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Abstract

Simpson’s paradox poses a challenge in probabilistic inference and decision-
making. Our study revisits the paradox by re-estimating its frequency with an
unbiased data generation process and reaffirms that it is not an artifact of deficient
data collection. Thus, it can lead to incorrect recommendations in fields as diverse
as statistics, psychology, and artificial intelligence. We show that the paradox can
be resolved by assuming a minimal — though not necessarily observed — common
cause (or screening) variable for the involved random variables. In our approach,
conditioning on this minimal common cause establishes the correct association
between events, which coincides with the conditioning (i.e., fine-grained) option
of the original Simpson paradox. This resolution applies to both discrete cases
of binary variables and continuous settings modeled by Gaussian variables. For
a non-minimal common cause, the resolution of the paradox is possible, but de-
tailed knowledge of the common cause is required. Our findings extend traditional
understandings of the paradox and offer practical guidance for resolving apparent
contradictions in probabilistic inference, ultimately enhancing decision-making
processes. This point is illustrated by several examples.

1 Introduction

Simpson’s paradox was discovered more than a century ago [1, 2], generated a vast literature, and is
well-recognized in several fields including, statistics, epidemiology, psychology, social science, etc.
[3–24]. This counter-intuitive effect limits the ability to draw conclusions from probabilistic data.
The effect is important because it demands more than simply extracting relative frequencies from
data; e.g. it necessitates looking at exchangeability [9] or causality [7–9, 13, 14].

The paradox starts with two random variables A and B. Now A = (A1, A2) contains control variable
A2 and the target variable A1, while B is a side random variable that depends on both A1 and A2.
The meaning of A and B is clarified via examples presented below. If there is no information on the
outcome of B, the behavior of A can be studied on two levels. The first (aggregated) level is that of
marginal probabilities p(A = a). The second level is finer-grained and is represented by conditional
probabilities p(A = a|B = b) for all possible values of B. Simpson’s paradox amounts to certain
relations between those probabilities; see section 2 for details. It states that no decision-making
is possible, because conclusions drawn from probabilities on different levels contradict each other.
Without Simpson’s paradox, decision-making can proceed at the aggregate level, because looking at
the fine-grained level is either redundant or inconclusive. Thus, Simpson’s paradox first and foremost
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involves decision-making. Moreover, it demonstrates limitations of the sure-thing principle [5], a
pillar of traditional decision making [25–27]. A recent review of the sure-thing principle (and its
limitations other than Simpson’s paradox) can be found in Ref. [28]. Limitations of probabilistic
decision-making are important for the modern artificial intelligence (probability models, uncertainty
estimation, etc).

In section 2, Simpson’s paradox is defined in detail, and previous efforts to resolve it in several
specific situations are reviewed and criticized. In particular, we show that while certain previous
solutions of the paradox assumed the existence of (causally-sufficient) time-ordered directed acyclic
graphs (TODAGs) that describe the 3 variables involved in the paradox, several important examples
of the paradox need not support this assumption; see sections 2.2.2, 4 and 5. Based on the previous
literature, we argue that Simpson’s paradox is sufficiently frequent when the probabilities of the
involved variables are generated from the unbiased (non-informative) distribution, modeled via
Dirichlet density; see Appendix A. Hence this is a genuine decision-making paradox and not an
artifact due to inappropriate data gathering.

Our proposal here is to search for the resolution of the paradox by assuming - given two dependent
random variables A and B - there is a random variable C that makes A and B conditionally
independent; i.e., screens out A from B. Examples of Simpson’s paradox show that such a C is
frequently plausible, though it is normally not observed directly. In particular, C is conceivable if
the dependence between A and B are not caused by a direct causal influence of B on A. Then the
existence of C is postulated by the common cause principle. (If the dependence is due to a causal
influence of A on B, Simpson’s paradox can formally exist, but factually it is absent because the
decision is obviously to be taken according to the aggregated level.)

Introducing the screening variable C allows us to reformulate and extend Simpson’s paradox: its
two options - along with many other options - refer to particular choices of C; see section 3. Now,
the paradox seems to be further from being resolved than before. However, we show that when the
variables A1, A2, B, and C holding the paradox are binary (the minimal set-up of the paradox), the
decision-making is to be made according to the fine-grained probabilities, i.e., the paradox is resolved.
Such a definite relation is impossible for a tertiary (or larger) C: now depending on C all options of
Simpson’s paradox are possible, e.g. the precise control of C can be necessary for decision-making.

Next, we turn to Simpson’s paradox for continuous variables, which was discussed earlier than the
discrete formulation [1]. It holds the main message of the discrete formulation. In addition, it includes
the concept of the conditional correlation coefficient (only for Gaussian variables is the random-
variable dependence fully explained by the correlation coefficient). The continuous formulation is
important because it applies to big data [23, 24, 29], and because (statistically) it is more frequent
than the discrete version [30]. The advantage of continuous Gaussian formulation is that the general
description of the paradox under the common cause is feasible; see section 6. For this situation, we
show conceptually the same result as for the discrete version: in the minimal (and most widespread)
version of the paradox, the very existence of an (unobservable) common cause leads to preferring the
fine-grained option of the paradox.

The rest of this paper is organized as follows. Section 2 is a short but sufficiently inclusive review
of Simpson’s paradox and its resolutions proposed in the literature 3. It also discusses two basic
examples for illustrating different aspects of the paradox; see section 2.2.2. In section 3 we reformulate
Simpson’s paradox by assuming that there is a common cause (or screening variable) C behind the
three variables. Now C need not be observable, since we show that it will be sufficient to assume that
it exists and (provided that all variables are binary) Simpson’s paradox is resolved by choosing its
fine-grained option. A similar conclusion is reached for Gaussian variables; see section 6. Section
4 considers published data from Ref. [16] on a case of smoking and surviving. This example is
not easily treated via the existing methods. Still, we show that the existence of a common cause
for this situation is plausible and that Simpson’s paradox can be studied via our method and leads
to a reasonable result. Section 5 treats data on COVID-19, which was suggested in Ref. [31]. We
demonstrate that an assumption of a plausible common cause points to different conclusions than
in Ref. [31]. The last section summarizes our results and their limitations. It also outlines future
research directions.

3Among the issues not addressed in this paper is the explanation of Simpson’s paradox using counterfactual
random variables. This subject is reviewed in [6].
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2 Formulation of Simpson’s paradox and previous works

2.1 Formulation of the paradox for binary variables and its necessary conditions

To formulate the paradox in its simplest form, assume three binary random variables A1 = {a1, ā1},
A2 = {a2, ā2}, B = {b, b̄}. The target event is a1, and we would like to know how it is influenced
by A2 which occurs at an earlier time than the time of A1: tA2

≤ tA1
. This can be done by looking

at conditional probability. For

p(a1|a2) < p(a1|ā2), (1)

which is equivalent to p(a1) < p(a1|ā2), we would conclude that ā2 enables a1. However, (1) is
compatible with

p(a1|a2, b) > p(a1|ā2, b), (2)
p(a1|a2, b̄) > p(a1|ā2, b̄), (3)

where B also occured in an earlier time: tB ≤ tA1 . Examples supporting (1–3) are studied below
(sections 2.2.2, 4 and 5) and also Appendix C. Since (2, 3) hold for each value of B we should
perhaps conclude that a2 enables a1 in contrast to (1). Decision-makers would not know whether to
apply (1) or (2, 3). This is Simpson’s paradox. Its equivalent formulation is when all inequalities in
(1–3) are inverted 4.

For Simpson’s paradox (1–3) to hold, it is necessary to have one of the following two conditions:

p(a1|ā2, b) < p(a1|a2, b) < p(a1|ā2, b̄) < p(a1|a2, b̄), (4)

p(a1|ā2, b̄) < p(a1|a2, b̄) < p(a1|ā2, b) < p(a1|a2, b). (5)

To find these relations, expand p(a1|a2) and p(a1|ā2) over the probabilities in (4, 5) [cf. (56, 57)],
and note that e.g. p(a1|a2) is a weighted mean of p(a1|a2, b) and p(a1|a2, b̄). Given (4) or (5),
Simpson’s paradox can be generated via suitable choices of p(b|a2) and p(b|ā2); see Appendix A.

2.2 Attempts to resolve the paradox

2.2.1 Replacing prediction with retrodiction

Over time, several resolutions to the paradox have been proposed. Barigelli and Scozzafava [10, 11]
proposed to replace (1) by

p(a2)p(a1|a2) < p(ā2)p(a1|ā2), (6)

i.e. to interchange A1 and A2 in (1). Then it is easy to see that its inversion under additional
conditioning over B is impossible. While (1) stands for prediction – i.e. aiming at a2 (and not at ā2)
will more likely produce ā1 (than a1) – the proposal by Ref. [10, 11] looks for retrodiction. Though
retrodicting (in contrast to predicting) does not suffer from Simpson’s paradox, retrodicting and
predicting are different things, and cannot generally be substituted for each other.

Rudas also sought to change the criterion (1) so that it does not allow inversion after additional
conditioning over B, but still has several reasonable features [32]. The proposal is to employ
p(a2)[p(a1|a2)− p(ā1|a2)] < p(ā2)[p(a1|ā2)− p(ā1|ā2)] instead of (1) [32]. Notice the conceptual
relation of this with the previous proposal (6).

An unnatural point of both these proposals is that they depend on the ratio p(a2)/p(ā2); e.g. for the
Example 1 mentioned below this means that if the treatment was applied more, it has better chances
to be accepted. This drawback is acknowledged in [32].

2.2.2 Exchangeability and causality

According to Lindley and Novick, the paradox may be resolved by going beyond probabilistic consid-
erations (as we do below as well) and by employing the notion of exchangeability or causality [9]; see

4We leave aside the following pertinent problem; see [19] for details. If probabilities are extracted from finite
populations, the more conditioned version (2, 3) is less reliable, because it is extracted from a smaller population.
For us all probability-providing populations will be sufficiently large.
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[33] for a recent discussion on causality and exchangeability. Within that proposal, the data generally
provides only propensities, and one needs additional assumptions of sample homogeneity (exchange-
ability) for equating propensities with probabilities even for a large sample size. Exchangeability and
the closely related notion of ergodicity remain influential in the current analysis of statistical problems
exemplified by Simpson’s paradox [34]. Lindley and Novick studied the following two examples that
support Simpson’s paradox (more examples are discussed in sections 4, 5, and Appendix C).

Example 1. Medical treatment [9]. A1 = {a1, ā1} (the target variable) is the recovery rate of medical
patients: a1 = recovery, ā1 = no recovery. A2 = {a2, ā2} refers to a specific medical treatment:
a2 = treatment, ā2 = no treatment. B = {b, b̄} is the sex of patients: b = male, b̄ = female. The
times to which the random variables A1, A2 and B refer clearly hold tB < tA2

< tA1
.

Example 2. Plant yield [9]. A1 = {a1, ā1} (the target variable) is the yield of a single plant:
a1 = high, ā1 = low. A2 = {a2, ā2} refers to the variety (color) of the plant: a2 = dark,
ā2 = light. B = {b, b̄} refers to the height of the plant: b1 = tall, b̄ = low. The times hold
tA2 < tB < tA1 .

Lindley and Novick proposed that assumptions on exchangeability lead to preferring (1) for Example
2 and (2, 3) for Example 1 [9]. They also proposed that the same results can be found by using
causality instead of exchangeability [9]. The same proposal was made earlier by Cartwright in the
context of abstract causality [7, 8]. Pearl elaborated this proposal assuming that the above examples
can be represented via time-ordered direct acyclic graphs (TODAG) [13, 14], where an arrow→
represents the influence of an earlier variable to the later one; see Fig. 1 for details. If we follow this
assumption, then - given the time constraints for the examples - each of them can be related to a
unique TODAG:

Example 1 : B → A2 → A1 ← B, (7)
Example 2 : A2 → B → A1 ← A2. (8)

In (7) the suggestion is to condition over B [hence using (2, 3)] if B influences both A1 and A2 [9,
13, 14]. This is because conditioning over the cause reduces spurious dependencies. This reasoning
was generalized as the back-door criterion [13]. In contrast, it is advised to use (1) in (8) since B
is an effect of A2, but still a cause of A1 [9, 13, 14]. The intuition of this suggestion is seen in
the extreme case when B screens A1 and A2 from each other, i.e. A1, B and A2 form a Markov
chain. Then the conditional probability p(A1|A2, B) = p(A1|B) will not depend on A2 begging the
original question in (1). Thus, for the two examples considered in [9], Refs. [13, 14] make similar
recommendations. The basis of these recommendations was criticized in [17].

Refs. [13, 14] imply that Simpson’s paradox for (7, 8) can be solved via do-calculus. This is
only partially correct: only (7) is solved with do-calculus. Indeed, the do-calculus in (7) defines
p(a1|do(A2)) =

∑
b p(b)p(a1|A2, b). Now p(a1|do(A2 = a2)) > p(a1|do(A2 = ā2)), amounts to

the fine-grained version (2, 3) of the paradox, which agrees with the conclusion of [9]. However, for (8)
we have p(a1|do(A2)) = p(a1|A2), and it is not clear what prevents us from going back to the original
formulation of Simpson’s paradox, i.e., comparing p(a1|do(A2 = a2)) < p(a1|do(A2 = ā2)), with
p(a1|do(A2 = a2), b) > p(a1|do(A2 = ā2), b) and p(a1|do(A2 = a2), b̄) > p(a1|do(A2 = ā2), b̄).

Let us now argue that realistically, Example 1 and Example 2 need not to support TODAGs (7, 8),
respectively. In fact, both arrows B → A2 and B → A1 in Example 1 are generally questionable:
sex need not influence the selection of the treatment, B ̸→ A2 (unless the data was collected in
that specific way), and many treatments are sex-indifferent, i.e. B ̸→ A1. For Example 1 it is
more natural to assume that B does not causally influence A. In such a situation, the common cause
principle proposes that there is an unobserved random variable C, which is a common cause for A and
B [35, 36]; see section 3. Similar reservations apply to Example 2: now A2 → B is perhaps argued
on the basis of color (A2) being more directly related to the genotype of the plant, while the height
(B) is a phenotypical feature. First, color-genotype and height-phenotype relations need not hold
for all plants. Second (and more importantly), it is more natural to assume that the plant genotype
influences both its color and height than that the color influences height. Hence the genotype can be a
common cause for A and B. Implications of such common cause scenarios are studied below.
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Figure 1: Directed acyclic graphs between random variables A = (A1, A2), B and C involved
in discussing Simpson’s paradox. The first and second graphs were studied in Refs. [13, 14]; see
(7, 8). The third or fourth graphs are basic assumptions of this work; see (9). In the first graph, B
influences A1 and A2, but B is not the common cause in the strict sense, because there is an influence
from A2 to A1. A similar interpretation applies to the second graph. We emphasize that the joint
probability p(A1, A2, B) for the first and second graphs has the same form, i.e. such graphs are extra
constructions employed for interpretation of data. In contrast, the third and fourth graph imply a
definite (but the same for both graphs) limitation on the joint probability p(A1, A2, B, C), which is
expressed by (9).

3 Common cause principle and reformulation of Simpson’s paradox

3.1 Common cause and screening

The common cause for A = (A1, A2) and B means that there exists a random variable C = {c} [35,
36]

p(A1, A2, B|C) = p(A1, A2|C)p(B|C), (9)

p(A1, A2, B) =
∑

c∈C
p(c)p(A1, A2|c)p(B|c), p(c) > 0 (10)

where (9) holds for all values assumed by A1, A2, B and C, and where (10) follows from (9) 5. The
same (9) applies if C causes A and screens A from B. These two scenarios are shown in Fig. 1
as (resp.) the third and fourth graphs. Sections 4, 5, and Appendix C provide several examples
of a causing (or screening) variable C in the context of Simpson’s paradox. p(A1, A2, B) in (10)
can be considered as a matrix, where (A1, A2) [B] enumerates rows [columns]. Now there is a
minimal value of |C| (the number of realizations of C) such that (10) holds [37]. This minimal
number is called the positive rank (rank+[p]) of the matrix p(A1, A2, B) [3]. There are methods
for its estimation [38]; e.g., it holds rank+[p] ≤ min

[
|A1| · |A2|, |B|

]
, where |B| is the number of

realization of B. Representations (10) are not unique, even for a fixed |C| [38].

The common cause principle was proposed to explain probabilistic dependencies [35, 36]. It later
found important applications in data science, where approximate relations similar to (9) are applied to
effective data compression (Non-negative matrix factorization, Probabilistic Latent Dirichlet indexing,
etc) [39, 40]. Pearson and Yule expressed early ideas about the common causes that explain certain
dependencies; see [41] for a historical review. Involving a common cause in Simpson’s paradox
means that we do not consider this paradox as referring to a causally sufficient situation; for recent
discussions on causal (in)sufficiency see [42, 43].

Note from (9) that C gets rid of the conditional dependence on B in p(A1, A2|B,C). Thus, a sensible
way of looking at the association between a1 and a2 is to check the sign of

p(a1|a2, C)− p(a1|ā2, C) for each value of C. (11)

To support the usage of the common cause C for decision-making, we note that (9) has an important
implication in the context of (1). (This implication generalizes the argument given in [36].) Assume
that p(a2, b, c) > 0 for all values c of C. Note from (9) that there exists an event c such that
p(a1|a2, b) ≤ p(a1|a2, b, c) = p(a1|a2, c), and an event c′ such that p(a1|a2, b) ≥ p(a1|a2, b, c′) =
p(a1|a2, c′). Hence, if conditioning over b facilitates (hinders) the association between a1 and a2,
then conditioning over c (c′) is not worse in this facilitation (hindering) 6.

5There are formulations of the common cause principle that look for (9) holding for certain events only and
not for random variables [35, 36]. We do not focus on them.

6To deduce the first relation assume that p(a1|a2, b) < p(a1|a2, b, c) = p(a1|a2, c) for all c, multiply both
parts by p(a2, b, c) > 0, sum over c and get contradiction p(a1, a2, b) < p(a1, a2, b). Likewise for the second
relation.
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After the above reformulation, Simpson’s paradox seems even less resolvable since C is not observed.
Indeed, there are common causes that reproduce (1), those that reproduce (2, 3), but there are many
other possibilities. Common causes that are close to B (C ≈ B) imply option (2, 3) of the paradox,
while C ≈ A leads to (1). These conclusions are based on the fact that (9) holds exactly for C = B
and C = A. Thus, Simpson’s paradox is not a choice between two options (2, 3) and (1), it is a
choice between many options given by different common causes C.

Finally, two remarks about the applicability of (9–11). First, if C is a common cause for both
A = (A1, A2) and B, the times of these variables naturally hold tC < min[tA1 , tA2 , tB ]. When C
screens A from B, it holds tB < tC < min[tA1 , tA2 ]. In certain applications of (11), it will suffice to
have even a weaker condition tC < tA1

.

Second, we note that for applying (1, 2, 3) we do not need p(A2), i.e. only p(B|A2) is needed for
connecting (1) with (2, 3). Indeed, A2 does not necessarily need to be a random variable, but can
simply be a label describing the situation. Now the same holds for (11): once (9) is written as

p(A1, B|A2, C) = p(A1|A2, C)p(B|C), (12)

we need only p(C|A2) to pass from (12) to quantities involved in (1, 2, 3); i.e., p(A2) is not needed.

3.2 A common cause (or screening variable) resolves Simpson’s paradox for binary variables

The following theorem shows a definite statement for all binary causes. The message of the theorem
is that once we know that C is binary, then the correct decision is (2, 3).

Theorem 1: If A1, A2, B and C = {c, c̄} are binary, and provided that (1) and (2, 3) are valid, all
causes C hold

p(a1|a2, c) > p(a1|ā2, c), p(a1|a2, c̄) > p(a1|ā2, c̄), (13)

i.e. all C holding (9) predict the same sign of association between a1 and a2 as (2, 3). This theorem
is proved in Appendix B. The main idea is that to prove (13), we need to invert (9).

The resolution of Simpson’s paradox offered by Theorem 1 is consistent with the do-calculus; see
[13] for a review. To show this, consider from Fig. 1 two TODAGs that support the causal structure
of Theorem 1:

B ← C → A2 → A1, C → A1, (14)
B → C → A2 → A1, C → A1. (15)

For both these TODAGs we have

p(a1|do(A2 = a2)) =
∑

C=c,c̄
p(a1|a2, C)p(C). (16)

If (as stated in our theorem 1) p(a1|a2, c) > p(a1|ā2, c) and p(a1|a2, c̄) > p(a1|ā2, c̄) then we get
p(a1|do(A2 = a2)) > p(a1|do(A2 = ā2)). Hence, if the influence of A2 on a1 is decided via
do-conditioning over A2, then the conclusion agrees with the option (2, 3) of Simpson’s paradox.

An important aspect of theorem 1, is that once we can motivate one of the above TODAGs (14, 15)
with binary C, then no additional data-gathering is necessary for resolving the paradox, i.e., we do
not need to know P (A1, A2|C), etc.

Note the difference between TODAGs (7, 8) and (14, 15): (7, 8) are consistent with any joint
probability p(A1, A2, B). In contrast, (14, 15) require a specific probabilistic feature (9).

3.3 Non-binary causes

Let us assume that we have Simpson’s paradox (1, 2, 3) and also the common cause condition (9).
However, C = {c1, c2, c3} is now a tertiary random variable. It turns out that now all three options
of Simpson’s paradox become possible: there are common causes C that support (1):

p(a1|a2, C) < p(a1|ā2, C), for C = {c1, c2, c3}. (17)

There are also common causes C which support (2, 3). Eventually, there are tertiary common causes
C = {c1, c2, c3} for which p(a1|a2, ci) − p(a1|ā2, ci) has different signs for different values of
i = 1, 2, 3; i.e., neither (1), nor (2, 3) are supported. Hence, already for the tertiary cause, one needs
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prior information on the common cause to decide on the solution of Simpson’s paradox. Alternatively,
we can infer this unknown cause via one of the methods proposed recently for obtaining the most
plausible common cause [44, 45]. It is not excluded that such inference methods will provide further
information on the solution of Simpson’s paradox.

Note that (17) is a counter-example to an opinion that the structure of the TODAG as such can
determine which option – (1) or (2, 3) – of Simpson’s paradox applies. Indeed, (17) and Theorem 1
support the same TODAGs (14, 15), but they lead to different options of the paradox.

4 Example: smoking and surviving

In section 2.2.2 we discussed two examples studied in the literature and argued that they can be also
interpreted via the common cause principle. In the present case, the standard approaches do not seem
to apply, but the common cause can still be motivated. This example on survival of smokers versus
nonsmokers is taken from Ref. [16]. Its technical details are discussed in Appendix D. Binary A1

represents the survival in a group of women as determined by two surveys taken 20 years apart:

A1 = {a1, ā1} = {died, alive},
A2 = {a2, ā2} = {smoker,nonsmoker}, (18)
B = {b, b̄} = {age 18− 64, age 65− 74}, (19)

where p(b̄) = 0.1334, and where b and b̄ denote age-groups. According to the data of [16], Simpson’s
paradox reads [see Appendix D.1 for several technical clarifications]:

p(a1|a2) = 0.2214 < p(a1|ā2) = 0.2485, (20)
p(a1|a2, b) > p(a1|ā2, b),
p(a1|a2, b̄) > p(a1|ā2, b̄). (21)

Note that B here influences A1: the age of a person is a predictor of his/her survival. There are few
people who quit or started smoking, so causal influences from B to A2 can be ignored [16]. We can
assume that influences from smoking to age are absent. Then this example is intermediate between
two situations considered in [7–9, 13]. Recall that when B influenced A2, these references advised to
decide via the fine-grained option of the paradox, while for the case of the inverse influence (from A2

to B) they recommend to employ the coarse-grained version; see (7, 8) and Fig. 1.

Hence, we should expand on the above situation to achieve a workable model. We can assume that A2

and B are influenced by a common cause. Genetic factors influence an individual’s age and tendency
to smoke. Originally proposed by Fisher [46], this hypothesis was later substantiated in several
studies; see Refs. [47, 48] for reviews. Note that this refers to genetics of the smoking behavior
itself, and not to health problems that can be caused by smoking plus genetic factors. Several sets of
studies that contributed to genetic determinants of smoking behavior are as follows. (i) Children of
smoking parents tend to smoke. (ii) Smoking behavior of adopted kids correlates stronger with that
of their biological parents. (iii) Monozygotic (genetically identical) twins correlate in their smoking
behavior much stronger than heterozygotic twins. Smoking behavior includes both the acquisition
and maintenance of smoking. Monozygotic twins show correlations in both these aspects.

As a preliminary hypothesis, we suggest that genetic factors are the common cause of both smoking
and age. To apply Theorem 1 we introduce genetic variable C ={risk to smoking, no risk to
smoking}. TODAG (14) can describe our simplified model. Now we need to consider genes, which
can have influence nicotine addiction and show evidence of pleiotropy, i.e., they can influence more
than one aspect of health and survival [49]. CHRNA5 is a pleiotropic gene that encodes subunits of
the nicotinic acetylcholine receptor, which is important in neural signaling and nicotine addiction.
The receptor can influence various aspects of smoking behavior: nicotine binding and response,
reward pathways, craving intensity, smoking cessation success rates, etc; see Ref. [50] for a review.
CHRNA5 has two alleles G (guanine) and A (adenine), which differ by a single nucleotide. Now A is
the risk allele, which is associated with increased smoking. G is the non-risk allele [50]. A is the
dominant allele with respect to G, and we treat CHRNA5 as binary genetic variable; see Appendix D
for clarifications. Thus, Theorem 1 applies and we conclude – consistently with other studies – that
smoking is not beneficial for survival.
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5 Example: COVID-19, Italy versus China

Here the COVID-19 death rates are compared in Italy and China [31, 51]. According to the data,
aggregated death rates in Italy are higher than in China, but in each age group, the death rates are
higher in China. More precisely,

A1 = {a1, ā1} = {died, alive},
A2 = {a2, ā2} = {China, Italy}, (22)
B = {b, b̄} = {age 60− 79, age 80+}, (23)

where p(a1) is the death rate out of COVID-19, p(B) is found from the number of positively tested
people in each age group, p(b̄) = 0.1012, and where p(b̄|a2) = 0.1017 and p(b̄|ā2) = 0.3141.
According to the data of [31], Simpson’s paradox reads

p(a1|a2) = 0.0608 < p(a1|ā2) = 0.0760, (24)
p(a1|a2, b) = 0.0507 > p(a1|ā2, b) = 0.04900,

p(a1|a2, b̄) = 0.150 > p(a1|ā2, b̄) = 0.135. (25)

The authors of [31] proposed that this situation is described by TODAG A2 → B → A1 ← A2;
cf. (8). Then the conclusion from [9, 13] will be that the aggregated version of Simpson’s paradox
works, i.e. Italy did worse than China. The authors of Ref. [31] reached the same conclusion.

When applying the common cause set-up from section 3.1, we can look at (12), because A2 is better
described as a label (avoiding dealing with the probability of country). Hence, from the viewpoint of
(12), we need a common cause that supplements A2 and acts on both A1 and B. We propose that
the quality of healthcare system can be the common cause C here. In particular, a more affordable
healthcare system may cause a higher proportion of older people in the country’s society. Indeed, for
2019, Italy had a larger percentage of people aged above 65 than China: 24.05 % versus 12.06 %. On
the other hand, the healthcare system will influence death rates in all age groups. If C is binary, then
our conclusion from Theorem 1 is opposite to that of [31]: China did worse than Italy.

6 Simpson’s paradox and common cause principle for Gaussian variables

6.1 Formulation of Simpson’s paradox for continuous variables

Simpson’s paradox is uncovered earlier for continuous variables than for the discrete case [1].
Researching the continuous variable paradox and identifying it in big datasets is currently an active
research field [23, 24, 29, 52–54].

The association between continuous variables A1 = {a1} and A2 = {a2} can be based on a
reasonable definition of correlation coefficient [1, 30]. We focus on Gaussian variables, because this
definition is unique for them and amounts to conditional variance. These variables are also important
in the context of machine learning (e.g. linear regressions) [55].

Hence the formulation of Simpson’s paradox given B = {b} reads instead of (1–3) [1, 23, 24, 30]:

σ[a1, a2]σ[a1, a2|b] < 0 for all b, (26)
σ[a1, a2] ≡ ⟨(a1 − ⟨a1⟩)(a2 − ⟨a2⟩)⟩, (27)

σ[a1, a2|b] ≡ ⟨(a1 − ⟨a1⟩b)(a2 − ⟨a2⟩b)⟩b, ⟨a⟩b ≡
∫

da a p(a|b), (28)

where ⟨a⟩b and σ[a1, a2|b] are the conditional mean and covariance; ⟨a⟩ and σ[a1, a2] are the mean
and covariance; p(a|b) is the conditional probability density of A = {a}.
The message of (26) is that the usual and conditional covariance have different signs, i.e., they predict
different types of associations between A1 and A2. For instance, σ[a1, a2] > 0 means correlation,
while σ[a1, a2|b] implies anti-correlation. Note a subtle difference between this formulation of
Simpson’s paradox and that presented in section 2.2. In (26–27) the formulation is symmetric with
respect to A1 and A2.
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6.2 General solution for Gaussian variables

For fuller generality, we shall assume that A = {a}, and B = {b} are Gaussian column vectors with
a number of components (i.e., dimensionality) nA, and nB , respectively. We also define

yT = (a, b), yTy is a number, yyT is a matrix, (29)

where T means transposition. We assume that a Gaussian nX -dimensional variable X = {x} is the
common cause variable for A and B:

P (y|x) = (2π)−nA/2 (det[Q])−1/2 e−
1
2 (y−Cx)TQ−1(y−Cx), (30)

P (x) = (2π)−nX/2(det[S])−1/2 e−
1
2x

TS−1x, (31)

Q =

(
A 0
0 B

)
, ⟨y⟩x = Cx, (32)

⟨(y − ⟨y⟩x)(yT − ⟨yT⟩x)⟩x = Q, (33)

where the common cause feature of X = {x} is ensured by the block-diagonal structure of the
covariance matrix Q: A and B are (resp.) covariance matrices for A and B. In (30), C is (nA +
nB)× nX matrix that ensures the coupling between (A,B) and X . For simplicity and without loss
of generality we assumed that ⟨x⟩ = 0 and hence ⟨y⟩ = 0 in (30). We get from (30) after arranging
similar terms (and omitting normalization):

P (x)P (y|x) ∝ e−
1
2 [x

T−yTQ−1CV −1 ]V [x−V −1CTQ−1y]− 1
2y

T[Q−1−Q−1CV −1CTQ−1 ]y , (34)

V = S−1 + CTQ−1C. (35)

Employing (87) from Appendix F we obtain:

Q−1 −Q−1CV −1CTQ−1 = (Q+ CSCT)−1, (36)

P (y) ∝ e−
1
2y

T (Q+CSCT)−1 y , (37)

⟨yyT⟩ = Q+ CSCT, (38)

We now recall (29, 33), introduce the block-diagonal form for CSCT, and find

Q+ CSCT =

(
A+ J K
KT B + L

)
, (39)

(Q+ CSCT)−1 =

(
(A+ J −K(B + L)−1KT)−1 ...

... ...

)
, (40)

where (40) is deduced via formulas from Appendix F. In (40) we need only the upper-left block, so
that all other blocks are omitted. Collecting pertinent expressions from (29, 38, 40, 33), we obtain
along with (38):

⟨(y − ⟨y⟩x)(yT − ⟨yT⟩x)⟩x = Q, (41)

⟨(a− ⟨a⟩b)(aT − ⟨aT⟩b)⟩b = A+ J −K(B + L)−1KT. (42)

6.3 The minimal set-up of Simpson’s paradox: 3 scalar variables + scalar cause

For this simplest situation, yT = (a1, a2, b) is a 3-dimensional vector, A is a 2 × 2 matrix, C is a
3× 1 matrix, while S and B are positive scalars. Now (38, 41, 42) read:

⟨(a1 − ⟨a1⟩b)(a2 − ⟨a2⟩b)⟩b = A12 + C11C21S ϵ,

0 < ϵ ≡ B
B + C231S

< 1, (43)

⟨(a1 − ⟨a1⟩x)(a2 − ⟨a2⟩x)⟩x = A12, (44)
⟨a1a2⟩ = A12 + C11C21S. (45)

Now consider a scenario of Simpson’s paradox, where

⟨a1a2⟩ = A12 + C11C21S > 0 and (46)
⟨(a1 − ⟨a1⟩b)(a2 − ⟨a2⟩b)⟩b = A12 + C11C21S ϵ < 0. (47)
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Due to 0 < ϵ < 1, these two inequalities demand A12 < 0. Likewise, ⟨a1a2⟩ = A12 + C11C21S < 0
andA12 + C11C21S ϵ > 0 demandA12 > 0. It is seen that under Simpson’s paradox for this minimal
situation, the sign of ⟨(a1 − ⟨a1⟩x)(a2 − ⟨a2⟩x)⟩x coincides with the sign of ⟨(a1 − ⟨a1⟩b)(a2 −
⟨a2⟩b)⟩b. We are thus led to the following:

Theorem 2: In the minimal situation (43–45) with the (minimal) common cause, the continuous
Simpson’s paradox (26) is resolved in the sense that the decision on the sign of correlations should
proceed according to the fine-grained option: ⟨(a1 − ⟨a1⟩b)(a2 − ⟨a2⟩b)⟩b; see (26–27).

For non-minimal common causes, all possibilities of the paradox can be realized; see Appendix G.

7 Conclusion

We addressed Simpson’s paradox: the problem of setting up an association between two events a1,
a2 given the lurking variable B. This decision-making paradox provides two plausible but opposite
suggestions for the same situation; see (1) and (2, 3). Either the first option is correct, the second
option is correct, or none of them is correct.

We focus on cases when there is a common cause C for B and A = (A1, A2) (which combines
a1, a2 and their complements). Alternatively, C screens out A from B; cf. Fig. 1. These cases
include those in which there is no causal influence from A to B, as well as from B to A. Hence, the
dependency between A and B are to be explained via the common cause C, which is a statement
of the common cause principle [35, 36]. Now the association between a1 and a2 is to be decided
by looking at p(a1|a2, c) for various values of C. This task is normally difficult given the fact that
C is frequently not fully known and is not observed. However, provided that A1, A2, B and C are
binary, p(a1|a2, c) shows the same association as the option (2, 3) of Simpson’s paradox. In this
sense, Simpson’s paradox is resolved in the binary situation, provided that the situation allows a
binary cause or a binary screening variable. The same conclusion on resolving Simpson’s paradox
was reached for Gaussian variables in the minimal situation. Several examples can illustrate the
plausibility of a minimal C.

Our solution of Simpson’s paradox is not a generalization of the existing solution, since it employs a
different idea. As we argued in section 2.2.2, the only unambiguous solution proposed so far refers
to the directed acyclic graph (7). We also provided a counter-example against an opinion that the
solution of Simpson’s paradox can be decided based on the directed acyclic graph structure only.

We provide the first resolution of Simpson’s paradox for Gaussian variables. This scenario of the
paradox differs from the discrete in at least one essential aspect (it is symmetric), and was historically
known earlier than the discrete version, and is more frequent in practice. This scenario of the paradox
cannot be analyzed via standard directed acyclic graphs, and has to be worked out directly.

Our results have several limitations, but (we believe) these can be overcome with further research. (i)
We limited ourselves to results that hold for all (minimal) common causes. For many applications,
this is too stringent: if the common cause is known to exist, but is not observed directly, then it may
be sufficient to infer it e.g. via the (generalized) maximum likelihood [45] or the minimal entropy
method [44]. This may provide pertinent information on the real common cause and the structure
of Simpson’s paradox. (ii) We insisted on a precise common cause. The screening relation (10)
is also useful, when it does hold approximately, but the support of C is relatively small. Such an
approximate relation (10) provides data compression via feature detection, which is the main message
of unsupervised methods such as Non-negative Matrix factorization and Probabilistic Latent Dirichlet
indexing [39, 40]. The impact of such approximate, but efficient causes on probabilistic reasoning is
an interesting research subject that we plan to explore in the future. (iii) All examples we presented
are observationally incomplete: a plausible cause had to be inferred, but it was not shown to exist or
function from the real data.
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A How frequent is Simpson’s paradox: an estimate based on the
non-informative Dirichlet density

To estimate the frequency of Simpson’s paradox under fair data-gathering, we can try to generate
the probabilities in (1–3) randomly in an unbiased way, and calculate the frequency of holding the
paradox [30, 56]. The best and widely accepted candidate for an unbiased density of probabilities
is the Dirichlet density, which is widely employed in statistics and machine learning [57, 58]. The
Dirichlet probability density for n probabilities (q1, ..., qn) reads:

D(q1, ..., qn|α1, ..., αn) =
Γ[
∑n

k=1 αk]∏n
k=1 Γ[αk]

n∏
k=1

qαk−1
k δ(

n∑
k=1

qk − 1), (48)

∫ ∞

0

n∏
k=1

dqkD(q1, ..., qn|α1, ..., αn) = 1, (49)

where αk > 0 are the parameters of the Dirichlet density, δ(x) is the delta-function, and Γ[x] =∫∞
0

dq qx−1e−q is the Euler’s Γ-function. Since D(q1, ..., qn) is non-zero only for qk ≥ 0 and∑n
k=1 qk = 1, the continuous variables themselves have the meaning of probabilities.

Many standard prior densities for probabilities are contained in (48); e.g., homogeneous (α1 =
...αn = 1), Haldane’s (α1 = ...αn = α ≈ 0), Jeffreys (α1 = ...αn = 1/2). For estimating the
frequency of Simpson’s paradox, Ref. [56] employed homogeneous and Jeffreys prior.

For modeling a non-informative Dirichlet density we find it natural to take

α1 = ...αn = 1/n. (50)

The homogeneity feature, α1 = ...αn in (50) is natural for an unbiased density. The factor 1
n in (50)

makes an intuitive sense, since α1 = ...αn become homogeneous (non-informative) probabilities.
Eq. (50) arises when we assume that the distribution of random probabilities is independent of
whether they were generated directly from (48) with n components, or alternatively from (48) with
nm components α1 = .... = αnm, and then marginalized. This requirement indeed leads to (50), as
can be checked with the following feature of (48):∫ ∞

0

dq′n−1 dq
′
n δ(qn−1 − q′n−1 − q′n)×

D(q1, ..., qn−2, q
′
n−1, q

′
n|α1, ..., αn)

= D(q1, ..., qn−2, qn−1|α1, ..., αn−2, αn−1 + αn). (51)

The message of (51) is that aggregating over two probabilities leads to the same Dirichlet density
with the sum of the corresponding weights αn−1 and αn.

We estimated the frequency of Simpson’s paradox assuming that 8 probabilities p(A1, A2, B) in
(1–3) are generated from (48, 50) with n = 8 (binary situation). This amounts to checking two
relations (they amount to (1–3) and its reversal)

[p(a1|a2)− p(a1|ā2)][p(a1|a2, b)− p(a1|ā2, b)] < 0, (52)

[p(a1|a2, b)− p(a1|ā2, b)][p(a1|a2, b̄)− p(a1|ā2, b̄)] > 0.

Our numerical result is that the frequency of two inequalities in (52) is ≈ 4.29% ± 0.001%. For
this precision it was sufficient to generate N = 107 samples from (48, 50) with n = 8. This result
compares favorably with ≈ 1.66% obtained for α1 = ...α8 = 1 (homogeneous prior), and ≈ 2.67%
obtained for α1 = ...α8 = 0.5 (Jeffreys prior) [56]. It is seen that the frequency of Simpson’s paradox
is a decreasing function of α1 = ... = α8 = α [56].

Roughly, the above result ≈ 4.29% means that in every 1000 instances of 3 binary variables, 42
instances will show Simpson’s paradox. This number is reassuring: it is not very large meaning
that the standard decision-making based on the marginal probabilities in (1) will frequently be
reasonable. But it is also not very small, showing that Simpson’s paradox is generic and has its range
of applicability.

14



B Proof of Theorem 1

The main idea of proving (13) is inverting (9):

p(a1|a2, c)

=
p(b̄|c̄)p(a1|a2, b)p(b|a2) + (p(b̄|c̄)− 1)p(a1|a2, b̄)p(b̄|a2)

p(b̄|c̄)p(b|a2) + (p(b̄|c̄)− 1)p(b̄|a2)
(53)

= p(a1|a2, b̄) +
p(b̄|c̄)p(b|a2)[p(a1|a2, b̄)− p(a1|a2, b)]

1− p(b̄|c̄)− p(b|a2)
, (54)

p(c|a2) =
p(b̄|c̄)p(b|a2) + (p(b̄|c̄)− 1)p(b̄|a2)

p(b|c) + p(b̄|c̄)− 1

=
p(b̄|c̄) + p(b|a2)− 1

p(b|c) + p(b̄|c̄)− 1
, (55)

where unknown quantities p(a1|a2, c) and p(c|a2) are represented via known ones (i.e. p(A1, A2, B))
and free parameters p(B|C). Eqs. (54, 55) hold upon changing a2 by ā2 and are deduced in Appendix
E via specific notations that should be useful when dealing with (9) for a non-binary C.

The rest of the proof is algebraic but non-trivial. It also works out and employs constraints (4, 64) on
Simpson’s paradox itself. Expanding both sides of (1),

p(a1|a2) = p(a1|a2, b)p(b|a2) + p(a1|a2, b̄)p(b̄|a2), (56)
p(a1|ā2) = p(a1|ā2, b)p(b|ā2) + p(a1|ā2, b̄)p(b̄|ā2), (57)

and using there (2, 3) we subtract the sides of (1) from each other and find:

p(a1|a2, b) + p(b̄|a2)[p(a1|a2, b̄)− p(a1|a2, b)] <
p(a1|ā2, b) + p(b̄|ā2)[p(a1|ā2, b̄)− p(a1|ā2, b)]. (58)

We return to (2, 3) and note that we can assume without loosing generality

p(a1|a2, b̄) > p(a1|a2, b). (59)

Eqs. (56, 57) imply that for the validity of (1–3, 59) it is necessary to have p(a1|ā2, b̄) > p(a1|a2, b),
which together with (2, 3, 59) revert to (4). Now (1, 56, 57) read

p(a1|a2, b) + [1− p(b|a2)](p(a1|a2, b̄)− p(a1|a2, b)) (60)

< p(a1|ā2, b) + [1− p(b|ā2)](p(a1|ā2, b̄)− p(a1|ā2, b)),
p(a1|a2, b̄)− p(b|a2)(p(a1|a2, b̄)− p(a1|a2, b))
< p(a1|ā2, b̄)− p(b|ā2)(p(a1|ā2, b̄)− p(a1|ā2, b)), (61)

where (60) and (61) are equivalent. Eqs. (60, 61, 4) imply

[1− p(b|a2)](p(a1|a2, b̄)− p(a1|a2, b)) <
[1− p(b|ā2)](p(a1|ā2, b̄)− p(a1|ā2, b)), (62)
p(b|a2)(p(a1|a2, b̄)− p(a1|a2, b)) >
p(b|ā2)(p(a1|ā2, b̄)− p(a1|ā2, b)). (63)

As checked directly, Eqs. (62, 63) lead to

p(b|a2) > p(b|ā2). (64)

Now we return to (55) and assume there p(b|c) + p(b̄|c̄)− 1 < 0, which leads to
p(b̄|c̄) + p(b|a2)− 1 < 0 from (55). Writing down from (55) the formula for p(c|ā2) and mak-
ing the same assumption we get p(b̄|c̄) + p(b|ā2)− 1 < 0. Now look at (54) and its analog obtained
via a2 → ā2, and use there these two results together with (63, 64) and (4) to deduce the first
inequality in (13) under assumption p(b|c) + p(b̄|c̄)− 1 < 0. It should be obvious that the second
inequality in (13) holds under the same assumption since we nowhere used any specific feature of c
compared to c̄.
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For p(b̄|c̄) + p(b|a2)− 1 > 0 we need to use instead of (54) another form of (53)

p(a1|a2, c) = p(a1|a2, b)−
[1− p(b̄|c̄)]p(b̄|a2)[p(a1|a2, b)− p(a1|a2, b̄)]

p(b̄|c̄) + p(b|a2)− 1
. (65)

The rest is similar to the above: we proceed via (62, 64) and (4) and deduce (13) from (55), (65) and
the analog of (65) obtained via a1 → ā2.

C More examples of Simpson’s paradox

We collected several examples of the paradox that are scattered in the literature. We discuss them
employing our notations in equations (1–3) of the main text emphasizing (whenever relevant) the
existence of the common cause (or screening) variable C.

Example 5. Snow tires provide cars with better traction in snowy and icy road conditions. However,
nationally in the US, cars fitted with snow tires are more likely to have accidents in snowy and icy
conditions [59]. A1 = {a1 = accident, ā1 = no− accident}, A2 = {a2 = changed tires, ā2 =
not changed}, B = {states}. Here the choice of the state (warm or cold) has a direct causal link to
accidents in winter conditions. Now snow tires tend to be fitted to cars only in snowy winter months
and in states with colder weather. Cars in warmer months and in states with warmer weather are
much less likely to have accidents in snowy and icy conditions. Plausibly, there is a random variable,
C = {good weather conditions,bad weather conditions}, which causes A, and screens A from
B: p(A|CB) = p(A|C). The times are distributed as tB < tC < tA2

< tA1
.

Example 6. This example emerged from discussing our own experience with hospitals. We
need to choose between two hospitals 1 and 2: A1 = {a1 = recovered, ā1 = not recovered},
A2 = {a2 = hospital 1, ā2 = hospital 2}, B = {first half − year, second half − year},
C = {types of illness}. Here we do not expect direct causal influence from B to A, if (as we
assume) the hospitals do not treat seasonal illnesses. We expect that C causes A, and screens it from
B.

Note that the data from which the probabilities for Simpson’s paradox are calculated is the number of
patients N(A1, A2, B) that came to the hospital. Simpson’s paradox does not occur if within each
season the hospitals accept an equal number of patients:

∑
A1

N(A1, A2, B) does not depend on the
value of B. This creates a conceptual possibility for judging between the hospitals. This is however
not realistic, because imposing on these hospitals an equal number of patients can disturb their usual
(normal) functioning.

Example 7. Simpson’s paradox is realized when comparing scores of professional athletes, e.g. the
batting averages of baseball players [60]. Here A1 refers to a score of an athlete in a game, e.g.
A1 = high score, low score, A2 denotes concrete athletes, while B is the time-period (e.g. playing
season). The causing variable C can refer to the psychological and physical state of an athlete that
influences his/her game success, and the number of games he/she participated in each season.

D Elaborations on smoking and surviving

1. Our interest in this subject started from learning about the works by R. Fisher, who proposed
that at least a part of the association between smoking and survival may be due to genetic common
causes. Then we noted that qualitative genetists clarified his statements in 1980s, but they are nearly
forgotten in modern genetics, where genetic determinants of smoking are still studied actively [49].

The data presented in Ref. [16] considers three random variables A1 ={died, alive}, A2 ={smoking,
non-smoking}, and B ={younger, older}. To this we added an unobserved genetic variable: C ={risk
to smoking, no risk to smoking}, which roughly corresponds to the gene CHRNA5 described below.

A fairly general TODAG for this situation is

A1 ← B ← C → A2 → A1, A2 → B, C → A1, (66)

e.g. because once C can influence B, then potentially also A2 can have a direct influence on B.
At the present stage of our knowledge on pertinent genetic and age-dependent factor influencing
smoking, this TODAG is not manageable. So we had to simplify it drastically.
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First, we erased the link A1 ← B, because the physical age by itself does not influence survival. The
physiological age correlates well with the physical age for some people, which can already affect
their survival rate. However, the physiological age in this experiment was not recorded or controlled.

Once we assumed A1 ̸← B, then from the viewpoint of Simpson’s paradox, it was already natural to
assume A2 ̸→ B as well, because the link A2 → B does not influence p(A1|do(A2)). (Postulating
the direct influences A2 → B are more or less akin to predetermining the influences of smoking.) At
any rate, we emphasize that both A1 ̸← B and A2 ̸→ B are essential assumptions of the model. We
these assumptions we end up from (66) with the following TODAG [cf. (14)]:

B ← C → A2 → A1, C → A1. (67)

It remains to explain in which sense the gene can influence the age. For example, if an allele of a
gene (see below) can be a common cause of both smoking and (independently) smoking-generated
deceases, then aged (but still healthy) people can be those which did not have this allele.

2. The classical Mendelian genetics assumed (and in many instanced verified) that as far the influence
on the phenotype is concerned, one can restrict a gene to a binary variable: recessive and dominant
alleles of the gene. Each organism has two genes (one from mother and another one from father), and
now the three pairs - recessive-dominant, dominant-recessive, dominant-dominant - amount to one
type of influence to the phenotype, while the version recessive-recessive to another influence.

In modern genetics, many exclusion from this classical binary-gene law are known. For example, the
gene of the blood type has 3 alleles (A,B, and O). Here A and B are dominant with respect to O, but
together they are co-dominant and hence there are 4 blood groups: AO, BO, AB, OO.

To understand whether the genes controlling the smoking behavior can be modeled as binary (i.e.
dominant and recessive), we need to consider concrete genes, which according to current genetics
research have serious effects on nicotine addiction and show evidence of pleiotropy, i.e., they can
influence more than one aspect of health and survival; see [49].

CHRNA5 is a gene that encodes subunits of the nicotinic acetylcholine receptor, which is important
in neural signaling and nicotine addiction. The receptor can influence various aspects of smocking
behavior: nicotine binding and response, reward pathways, craving intensity, smoking cessation
success rates, etc; see Ref. [50] for a review.

CHRNA5 has two alleles G and A. They are denoted by G (guanine) and A (adenine), because
the alleles differ by single nucleotide. Now A is the risk allele, which is associated with increased
smoking. G is the non-risk allele [50]. Now A is the dominant allele with respect to G, and CHRNA5
can be said to be binary with the following reservation: there is a dose-effect and the pair AA turns
out to be more risky than AG (in contrast to GG, which is risk free). Within our crude model we
neglect this difference and treat CHRNA5 as binary.

D.1 Technical details on the example from section 4 of the main text

This example is taken from Ref. [16]. Its concise version was discussed in section 5. Here we provide
more details on how the data was presented and how we analyzed it. In this case, binary A1 represents
the survival of a woman as determined by two surveys taken 20 years apart: A1 = {died, alive}.
The binary A2 reads A2 = {smoker,nonsmoker}, while B = {B1, ..., B6} means the age group of
the person recorded in the first survey. The B1 now includes women between the ages of 18 and
24. Likewise, B2, B3, B4, B5, B6 refer to (resp.) ages (25− 34), (35− 44), (45− 54), (55− 64),
(65− 74). The corresponding probabilities read:

p(B1) = 0.0946, p(B2) = 0.2272, p(B3) = 0.1859, p(B4) = 0.1681,

p(B5) = 0.1908, p(B6) = 0.1334. (68)

There is also the seventh age group that included people who were 75+ at the time of the first survey.
We shall, however, disregard this group, since the data is pathological: nobody from this group
survived till the second survey. It turns out that the aggregated data (1) of the main text hints that
smoking is beneficial for survival:

p(A1, A2) =
∑6

k=1
p(A1, A2|Bk)p(Bk), (69)

p(A1 = died|A2 = smoking) = 0.2214 < p(A1 = died|A2 = nonsmoking) = 0.2485. (70)
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This conclusion is partially reversed, once the age group B is introduced:

p(A1 = died|A2 = smoking, Bk) > p(A1 = died|A2 = nonsmoking, Bk), k = 1, 3, 4, 5, 6,
(71)

p(A1 = died|A2 = smoking, B2) < p(A1 = died|A2 = nonsmoking, B2). (72)

We need to coarse-grain the above data to formulate the Simpson paradox clearly. Now

B = {b, b̄}, b = B1 ∪B2 ∪B3 ∪B4 ∪B5, b̄ = B6, (73)
p(A1 = died|A2 = smoking, b) = 0.1820 > p(A1 = died|A2 = nonsmoking, b) = 0.1206,

(74)

p(A1 = died|A2 = smoking, b̄) = 0.8056 > p(A1 = died|A2 = nonsmoking, b̄) = 0.7829.
(75)

This leads to the formulation of Simpson’s paradox discussed in section V of the main text. Eq. (73)
is the only coarse-graining that leads to the paradox.

The authors of Ref. [16] provide the following heuristic explanation for the prediction difference
between (70) and (71): they noted that aged people from the survey are mostly not smokers and most
would have died out of natural reasons. This is the statistical explanation of the Simpson paradox.
This explanation is not especially convincing because of (68, 72): it is seen that B2 is the most
probable group, for which (70) and (72) agree.

E Matrix notations for inverting the common cause equation

Here we develop matrix notations for inverting the common cause equation:

p(A1, A2, B) =
∑
C

p(A1, A2, C)p(B|C), (76)

where the summation goes over all values of C. We work for the case when the variables A1, A2, B
and C are binary, though the matrix notations we introduce below are useful more generally.

Eq. (76) can be written in matrix form(
[ik1]
[ik2]

)
=

(
(1|1) (1|2)
(2|1) (2|2)

)(
(ik1)
(ik2)

)
. (77)

where ik = 11, 12, 21, 22 and the following notations were introduced

[111] ≡ p(a1, a2, b), [121] ≡ p(a1, ā2, b), . . . ,

(111) ≡ p(a1, a2, c), (121) ≡ p(a1, ā2, c), . . . ,

(1|1) ≡ p(b|c), (2|1) ≡ p(b̄|c), . . . ,
D = (2|2) + (1|1)− 1.

(78)

Inversion of the Eq. (77) gives(
(ik1)
(ik2)

)
=

1

D

(
(2|2) −(1|2)
−(2|1) (1|1)

)(
[ik1]
[ik2]

)
. (79)

Eq. (79) implies (
(i|k1){1|k}
(i|k2){2|k}

)
=

1

D

(
(2|2) −(1|2)
−(2|1) (1|1)

)(
[i|k1][1|k]
[i|k2][2|k]

)
, (80)

where analogously to (78) we introduced the following notations:

[1|11] ≡ p(a1|a2, b), [1|21] ≡ p(a1, ā2, b), . . . ,

(1|11) ≡ p(a1|a2, c), (1|21) ≡ p(a1|ā2, c), . . . ,
[1|1] ≡ p(b|a2), [2|1] ≡ p(b̄|a2), . . . ,
{1|1} ≡ p(c|a2), {2|1} ≡ p(c̄|a2), . . . .

(81)
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The matrix relation (80) results in

(i|k1){1|k} = (2|2)
D

[i|k1][1|k] + (2|2)− 1

D
[i|k2][2|k]. (82)

Using (82, 79) we get relations employed in the main text:

(i|k1) = (2|2)[i|k1][1|k]+((2|2)−1)[i|k2][2|k]
(2|2)[1|k]+((2|2)−1)[2|k] , (83)

{1|k} = 1
D (2|2)[1|k] + 1

D ((2|2))− 1)[2|k], (84)

(i|k2) = ((1|1)−1)[i|k1][1|k]+(1|1)[i|k2][2|k]
((1|1)−1)[1|k]+(1|1)[2|k] , (85)

{2|k} = 1
D ((1|1)− 1)[1|k]] + [1|1][2|k]). (86)

F Certain matrix relations

There is a useful formula for matrix inversion

(Z + UWV )−1 = Z−1 − Z−1U(W−1 + V Z−1U)−1V Z−1, (87)

Eq. (87) is derived via two auxiliary formulas. First note that

V (1 + UV )−1 = (1 + V U)−1V, (88)

which follows from (1 + UV )−1 = (V −1(1 + V U)V )−1. Next, note moving U according to (88)

U(1 + V U)−1V = (1 + UV )−1UV = 1− (1 + UV )−1, (89)

which leads to

(1 + UV )−1 = 1− U(1 + V U)−1V. (90)

To deduce (87) from (90), we manipulate Z and W in respectively LHS and RHS of (87), and hence
transform (87) to the form (90), but with the following replacements: U → Z−1U and V →WV .

Eq. (87) leads to a generalized Sylvester formula:

det[Z + UWV ] = det[Z] det[W ] det[W−1 + V Z−1U ]. (91)

The ordinary Sylvester formula for determinants reads

det[IN N −KN MLM N ] = det[IM M − LM NKN M ], (92)

where IN N is the N × N unit matrix, KN M is a N ×M matrix etc. Eq. (92) follows from the
fact that (for M ≥ N ) LM NKN M has the same eigenvalues as KN MLM N (plus M − N zero
eigenvalues for M −N > 0).

Inverting a block matrix goes via[
A11 A12

A21 A22

]−1

=

[
S−1 −S−1A12A

−1
22

−A−1
22 A21S

−1 A−1
22 +A−1

22 A21S
−1A12A

−1
22

]
, (93)

S ≡ A11 −A12A
−1
22 A21, (94)

where dimensions of A11, A12, A21 and A22 are, respectively, M×M , M×(N−M), (N−M)×M ,
(N −M) × (N −M), and where S is the Schur-complement of the block matrix over its upper
diagonal part. Eq. (93) is straightforward to prove.

det

[
A11 A12

A21 A22

]
= det[A11 −A12A

−1
22 A21] det[A22]. (95)
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G Common cause with higher dimensionality for continuous variables

Let’s discuss the scenario where the number of components of a common cause is two. Recall
equation (55) of the main text and note that now C is a 3 × 2 matrix and S is a 2 × 2 matrix. For
CSCT we have

CSCT =

[
v1C11 + v2C12 v1C21 + v2C22 v1C31 + v2C32
v1C21 + v2C22 u1C21 + u2C22 u1C31 + u2C32
v1C31 + v2C32 u1C31 + u2C32 k1C31 + k2C32

]
, (96)

where

v1 = C11s11 + C12s21, v2 = C11s12 + C12s22, (97)
u1 = C21s11 + C22s21, u2 = C21s12 + C22s22, (98)
k1 = C31s11 + C32s21, k2 = C31s12 + C32s22. (99)

We need to keep track of 12 element of the matrices, since

⟨(a1 − ⟨a1⟩b)(a2 − ⟨a2⟩b)⟩b =
(
A+ J −K(B + L)−1KT

)
12

, (100)

⟨(a1 − ⟨a1⟩x)(a2 − ⟨a2⟩x)⟩x = A12, (101)
⟨a1a2⟩ = (A+ J )12 , (102)

and for which we have

(A+ J )12 = A12 + v1C21 + v2C22, (103)(
K(B + J )−1KT

)
12

=
1

B + k1C31 + k2C32
(v1C31 + v2C32)(u1C31 + u2C32). (104)

Now, we consider the simplest case for a common cause

S =

[
s 0
0 s

]
. (105)

The equations simplify to

⟨(a1 − ⟨a1⟩b)(a2 − ⟨a2⟩b)⟩b = A12 + s(C11C21 + C12C22) (106)

− s2

B + s(c231 + c232)
(C11C31 + C12C32)(C21C31 + C22C32),(107)

⟨a1a2⟩ = A12 + s(C11C21 + C12C22). (108)

By setting C31 = 0 and considering s≫ B, we get

⟨(a1 − ⟨a1⟩b)(a2 − ⟨a2⟩b)⟩b = A12 + sC11C21, (109)
⟨a1a2⟩ = A12 + s(C11C21 + C12C22). (110)

Obviously, inequalities ⟨a1a2⟩ > 0 and ⟨(a1−⟨a1⟩b)(a2−⟨a2⟩b)⟩b < 0 (or their inverted alternatives),
do not determine the sign ofA12, hereby the sign of ⟨(a1−⟨a1⟩x)(a2−⟨a2⟩x)⟩x. Thus, for a common
cause with two components we already see that it can support both fine-grained and coarse-grained
options.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We tried to make the abstract as clear as possible, but we also had in mind
that Simpson’s paradox is currently a broad notion. Because of this, not only probabilistic
causality experts will read and discuss our paper. Hence, we tried to keep the abstract
non-technical.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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This section outlines the three main limitations, as well as ways to overcome them.
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• The answer NA means that the paper has no limitation while the answer No means that
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• The paper should point out any strong assumptions and how robust the results are to
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only tested on a few datasets or with a few runs. In general, empirical results often
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• The authors should reflect on the factors that influence the performance of the approach.
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and how they scale with dataset size.
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address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Answer: [Yes]
Justification: The main technical results of the manuscript are summarized as two theorems.
Theorem 1 is proved in Appendix B. The central idea of the proof is outlined in the main
text. The second theorem is proved in section 6. For both cases, we provided all technical
details needed to reproduce the proofs in a self-contained way. To this end, we supplied
Appendix F, which will be useful for those readers who are not well-versed in the theory of
multi-dimensional Gaussian densities.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
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• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The manuscript does not present new experimental results. However, we re-
evaluated certain experimental results obtained in the previous literature. This is explained
in Appendix D.1, which provides details about this re-evaluation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: As we explained above, the manuscript does not present new experimental
results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: As we explained above, the manuscript does not present new experimental
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: As we explained above, the manuscript does not present new experimental
results.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: As we explained above, the manuscript does not present new experimental
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: As we explained above, the manuscript does not present new experimental
results and new data.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: Our work focuses on Simpson’s paradox, a phenomenon that has received
considerable attention across various fields of social science. A failure to account for this
paradox can have negative societal consequences, a fact that should be obvious from our
discussions. Our results aim to enhance awareness of the paradox. We examined two
examples of Simpson’s paradox that have been previously discussed—but not resolved—in
the literature. These examples relate to the potential effects of smoking and to the evaluation
of different strategies for managing COVID-19 across two countries. In our discussion,
we tried to reflect all the available literature on these examples. We also avoided univocal
recommendations, underlining the complexity of these examples. We believe that engaging
with such examples (in the context of our theoretical results) does not pose a risk of negative
societal impact. On the contrary, it can help raise public awareness.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: As explained above, we do not think that there is a high risk of misusing our
theoretical results on Simpson’s paradox.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The manuscript does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The manuscript does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This manuscript cites and discusses some experiments presented in the litera-
ture that were carried out with human subjects. But it does not involve crowdsourcing, and
does not involve new experiments with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This manuscript does not involve crowdsourcing nor new research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This manuscript does not involve LLMs as any important, original, or non-
standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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