude range, and after that, the acquired information can be used
to select an analysis range for further investigations like specific lane (e.g., bike lane) filtering and
traffic simulation by DTALite (DLSim) (Tong et al., 2019) or SUMO(Behrisch et al., 2011).

Second, Open-TI supports multiple task-specific embodiments by vague and high-level language
explanations, which greatly reduce the professional background requirements of experimental ex-
ploration. For example, based on the current road map, it allows one to conduct traffic light control
exploration by either rule-based methods or deep learning policy training (Mei et al., 2023), it also
could easily conduct traffic demand optimization by providing brief task descriptions.

Third, our method leverages the superior understanding capabilities of current LLMs to conduct
meta-control by ChatLight agent: LLMs directly serve as a control agent, follow the understanding
of the semantic description of the rules, and control the traffic light actions. This explores a higher
level traffic light control mode, e.g., the traffic management department may have special require-
ments on the safety concerns and would like to adjust the traffic signal control policies to reduce the
collision rate, only word-level description is required, and the description would be analyzed, ex-
tracted, and communicated as a message to the ChatLight agent, which could reduce the complexity
of adjusting the control policy and furthermore, provide explanation for its actions by self-reflecting
the LLM’s own behavior.

As shown in Figure 3, Open-TI consists of two components, the Traffic LLMs and Augmentations.
When a user’s requirement is detected from the conversation, it will be passed to the first compo-
nents of Traffic LLMs, which use the language agent to extract accurate intentions and information
from dialogues, then, the information will be compared with tools in the augmentation pool. Af-
ter matching, if the agent finds a possible solution, it will execute with extracted information and
generate the output with a multimedia data form.

3.2 PROMPT DESIGN

Open-TI exploited the LLM’s understanding abilities and tuned its behavior by prompt engineer-
ing, which is essential for well-organized operation. We have designed 5 aspects of prompt struc-
ture: [Description], [Example], [Format Restriction], [Emphasis] and [Reflection]. And we veri-
fied their effectiveness in cross-task behaviors by ablation experiment. In this section, we provide
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Input

Augmented AbilityFinal Output

Intermediate Output

User Conversation

Hi, I want to check 
the bikeable area at 
Arizona State 
University ?

Hi, I need to run 
SUMO simulation 
on the place you 
just showed to me?

…

Traffic Designed 
Prompt

[Description]

[Example]

[Output Restriction]

[Emphasis]

[Reflection]

Components:

Augmentations

[Tool Description]

[Input Analyzer]

[Core Execution]

[Output Detection]

[Output Wrapper]

Components:
LLMs

… +

Traffic LLMs
Open-TI

Extracted Intentions

Extracted Provided Info

Augmentation Tool Pool

Matching & Executing

Multi-Media 
Output

Text, Image, Log files, 
Simulator Files, etc.

Figure 3: The design framework of Open-TI.

Table 1: The details of the prompt components for queryAreaRange

Name Purpose Instance

Description
Core component of the

prompt structure, clarifies the basic setup,
method, and object of each function.

You are designed to respond with
longitudes and latitudes information of a location

Humans might ask similar words of location
like position = place = location = geographic info,

you can imagine and infer the most possible.

Format Restriction Specify input format constraints,
significantly reducing error rates.

The format of your output longitude and
latitude is a query of 4 value array as
[min long, min lat,max long,max lat]

Example Help LLMs understand the
exactly processing of the execution.

Human ask “Where is Arizona State University,
Tempe Campus”, you need to output

[-111.9431, 33.4154, -111.9239, 33.4280].

Reflection
Remind LLMs not to engage in
unnecessary tasks and ensure

that each process is executed precisely.

You should respond directly with what
you know and then stop, do not look for
the location or attempt to find it online.

Emphasis Reinforce the function’s objective,
significantly reducing API mismatching rates.

You have the valid tool to provide location. You
have a specific tool to directly query the location.

details of prompt design as shown in Figure 3 including the purpose of the prompt and example
cases. The Instances in Table 1. are from the task of queryAreaRange.

3.3 EXECUTION AND AUGMENTATION LIST

The overall execution process is expressed in Appendix Algorithm 1 in pseudo-code. Following the
same execution flow, there are different augmented tools that could help users with various require-
ments as presented in Table 4 of Appendix. The section. 4 will elaborate on the three augmentation
modules in detail.

3.4 STANDARD IMPLEMENTATION

In this section, we formalize the API content and provide the structure of the augmentation class. In
order to extend the augmentation to the border range with additional capabilities, the keys are: First,
make sure the pivotal agent is aware of the functionality of the specific additional tool, so when the
requirement is asked by users, the pivotal agent could pick up the most suitable method. Second,
the embodiment program should function accurately and effectively, so that when the pivotal agent
boots up the process, it can come to the expected result. Based on the two keys, we provide the
implementation structure as in the following code. One needs to provide the descriptions on the
augmentation class and implement the Execution(), this provides an easy way to understand and
neat for other researchers to explore and enforce Open-TI’s abilities.
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1 c l a s s AugmentTask :
2 d e f i n i t ( s e l f , params ) −> None :
3 s e l f . params = params
4 # s e t p o s s i b l e pre − d e f i n e d params , e . g . , f o l d e r p a t h
5
6 @func prompt ( name=” prompt name” ,
7 d e s c r i p t i o n = ””” d e t a i l e d e x p l a n a t i o n ””” )
8
9 d e f embody ( s e l f , t a r g e t : s t r ) −> s t r :

10 t r y :
11 r e s u l t = E x e c u t i o n ( t a r g e t )
12 # C o n c r e t e E x e c u t i o n I m p l e m e n t a t i o n
13 e x c e p t E r r o r a s e :
14 p r i n t ( e )
15 r e t u r n r e s u l t

Listing 1: The Class and API Format

4 SUB-MODULE EMBODIMENT

Open-TI is enhanced by three different modules that eventually realize the superior performance. In
this section, we will elaborate on each module with examples and illustrations.

4.1 PIVOTAL AGENT FOR TRANSPORTATION ANALYSIS

In this module, analysis from scratch is realized by seamless connections between augmented tools
and the pivotal operation agent. The supported external tools and packages are shown in Table 2.
And when the user asks about related tasks, Open-TI will automatically match the highest probabil-
ity option and process following Algorithm 1 in Appendix A.3. An example of interaction is shown
in Appendix Figure 18.

Table 2: The supported external tools and packages

Name Functions Versions

osm2gmns obtain networks from OSM and convert to GMNS V-0.7.3
grid2demand Origin-destination trans demand generate V-0.3.6
DLSim-MRM Multi-resolution Traffic Simulation V-0.2.11

Libsignal Multi-simulator platform for Traffic Signal Control V-1.0.0

4.2 TASK-SPECIFIC EMBODIMENT

Open-TI is capable of realizing more general research tasks in the traffic domain. Including traffic
signal control (TSC), traffic Origin-Destination(O-D) demand optimization, etc. The architecture
in Open-TI is well structured and supports extensibility for an open community. We will introduce
how Open-TI achieves the three demonstrating tasks in the following subsections.

Traffic O-D Demand Optimization Task In the OD demand optimization task, the goal is to
design an algorithm and learn a model that could help to output an accurate OD matrix, given
the partial observation data. When asked to execute an O-D matrix optimization task, users could
specify the observation data source, and traffic simulation setting, and then choose the optimization
techniques to experiment with. For the example case in Appendix Figure 22, the given data is
realistic 16-hour count data of a roundabout area at Sedona, AZ, USA, and we embodied the agent
to use a genetic algorithm to conduct optimization and provide the result.

Traffic Signal Control Task In the realization of traffic signal control embodiment, we seamlessly
integrated the Libsignal (Mei et al., 2023) that could realize the cross-simulator traffic signal control
over the majority of baseline methods, including the rule-based approaches (Fixed Time and Self-
organizing traffic lights - SOTL (Cools et al., 2013)) and reinforcement-learning-based approaches:
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Hi, I want to set the control policy as :

To optimize traffic signal by choosing phase with most 
upstream vehicles. The traffic light configuration is 
{phase_config}. I will give you number of vehicles on 
each upstream and you give me the phase with one of the 
most upstream vehicles in the format of "Phase: Integer". 
If phases' upstreams are equal, choose one among them.

Phase 0: road_0_1_0_1 (36) + road_2_1_2_1 (38) = 74
Phase 1: road_1_2_3_1 (0) + road_1_0_1_1 (23) = 23
Phase 2: road_2_1_2_0 (12) + road_0_1_0_0 (9) = 21
Phase 3: road_1_0_1_0 (21) + road_1_2_3_0 (0) = 21
Phase 4: road_0_1_0_1 (36) + road_0_1_0_0 (9) = 45
Phase 5: road_2_1_2_1 (38) + road_2_1_2_0 (12) = 50
Phase 6: road_1_0_1_0 (21) + road_1_0_1_1 (23) = 44
Phase 7: road_1_2_3_1 (0) + road_1_2_3_0 (0) = 0
Most upstream vehicles is 74, choose phase 0.
So, the answer is: Phase: 0

Hi I want to realize the rule that 
optimize the traffic signal 

focusing on the phase to control 
most upstream vehicles?

ChatZero

Human

Pivotal Agent
Open-TI Language Module

Execution Agent

Figure 4: The demonstration ChatZero Meta Control.

DQN (Mnih et al., 2013), PPO (Schulman et al., 2017), CoLight (Wei et al., 2019b), MPLight Chen
et al. (2020), MADDPG (Lowe et al., 2017), MaxPressure (Varaiya, 2013), PressLight (Wei et al.,
2019a). We provide further interaction cases in the Appendix. A.7.

4.3 AGENT META CONTROL

In the meta-control task, we designed an agent-agent communication and the pivotal agent is in
charge of understanding the human descriptive intention of the traffic policy, and the execution
agent will take into instructions, process, digest, and provide a self-explainable traffic signal action.
As shown in Figure 4, the pivotal agent extracts human’s descriptive policy (objectives), combined
with knowledge of traffic phase setting and current lane-level traffic states (Phase indicates the traffic
light set, lane ID follows with the current vehicle amount on the specific lane) as the input for the
ChatZero, and acquires traffic light control actions, the quality of control will be evaluated by traffic
indicators like average travel time, throughput, etc.

5 EXPERIMENT

In this section, we conduct extensive experiments to answer the following questions:

• RQ1: How does Open-TI compare to other baseline methods in terms of stability performance?
• RQ2: How do the embodiment components contribute to Open-TI performance?
• RQ3: How does ChatZero execute meta-control? How does it perform across various LLMs?

Three aspects of experiments are designed from error rates of API calls, ablation study of aug-
mentation prompt structure, and Zero-Control agent’s performance on LLM agents to verify the
effectiveness and stability of the proposed Open-TI. Please note that, for the RQ1 and RQ2, we de-
velop standard Open-TI based on GPT3.5 and for RQ3, we verified on 4 different language models:
Llama7B, Llama13B, GPT3.5, and GPT4.0.

5.1 EXPERIMENT DESIGN

RQ1: Language Agent Analysis on the API Calls Following the work of (Li et al., 2023a),
we analyze three types of API call abnormal behaviors, namely ‘No API Call Rate’, ‘API Mis-
matching Rate’, and ‘Error Raise Rate’ and compare with the baseline method known as Traf-
ficGPT (Zhang et al., 2023). We adopted T = 6 similar tasks as shown in the top of table 3.
to conduct the comparison by testing each task 20 times. And calculate the error rate, we have:
Error Rate = 1

T

∑T
t=1

ne
t

nc
t
= 1

T

∑T
t=1

1
nc
t

∑
(cnot , cmiss

t , cerrort ) where ne
t represents the number of

error occurrences for task t during total tests, nc denotes the number of total testing instances, (i.e.,
nc = 20 for this experiment), cnot is the sum of errors caused by the absence of API calls for task
t among all tests, similarly, cmiss

t is the sum of mismatching error times, cerrort is the number of
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error raising times, and exist ne
t = cnot + cmiss

t + cerrort . For evaluation of each dimension shown
in Figure 5, denote ρ as error rate, we have: ρno = 1

T

∑T
t=1

cno
t

nc
t

, ρmiss = 1
T

∑T
t=1

cmiss
t

nc
t

and

ρerror = 1
T

∑T
t=1

cerrort

nc
t

.

RQ2: Abalation Study of Embodiment Prompt Structure In this experiment, we tend to verify
the contribution of each component in the current design prompt structure. By gradually remov-
ing the key component in an order of Emphasis, Reflection, Format Restriction, Example, and
Description, we investigate the drop of performance, here we adopt accuracy as measurement, the
Accuracy Rate = 1 - Error Rate.

RQ3: Analyze the MetaControl Performance in Various Versions of LLMs To verify the ef-
fectiveness of the meta agent control, we realized 4 versions of ChatZero on the most well-known
LLMs which are: Llama2-7b, Llama2-13b, ChatGPT (GPT-3.5), and GPT-4.0. Open-TI pivotal
agent will ask the 4 versions of ChatZero to perform traffic signal control tasks across 4 differ-
ent traffic configurations using the realistic road map data in Hangzhou city. Each traffic control
task is conducted 5 times and the reported results are the mean values, following the literature in
TSC (Wei et al., 2021), the evaluation metrics are Average Travel Time (ATT), Throughput (ATT),
Reward, Queue, Delay. Detailed explanations are shown in the Appendix A.2.

Table 3: The compared tasks is an intersection set that exists both in Open-TI and TrafficGPT. The experiment
tends to design a fair comparison by identical task goals or similar difficulty.

Open-TI TrafficGPT
① simulateOnSumo Run the sumo simulation
② showOnMap Draw intersections on map
③ logAnalyzer Retrieve data from the .xml files
④ visualizeTrainingCurves Generating heat graphs
⑤ simulateOnLibsignal Optimize intersections by Webster
⑥ resultExplainer Compare data from the simulation

queryRangeArea -
autoDownloadOpenStreetMapFile -

networkFilter -
generateDemand -
simulateOnDLSim -
demandOptimizer -

5.1.1 EXPERIMENTAL RESULTS

Results for RQ1: Analysis on the API Calls As shown in Figure 5 (a). The comparison is
conducted on the average value over 20 times. The sum of the 3 types of error rates in Open-TI
and TrafficGPT are 8.3% and 19.2%, calculated by aggregation of the three types of error rates
in two systems respectively. We also provide results in three different evaluation dimensions in
Appendix , Open-TI consistently performs more stable (lower error rate and lighter color) than the
baseline method. We notice Open-TI performs slightly non-ideal enough in Error Raise Rate, it is
because showOnMap is a more complex task consisting of two consecutive sub-tasks, which are
1) identifying the geographic information and 2) request and visualize map data, this may cause
connection problem between sequential executions.

Results for RQ2: Ablation Study on Open-TI Figure 5 reflects the effect of each component
to Open-TI. We can observe that each part plays an important role in its final robust operation.
When the Emphasis is removed, the accuracy suffers a slight drop across queryAreaRange
to autoDownloadOpenStreetMapFile, because the agent can be confused among simi-
lar keywords task descriptions, then leading to mismatching. Removing Reflection slightly im-
pacts the overall stability mainly due to the given deceptive description, the agent conducting ex-
tra steps searching around but instead, it should concisely ask for clearer requests. Format Re-
striction notably impacts showOnMap and simulateOnLibsignal. Its removal results in
a 25% accuracy drop for showOnMap and 55% for simulateOnLibsignal. Because For-
mat Restriction controlling input format limits, preventing errors caused by entering incorrect
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information into a project. The Example significantly aids language agents in task comprehen-
sion. Its removal leads to a decrease in accuracy rates by 45% and 55% for showOnMap and
autoDownloadOpenStreetMapFile, respectively.

(a) Language agent comparison analysis (b) The ablation study Open-TI

Figure 5: An illustration of Open-TI performance. In (a), three types of error rate comparisons are considered.
In (b), ablation study on Open-TI. The x-axis from left to right shows the gradual removal of each prompt
module. The y-axis shows the individual task, cell color from dark to light reflects the accuracy drop.

RQ3: MetaControl Performance in Various Versions of LLMs The experiment results are
shown in the Figure 6. From 5 metrics: throughput (TP) and average travel time (ATT) and etc., we
could find out that ChatZero by GPT 4.0 provides the best control results with the overall highest
TP and lowest ATT, reflecting its superior ability to understand the policy description and conduct
proper control.

(a) Throughput (b) Aevrage Travel Time

(a) Queue Length (b) Aevrage Delay (c) Reward

Figure 6: The ChatZero performance in TP and ATT across the 4 LLMs. Each LLM is tested to control the
traffic signal in 4 different configs of road situation

6 CONCLUSION

In this paper, we propose Open-TI, an intelligent traffic analysis agent leveraging the large lan-
guage models’ contextual abilities and augmenting with traffic domain-specific tools, which could
provide not only questions consult, but also actual practice on processing raw map data, executing
the simulation, training traffic light control policies, and conducting demand optimization, etc. We
also explored the meta-control of traffic signals by an agent-agent communication scheme named
ChatZero, which casts insight for the self-explainable control practice. We also found that sequen-
tial action practice is vulnerable to action error, it is a direction for future exploration to focus on
improving the accuracy of the multi-step action embodiment. The demo video is publicly available
on site https://youtu.be/QLiMvyXaQeM.

9

https://youtu.be/QLiMvyXaQeM


Published at ICLR 2024 Workshop on Large Language Model (LLM) Agents

Acknowledgement The work was partially supported by NSF award #2153311. The views and
conclusions contained in this paper are those of the authors and should not be interpreted as repre-
senting any funding agencies.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Michael Behrisch, Laura Bieker, Jakob Erdmann, and Daniel Krajzewicz. Sumo–simulation of urban
mobility: an overview. In Proceedings of SIMUL 2011, The Third International Conference on
Advances in System Simulation. ThinkMind, 2011.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Qianwen Chao, Huikun Bi, Weizi Li, Tianlu Mao, Zhaoqi Wang, Ming C Lin, and Zhigang Deng. A
survey on visual traffic simulation: Models, evaluations, and applications in autonomous driving.
In Computer Graphics Forum, volume 39, pp. 287–308. Wiley Online Library, 2020.

Chacha Chen, Hua Wei, Nan Xu, Guanjie Zheng, Ming Yang, Yuanhao Xiong, Kai Xu, and Zhenhui
Li. Toward a thousand lights: Decentralized deep reinforcement learning for large-scale traffic
signal control. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp.
3414–3421, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Seung-Bae Cools, Carlos Gershenson, and Bart D’Hooghe. Self-organizing traffic lights: A realistic
simulation. Advances in applied self-organizing systems, pp. 45–55, 2013.

Longchao Da, Minchiuan Gao, Hao Mei, and Hua Wei. Llm powered sim-to-real transfer for traffic
signal control. arXiv preprint arXiv:2308.14284, 2023.

Zhuang Dai, Xiaoyue Cathy Liu, Xi Chen, and Xiaolei Ma. Joint optimization of scheduling and
capacity for mixed traffic with autonomous and human-driven buses: A dynamic programming
approach. Transportation Research Part C: Emerging Technologies, 114:598–619, 2020.
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A APPENDIX

A.1 OVERVIEW OF OPEN-TI

In this section, we present the interface of Open-TI. The interface comprises four parts: Prompt
or question (top left), the user can edit input, clear text, and submit request; Hints of questions
(middle left): user could click on the suggested choices to easily start a conversation; Thought and
action (bottom left): this panel presents the chain of thought content from Open-TI agent; Response
and chat history (right): this main panel provides multi-media feedback and execution result from
Open-TI, including texts, images, path files, and browser links, etc.

Traffic Simulation Process Bot http://127.0.0.1:7860/

1 of 2 12/20/23, 14:57

Traffic Simulation Process Bot http://127.0.0.1:7869/

1 of 2 12/15/23, 21:58

Figure 7: Open-TI conversation interface

A.2 METRICS EXPLANATION FOR TRAFFIC SIGNAL CONTROL

In this section, we provide a detailed explanation of the metrics we adopted in the experiment of
ChatZero traffic signal control performance. • Average Travel Time (ATT) is the average time t it
takes for a vehicle to travel through a specific section of a road network. For a control policy, the
smaller ATT , the better.
• Throughput (TP) is the number of vehicles that reached their destinations given amount of time.
The larger TP , the better.
• Reward is an RL term that measures the return by taking action at under state st. We use the total
number of waiting vehicles as the reward, aligned with Preliminaries. The larger the reward, the
fewer waiting vehicles, the better.
• Queue is the number of vehicles waiting to pass through a certain intersection in the road network.
Smaller is better.
• Delay is the average delay per vehicle in seconds and measures the amount of time that a vehicle
spends waiting in the network. Smaller is better.
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A.3 EXECUTION PROCESS

We provide the pseudo-code for Open-TI execution process in Algorithm 1.

Algorithm 1 Open-TI Execution Process
1: INPUT: msg ← UserInputQuery
2: if Intention Needs External Tools then
3: while Augmented APIs not Found do
4: keywords← summarize(msg)
5: api← search(keywords)
6: if MaximumQueryTime Exceeds then
7: break
8: end if
9: end while

10: if API found then
11: Params← extract params(msg)
12: while Params Not Satisfied do
13: 1. Retrospect Expected Form
14: 2. Examine User Input: msg
15: while Missing Info. do
16: Alert Required Info.
17: end while
18: Response← execute api call(Params)
19: if MaximumQueryTime Exceeds then
20: break
21: end if
22: end while
23: while Response not Satisfied do
24: api call← gen api call(api doc,msg)
25: Response← execute api call(api call)
26: if MaximumQueryTime Exceeds then
27: break
28: end if
29: end while
30: end if
31: end if
32: if Response then
33: re← Construct Response(Response)
34: else
35: re← Query Failed()
36: end if
37: return re← ResponseToUser

A.4 DETAILS OF AUGMENTED TOOLS IMPLEMENTED IN OPEN-TI

In this section, we will provide a list of augmented tools implemented in Open-TI. There are 12
augmented tools in total and each of them can do different tasks to help Open-TI answer user’s
question. We show the detailed 12 augmented tools in Table 4

A.5 API ANALYSIS AND CASE STUDY

In this section, we will present definition of the meaning of each kind of API error in Table 5. Three
types of incorrect API usage will be discussed: No API Call, API Mismatch, and Error Raise. The
table includes questions, correct and incorrect answers, and an analysis of the reasons behind each
error.
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Table 4: A list of augmented tools implemented in Open-TI

Augmentation Name Description

queryAreaRange
Obtain area information, specifically the

longitudes and latitudes of a point of interest on the map.

showOnMap
Display the location of interest

on the map, such as the ASU campus area.

autoDownloadOpenStreetMapFile
Automatically download map data

from OpenStreetMap for a specified area.

simulateOnLibsignal
Execute simulations on the

open-source library called Libsignal.

networkFilter

Filter the road network based on
required categories, return the file

path of a filtered road network
that emphasizes lanes of interest.

generateDemand
Generate demand based on

OpenStreetMap data.

simulateOnDLSim
Simulate on the DLSim

multi-resolution traffic simulator.

simulateOnSUMO
Execute the simulation given

arbitrary .osm data.

visualizeDemand
Automatically generate and display
visualizations of the demand file.

logAnalyzer
Analyze log or config files
and provide comparisons.

resultExplainer Interpreter results to provide insights.

demandOptimizer
Approximate the origin-destination
demand to fit realistic observation.

Table 5: Examples of correct and wrong API usage of Augmented Language Model.

Error Name Question Tool Analysis

No API Call

Can you assist
me to download
the OSM file for

the Sydney
Harbour Bridge in Australia?

✓ : It shows the path to the OSM file
for Sydney Harbour Bridge.

It sometimes has no awareness
of existence of specific functionality.

✗ : Sorry, I don’t have the
vaild tool to download OSM file.

API Mismatch

I’m interested
in the OSM file
for Dubai Mall;
Can you guide

me on that?

✓ : It shows the path to the OSM file
for Dubai Mall. The question should match

autoDownloadOpenStreetMapFile
but it mismatches with queryAreaRange.

✗ : The longitude and latitude of Dubai
Mall is [55.274, 25.194, 55.282, 25.199].

Error Raise

Can you provide
the OSM file for

CN Tower in
Toronto?

✓ : It shows the path to the OSM file
for CN Tower in Toronto. It mistakenly inputs wrong

information into the showOnMap.

✗ : Error raise and not keep executing.

A.6 DETAILED RESULTS ACROSS THREE DIMENSIONS API EVALUATION

In this section, we will provide more detailed experimental data regarding the API evaluation. There
are six tasks and three kinds of API evaulation. We will compare Open-TI with baseline model
TrafficGPT and find out performance of each model.
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Table 6: Error Rate of Open-TI and TrafficGPT

Tasks TrafficGPT Open-TI

①
No API Call 0.00 0.00
Mismatch 0.05 0.00

Error Raise 0.10 0.05

②
No API Call 0.05 0.00
Mismatch 0.00 0.00

Error Raise 0.00 0.05

③
No API Call 0.15 0.00
Mismatch 0.05 0.05

Error Raise 0.10 0.05

④
No API Call 0.05 0.00
Mismatch 0.10 0.00

Error Raise 0.15 0.10

⑤
No API Call 0.05 0.05
Mismatch 0.00 0.00

Error Raise 0.10 0.05

⑥
No API Call 0.10 0.05
Mismatch 0.00 0.00

Error Raise 0.10 0.00

A.7 THOUGHT CHAIN PROCESS EXAMPLES

In this section, we provide more Chain-of-thought (CoT) process examples, as a reflection on given
a task, how Open-TI thinks and proposes the solutions, and how it searches in the augmentation
tools to further provide analysis.

We have shown the requests such as: downloading OSM files of specific locations, interpreting
the log files, showing areas on a map, filtering assigned lane types from a given map, generating
demand files based on a map file, executing multiple simulations like DLSim, SUMO, etc., running
LibSignal for traffic signal control.

Solution

Thought:  The question is asking about [the location of Arizona State University, Tempe Campus.]
Action:  [Execute the augmentation function: queryAreaRange()]
Action Input: [Arizona State University, Tempe Campus]
Thought of Execution Result: 

[The execution state for finding the geography information is Success]
<If you successfully located the map, your final answer should include this sentence without changing anything: 
The longitude and latitude area of interested {place of interest} is {geography info}.>

Other Actions: [None]
Final Answer:
The longitude and latitude area of interested Arizona State University, Tempe Campus is:[-111.9431, 33.4154, -111.9239, 33.4280].

Input Question:        Where's Arizona state university, Tempe Campus?

Figure 8: Ask Open-TI to get the geographic information of Arizona State University, Tempe Campus.
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Solution

Thought:  The user is asking for [download the osm file of Arizona State University, Tempe Campus].
Action:  [Execute the augmentation function: autoDownload OpenstreetmapFile()]

Action Input: [-111.9431, 33.4154, -111.9239, 33.4280],” arizona_state_university.osm”

get the data in download: [-111.9418, 33.4125, -111.9182, 33.4283], " arizona_state_university.osm”

desired: arizona_state_university.osm

long_min, lat_min, long_max, lat_max -111.9431  33.4154  -111.9239  33.4280

url: https://www.openstreetmap.org/api/0.6/map?bbox=- 111.9431 %2C 33.4154 %2C- 111.9239 %2C33.4280

Thought of Execution Result: 
[The requests have successfully downloaded and saved at: ./Data/download/OSM/arizona_state_university.osm.]
<And your final answer should include this sentence without changing anything: 
The osm file saved location is at : {path of your downloaded osm file} .}.>

Other Actions: [None]
Final Answer:
The osm file saved location is at :`./Data/download/OSM/ arizona_state_university.osm `.

Input Question: Please download the OSM file of Arizona State Univeristy, Tempe Campus in [-111.9431, 33.4154, 
-111.9239, 33.4280].

Figure 9: Ask Open-TI to download OSM data of Arizona State University, Tempe Campus.

Solution

Thought:  The user is asking to[download the OSM file of New York University]. I don't have the longitude and latitude information of 
New York University, so I need to [use the queryAreaRange to get the position data first].
Action:  [Execute the augmentation function: queryAreaRange()]

Action Input: New York University

Thought of Execution Result: 
[You have successfully loacated the map.]
<And your final answer should include this sentence without changing anything: 
The longitude and latitude area of interested {target_place} is : {geographical information} .>

Other Actions: [autoDownloadOpenstreetmapFile()]
Final Answer:
The longitude and latitude area of New York University is [-73.9999, 40.726, -73.9857, 40.7314].

Action:  [Execute the augmentation function: autoDownloadOpenstreetmapFile()]
Action Input: [-73.9999, 40.726, -73.9857, 40.7314],” new_york_university.osm”

get the data in download: [-73.9999, 40.726, -73.9857, 40.7314] ," new_york_university.osm”

desired: arizona_state_university.osm

long_min, lat_min, long_max, lat_max -73.9999  40.726  -73.9857  40.7314

url:https://www.openstreetmap.org/api/0.6/map?bbox=-73.9999%2C40.726%2C-73.9857%2C40.7314

Thought of Execution Result: 
[The requests have successfully downloaded and saved at: ./Data/download/OSM/new_york_university.osm.]
<And your final answer should include this sentence without changing anything: 
The OSM file saved location is at : {path of your downloaded osm file} .}.>

Other Actions: [None]
Final Answer: The OSM file saved location is at :`./Data/download/OSM/ new_york_university.osm`.

Input Question: Please download the OSM file of New York Univeristy.

Figure 10: Ask Open-TI to download OSM data of Arizona State University, Tempe Campus without giving
Open-TI geographic information.

Solution

Thought:  The user is asking for [analyze a file in a specific path.].
Action:  [Execute the augmentation function: logAnalyzer ()]

Action Input: ./support_libsignal/LibSignal/LibSignal/configs/tsc/colight.yml

Thought of Execution Result: 
the log file contains configuration settings for the colight model, trainer, logger, and traffic. It specifies various parameters such as 
learning rate, batch size, epsilon decay, and number of episodes. It also includes directories for saving models, logs, and datasets. 
The log file is used for training and testing the colight model in traffic signal control.

Other Actions: [None]
Final Answer: The log file contains configuration settings for the colight model, trainer, logger, and traffic in traffic signal control.

Input Question: Hi,  this is the path of log file ./support_libsignal/LibSignal/LibSignal/configs/tsc/colight.yml. Can you 
help me to understand and interpret it?

Figure 11: Ask Open-TI to analyze the interested log file in a specific path.
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Solution

Thought:  The user is asking for [generate demand file using generateDemand tool based on the downloaded osm file of Arizona State 

University, Tempe Campus].
Action:  [Execute the augmentation function: generateDemand()]

Action Input: ./Data/download/OSM/arizona_state_university.osm

demand target:./Data/download/OSM/arizona_state_university.osm

Thought of Execution Result: 
[You have successfully generate the demand file.]
<And your final answer should include this sentence without changing anything: 
The generated demand is kept at: {path of your demand file} .}.>

Other Actions: [None]
Final Answer: The generated demand is kept at: `./Data/demand/arizona_state_university`.

Input Question: Please generate the demand file using the OSM file of Arizona State University, Tempe Campus.

Figure 12: Ask Open-TI to generate demand file through downloaded osm data of Arizona State University,
Tempe Campus.

Solution

Thought:  The user is asking to [show the map of Arizona State University, Tempe Campus].
Action:  [Execute the augmentation function: showOnMap()]

Action Input: [-111.9431, 33.4154, -111.9239, 33.4280]

Thought of Execution Result: 
[You have successfully find the map of: [-111.9431, 33.4154, -111.9239, 33.428].]
<And your final answer should include this sentence without changing anything: 
The map area of interested {geography info} is: {path of your downloaded osm file} .}.>

Other Actions: [None]
Final Answer:
The map area of interest [-111.9431, 33.4154, -111.9239, 33.428] is:`./Data/maps/target_map.png`.

Input Question:       Please show me the map of Arizona state university, Tempe Campus in [-111.9431, 33.4154, 
-111.9239, 33.4280].

Figure 13: Ask Open-TI to show the map of Arizona State University, Tempe Campus.

Solution

Thought:  The user is asking to[ show the map of Taipei 101]. I don't have the longitude and latitude information of Taipei 101, so I need 
to [use the queryAreaRange to get the position data first].
Action:  [Execute the augmentation function: queryAreaRange()]

Action Input: Taipei 101

Thought of Execution Result: 
[You have successfully loacated the map.]
<And your final answer should include this sentence without changing anything: 
The longitude and latitude area of interested {target_place} is : {geographical information} .}.>

Other Actions: [showOnMap]
Final Answer:
The longitude and latitude area of Taipei 101 is [121.563881, 25.0333776, 121.5651362, 25.0345412].

Action Input: [121.563881, 25.0333776, 121.5651362, 25.0345412]

Action:  [Execute the augmentation function: showOnMap()]
Thought of Execution Result: 

[You have successfully fine the map of :[121.563881, 25.0333776, 121.5651362, 25.0345412].]
<And your final answer should include this sentence without changing anything: 
The map area of interested{geographical information} is : {the path of map} .}.>

Other Actions: [None]
Final Answer:
The map area of interested [121.5645, 25.0339, 121.5665, 25.0359] is:`./Data/maps/target_map.png`.

Input Question: Please show me the map of Taipei 101.

Figure 14: Ask Open-TI to show the map of Taipei 101 without giving Open-TI geographic information.
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Solution

Thought:  The user is asking for [filter the bikeable area using the downloaded osm file of Arizona State University, Tempe Campus].
Action:  [Execute the augmentation function: Network Filter()]
Action Input: :`./Data/download/OSM/ arizona_state_university.osm`. ,bike

target:./Data/download/OSM/arizona_state_university.osm, bike

arguments used for network parsing:

filename: ./Data/download/OSM/arizona_state_university.osm

network_types: bike

...

number of nodes: 1667, number of links: 3341, number of pois: 0

Figure is saved to ./Data/netfilter/output/2023-12-18-15-05-50-bike.png

Thought of Execution Result: 
[You have successfully filter the network by type: ./Data/download/OSM/arizona_state_university.osm,bike on the target network..]
<And your final answer should include this sentence without changing anything: 
The location of {filter type} in {place of interest} is kept at : {path of your filter network} .}.>

Other Actions: [None]
Final Answer:
The location of bikable area in Arizona State University, Tempe Campus is kept at:`./Data/netfilter/output/2023-12-18-15-05-50-bike.png`.

Input Question: Please use the OSM file of Arizona State University, Tempe Campus to filter bikable area.

Figure 15: Ask Open-TI to filter the bikable area of Arizona State University, Tempe Campus.

Solution

Thought:  The user is asking for [run a simulation on Libsignal using the CityFlow environment, DQN policy, and 10 episode by executing 

the simulateOnLibsignal].
Action:  [Execute the augmentation function: simulateOnLibsignal()]

Action Input: CityFlow, DQN, 10

target: CityFlow, DQN, 10

get the command: CityFlow, DQN, 10

output:

method DQN

building world...

creating intersections...

intersections created.

parsing roads...

roads parsed.

world built.

DQNNet(

(dense_1): Linear(in_features=16, out_features=20, bias=True)

(dense_2): Linear(in_features=20, out_features=20, bias=True)

(dense_3): Linear(in_features=20, out_features=8, bias=True)

)

2023-12-18 15:35:45 (INFO): step:3600/3600, q_loss:0, rewards:-168.7324978298611, queue:112.825, delay:0.638752916124132, 

throughput:1071

…

2023-12-18 15:36:32 (INFO): Final Travel Time is 372.0935, mean rewards: -203.0137, queue: 135.4111, delay: 0.7772, throughput: 

1676

2023-12-18 15:36:32 (INFO): Total time taken: 49.25805640220642

Thought of Execution Result: 
[You have successfully simulate on Libsignal.]
<And your final answer should include this sentence without changing anything: 
The simulation result is kept at: {path of your simulation result} .}.>

Other Actions: [None]
Final Answer:
The simulation result is kept at: `./AugmentUtils/simulation/fig/2023-12-18-15-36-33.png`.

Input Question: Can you run the simulation on Libsigal using CityFlow environment, DQN policy, and episode 10?

Figure 16: Ask Open-TI to run Libsignal on CityFlow environment, DQN policy, and episode 10.
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Solution

Thought:  The user is asking for [execute the simulation on the DLSim platform using the generated demand files].
Action:  [Execute the augmentation function: simulateOnDLSim()]

Action Input: ./Data/demand/arizona_state_universityDLSim

target:./AugmentUtils/simulation/simulate/

DLSim version: 0.2.11

…

simu time= 110 min, CA = 0 CD=0

Done!

CPU Running Time for column pool updating: 2346.36 s

writing link_performance.csv..

writing agent.csv..

writing data for 45  zones

Output for assignment with 10 iterations. Traffic assignment completes!

CPU Running Time for outputting simulation results: 355.501 s

free memory..

done.

Thought of Execution Result: 
[You have successfully simulated on DLSim.]

<And your final answer should include this sentence without changing anything: 
The simulation process and logs are saved below:{path of your simulation file} .}.>

Other Actions: [None]
Final Answer: The simulation process and logs are saved below:`./AugmentUtils/simulation/simulate/2023-12-18-18-17-33-log.txt`.

Input Question: Please execute the simulation on DLSim platform using the generated demand files at 
path ./Data/demand/arizona_state_university.

Figure 17: Ask Open-TI to run the demand file of Arizona State University, Tempe Campus on DLSim.
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A.8 INTERACTIONS WITH OPEN-TI EXAMPLES

This section provides more examples of user interactions, including result interpretation, log file
analysis, O-D matrix optimization, etc.

Hi tell me about yourself?

I am Open-TI, an Open Traffic Intelligence with Augmented Language Model (ALM) developed by DaRL
Lab. I am designed to assist humans with intelligent traffic planning, traffic simulation, and automatic analysis.
I have access to a set of tools and can operate existing packages and open-sourced libraries.

Where is Arizona State University, Tempe Campus?

The longitude and latitude area of Arizona State University, Tempe Campus is [-111.9411651, 33.4102062,
-111.9092447, 33.4329786].

Can you show me this area on map?

Sure! The area on map as follow:

Of course! I have filtered the bikeable lanes in this place, please check below:

I am wondering the bikeable lanes in this place, can you show me that information?

Help me to run simulation on SUMO in this area?

I have set the configs and the successfully opened the sumo for one click simulation:

Figure 18: The demonstration pivotal agent control. (Right: The user messages, Left: The responses from
Open-TI). This series of interactions shows how to query geography information of a location, how to visualize
on the map, filter the interested lane types, and use the arbitrary map for automatic traffic simulation (SUMO).
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Can you show me the map of Arizona State University?

Sure! The area on map as follow:

Hi Can you run the simulator on Libsignal using the CityFlow environment, DQN policy, and episode 15?

Can you download the OSM file of Arizona State University, Tempe Campus?

https://www.openstreetmap.org/api/0.6/map?bbox=-111.9418%2C33.4125%2C-111.9182%2C33.4283

The file saved location is at: `./Data/download/OSM/arizona_state_university.osm`.

I am wondering the railway lanes in this place, can you show me that information?

Of course! I have filtered the bikeable lanes in this place, please check below:

Figure 19: Ask Open-TI to show the map of the interested place, download .osm data of the interested place,
use the OSM file of the target place to filter railway routes, and conduct traffic signal control.
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Please generate the demand file using the OSM file of Arizona State University, Tempe Campus.

The generated demand is kept at: `./Data/demand/arizona_state_university_tempe_campus`.  

Please run simulation on Libsignal using simulator CityFlow, algorithm fixedtime, and episode 6.

The simulation results are: Final Travel Time is 552.7249, mean rewards: -185.0871, queue:

100.3444, delay: 5.1862, throughput: 1455.

Please execute the simulation on DLSim platform using the generated demand files at 

path./Data/demand/arizona_state_university.

The simulation process and logs are saved below:`./AugmentUtils/simulation/simulate/2023-12-18-18-17-33-log.txt`.

Step 1: Reading input data

Step 1.1: Reading section [demand_period] in setting.csv...

…

Step 1.6: Reading link data in link.csv...

link type 6 in link.csv is not defined for link 378->1 in link_type.csv

…

simu time= 110 min, CA = 0 CD=0

Done!

CPU Running Time for column pool updating: 2346.36 s

writing link_performance.csv..

writing agent.csv..

writing data for 45  zones

Output for assignment with 10 iterations. Traffic assignment completes!

Merci de vous presenter. (Please introduce yourself in France).

Votre nom est Open-TI, vous êtes Open Traffic Intelligence (Open-TI) avec un modèle de langage augmenté 

développé par DaRL Lab pour aider l'humain dans la planification intelligente du trafic, la simulation de transport ou 

la réalisation d'analyses automatiques, vous pouvez même exploiter les packages existants et ouvrir -des outils sourcés 

pour explorer des possibilités infinies, profitent au maximum à la planification du trafic.Bien que vous ayez accès à un 

ensemble d'outils, vos capacités ne se limitent pas aux outils à votre disposition.

What's the must visit attraction in arizona?

Some of the must-visit attractions in Arizona include the Grand Canyon, Sedona, Antelope Canyon, Horseshoe 

Bend, Monument Valley, Saguaro National Park, Petrified Forest National Park, Havasu Falls, Lake Powell, and 

the Heard Museum.

What's the typical weather in arizona during?

The typical weather in Arizona during summer is hot and dry, with temperatures often exceeding 100 degrees 

Fahrenheit (38 degrees Celsius). It is advisable to stay hydrated and seek shade or air-conditioned areas to avoid 

heat-related illnesses.

Figure 20: An example of asking Open-TI to generate demand file from OSM file, run simulator on Libsignal
in different algorithm and episode, execute simulation on DLSim, understand and response in multi-languages,
and analyze logs in a specific path.
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Hi this is the path of log file ./support_libsignal/LibSignal/LibSignal/configs/tsc/colight.yml can you help me to

understand and interpret it.

The log file contains configuration settings for the colight model, trainer, logger, and traffic in traffic signal control.

Can you analyze the log file of running Libsignal on simulator CityFlow, algorithm DQN, and  episode 5 and 

compare with on simulator CityFlow, algorithm fixedtime, episode 5?

I have analyzed the log file and compared it with the simulation results using the fixedtime algorithm in the CityFlow

simulator with 5 episodes. Here is the analysis:

- For the fixedtime algorithm in the CityFlow simulator with 5 episodes, the final travel time is

552.7249, the mean rewards is -185.0871, the queue is 100.3444, the delay is 5.1862, and the

throughput is 1455.

- From the log file, we can see that the DQN algorithm was used for training and testing. The

training results for each episode are as follows:

- Episode 0: Final travel time is 824.8, mean rewards is 0.0, queue is -168.42, delay is 112.36,

and throughput is 0.66.

…

- The testing results for each episode are as follows:

- Episode 0: Final travel time is 1039.2, mean rewards is 100.0, queue is -277.07, delay is

184.99, and throughput is 0.75.

…

Based on the analysis, we can see that the simulation results using the fixedtime algorithm in the

CityFlow simulator with 5 episodes are different from the results obtained from the log file using

the DQN algorithm.

Please run simulation on Libsignal using simulator CityFlow, algorithm fixedtime, and episode 5.

The simulation results are: Final Travel Time is 552.7249, mean rewards: -185.0871, queue: 100.3444, delay: 5.1862, 

throughput: 1455.

Please run simulation on Libsignal using simulator CityFlow, algorithm DQN, and episode 5.

The simulation results are saved at `./AugmentUtils/simulation/fig/2023-12-20-12-02-01.png` and the log file 

is saved at 

`/home/ruby/support_libsignal/LibSignal/LibSignal/data/output_data/tsc/cityflow_dqn/cityflow1x1/0/logger/20

23_12_20-12_01_26_DTL.log`.

In the same file, there are more parameters in each categories, for example, in model, there are "graphic" : True, 

vehicle_max: 1, learning_rate: 0.001, batch_size: 64, gamma: 0.95, epsilon: 0.8, epsilon_decay: 0.9995, epsilon_min: 

0.01, grad_clip: 5.0.  please help me understand in details.

In the "model" category of the log file, there are several parameters:

- "graphic": This parameter indicates whether the colight model should use graphic input. If the value is set to True, it means 

that the model will take graphic input into account during the traffic signal control.

- "vehicle_max": This parameter specifies the maximum number of vehicles that can be present in the

simulation at any given time.

…

- "grad_clip": This parameter is used to clip the gradients during training. It limits the magnitude

of the gradients to prevent them from becoming too large and causing instability in the training

process.

I hope this explanation helps. Let me know if you have any further questions.

Figure 21: An example of asking Open-TI to analyze file with a specific path. In this case, run the simulation
on Libsignal using simulator CityFlow, algorithm fixedtime, and episode 5. Additionally, run the simulation
on Libsignal using simulator CityFlow, algorithm DQN, and episode 5. Finally, use the logAnalyzer to
compare the performance of both algorithms.
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Hi I have provided the O-D demand zone information in file: “pure_simulate/taz.add.xml”, Can you show me the 
zone visualization based on original map data: “map.net.xml”?

Yes, sure. The file you provided is the .taz file defining the traffic analysis zones in sumo, based on the map
data, the visualization of zones is as below:

Please run the demand optimization by follow the process in file using the Genetic Algorithm : 
“pure_simulate/optimize_od.py” and visualize the comparison result to observation data.

After the evolution of Genetic Algorithm, The simulated results using final O-D matrix vs observation
data at “pure_simulate/obs.csv” as below:

I have the real-world observation data collected in file “pure_simulate/obs.csv”, in this sumo map, the observation 
point are:

lane="1089324756#1_1" pos="10.10”
lane="1089324756#1_0" pos="10.53"

Please set detectors here following the info in “pure_simulate/monitor.add.xml”

Based on the information you provided, the observation point is located at following roundabout:

Figure 22: The demonstration on how Open-TI is used to optimize the OD-Demand matrix. It first visualizes
the defined traffic zone information, and sets the observation point to mimic the real-world data collection
process. Then based on the gap between simulation observation and real-world observation (count data), the
O-D matrix is optimized to mitigate the observation gap by optimization algorithms (e.g., Genetic Algorithm).
After the optimization, the final O-D matrix is simulated again, and the comparison of observation is shown in
the end.
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