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Abstract

Research on Out-Of-Distribution (OOD) detection focuses mainly on building scores that
efficiently distinguish OOD data from In Distribution (ID) data. On the other hand,
Conformal Prediction (CP) uses non-conformity scores to construct prediction sets with
probabilistic coverage guarantees. In other words, the former designs scores, while the latter
designs probabilistic guarantees based on scores. Therefore, we claim that these two fields
might be naturally intertwined. This work advocates for cross-fertilization between OOD
and CP by formalizing their link and emphasizing two benefits of using them jointly. We
show the effect of considering this link on both OOD detection and CP fields. First, for
OOD detection, we show that in standard OOD benchmark settings, evaluation metrics can
be affected by the validation dataset’s finite sample size. Extending the work of Bates et al.
(2022), we define new conformal AUROC and conformal FPR@TPR95 metrics, which are
corrections that provide probabilistic conservativeness guarantees on the variability of the
FPR involved in these metrics with respect to the validation datasets. We show the effect of
these corrections on two reference OOD and anomaly detection benchmarks, OpenOOD Yang
et al. (2022), and ADBench Han et al. (2022). Second, for CP, we explore using OOD scores
as non-conformity scores and show that they can improve the efficiency of the prediction
sets obtained with CP.

1 Introduction

Even though current Machine Learning (ML) and Deep Learning (DL) models are able to perform several
complex tasks that previously only human beings could, we are still a step away from their widespread
adoption in safety-critical applications. Indeed, it is difficult to certify an ML component, mainly due to the
poor control of the circumstances that may provoke such a ML component to fail. Out-of-Distribution (OOD)
detection tries to tackle this problem by identifying data that differs significantly from the data used to train
the model at runtime. Besides being recognized as an essential step in the certification of ML systems by
multiple certification authorities (see, e.g., Sections 5.3 and 8.4 of Balduzzi et al. (2021) or Section 5.1 of
EASA & Daedalean (2024)), OOD detection is a very active branch in machine learning research.

Current OOD detection strategies rely on constructing an OOD score s, a function that assigns a scalar to
each input example. This score discriminates between in-distribution (ID) data and OOD data by assigning
lower scores to the former and higher scores to the latter.

When OOD detection is used in a machine learning pipeline to identify examples that differ from the data
the model has been trained on, there is a natural qualitative interpretation of OOD detection in terms of
model uncertainty. For instance, an example with a low OOD score should be one for which the model can
predict with low uncertainty, while an example with a high OOD score should be linked to a highly uncertain
prediction. Conformal Prediction (CP) is a family of post-hoc methods for Uncertainty Quantification
and Uncertainty Representation Caprio et al. (2024), that work as wrappers over machine learning models,
transforming point predictions into prediction sets with rigorous probabilistic guarantees based on so-called
nonconformity scores. The user pre-specifies a risk level α, and the constructed prediction set is guaranteed
to contain the ground truth value with a probability of at least 1 − α.
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Since CP is a way of providing rigorous uncertainty quantification guarantees built upon scores, it is natural
to apply it to the scores used in OOD detection. Conversely, CP relies nonconformity scores, most of which
are close to existing OOD scores. The main purpose of our work is to dig into the combination
between Conformal Prediction and OOD detection scores and show some of its advantages for
both Conformal Prediction and OOD detection.

First, we start from the work of Bates et al. (2022) on outlier detection. Bates et al. (2022) cast the outlier
detection problem into the statistical framework of hypothesis testing. They show that the p-values, built
with a calibration dataset, are provably marginally valid but depend on the choice of the calibration dataset,
and so does the False Positive Rate (FPR) derived from these p-values. We show that this effect can
introduce fluctuations in the approximation of subsequent OOD metrics like AUROC and FPR@TPR95,
thus overestimating or underestimating the true metrics. In a certification process, we are mainly interested
in guaranteeing that our estimations are conservative with high probability, at the expense of losing some
approximation precision EASA (2023). On the other hand, when the focus lies in performances and OOD
scores benchmarking, we would prefer to check if the most competitive baselines should legitimately considered
as such, despite the fluctuations. To achieve that, we design new confidence interval bounds-like metrics
for AUROC and FPR@TPR95 based on CP theory: AUROC− and FPR@TPR95− that are conservative
estimates and AUROC+ and FPR@TPR95+ that are permissive estimates, with a user-chosen probability
1 − δ. We show the effect of these new metrics on two large reference benchmarks, the OOD benchmark
OpenOOD Yang et al. (2022), and the anomaly detection benchmark Han et al. (2022).

Second, we show that not only can CP contribute to OOD detection, but research in OOD detection can also
help CP. Indeed, CP has traditionally focused on constructing prediction sets from nonconformity scores. Still,
the scores used are usually simple functions of the softmax scores for classification tasks or classical distances
in Euclidean space for regression tasks. Here, we draw inspiration from the OOD detection literature to build
more involved nonconformity scores and compare their performance to the traditional nonconformity scores
of CP. For the task of classification, we build prediction sets based on multiple different OOD scores and find
that some of them, notably Mahalanobis Leys et al. (2018) or KNN Sun et al. (2022), are good candidates as
nonconformity scores.

Ultimately, one of the key messages of this work is that since OOD is concerned with designing scores
and conformal prediction with interpreting these scores, the two fields may be inherently intertwined.
Highlighting this relationship might offer significant potential for cross-fertilization.

Our contributions can be summarized as follows:

• We cast the OOD detection problem into the framework of statistical hypothesis testing and build
on the ideas of Bates et al. (2022) to correct OOD scores and propose new conformal AUROC+ and
conformal FPR@TPR95+ metrics, which are provably conservative with high probability.

• We also introduce a lower bound for the FPR, allowing us to define new conformal AUROC− and
conformal FPR@TPR95− metrics. These metrics work the other way around and allow for the
alleviation of underestimation of these metrics for practitioners who are more focused on performances
only.

• We show the effect of conformal AUROC and conformal FPR in the reference benchmarks
OpenOOD Yang et al. (2022) and ADBench Han et al. (2022). In addition to the previously
stated advantages, the combination of the two kinds of metrics can be seen as confidence intervals-like
bounds which allow for a more refined comparison between OOD scores.

• We build new nonconformity scores for CP based on OOD and perform a comparison between the
scores. We find that the Mahalanobis score outperforms the classical CP score.

• We point out that OOD and CP are two domains that have much to contribute to each other and
advocate for further research exploring this link.
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2 Background

Out-of-Distribution Detection Given n examples, {x1, . . . , xn} sampled from a probability distribution
Pid on a space X , and a new data point xn+1, the task of Out-of-Distribution (OOD) detection consists in
assessing if xn+1 was sampled from Pid - in which case it is considered In-Distribution (ID) - or not - thus
considered OOD.

The most common procedure for OOD detection is to construct a score s : X → R and a threshold τ such
that: {

xn+1 is declared OOD if s(xn+1) > τ

xn+1 is declared ID if s(xn+1) ≤ τ
(1)

We call s an OOD score.

Task-based OOD This is the most common approach in the literature regarding OOD detection for neural
networks. It also encompasses Open-Set Recognition. Let’s consider that xi can be assigned a label yi so that
we can construct a dataset {(x1, y1), . . . , (xn, yn)} defining some supervised deep learning task. In that case,
Pid := Ptrain. Task-based OOD uses representations built by the neural network f throughout its training to
design s. Many sophisticated methods follow this approach Yang et al. (2021). A simple example is to take
the negative maximum of the output of f (after the softmax) Hendrycks & Gimpel (2018) as an OOD score
(s(xn+1) = − max

(
f(xn+1)

)
where max(x) is the highest component of the vector x. Another simple idea is

to find the distance to the nearest neighbor in some intermediate layer of f Sun et al. (2022).

Task-agnostic OOD This approach encompasses One-Class Classification and Anomaly/Outlier Detection.
Let’s consider a dataset {x1, . . . , xn} in a fully unsupervised way. There is no notion of labels, so we have
to approximate Pid somehow or some related quantities from scratch. Examples are GANs or VAEs with s
defined as reconstruction error. See Yang et al. (2021) for a thorough review.

Conformal Prediction Few Machine Learning and Deep Learning models provide a notion of uncertainty
related to their predictions. Even the models trained for classification tasks providing softmax outputs, which
can be interpreted as the probabilities for the input belonging to the different classes, are usually ill-calibrated
and overconfident, making the softmax output an incorrect proxy of the true uncertainty of the prediction.
Pearce et al. (2021). Conformal Prediction (CP) Vovk et al. (2005); Angelopoulos & Bates (2022) is a series
of post-processing uncertainty quantification techniques that are model-agnostic and provide finite-sample
guarantees on the model predictions. One of the simplest CP techniques, the split CP, works as a wrapper
on a trained model f . It requires a calibration dataset {(xn+1, yn+1), . . . , (xn+ncal , yn+ncal)} independent of
the training data, and a risk (or error rate) α that the user can tolerate. Based on so-called nonconformity
scores computed on the calibration dataset, it builds a prediction set Cα(xn+ncal+1) for a new test sample
xn+ncal+1 with the following finite sample guarantee

P (yn+ncal+1 ∈ Cα(xn+ncal+1)) ≥ 1 − α. (2)

To obtain the guarantee equation (2), the only assumption required is that the calibration and test data form
an exchangeable sequence (a condition weaker than, and therefore automatically satisfied by independence
and identical distribution)Shafer & Vovk (2008) and that they are independent of the training data. It is
essential to know that the guarantee equation (2) is marginal, i.e. holds in average over both the calibration
dataset and the test sample choice. As we shall emphasize, there might be fluctuations due to the finite
sample size of the calibration dataset.

3 Related Works

In this work, we study the potential of using Conformal Prediction as a statistical framework for interpreting
OOD scores. This idea of casting OOD in a statistical framework has already been attempted in different
settings.
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Selective Inference and Testing Selective Inference works on top of an ML predictor by using an
additional decision function to decide for each example whether the original model’s prediction should be
considered. A score equivalent to an OOD score is used to define this decision function. Several approaches
exist, for instance, through building a statistical test Haroush et al. (2022) or by training a neural network
with an appropriate loss Geifman & El-Yaniv (2017; 2019). However, the framework of Conformal Prediction
appears better suited to our goal since it applies to scores in a post-processing manner, does not require
assumptions or modifications on the model, and benefits from dynamic development in the ML community.

Conformal OOD and AD Conformal Prediction has been previously applied to Out-of-Distribution and
Anomaly Detection. For instance, Liang et al. (2022) have proposed a method based on CP for OOD with
labeled outliers, and Kaur et al. (2022) propose to use conformal p-values. CP is one of several frameworks
that allow obtaining statistical guarantees for OOD detection. One of the first methods for Anomaly Detection
was introduced by Vovk et al. (2003). Since then, several other methods have been proposed by Laxhammar
& Falkman (2011); Laxhammar (2014); Balasubramanian et al. (2014), as well as more recently Angelopoulos
& Bates (2022); Guan & Tibshirani (2022), where the lengths of the prediction sets as OOD scores. These
works all use the standard CP setting, in which basic marginal guarantees are obtained. We go further on
this approach by using CP as a probabilistic tool to refine the interpretation and, hence, the usefulness of
any OOD score.

Finding Efficient Scores for Conformal Prediction We also investigate the benefits of using OOD
scores as non-conformity scores in CP. Common ways to build prediction sets for classification, such as LAC
Sadinle et al. (2019) or APS Romano et al. (2020) and RAPS Angelopoulos et al. (2020) are based on the
softmax output of classifiers. However, non-conformity scores also exist for other predictors Vovk et al. (2005),
for instance, based on nearest neighbor distance Shafer & Vovk (2008). In this work, we suggest interpreting
any OOD score as a potential general replacement for scores in CP, opening a large avenue for CP score
crafting. This idea could apply to any ML task, but we demonstrate that on a classification task, to be
consistent with the standard OOD benchmark settings we follow in the present paper.

4 OOD Scores Through the Lens of CP

Let us begin by describing the typical benchmark setup for evaluating an OOD score. First, an OOD detector
is fit on Dtrain

id = {x1, . . . , xn}. Then, the OOD score is evaluated on Dval
id = {xn+1, . . . , xn+nval} and

Dood = {x̄1, . . . , x̄nval}, where Dood is a dataset sampled from a different distribution Pood ̸= Pid (typically,
another dataset). We apply s to obtain {s(x̄1), . . . , s(x̄nval), s(xn+1), . . . , s(xn+nval)}. Then, we assess the
discriminative power of s by evaluating metrics depending on a threshold τ . By considering ID samples as
negative and OOD as positive, we can compute:

• The Area Under the Receiver Operating Characteristic (AUROC): we compute the False Positive
Rate (FPR) and the True Positive Rate (TPR) for τi = s(xn+i), i ∈ {1, . . . , nval}, and compute the
area under the curve with FPR as x-axis and TPR as y-axis.

• FPR@TPR95: The value of the False Positive Rate (FPR) when τ is selected among τ1, . . . , τnval so
that the True Positive Rate (TPR) is 0.95. It can be generalized to FPR@TPRβ, for any β ∈ (0, 1).

A crucial step in any of these metrics is to compute the FPR. The FPR and its empirical estimation F̂PR(τ)
are defined as follows:

FPR(τ) = Px∼Pid
(s(x) ≥ τ), F̂PR(τ) = 1

nval

∑
i=1,...,nval

1s(xi)≥τ . (3)

4.1 OOD detection and p-values

Let us now rewrite the problem of OOD detection using the framework of statistical hypothesis testing.
This framework allows us to reason in terms of p-values, which have multiple benefits: they have a rigorous
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mathematical definition and probabilistic interpretation, they can be interpreted equivalently for any score,
and used for comparison of different scores. Given a test example xtest, we wish to test for xtest ∼ Pid, i.e. we
wish to test the null hypothesis H0 : xtest ∼ Pid against the alternate hypothesis H1 : xtest ̸∼ Pid. The value
Px∼Pid

(s(x) ≥ s(xtest)) is an exact p-value for the null hypothesis H0. Note that this p-value corresponds
to FPR(s(xtest)) as defined in equation (3). Hence, the values F̂PR(τ1) = F̂PR(s(xn+1)), . . . , F̂PR(τp) =
F̂PR(s(xn+nval)) used in every OOD detection benchmark to compute the AUROC and FPR@TPRβ can be
considered as approximate p-values. The relationship between the FPR and the p-values emphasizes the link
between OOD detection evaluation and hypothesis testing.

4.2 Fluctuations of the p-value

This is where the framework of Conformal Prediction comes into play. Since we do not have access to the
distribution Pid, we approximate the FPRs (so the p-values) by using the validation dataset Dval

id , which
allows using two results from CP to improve the evaluation of the FPR. Note that Dval

id can be related to the
calibration dataset used in CP.

4.2.1 marginal validity of the FPR

The first point that CP teaches us is that fluctuations in the scores of the validation dataset can lead to
over-confident estimations of the p-value. In order to avoid that, we have to use the correction proposed
by Bates et al. (2022) (which can be originally traced to Papadopoulos et al. (2002)):

ûmarg(x) = 1
1 + nval

(
1 +

∑
i=1...nval

1s(xi)≥s(x)

)
. (4)

With this correction, if the xi are i.i.d and the distribution of s(x) under the ID law is continuous, we obtain
marginally valid p-values, that is, p-values that satisfy

Px∼Pid

(
ûmarg(x) ≤ t

)
≤ t, for all 0 ≤ t ≤ 1. (5)

By marginally, we are pointing out that the probability in the above formula integrates over both the
validation set Dval

id and the test point x. This correction directly translates in terms of FPR. We can correct
equation (3) to obtain a new estimation that enjoys this property:

F̂PR(τ) = 1
1 + nval

(
1 +

∑
i=1...nval

1s(xi)≥τ

)
. (6)

However, the work of Bates et al. (2022) tells us that the FPR may still be overly confident. We discuss this
point in the next section.

4.3 Fluctuations of the FPR

In this part, we mainly explain the work of Bates et al. (2022) that emphasizes that the FPR fluctuates
depending on Dval

id . We illustrate this phenomenon in the context of OOD detection and adapt the corrections
proposed in Bates et al. (2022) to this field by defining new conformal AUROC and conformal FPR@TPRβ.

Note first that the FPR can also be defined using a threshold t applied to the p-values as:

FPR(t, Dval
id ) = Px∼Pid

(
ûmarg(x) ≤ t | Dval

id

)
, (7)

where t ∈ [0, 1]. The authors point out that due to the empirical estimation of ûmarg(x), the quantity
Px∼Pid

(
ûmarg(x) ≤ t | Dval

id

)
is a random variable that depends on Dval

id .

As a practical consequence, the FPR will fluctuate depending on which dataset Dval
id it is evaluated. The

random variable FPR(t, Dval
id ) follows a distribution that is known: it is a Beta distribution that depends on

the parameters nval and t:
FPR(t, Dval

id ) ∼ Beta(ℓ, nval + 1 − ℓ), (8)
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where ℓ = ⌊(nval + 1)t⌋ (cf. Bates et al. (2022) or Vovk (2012) for a proof of the result).

4.3.1 Illustration on SVHN

To illustrate why this phenomenon matters in OOD detection, we leverage the fact that SVHN dataset
provides an additional set of 530000 extra test images. It allows the simulation of 53 draws of the random
variable F (t; Dval

id ), by splitting the over 530000 examples in the svhn_extra dataset into 53 different folds of
10000 examples each. For each fold, the 10000 examples are used to constitute the calibration dataset Dval

id ,
whereas the remaining over 520000 examples are used to approximate the computation of F , i.e., given a
calibration dataset Dval

id ,

F (t; Dval
id ) ≈ F̂ (t; Dval

id ) = 1
520000

∑
i=1...520000

1ûmarg(xi)≤t. (9)

Figure 1: Histogram of F (0.1; Dval
id ) for different vali-

dation sets. The histogram is obtained by splitting the
dataset svhn_extra into disjoint validation sets of 10000
points each, and approximating the value of F for each
validation set by integrating over the remaining 521131
examples.

Due to the large number of points used in the ap-
proximating sum, the 53 values obtained are faithful
approximations of the random variables F (t; Dval

id ).

We perform this simulation with t = 0.1 and plot
the 53 values into a histogram. Additionally, we
fit a Beta distribution to the histogram using the
scikit-learn library. These plots are found in fig-
ure 1. As we can see, the estimated parameters of
the fitted beta distribution are very close to those
predicted by the theoretical result of equation (8).
If the value ûmarg(x) were a true p-value, the value
of F (t; Dval

id ) would be equal to τ , but as we can
see from the theoretical result and the experiment
above, F (t; Dval

id ) is a random variable that fluctu-
ates around its mean value τ . This phenomenon can
be detrimental to safety-critical applications, which
are the applications of choice for OOD detection.
Indeed, it may result in underestimating the FPR,
whereas we would like the FPR to be conservative.
Conversely, it can also hinder performance evaluation of OOD scores by overestimating the FPR.

4.3.2 Probabilistic Guarantees for p-values and the FPR

To solve this problem, Bates et al. (2022) further corrects the marginal p-values, thus obtaining calibration-
conditional p-values. Given a user-predefined risk level δ, the calibration-conditional p-values ûcc+ will
satisfy

P
(
P
(
ûcc+(x) ≤ t | Dval

id

)
≤ t, ∀ t ∈ (0, 1)

)
≥ 1 − δ, (10)

where the probability inside is taken over x ∼ Pid, and the probability outside over the choice of Dval
id . Thus,

with a probability of at least 1 − δ, we can be confident that our p-values will be conservative.

Likewise, we can correct the FPR directly. Bates et al. (2022) propose a correction of the empirical FPR that
satisfies the following:

P
[
FPR(τ) ≤ F̂PR

+
(τ), ∀τ ∈ R

]
≥ 1 − δ, (11)

where F̂PR
+

(τ) is a correction version of the empirical F̂PR(τ). The corrected p-values and FPR, ûcc+(x)
and F̂PR

+
(τ), are obtained by applying a correction function h+ such that ûcc+(x) = h+ ◦ ûmarg(x).

Let 0 ≤ b1 ≤ b2 ≤ ... ≤ bn ≤ 1 such that

P
[
U(1) ≤ b1, . . . , U(n) ≤ bn

]
≥ 1 − δ.
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The correction h+ : R 7→ R is defined as

h+(t) = b⌈(nval+1)(1−t)⌉, t ∈ [0, 1],

If the focus of OOD score evaluation is performances or OOD score comparison for benchmarking, we might
also want to give a lower bound on the FPR. Therefore, we introduce a new correction for ûmarg that we
denote ûcc−, which satisfies the property:

P
(
P
(
ûcc−(x) ≤ t | Dval

id

)
≥ t, ∀ t ∈ (0, 1)

)
≥ 1 − δ, (12)

and likewise, we can define F̂PR
−

that satisfies

P
[
FPR(τ) ≥ F̂PR

−
(τ), ∀τ ∈ R

]
≥ 1 − δ, (13)

thanks to the following proposition:
Proposition 4.1. Let 0 ≤ b1 ≤ b2 ≤ ... ≤ bn ≤ 1 such that

P
[
U(1) ≤ b1, . . . , U(n) ≤ bn

]
≥ 1 − δ.

Let h− : R 7→ R defined by
h−(t) = 1 − b⌊(n+1)(1−t)⌋, t ∈ [0, 1],

Suppose that the distribution of s(x) is continuous. Then, ûcc− defined as ûcc−(x) = h− ◦ ûmarg(x) satisfies
equation (12) and F̂PR

−
defined as F̂PR

−
(τ) = h− ◦ F̂PR(τ) satisfies equation (13).

In the following, we refer to the quantity F̂PR
+

(τ) = h+ ◦ F̂PR(τ) (already defined in Bates et al. (2022))
and F̂PR

−
(τ) = h− ◦ F̂PR(τ) (introduced in this paper) as conformal FPR+ and conformal FPR−.

Four different correction functions h+ are proposed by Bates et al. (2022), the Simes, DKWM, Asymptotic
and Monte Carlo corrections. The Simes, DKWM and Monte Carlo corrections all provide the finite sample
guarantees of equation (10) and equation (11), while the Asymptotic correction provides only an asymptotic
guarantee, that is, when the number of calibration points goes to infinity. Between the three corrections
providing the finite sample guarantee, we find the Monte Carlo one to give tighter F̂PR

+
(τ) and the DKWM

one tighter F̂PR
−

(τ) (please see Appendix B for more details on how the Simes and Monte Carlo corrections
are defined). The function h− is trivially obtained from h+ once the corrections are computed.

4.4 Conformal Metrics for OOD

Based on the previously defined conformal FPR+ and FPR−, we define conformal AUROC+ and AUROC−

and conformal FPR@TPR95+ and FPR@TPR95−. These quantities are obtained similarly to their classical
versions, but using the conformal FPR+ and FPR−:

• Conformal AUROC+ and AUROC−: we compute the conformal FPR+ or FPR− for τi = s(xn+i),
i ∈ {1, . . . , nval} and the True Positive Rate (TPR) for each of these values. We then compute the
area under the curve with conformal FPR as x-axis and TPR as y-axis.

• Conformal FPR@TPR95+ and FPR@TPR95−: We select τ among τ1, . . . , τnval so that the True
Positive Rate (TPR) is 0.95. We then compute the corresponding conformal FPR+ or FPR−. It can
be generalized to FPR@TPRβ, for any β ∈ (0, 1).

The computations are performed by considering the ID validation dataset as the calibration dataset. We
would like to insist on the fact that conformal FPRs, AUROCs, and FPR@TPR95s are not necessarily
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Figure 2: Different zoom levels of the ROC curves. The TPR is calculated by using all the points in the
"Cifar10" dataset for the three curves. As for the TPR, the blue curve is obtained by using all data points
in the "svhn_extra" dataset, the orange curve is an approximation of the blue curve using 1000 calibration
points, whereas the green curve is obtained by correcting the FPR via the conformal AUROC method.

better approximations of the real FPR, AUROC and FPR@TPR95 values. Nonetheless, FPR@TPR95+

and AUROC+ are guaranteed to use conservative estimates of the FPR with a user-defined miscalibration
tolerance δ, which is an essential property in many safety-critical applications or certification processes Sellke
et al. (2001). On the other hand, FPR@TPR95+ and AUROC+ allow to provide a more permissive estimate
that allows for evaluation and comparison of OOD scores that take into account this miscalibration effect.
The effect of the correction on the ROC curve is illustrated in Figure 2 using the SVHN dataset as ID and
Cifar-10 as OOD.

Remark 4.2 (Conformal metrics do not require extra calibration data). Computing the conformal FPRs only
requires a correction to the estimated FPR. It does not require extra calibration data and applies to the
FPRs computed with validation data. This is not like in CP, where we need a calibration dataset to find a
threshold based on nonconformity scores obtained on calibration data, which is subsequently used to provide
CP confidence intervals. Here, there are no confidence prediction intervals; we only use CP theory to obtain
probabilistic guarantees for the FPR.
Remark 4.3. The computation of the bounds for the FPR involves comparing a test point issued from the
ID distribution with a validation dataset composed of ID data. Unfortunately, we cannot achieve the same
bounds for the TPR. Indeed, the computation of the TPR would involve comparing a test point issued from
the OOD distribution with the validation dataset compose from ID data. Whereas the former is possible in a
distribution-free manner (i.e. without hypothesis on the ID distrubtion), the latter is not because hypotheses
on the ID/OOD distribution and their relation would be necessary in order to derive the corresponding
bounds. Nonetheless, conformal metrics alleviate AUROC and FPR@TPR95 estimation from the fluctuations
of the FPR.

4.5 Improved Benchmarks for OOD

AUROC and (to a lesser extent) FPR@TPR95 are two metrics that OOD and AD practitioners intensively
use to benchmark and evaluate the performances of different OOD detection algorithms. However, as we saw
in the previous sections, the evaluation can be sensitive to the choice of the ID validation dataset, which can
be detrimental either to algorithms designed for safety-critical applications or for performance assessment.
In this section, we reevaluate various OOD baselines included in the very furnished OpenOOD Yang et al.
(2022), and ADBench Han et al. (2022) benchmarks and illustrate the trade-off between performances and
probabilistic guarantees. All our experiments can be easily carried out on a standard laptop CPU, once all
the OOD scores are computed.

4.5.1 OpenOOD

OpenOOD Yang et al. (2022) is an extensive benchmark for task-based OOD, i.e. for OOD methods that
assess if some test data resembles some trained backbone’s training data. Usually, backbones trained on
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CIFAR-10, CIFAR-100, Imagenet200, and Imagenet are considered. In our case, we consider a ResNet18
trained on the first three datasets only since we are not evaluating a new baseline but only investigating
new metrics for the benchmark. We evaluate the AUROC of several baselines with various OOD datasets
gathered into two groups, Near OOD and Far OOD, following OpenOOD’s guidelines. We then compute the
correction for the AUROC, with δ = 0.01. The results are displayed in Table 1. We also run the benchmark
for δ = 0.05 and FPR-95, which we defer to Appendix D.

CIFAR-10 CIFAR-100 ImageNet-200

OOD type Near OOD Far OOD Near OOD Far OOD Near OOD Far OOD

OpenMax Bendale & Boult (2015) 87.288.88
85.95 89.5391.22

88.3 76.6678.36
74.95 79.1280.83

77.52 80.482.08
78.82 90.4192.05

88.77

MSP Hendrycks & Gimpel (2016) 87.6889.20
86.56 91.092.47

89.98 80.4282.06
78.93 77.5879.24

76.0 83.384.87
81.85 90.291.57

88.83

TempScale Guo et al. (2017) 87.6588.89
86.55 91.2792.5

90.3 80.9882.3
79.51 78.5179.84

76.95 83.6685.23
82.21 90.9192.27

89.53

ODIN Liang et al. (2018) 80.2581.72
79.04 87.2188.86

86.26 79.881.46
78.3 79.4481.08

77.92 80.3281.89
78.85 91.8993.14

90.59

MDS Lee et al. (2018) 86.7288.28
85.49 90.291.72

89.09 58.7960.49
56.85 70.0671.72

68.31 62.5164.21
60.68 74.9476.58

73.09

MDSEns Lee et al. (2018) 60.4662.11
58.69 74.0775.4

72.72 45.9847.68
43.97 66.0367.69

64.43 54.5856.27
52.76 70.0871.66

68.35

Gram Sastry & Oore (2020) 52.6354.31
50.69 69.7471.33

68.11 50.6952.39
48.69 73.9775.39

72.63 68.3669.99
66.74 70.9472.48

69.3

EBO Liu et al. (2020) 86.9388.32
85.9 91.7493.0

90.9 80.8482.49
79.36 79.7181.38

78.19 82.5784.15
81.1 91.1292.49

89.71

GradNorm Huang et al. (2021) 53.7755.39
51.92 58.5560.15

56.76 69.7371.37
68.11 68.8270.44

67.19 73.3374.86
71.85 85.2986.52

83.99

ReAct Sun et al. (2021) 86.4787.87
85.41 91.0292.31

90.12 80.782.36
79.23 79.8481.51

78.32 80.4882.06
79.0 93.194.37

91.79

MLS Hendrycks et al. (2022) 86.8688.26
85.81 91.6192.89

90.74 81.0482.68
79.58 79.681.27

78.07 82.9684.53
81.5 91.3492.68

89.94

KLM Hendrycks et al. (2022) 78.880.32
77.58 82.7684.24

81.63 76.978.56
75.38 76.0377.65

74.52 80.6982.35
79.14 88.4190.05

86.74

VIM Wang et al. (2022) 88.5189.98
87.42 93.1494.53

92.25 74.8376.5
73.17 82.1183.71

80.69 78.8180.45
77.2 91.5292.9

90.05

KNN Sun et al. (2022) 90.792.0
89.69 93.194.41

92.19 80.2581.88
78.79 82.3283.88

80.93 81.7583.32
80.27 93.4794.61

92.25

DICE Sun & Li (2022) 77.7979.34
76.44 85.4186.74

84.37 79.1580.81
77.61 79.8481.46

78.33 81.9783.53
80.5 91.1992.47

89.84

RankFeat Song et al. (2022) 76.3378.03
74.76 70.1571.89

68.39 62.2264.13
60.33 67.7469.63

65.9 58.5761.51
57.0 38.9741.69

37.09

ASH Djurisic et al. (2022) 74.1175.61
72.71 78.3679.83

77.02 78.3980.03
76.89 79.781.31

78.23 82.1283.63
80.72 94.2395.25

93.11

SHE Zhang et al. (2023) 80.8482.3
79.64 86.5587.88

85.55 78.7280.37
77.18 77.3578.98

75.8 80.4682.01
79.0 90.4891.71

89.17

Table 1: Classical AUROC with Conformal AUROC− and AUROC+, denoted AUROCAUROC−

AUROC+ for several
baselines from OpenOOD benchmark. AUROC+ is obtained with the Monte Carlo method and AUROC−

with the DKWM method. All the conformal metrics are computed with δ = 0.01. Top methods are bolded.
When the bounds cross, which means that they cannot be distinguished with the corresponding level of
confidence, several are bolded.

Two observations can be drawn from Table 1. For safety concerns, Table 1 shows that after the correction,
the conformal AUROC+ is lower than the classical AUROC, by often more than 1 percent. On the one hand,
this is significant, especially for such benchmarks where the State-of-the-art often holds by a fraction of a
percentage. On the other hand, the correction is not so severe, and the best baselines still get very good
AUROC despite the correction. In other words, the correction is large enough to manifest its importance but
low enough to still be useable in practice: it costs only roughly 1 or 2 percent in AUROC to be 99%
sure that the FPR involved in the AUROC calculation is not overestimated. For benchmarking
concerns, it shows that the top methods cannot be distinguished from one another with the chosen
level of confidence, because of the overlap of the interval built on AUROC− and AUROC+. This set of
methods is bolded in Table 1.
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4.5.2 ADBench

We perform the same procedure as OpenOOD with ADBench Han et al. (2022), which gathers many task-
agnostic OOD baselines – considered Anomaly Detection (AD), hence the benchmark’s name. We conduct
the experiments with "unsupervised AD" baselines, i.e. baselines that do not leverage labeled anomalies. We
apply the correction with δ = 0.05 and summarize the results in Figure 3. The complete results are deferred
to Appendix E.
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Figure 3: Results for ADBench benchmark. Mean AUROC, AUROC− and AUROC+ over different datasets
for each AD method.

Figure 3 shows a bar plot with mean classical AUROC, conformal AUROC− and AUROC+ over all the
datasets of the benchmark for all methods. The variability and magnitude of the correction are higher than
for OpenOOD since the number of points in the test set changes depending on the dataset and is generally
way lower. It results in larger fluctuation intervals, even for δ = 0.05, which does not allow one baseline to be
considered as better than the others with a probability of 0.90 (since δ = 0.05). This observation is important
because it illustrates the brittleness of the conclusions that can be drawn from AD benchmarks
and supports the increasingly commonly accepted fact that no method is provably better than
others in AD – one of the key conclusions of ADBench’s paper itself Han et al. (2022). Figure 3 (right)
shows the mean classical and conformal AUROC for each baseline over the datasets. The correction is more
stable, demonstrating that the correction affects all baselines similarly.

5 OOD Scores as Nonconformity Scores for CP

In the previous sections, we have mostly emphasized that practitioners of OOD detection should look at CP
as an additional building block for correctly interpreting the scores that all the OOD methods rely on. In
this section, we advocate that the link between OOD and CP goes even deeper and that both fields could
benefit from each other.

So far, we have shown how OOD can use CP, but we argue that CP could also use OOD. Indeed, CP is
about interpreting scores to provide probabilistic results. But CP works regardless of the given score. Indeed,
all scores will have the same guarantee, but better scores will give tighter prediction sets, and worse scores
will give very large and uninformative prediction sets. For CP to provide powerful probabilistic guarantees,
the scores have to be informative, hence the common practice of relying on scores derived from the softmax
values of a neural network Sadinle et al. (2019). It turns out that the maximum softmax is also a score used
in OOD detection Hendrycks & Gimpel (2018), which suggests that OOD scores and CP scores might be
related in some way. In this section, we explore using different OOD scores to perform CP. We consider two
ResNet18 trained on CIFAR-10 and CIFAR-100 and build conformal prediction sets following the procedure
described in section 2. To build these prediction sets, we use scores based on ReAct Sun et al. (2021), Gram
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LAC APS RAPS
α 0.005 0.01 0.05 0.005 0.01 0.05 0.005 0.01 0.05
Cifar10
Gram 9.57 8.34 1.89 9.60 ± 0.10 1.93 ± 0.06 8.66 ± 0.13 9.56 ± 0.13 8.7 ± 0.16 1.89 ± 0.03
ReAct 3.75 1.98 1.03 4.47 ± 0.16 1.97 ± 0.09 3.62 ± 0.17 4.46 ± 0.15 3.67 ± 0.19 2.02 ± 0.09
ODIN 7.15 5.82 1.14 7.42 ± 0.17 1.53 ± 0.06 5.14 ± 0.08 7.45 ± 0.16 5.1 ± 0.10 1.57 ± 0.08
KNN 2.57 1.48 1.01 3.62 ± 0.15 1.09 ± 0.03 2.71 ± 0.11 3.69 ± 0.11 2.77 ± 0.09 1.08 ± 0.02
Mahalanobis 1.85 1.47 1.04 1.89 ± 0.07 1.04 ± 0.01 1.49 ± 0.04 1.92 ± 0.05 1.49 ± 0.05 1.04 ± 0.01
CP (Softmax) 2.44 1.73 1.03 3.92 ± 0.26 1.1 ± 0.01 2.16 ± 0.13 3.81 ± 0.24 2.17 ± 0.11 1.09 ± 0.01
Cifar100
ReAct 52.41 29.77 10.06 53.02 ± 0.27 32.02 ± 0.11 10.45 ± 0.15 53.12 ± 0.26 32.12 ± 0.13 10.43 ± 0.15
ODIN 66.54 45.25 16.25 65.46 ± 0.3 45.56 ± 0.14 17.49 ± 0.13 65.61 ± 0.25 45.51 ± 0.27 17.6 ± 0.14
KNN 41.64 27.74 8.62 39.45 ± 0.35 29.81 ± 0.24 9.80 ± 0.11 39.63 ± 0.21 29.74 ± 0.29 9.81 ± 0.10
Mahalanobis 31.29 24.76 7.57 31.07 ± 0.07 24.77 ± 0.20 8.47 ± 0.29 31.15 ± 0.07 24.82 ± 0.19 8.48 ± 0.21
CP (Softmax) 31.96 27.21 5.73 46.55 ± 1.47 36.82 ± 0.39 17.59 ± 0.41 45.64 ± 1.19 36.83 ± 0.79 17.12 ± 0.74

Table 2: Efficiency (mean ± std. dev. for APS and RAPS) of the prediction sets for different scores for CP
classification on CIFAR-10 and CIFAR-100. The best is bolded, the second is underlined.

Sastry & Oore (2020), KNN Sun et al. (2022), Mahalanobis Lee et al. (2018), and ODIN Liang et al. (2018).
Note that we had to adapt those scores to make them class-dependent since the score used in CP is defined as
scp(x, y). We did so following a procedure that we describe in detail in Appendix C. Then, given the OOD
score s(x, yi), we construct softmax-like scores ŝ(x, yi) = exp s(x, yi)/

∑
j exp s(x, yj), and use it for CP.

For each defined score, we perform the calibration step on ncal = 2000 points following the classical Least-
Ambiguous set classifiers (LAC) procedure Sadinle et al. (2019), and the more recent Adaptive Prediction Set
(APS) Romano et al. (2020) and Regularized Adaptive Prediction Set (RAPS) Angelopoulos et al. (2020)
methods. For all methods, we construct the prediction sets for each of the remaining nval − ncal = 8000
points, and for coverages 1 − α ∈ {0.005, 0.01, 0.05}. We assess the mean efficiency of the prediction sets for
each score, including LAC, APS, and RAPS based on softmax, as classically done in CP in Table 5). Since
APS and RAPS involve sampling a uniform random variable, we report the mean and the standard deviation
of the mean efficiency for 10 evaluations.

Table 5 shows that all OOD scores are inefficient for CP. For example, Gram performs very poorly (hence,
we only run it on CIFAR-10). However, in some instances, some scores, like KNN or Mahalanobis, perform
better than classical CP scores. This suggests that OOD scores may be good candidates as nonconformity
scores.

6 Limitations

While we believe that OOD detection and CP have much to gain from each other, we acknowledge
that our paper has limitations: Data availability. Computing conformal AUROC and conformal FPR
requires an extra calibration dataset, which might be a drawback in applications with low data availability.
Extra compute resources. The extra calibration step requires additional calibration resources. However,
these resources are negligible compared to those needed for training and fine-tuning a neural network.

7 Conclusion & Discussion

In conclusion, our work highlights the inherent randomness of OOD metrics and demonstrates how Conformal
Prediction (CP) can effectively correct these metrics. We have also shown that recent advancements in
CP allow for uniform conservativeness guarantees on OOD metrics, providing more reliable evaluations.
Furthermore, our analysis reveals that the correction introduced by CP does not significantly impact the
performance of the best OOD baselines, allowing the provision of safety guarantees at a low cost. From a
benchmarking standpoint, the combination of upper and lower bounds shows that for some level of confidence,
top methods cannot be confidently distinguished. On the other hand, we also showed that we could use OOD
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to improve existing CP techniques by using OOD scores as nonconformity scores. We found that some of
them, especially Mahalanobis and KNN, are good candidates for nonconformity scores, unlocking a whole
avenue for crafting CP nonconformity scores based on the plethora of existing post-hoc OOD scores.

By integrating CP with OOD, we have demonstrated the fruitful synergy between the two fields. OOD
detection focuses on developing scores that accurately discriminate between OOD and ID, while CP specializes
in interpreting scores to provide probabilistic guarantees. This interplay between OOD and CP presents
opportunities for mutual advancement: advancements in CP research can enhance OOD by offering more
refined probabilistic interpretations of OOD scores, which is particularly crucial in safety-critical applications.
Conversely, progress in OOD research can benefit CP by providing scores that improve the efficiency of
prediction sets. This suggests that further exploration and collaboration between the two fields hold great
potential.

In summary, our findings underscore the synergies between OOD and CP, emphasizing the need for continued
investigation and cross-fertilization to advance both disciplines.
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A Appendix: Demonstration of Proposition A.1

In this section, we design calibration-conditional p-values ûcc− that satisfy the following property:

P
(
P
(
ûcc−(x) ≤ t | Dval

id

)
≥ t, ∀ t ∈ (0, 1)

)
≥ 1 − δ, (14)

which allows to obtain F̂PR
−

that satisfies

P
[
FPR(τ) ≥ F̂PR

−
(τ), ∀τ ∈ R

]
≥ 1 − δ, (15)

Proposition A.1. Let 0 ≤ b1 ≤ b2 ≤ ... ≤ bn ≤ 1 such that

P
[
U(1) ≤ b1, . . . , U(n) ≤ bn

]
≥ 1 − δ.

Let h− : R 7→ R defined by
h−(t) = 1 − b⌊(n+1)(1−t)⌋, t ∈ [0, 1],

Suppose that the distribution of s(x) is continuous. Then, ûcc− defined as ûcc− = h− ◦ ûmarg satisfies
equation (14) and F̂PR

−
defined as F̂PR

−
(τ) = h− ◦ F̂PR(τ) satisfies equation (15).

Proof. For the sake of readability, let’s note n = nval. Let U1, . . . , Un be i.i.d. uniform random variables on
[0, 1], with order statistics U(1) ≤ . . . ≤ U(n). Let 0 ≤ b1 ≤ b2 ≤ ... ≤ bn ≤ 1 such that

P
[
U(1) ≤ b1, . . . , U(n) ≤ bn

]
≥ 1 − δ. (16)

We can adapt the proof of Theorem 4 of Bates et al. (2022) to show that h− satisfies equation (15). Let
x ∼ Pid, Si = s(xi) for i ∈ {1, . . . , n} with F −(t) = P[s(x) < t|Dval

id ] and S(1) ≤ S(2) ≤ . . . ≤ S(n) be the
order statistics. Since we condition on Dval

id , Si are independent. Then, ∀(z1, . . . , zn) ∈ [0, 1]n, since s(x) is
continuous in distribution, we have

P[F −(S(1)) ≤ z1, . . . , F −(S(n)) ≤ zn] = P[U(1) ≤ z1, . . . , U(n) ≤ zn], (17)

and therefore,

P[1 − F −(S(n))) ≤ z1, . . . , F −(S(1)) ≤ zn] = P[U(1) ≤ z1, . . . , U(n) ≤ zn], (18)

Let En denote the event on which 1 − F −(S(i)) ≤ bn+1−i ⇐⇒ F −(S(i)) ≥ 1 − bn+1−i for all i = 1, . . . , n.
Then,

P[En] ≥ 1 − δ.

Now we prove the following claim, which directly yields the theorem.

P
[
ûcc−(x) ≤ t

∣∣D] ≥ t, ∀t ∈ [0, 1], if En occurs. (49)

Note that the image of ûcc− is {0, 1 − bn, . . . , 1 − b1}, it remains to prove (49) with t ∈ {0, 1 − bn, . . . , 1 − b1}.
When t = 0, it clearly holds. When t = 1 − bi,
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ûcc−(x) ≤ 1 − bn+1−i ⇐⇒ ûmarg(x) ≤ i

n + 1 ⇐⇒ s(x) < S(i).

Thus,

P
[
ûcc−(x) ≤ 1 − bn+1−i

∣∣D] = P
[
s(x) < S(i)

∣∣D] = F −(S(i)).

Hence, when En occurs, i.e. F −(S(i)) ≥ 1−bn+1−i, we have that P
[
ûcc−(Xn+1) ≤ 1−bn+1−i

∣∣D] ≥ 1−bn+1−i

which concludes the proof.

B Appendix: Simes and Monte Carlo corrections

In our work we use two of the corrections proposed by Bates et al. (2022), Simes and Monte Carlo Correction.
In this section, we introduce these corrections for the sake of completeness, as well as two other corrections
that we do not use for reasons to be detailed.

Simes Correction Generally, we are interested in small p-values and the Simes correction focuses on those,
that is by adding a smaller correction to the smaller p-values than the larger ones.

bs
n+1−i = 1 − δ2/n

(
i · · · (i − n/2 + 1)
n · · · (n − n/2 + 1)

)2/n

, i = 1, . . . , n (19)

DKWM The former approach may be compared to the classical uniform concentration DKWM result,
where the b are defined as

bd
i = min{(i/n) +

√
log(2/δ)/2n, 1}; (20)

However, DKWM tends to provide much larger bounds than Simes.

Asymptotic Correction The previous approach brought finite sample guarantees but at the cost of a
large correction. In order to produce a tighter bound, for a more powerful test, we look into a correction that
is correct asymptotically.

cn(δ) :=
(√

2 log log n
)−1

(− log[− log(1 − δ)]

+2 log log n + (1/2) log log log n − (1/2) log π) .
(21)

ba
i = min

{
i

n
+ cn(δ)

√
i(n − i)
n

√
n

, 1
}

, i = 1, . . . , n (22)

This bound is quite similar to Simes for small values, but quite tighter for the remaining ones.

Monte Carlo Correction The Monter Carlo Correction offers advantages of both the Simes and Asymptotic
methods. It provides a finite-sample guarantee, mimics Simes for small p-values and remains closer to the
asymptotic correction for larger ones.

hm,δ̂(t) = min
{

hs(t), ha,δ̂(t)
}

, t ∈ [0, 1]. (23)

C Appendix: Designing class-dependent OOD scores for CP

Let’s consider a classification task with a classifier f trained to fit a dataset {(x1, y1), ..., (xn, yn)}, where
xi ∈ X and yi ∈ {1, ...C} for all i ∈ {1, ..., n}. In OOD, the score function s : X → R, whereas in CP, the
non-conformity score scp : X × R → R. Hence, in order to construct a non-conformity score out of s, we have
to make it class-dependent. In this section, we describe how to construct class-dependent OOD scores out of
classical OOD scores for appropriate usage in CP.
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C.1 ReAct

ReAct method Sun et al. (2021) gets the quantiles of f ’s penultimate layer’s activation values and then
clips the activation values for a new input data point. The output softmax are then used for OOD scoring.
Therefore, making the score class-dependent is straightforward: one only has to get the class softmax.

C.2 ODIN

The idea of ODIN Liang et al. (2018) is also to tweak the network so that the softmax becomes more
informative for OOD detection. Similarly to ReAct, one only has to get each class’s softmax to make the
score class-dependent.

C.3 KNN

For each {x1, ..., xn} from the training set, consider H = {h(x1), ..., h(xn)} where h : X → Rp is defined
such that h(xi) is the activation vector of xi of f ’s penultimate layer. Let NH : Rp → Rp be the nearest
neighbor map such that N(h) is the nearest neighbor of h among H . KNN Sun et al. (2022) builds the score
s as

s(xn+1) = ∥h(xn+1) − NH(h(xn+1)∥.

To make this score class-dependent, one can build C maps {NH1 , ..., NHC
} where Hk = {h(xi)|f(xi) = k}

and then define a new score
s(xn+1, y) = ∥h(xn+1) − NHy

(h(xn+1)∥

C.4 Mahalanobis

Let consider the map h as in KNN. For each k ∈ {1, ..., C}, Mahalanobis distance method Lee et al. (2018)
computes Σk and µk, which are the empirical covariance matrix and mean vectors of each set of points
{h(xi)}i|f(xi)=k. Then, the score s is computed as:

s(xn+1) =
√

(xn+1 − µf(xn+1))T Σ−1(xn+1 − µf(xn+1)),

where Σ = 1
C

∑
k∈{1,...,C} Σk. To make the score class-dependent, one simply has to define

s(xn+1, y) =
√

(xn+1 − µy)T Σ−1
y (xn+1 − µy).

C.5 Gram

Let f be a classifier of depth L. Gram method Sastry & Oore (2020) builds a statistic δ : X → RL that
outputs the channel-wise correlation of the activation maps for each layer. First, {δ(x1), ..., δ(xn)} are
computed. Then, a multi-dimensional statistic {dl,k}l∈{1,...,L},k∈{1,...,C} is computed for each layer after a
class-wise aggregation.

For a new test point xn+1, δ(xn+1) is computed, along with f(xn+1). The score is built out of a weighted
mean of the layer-wise deviation:

s(xn+1) =
∑

l∈{1,...,L}

wl|δ(xn+1)l − dl,f(xn+1)|,

where {wl}l∈{1,...,L} are some normalization weights computed with the training data. It is quite straightfor-
ward to make this OOD score class-dependent by defining

s(xn+1, y) =
∑

l∈{1,...,L}

wl|δ(xn+1)l − dl,y|.
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D Appendix: Complementary results on OpenOOD benchmark

In this section, we present the full results of benchmarks on OpenOOD. The results displayed are AUROC
with δ = 0.05 in Table 3, FPR@TPR95 with δ = 0.05 in Table 5 and FPR@TPR95 with δ = 0.01 in Table 4.

CIFAR-10 CIFAR-100 ImageNet-200
OOD type Near Far Near Far Near Far

marg. conf. marg. conf. marg. conf. marg. conf. marg. conf. marg. conf.
OpenMax Bendale & Boult (2015) 87.2 86.18 89.53 88.52 76.66 75.26 79.12 77.81 80.4 79.2 90.41 89.49
MSP Hendrycks & Gimpel (2016) 87.68 86.76 91.0 90.17 80.42 79.2 77.58 76.29 83.3 82.2 90.2 89.36
TempScale Guo et al. (2017) 87.65 86.75 91.27 90.48 80.98 79.78 78.51 77.24 83.66 82.58 90.91 90.11
ODIN Liang et al. (2018) 80.25 79.26 87.21 86.43 79.8 78.57 79.44 78.2 80.32 79.19 91.89 91.17
MDS Lee et al. (2018) 86.72 85.71 90.2 89.29 58.79 57.2 70.06 68.63 62.51 60.96 74.94 73.6
MDSEns Lee et al. (2018) 60.46 59.01 74.07 72.96 45.98 44.34 66.03 64.72 54.58 52.99 70.08 68.76
Gram Sastry & Oore (2020) 52.63 51.04 69.74 68.41 50.69 49.06 73.97 72.87 68.36 67.0 70.94 69.69
EBO Liu et al. (2020) 86.93 86.08 91.74 91.05 80.84 79.63 79.71 78.47 82.57 81.47 91.12 90.33
GradNorm Huang et al. (2021) 53.77 52.26 58.55 57.09 69.73 68.41 68.82 67.48 73.33 72.12 85.29 84.45
ReAct Sun et al. (2021) 86.47 85.6 91.02 90.28 80.7 79.5 79.84 78.6 80.48 79.35 93.1 92.4
MLS Hendrycks et al. (2022) 86.86 86.0 91.61 90.9 81.04 79.84 79.6 78.35 82.96 81.88 91.34 90.56
KLM Hendrycks et al. (2022) 78.8 77.8 82.76 81.83 76.9 75.65 76.03 74.8 80.69 79.54 88.41 87.44
VIM Wang et al. (2022) 88.51 87.62 93.14 92.41 74.83 73.47 82.11 80.95 78.81 77.57 91.52 90.7
KNN Sun et al. (2022) 90.7 89.87 93.1 92.35 80.25 79.05 82.32 81.19 81.75 80.63 93.47 92.83
DICE Sun & Li (2022) 77.79 76.68 85.41 84.56 79.15 77.89 79.84 78.61 81.97 80.86 91.19 90.43
RankFeat Song et al. (2022) 76.33 75.05 70.15 68.71 62.22 60.67 67.74 66.24 58.57 57.06 38.97 37.43
ASH Djurisic et al. (2022) 74.11 72.96 78.36 77.27 78.39 77.16 79.7 78.5 82.12 81.07 94.23 93.66
SHE Zhang et al. (2023) 80.84 79.86 86.55 85.73 78.72 77.46 77.35 76.08 80.46 79.34 90.48 89.72

Table 3: Classical AUROC (marg.) vs Conformal AUROC (conf.) obtained with the Monte Carlo method
and δ = 0.05 for several baselines from OpenOOD benchmark.

CIFAR-10 CIFAR-100 ImageNet-200
OOD type Near Far Near Far Near Far

marg. conf. marg. conf. marg. conf. marg. conf. marg. conf. marg. conf.
OpenMax Bendale & Boult (2015) 46.77 48.98 29.48 31.48 55.57 57.8 54.77 57.0 63.32 65.75 32.29 35.35
MSP Hendrycks & Gimpel (2016) 53.57 55.8 31.44 33.45 54.73 56.96 59.08 61.31 55.25 57.69 35.44 38.29
TempScale Guo et al. (2017) 56.85 59.08 33.36 35.38 54.77 56.99 58.24 60.47 55.03 57.5 34.11 37.06
ODIN Liang et al. (2018) 84.55 86.78 60.9 62.97 58.44 60.67 57.75 59.98 66.38 68.8 33.66 36.75
MDS Lee et al. (2018) 46.22 48.44 30.3 32.3 82.75 84.98 70.46 72.68 79.34 81.52 61.26 63.81
MDSEns Lee et al. (2018) 92.06 94.29 61.09 62.87 95.84 98.07 66.97 68.85 91.69 93.8 80.43 82.89
Gram Sastry & Oore (2020) 93.52 95.75 69.29 71.48 92.48 94.71 63.1 65.2 85.43 87.63 84.95 87.44
EBO Liu et al. (2020) 67.54 69.77 40.55 42.58 55.49 57.72 56.41 58.64 59.46 61.93 34.0 37.07
GradNorm Huang et al. (2021) 95.37 97.6 89.34 91.52 86.13 88.36 82.79 85.02 83.07 85.33 66.78 69.67
ReAct Sun et al. (2021) 71.56 73.78 42.43 44.52 56.74 58.97 56.32 58.55 65.37 67.8 27.21 30.28
MLS Hendrycks et al. (2022) 67.54 69.77 40.53 42.56 55.48 57.71 56.53 58.76 58.94 61.44 33.59 36.68
KLM Hendrycks et al. (2022) 86.41 88.63 76.42 78.65 79.52 81.75 70.16 72.39 69.42 71.91 39.57 42.56
VIM Wang et al. (2022) 48.07 50.29 25.77 27.65 62.96 65.19 49.72 51.95 59.91 62.32 26.86 29.81
KNN Sun et al. (2022) 34.54 36.65 23.88 25.77 61.32 63.54 54.04 56.27 60.42 62.9 26.49 29.66
DICE Sun & Li (2022) 80.15 82.38 53.93 56.06 58.1 60.33 55.95 58.17 60.98 63.46 35.93 39.04
RankFeat Song et al. (2022) 67.38 69.61 68.24 70.47 79.94 82.17 68.89 71.11 92.02 93.91 98.48 99.58
ASH Djurisic et al. (2022) 89.03 91.26 76.66 78.89 66.14 68.37 62.67 64.89 65.95 68.44 26.26 29.46
SHE Zhang et al. (2023) 84.49 86.72 63.26 65.41 59.32 61.54 62.74 64.97 65.92 68.31 41.5 44.62

Table 4: Classical FPR@TPR95 (marg.) vs Conformal FPR@TPR95 (conf.) obtained with the Monte Carlo
method and δ = 0.01 for several baselines from OpenOOD benchmark.
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CIFAR-10 CIFAR-100 ImageNet-200
OOD type Near Far Near Far Near Far

marg. conf. marg. conf. marg. conf. marg. conf. marg. conf. marg. conf.
OpenMax Bendale & Boult (2015) 46.77 48.58 29.48 31.11 55.57 57.39 54.77 56.59 63.32 65.14 32.29 33.98
MSP Hendrycks & Gimpel (2016) 53.57 55.39 31.44 33.08 54.73 56.55 59.08 60.9 55.25 57.06 35.44 37.16
TempScale Guo et al. (2017) 56.85 58.67 33.36 35.01 54.77 56.59 58.24 60.06 55.03 56.85 34.11 35.8
ODIN Liang et al. (2018) 84.55 86.37 60.9 62.59 58.44 60.26 57.75 59.57 66.38 68.2 33.66 35.34
MDS Lee et al. (2018) 46.22 48.03 30.3 31.94 82.75 84.57 70.46 72.28 79.34 81.16 61.26 63.08
MDSEns Lee et al. (2018) 92.06 93.88 61.09 62.54 95.84 97.66 66.97 68.5 91.69 93.51 80.43 82.25
Gram Sastry & Oore (2020) 93.52 95.34 69.29 71.08 92.48 94.3 63.1 64.81 85.43 87.25 84.95 86.77
EBO Liu et al. (2020) 67.54 69.36 40.55 42.21 55.49 57.31 56.41 58.23 59.46 61.28 34.0 35.7
GradNorm Huang et al. (2021) 95.37 97.19 89.34 91.16 86.13 87.95 82.79 84.61 83.07 84.89 66.78 68.6
ReAct Sun et al. (2021) 71.56 73.38 42.43 44.14 56.74 58.56 56.32 58.14 65.37 67.19 27.21 28.81
MLS Hendrycks et al. (2022) 67.54 69.36 40.53 42.19 55.48 57.3 56.53 58.35 58.94 60.76 33.59 35.28
KLM Hendrycks et al. (2022) 86.41 88.23 76.42 78.24 79.52 81.34 70.16 71.98 69.42 71.24 39.57 41.3
VIM Wang et al. (2022) 48.07 49.88 25.77 27.3 62.96 64.78 49.72 51.54 59.91 61.72 26.86 28.46
KNN Sun et al. (2022) 34.54 36.27 23.88 25.42 61.32 63.14 54.04 55.86 60.42 62.23 26.49 28.09
DICE Sun & Li (2022) 80.15 81.97 53.93 55.67 58.1 59.92 55.95 57.77 60.98 62.8 35.93 37.66
RankFeat Song et al. (2022) 67.38 69.2 68.24 70.06 79.94 81.76 68.89 70.71 92.02 93.84 98.48 99.55
ASH Djurisic et al. (2022) 89.03 90.85 76.66 78.48 66.14 67.96 62.67 64.49 65.95 67.77 26.26 27.85
SHE Zhang et al. (2023) 84.49 86.31 63.26 65.02 59.32 61.14 62.74 64.56 65.92 67.74 41.5 43.27

Table 5: Classical FPR@TPR95 (marg.) vs Conformal FPR@TPR95 (conf.) obtained with the Monte Carlo
method and δ = 0.05 for several baselines from OpenOOD benchmark.

E Appendix: Full results for ADBench

In this section, we present the full results of the ADBench benchmark. Table 6 displays classical AUROC,
Table 7 displays conformal AUROC, and Table 8 displays the difference between the two (AUROC correction),
all with δ = 0.05.
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IForest OCSVM CBLOF COF COPOD ECOD HBOS KNN LOF PCA SOD DeepSVDD DAGMM
cover 0.87 0.93 0.89 0.77 0.89 0.92 0.80 0.86 0.85 0.94 0.74 0.46 0.90
donors 0.78 0.72 0.62 0.71 0.82 0.89 0.78 0.82 0.59 0.83 0.56 0.36 0.71
fault 0.57 0.48 0.64 0.62 0.44 0.45 0.51 0.73 0.59 0.46 0.68 0.52 0.46
fraud 0.90 0.91 0.88 0.96 0.88 0.89 0.90 0.93 0.96 0.90 0.95 0.73 0.90
glass 0.77 0.35 0.83 0.72 0.72 0.66 0.77 0.82 0.69 0.66 0.73 0.47 0.76
Hepatitis 0.70 0.68 0.66 0.41 0.82 0.75 0.80 0.53 0.38 0.76 0.68 0.52 0.55
Ionosphere 0.84 0.76 0.91 0.87 0.79 0.73 0.62 0.88 0.91 0.79 0.86 0.51 0.73
landsat 0.48 0.36 0.64 0.53 0.42 0.36 0.55 0.58 0.54 0.36 0.60 0.63 0.44
ALOI 0.57 0.56 0.55 0.65 0.54 0.56 0.53 0.61 0.67 0.57 0.61 0.51 0.52
letter 0.61 0.46 0.76 0.80 0.54 0.56 0.60 0.86 0.84 0.50 0.84 0.56 0.50
20news 0 0.64 0.63 0.71 0.71 0.61 0.61 0.62 0.73 0.80 0.64 0.73 0.50 0.63
20news 1 0.51 0.53 0.52 0.58 0.52 0.54 0.53 0.57 0.61 0.54 0.58 0.48 0.54
20news 2 0.50 0.51 0.47 0.53 0.50 0.52 0.51 0.51 0.54 0.51 0.50 0.49 0.53
20news 3 0.75 0.72 0.83 0.81 0.75 0.75 0.74 0.79 0.71 0.73 0.70 0.67 0.54
20news 4 0.48 0.51 0.45 0.57 0.48 0.51 0.50 0.48 0.51 0.51 0.53 0.53 0.48
20news 5 0.52 0.49 0.47 0.50 0.48 0.46 0.49 0.48 0.55 0.48 0.48 0.49 0.54
Lymphography 1.00 1.00 1.00 0.91 0.99 1.00 0.99 0.56 0.90 1.00 0.73 0.34 0.72
magic.gamma 0.73 0.61 0.75 0.67 0.68 0.64 0.71 0.82 0.69 0.67 0.75 0.60 0.59
musk 1.00 0.81 1.00 0.39 0.94 0.95 1.00 0.70 0.41 1.00 0.74 0.56 0.77
PageBlocks 0.90 0.89 0.85 0.73 0.88 0.92 0.81 0.82 0.76 0.91 0.78 0.59 0.90
pendigits 0.95 0.94 0.90 0.45 0.91 0.93 0.93 0.73 0.48 0.94 0.66 0.42 0.64
Pima 0.73 0.67 0.71 0.61 0.69 0.63 0.71 0.73 0.66 0.71 0.61 0.51 0.56
annthyroid 0.82 0.57 0.62 0.66 0.77 0.79 0.60 0.72 0.70 0.66 0.77 0.77 0.57
satellite 0.70 0.59 0.71 0.55 0.63 0.58 0.75 0.65 0.56 0.60 0.64 0.55 0.62
satimage-2 0.99 0.97 1.00 0.57 0.97 0.96 0.98 0.93 0.47 0.98 0.83 0.49 0.96
shuttle 1.00 0.97 0.83 0.52 0.99 0.99 0.99 0.70 0.57 0.99 0.70 0.49 0.98
smtp 0.86 0.72 0.70 0.69 0.70 0.78 0.56 0.84 0.58 0.83 0.40 0.72 0.71
speech 0.51 0.50 0.51 0.56 0.53 0.51 0.51 0.51 0.52 0.51 0.56 0.54 0.53
Stamps 0.91 0.84 0.68 0.54 0.93 0.88 0.91 0.69 0.51 0.91 0.73 0.56 0.89
thyroid 0.98 0.88 0.95 0.91 0.94 0.98 0.96 0.96 0.87 0.96 0.93 0.49 0.80
vertebral 0.37 0.38 0.41 0.49 0.26 0.41 0.29 0.34 0.49 0.37 0.40 0.37 0.53
vowels 0.75 0.63 0.90 0.95 0.55 0.62 0.73 0.97 0.93 0.67 0.92 0.56 0.61
Waveform 0.71 0.56 0.72 0.73 0.75 0.62 0.69 0.74 0.73 0.65 0.69 0.56 0.49
WDBC 0.99 0.99 0.99 0.96 0.99 0.97 0.99 0.92 0.89 0.99 0.92 0.62 0.77
Wilt 0.42 0.31 0.33 0.50 0.33 0.36 0.32 0.48 0.51 0.20 0.53 0.46 0.37
wine 0.80 0.73 0.26 0.44 0.89 0.77 0.91 0.45 0.38 0.84 0.46 0.60 0.62
WPBC 0.47 0.45 0.45 0.46 0.49 0.47 0.51 0.47 0.41 0.46 0.51 0.50 0.48
yeast 0.38 0.41 0.45 0.44 0.37 0.44 0.40 0.39 0.45 0.41 0.42 0.48 0.41
campaign 0.73 0.67 0.64 0.58 0.78 0.77 0.79 0.73 0.59 0.73 0.69 0.53 0.58
cardio 0.93 0.94 0.90 0.71 0.92 0.94 0.85 0.77 0.66 0.96 0.73 0.58 0.75
Cardiotocography 0.68 0.78 0.65 0.54 0.67 0.78 0.61 0.56 0.60 0.75 0.52 0.53 0.62
celeba 0.70 0.71 0.74 0.39 0.76 0.76 0.76 0.60 0.39 0.79 0.48 0.54 0.45
CIFAR10 0 0.73 0.68 0.70 0.70 0.69 0.70 0.70 0.74 0.74 0.70 0.71 0.56 0.53
CIFAR10 1 0.55 0.59 0.61 0.63 0.46 0.51 0.44 0.60 0.72 0.60 0.62 0.50 0.58
CIFAR10 2 0.56 0.58 0.58 0.61 0.56 0.57 0.54 0.60 0.65 0.58 0.59 0.58 0.51
CIFAR10 3 0.55 0.58 0.59 0.56 0.51 0.53 0.50 0.56 0.60 0.56 0.56 0.60 0.56
CIFAR10 5 0.50 0.58 0.58 0.57 0.47 0.52 0.47 0.54 0.60 0.57 0.54 0.46 0.59
CIFAR10 6 0.64 0.65 0.68 0.69 0.65 0.66 0.65 0.72 0.72 0.68 0.69 0.57 0.50
CIFAR10 7 0.54 0.59 0.56 0.57 0.52 0.55 0.50 0.54 0.60 0.57 0.56 0.62 0.61
agnews 0 0.50 0.47 0.54 0.61 0.49 0.47 0.48 0.58 0.63 0.47 0.56 0.35 0.48
agnews 1 0.58 0.54 0.58 0.71 0.51 0.54 0.55 0.62 0.74 0.55 0.61 0.37 0.56
agnews 2 0.65 0.61 0.71 0.73 0.61 0.59 0.61 0.75 0.79 0.61 0.73 0.50 0.53
agnews 3 0.54 0.55 0.57 0.70 0.51 0.53 0.51 0.62 0.70 0.55 0.61 0.50 0.51
amazon 0.56 0.54 0.58 0.58 0.57 0.54 0.56 0.59 0.56 0.54 0.58 0.45 0.51
imdb 0.50 0.45 0.50 0.49 0.50 0.45 0.48 0.48 0.49 0.46 0.50 0.52 0.42
yelp 0.61 0.59 0.64 0.68 0.60 0.57 0.59 0.68 0.66 0.59 0.66 0.50 0.55

Table 6: Full results for ADBench: classical AUROC.
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IForest OCSVM CBLOF COF COPOD ECOD HBOS KNN LOF PCA SOD DeepSVDD DAGMM
cover 0.75 0.83 0.79 0.64 0.78 0.82 0.74 0.74 0.73 0.84 0.60 0.30 0.79
donors 0.72 0.66 0.54 0.64 0.77 0.85 0.72 0.76 0.53 0.78 0.50 0.31 0.65
fault 0.48 0.40 0.55 0.53 0.35 0.37 0.43 0.65 0.50 0.37 0.59 0.43 0.37
fraud 0.77 0.63 0.63 0.82 0.62 0.64 0.86 0.68 0.79 0.66 0.69 0.51 0.64
glass 0.65 0.31 0.73 0.60 0.60 0.53 0.64 0.72 0.58 0.54 0.63 0.38 0.66
Hepatitis 0.54 0.52 0.52 0.23 0.70 0.61 0.66 0.26 0.22 0.62 0.54 0.38 0.40
Ionosphere 0.77 0.68 0.85 0.80 0.70 0.63 0.50 0.83 0.85 0.71 0.80 0.38 0.64
landsat 0.42 0.30 0.58 0.48 0.35 0.30 0.49 0.52 0.48 0.30 0.54 0.58 0.39
ALOI 0.49 0.46 0.45 0.55 0.43 0.46 0.46 0.52 0.58 0.47 0.52 0.41 0.42
letter 0.44 0.30 0.61 0.66 0.36 0.39 0.42 0.74 0.72 0.33 0.71 0.40 0.35
20news 0 0.51 0.49 0.57 0.60 0.48 0.46 0.47 0.62 0.69 0.50 0.61 0.36 0.49
20news 1 0.36 0.39 0.37 0.44 0.37 0.39 0.37 0.44 0.47 0.39 0.44 0.33 0.39
20news 2 0.34 0.36 0.34 0.39 0.34 0.36 0.35 0.36 0.38 0.36 0.34 0.32 0.38
20news 3 0.65 0.61 0.73 0.71 0.63 0.64 0.64 0.69 0.58 0.62 0.59 0.54 0.45
20news 4 0.28 0.31 0.27 0.39 0.27 0.32 0.30 0.30 0.34 0.31 0.35 0.35 0.30
20news 5 0.34 0.32 0.29 0.30 0.30 0.31 0.32 0.29 0.35 0.32 0.28 0.31 0.35
Lymphography 0.95 0.95 0.95 0.83 0.95 0.95 0.95 0.45 0.81 0.96 0.62 0.25 0.62
magic.gamma 0.70 0.57 0.72 0.63 0.65 0.60 0.68 0.79 0.65 0.64 0.72 0.56 0.55
musk 0.57 0.65 0.22 0.21 0.83 0.85 0.58 0.53 0.22 0.32 0.59 0.42 0.64
PageBlocks 0.84 0.83 0.79 0.67 0.82 0.86 0.74 0.76 0.70 0.85 0.71 0.52 0.84
pendigits 0.87 0.86 0.82 0.33 0.82 0.85 0.85 0.60 0.35 0.86 0.53 0.29 0.52
Pima 0.63 0.57 0.62 0.51 0.59 0.54 0.62 0.64 0.55 0.61 0.52 0.40 0.45
annthyroid 0.76 0.49 0.55 0.59 0.70 0.72 0.53 0.65 0.63 0.59 0.71 0.71 0.49
satellite 0.67 0.55 0.67 0.50 0.59 0.54 0.71 0.61 0.51 0.56 0.59 0.50 0.58
satimage-2 0.51 0.71 0.45 0.41 0.74 0.80 0.77 0.79 0.34 0.70 0.68 0.31 0.84
shuttle 0.94 0.87 0.74 0.46 0.89 0.94 0.94 0.65 0.52 0.85 0.63 0.42 0.91
smtp 0.81 0.60 0.58 0.59 0.58 0.68 0.45 0.76 0.48 0.72 0.32 0.60 0.60
speech 0.31 0.31 0.31 0.37 0.34 0.32 0.31 0.31 0.33 0.32 0.35 0.34 0.34
Stamps 0.84 0.75 0.57 0.42 0.87 0.80 0.83 0.57 0.39 0.85 0.62 0.42 0.81
thyroid 0.90 0.77 0.86 0.81 0.86 0.90 0.92 0.87 0.77 0.88 0.84 0.33 0.69
vertebral 0.23 0.26 0.28 0.37 0.14 0.29 0.17 0.20 0.37 0.25 0.29 0.24 0.40
vowels 0.57 0.45 0.73 0.76 0.35 0.45 0.54 0.77 0.74 0.49 0.75 0.35 0.43
Waveform 0.56 0.42 0.59 0.58 0.60 0.47 0.53 0.59 0.59 0.50 0.54 0.39 0.34
WDBC 0.95 0.95 0.95 0.91 0.95 0.92 0.96 0.86 0.81 0.95 0.85 0.50 0.67
Wilt 0.29 0.20 0.21 0.37 0.20 0.24 0.19 0.35 0.38 0.12 0.42 0.34 0.26
wine 0.70 0.63 0.12 0.31 0.80 0.67 0.84 0.33 0.26 0.75 0.32 0.48 0.48
WPBC 0.33 0.32 0.32 0.33 0.36 0.33 0.38 0.32 0.29 0.33 0.39 0.38 0.35
yeast 0.29 0.31 0.35 0.35 0.28 0.34 0.31 0.30 0.36 0.31 0.32 0.38 0.31
campaign 0.68 0.62 0.59 0.52 0.74 0.72 0.75 0.68 0.53 0.68 0.64 0.48 0.52
cardio 0.84 0.85 0.80 0.60 0.83 0.84 0.75 0.67 0.53 0.86 0.62 0.47 0.64
Cardiotocography 0.59 0.70 0.57 0.45 0.58 0.70 0.52 0.48 0.51 0.66 0.43 0.45 0.53
celeba 0.64 0.65 0.69 0.30 0.70 0.71 0.71 0.28 0.30 0.74 0.38 0.48 0.37
CIFAR10 0 0.63 0.59 0.60 0.60 0.59 0.60 0.60 0.65 0.64 0.61 0.61 0.46 0.42
CIFAR10 1 0.43 0.48 0.50 0.52 0.35 0.39 0.33 0.49 0.62 0.49 0.51 0.39 0.48
CIFAR10 2 0.45 0.48 0.47 0.50 0.44 0.45 0.43 0.49 0.55 0.47 0.48 0.48 0.40
CIFAR10 3 0.44 0.48 0.49 0.46 0.40 0.42 0.39 0.47 0.50 0.46 0.46 0.49 0.45
CIFAR10 5 0.38 0.48 0.47 0.46 0.35 0.40 0.34 0.42 0.49 0.46 0.42 0.34 0.49
CIFAR10 6 0.54 0.55 0.58 0.59 0.54 0.55 0.54 0.61 0.62 0.58 0.59 0.47 0.39
CIFAR10 7 0.43 0.48 0.45 0.46 0.41 0.44 0.39 0.44 0.50 0.46 0.46 0.51 0.50
agnews 0 0.41 0.39 0.45 0.53 0.40 0.38 0.39 0.49 0.56 0.39 0.48 0.27 0.40
agnews 1 0.50 0.46 0.50 0.64 0.42 0.45 0.46 0.54 0.67 0.47 0.53 0.28 0.48
agnews 2 0.57 0.53 0.63 0.66 0.52 0.51 0.52 0.68 0.73 0.53 0.66 0.42 0.45
agnews 3 0.45 0.46 0.49 0.63 0.43 0.44 0.43 0.54 0.64 0.46 0.53 0.42 0.42
amazon 0.48 0.45 0.50 0.49 0.48 0.46 0.47 0.50 0.48 0.46 0.50 0.37 0.43
imdb 0.41 0.36 0.41 0.40 0.42 0.36 0.40 0.39 0.40 0.37 0.41 0.44 0.34
yelp 0.52 0.50 0.55 0.60 0.52 0.49 0.51 0.60 0.59 0.51 0.58 0.42 0.47

Table 7: Full results for ADBench: conformal AUROC.
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IForest OCSVM CBLOF COF COPOD ECOD HBOS KNN LOF PCA SOD DeepSVDD DAGMM
cover 0.12 0.10 0.11 0.13 0.11 0.10 0.07 0.12 0.12 0.10 0.14 0.15 0.11
donors 0.06 0.07 0.08 0.07 0.05 0.04 0.06 0.06 0.06 0.05 0.06 0.05 0.06
fault 0.09 0.08 0.09 0.09 0.09 0.09 0.09 0.08 0.09 0.09 0.09 0.08 0.09
fraud 0.13 0.28 0.25 0.14 0.26 0.25 0.04 0.26 0.16 0.25 0.26 0.22 0.26
glass 0.12 0.05 0.10 0.12 0.12 0.13 0.13 0.10 0.11 0.13 0.10 0.09 0.10
Hepatitis 0.16 0.15 0.14 0.18 0.12 0.14 0.13 0.27 0.16 0.14 0.14 0.14 0.14
Ionosphere 0.08 0.08 0.06 0.07 0.09 0.10 0.12 0.05 0.05 0.08 0.06 0.13 0.09
landsat 0.06 0.06 0.05 0.05 0.06 0.06 0.06 0.06 0.05 0.06 0.05 0.05 0.05
ALOI 0.07 0.10 0.10 0.09 0.10 0.10 0.06 0.09 0.08 0.10 0.09 0.10 0.10
letter 0.17 0.16 0.15 0.14 0.19 0.17 0.18 0.13 0.13 0.17 0.13 0.15 0.15
20news 0 0.14 0.14 0.13 0.11 0.14 0.15 0.14 0.11 0.11 0.14 0.12 0.13 0.14
20news 1 0.15 0.15 0.15 0.14 0.15 0.15 0.16 0.13 0.14 0.15 0.14 0.14 0.15
20news 2 0.16 0.15 0.14 0.15 0.16 0.16 0.16 0.15 0.16 0.15 0.15 0.16 0.15
20news 3 0.10 0.11 0.10 0.10 0.11 0.11 0.10 0.10 0.13 0.11 0.12 0.13 0.09
20news 4 0.20 0.20 0.17 0.18 0.21 0.19 0.20 0.18 0.16 0.20 0.17 0.18 0.18
20news 5 0.17 0.17 0.18 0.20 0.18 0.15 0.17 0.19 0.20 0.16 0.20 0.18 0.19
Lymphography 0.05 0.05 0.05 0.08 0.04 0.05 0.05 0.11 0.09 0.04 0.11 0.09 0.11
magic.gamma 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.03 0.04 0.03 0.03 0.04 0.04
musk 0.43 0.15 0.78 0.18 0.11 0.11 0.42 0.17 0.19 0.68 0.16 0.14 0.13
PageBlocks 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.07 0.06 0.05
pendigits 0.08 0.08 0.09 0.12 0.08 0.08 0.08 0.13 0.13 0.08 0.13 0.13 0.12
Pima 0.10 0.10 0.10 0.10 0.10 0.09 0.09 0.10 0.10 0.09 0.10 0.11 0.11
annthyroid 0.06 0.08 0.07 0.07 0.07 0.06 0.07 0.07 0.07 0.07 0.06 0.06 0.08
satellite 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.05 0.05 0.04 0.05 0.05 0.04
satimage-2 0.48 0.26 0.55 0.16 0.23 0.16 0.21 0.14 0.13 0.27 0.15 0.18 0.12
shuttle 0.06 0.10 0.09 0.06 0.10 0.05 0.05 0.04 0.05 0.13 0.06 0.07 0.07
smtp 0.05 0.12 0.12 0.10 0.12 0.11 0.10 0.09 0.09 0.11 0.08 0.12 0.11
speech 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.20 0.19 0.19 0.21 0.21 0.18
Stamps 0.07 0.09 0.11 0.11 0.06 0.08 0.07 0.12 0.12 0.07 0.11 0.14 0.07
thyroid 0.08 0.10 0.09 0.10 0.08 0.08 0.04 0.09 0.10 0.08 0.09 0.16 0.11
vertebral 0.14 0.12 0.13 0.12 0.12 0.12 0.12 0.14 0.13 0.12 0.11 0.12 0.13
vowels 0.19 0.18 0.17 0.20 0.20 0.17 0.20 0.20 0.19 0.18 0.17 0.21 0.19
Waveform 0.15 0.15 0.14 0.15 0.15 0.15 0.15 0.14 0.14 0.16 0.15 0.16 0.16
WDBC 0.04 0.04 0.04 0.06 0.04 0.05 0.04 0.06 0.08 0.04 0.07 0.12 0.10
Wilt 0.13 0.11 0.12 0.12 0.13 0.12 0.14 0.13 0.13 0.08 0.12 0.12 0.11
wine 0.10 0.10 0.14 0.14 0.09 0.11 0.08 0.12 0.11 0.10 0.15 0.11 0.13
WPBC 0.13 0.13 0.13 0.13 0.13 0.13 0.14 0.14 0.12 0.13 0.12 0.12 0.13
yeast 0.09 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.10 0.10 0.11 0.10 0.10
campaign 0.05 0.05 0.05 0.06 0.05 0.05 0.04 0.05 0.06 0.05 0.06 0.05 0.06
cardio 0.09 0.09 0.10 0.12 0.09 0.09 0.10 0.10 0.14 0.10 0.11 0.11 0.11
Cardiotocography 0.09 0.08 0.08 0.09 0.09 0.08 0.08 0.08 0.09 0.09 0.08 0.08 0.09
celeba 0.06 0.06 0.05 0.09 0.05 0.05 0.05 0.31 0.09 0.05 0.10 0.06 0.08
CIFAR10 0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.11
CIFAR10 1 0.12 0.11 0.11 0.11 0.11 0.12 0.11 0.11 0.10 0.11 0.10 0.10 0.11
CIFAR10 2 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.10 0.11
CIFAR10 3 0.11 0.11 0.10 0.10 0.11 0.11 0.11 0.10 0.10 0.11 0.10 0.11 0.11
CIFAR10 5 0.12 0.10 0.11 0.11 0.12 0.12 0.12 0.12 0.11 0.11 0.12 0.12 0.10
CIFAR10 6 0.11 0.10 0.11 0.10 0.11 0.11 0.11 0.10 0.10 0.10 0.10 0.10 0.11
CIFAR10 7 0.11 0.11 0.10 0.10 0.11 0.11 0.11 0.10 0.10 0.10 0.10 0.11 0.11
agnews 0 0.09 0.09 0.08 0.08 0.09 0.09 0.09 0.08 0.08 0.09 0.08 0.09 0.09
agnews 1 0.09 0.09 0.08 0.07 0.09 0.09 0.09 0.08 0.07 0.09 0.08 0.09 0.09
agnews 2 0.08 0.08 0.08 0.07 0.08 0.09 0.08 0.07 0.06 0.08 0.07 0.08 0.08
agnews 3 0.09 0.09 0.08 0.07 0.09 0.09 0.09 0.08 0.07 0.09 0.08 0.08 0.08
amazon 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.09 0.09 0.08 0.09 0.08 0.08
imdb 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08
yelp 0.08 0.08 0.08 0.08 0.08 0.09 0.08 0.08 0.08 0.08 0.08 0.08 0.08

Table 8: Full results for ADBench: AUROC correction (difference between conformal and classical AUROC).

22


	Introduction
	Background
	Related Works
	OOD Scores Through the Lens of CP
	OOD detection and p-values
	Fluctuations of the p-value
	marginal validity of the FPR

	Fluctuations of the FPR
	Illustration on SVHN
	Probabilistic Guarantees for p-values and the FPR

	Conformal Metrics for OOD
	blue Improved Benchmarks for OOD
	OpenOOD
	ADBench


	OOD Scores as Nonconformity Scores for CP
	Limitations
	Conclusion & Discussion
	Appendix: Demonstration of Proposition A.1
	Appendix: Simes and Monte Carlo corrections
	Appendix: Designing class-dependent OOD scores for CP
	ReAct
	ODIN
	KNN
	Mahalanobis
	Gram

	Appendix: Complementary results on OpenOOD benchmark
	Appendix: Full results for ADBench

