
Resolution of Simpson’s paradox via the common cause principle

Arshak Hovhannisyan ^{*}

Alikhanyan National Laboratory, Yerevan, Armenia

Armen Allahverdyan [†]

Alikhanyan National Laboratory, Yerevan, Armenia

Abstract

Simpson’s paradox poses a challenge in probabilistic inference and decision-making. Our study revisits the paradox by re-estimating its frequency with an unbiased data generation process and reaffirms that it is not an artifact of deficient data collection. Thus, it can lead to incorrect recommendations in fields as diverse as statistics, psychology, and artificial intelligence. We show that the paradox can be resolved by assuming a minimal — though not necessarily observed — common cause (or screening) variable for the involved random variables. In our approach, conditioning on this minimal common cause establishes the correct association between events, which coincides with the conditioning (i.e., fine-grained) option of the original Simpson paradox. This resolution applies to both discrete cases of binary variables and continuous settings modeled by Gaussian variables. For a non-minimal common cause, the resolution of the paradox is possible, but detailed knowledge of the common cause is required. Our findings extend traditional understandings of the paradox and offer practical guidance for resolving apparent contradictions in probabilistic inference, ultimately enhancing decision-making processes. This point is illustrated by several examples.

1 Introduction

Simpson’s paradox was discovered more than a century ago [1, 2], generated a vast literature, and is well-recognized in several fields including, statistics, epidemiology, psychology, social science, *etc.* [3–24]. This counter-intuitive effect limits the ability to draw conclusions from probabilistic data. The effect is important because it demands more than simply extracting relative frequencies from data; e.g. it necessitates looking at exchangeability [9] or causality [7–9, 13, 14].

The paradox starts with two random variables A and B . Now $A = (A_1, A_2)$ contains control variable A_2 and the target variable A_1 , while B is a side random variable that depends on both A_1 and A_2 . The meaning of A and B is clarified via examples presented below. If there is no information on the outcome of B , the behavior of A can be studied on two levels. The first (aggregated) level is that of marginal probabilities $p(A = a)$. The second level is finer-grained and is represented by conditional probabilities $p(A = a|B = b)$ for all possible values of B . Simpson’s paradox amounts to certain relations between those probabilities; see section 2 for details. It states that no decision-making is possible, because conclusions drawn from probabilities on different levels contradict each other. Without Simpson’s paradox, decision-making can proceed at the aggregate level, because looking at the fine-grained level is either redundant or inconclusive. Thus, Simpson’s paradox first and foremost

^{*}arshak.hovhannisyan@aanl.am

[†]a.allahverdyan@aanl.am

involves decision-making. Moreover, it demonstrates limitations of the sure-thing principle [5], a pillar of traditional decision making [25–27]. A recent review of the sure-thing principle (and its limitations other than Simpson’s paradox) can be found in Ref. [28]. Limitations of probabilistic decision-making are important for the modern artificial intelligence (probability models, uncertainty estimation, *etc*).

In section 2, Simpson’s paradox is defined in detail, and previous efforts to resolve it in several specific situations are reviewed and criticized. In particular, we show that while certain previous solutions of the paradox assumed the existence of (causally-sufficient) time-ordered directed acyclic graphs (TODAGs) that describe the 3 variables involved in the paradox, several important examples of the paradox need not support this assumption; see sections 2.2.2, 4 and 5. Based on the previous literature, we argue that Simpson’s paradox is sufficiently frequent when the probabilities of the involved variables are generated from the unbiased (non-informative) distribution, modeled via Dirichlet density; see Appendix A. Hence this is a genuine decision-making paradox and not an artifact due to inappropriate data gathering.

Our proposal here is to search for the resolution of the paradox by assuming - given two dependent random variables A and B - there is a random variable C that makes A and B conditionally independent; i.e., screens out A from B . Examples of Simpson’s paradox show that such a C is frequently plausible, though it is normally not observed directly. In particular, C is conceivable if the dependence between A and B are not caused by a direct causal influence of B on A . Then the existence of C is postulated by the common cause principle. (If the dependence is due to a causal influence of A on B , Simpson’s paradox can formally exist, but factually it is absent because the decision is obviously to be taken according to the aggregated level.)

Introducing the screening variable C allows us to reformulate and extend Simpson’s paradox: its two options - along with many other options - refer to particular choices of C ; see section 3. Now, the paradox seems to be further from being resolved than before. However, we show that when the variables A_1 , A_2 , B , and C holding the paradox are binary (the minimal set-up of the paradox), the decision-making is to be made according to the fine-grained probabilities, i.e., the paradox is resolved. Such a definite relation is impossible for a tertiary (or larger) C : now depending on C all options of Simpson’s paradox are possible, e.g. the precise control of C can be necessary for decision-making.

Next, we turn to Simpson’s paradox for continuous variables, which was discussed earlier than the discrete formulation [1]. It holds the main message of the discrete formulation. In addition, it includes the concept of the conditional correlation coefficient (only for Gaussian variables is the random-variable dependence fully explained by the correlation coefficient). The continuous formulation is important because it applies to big data [23, 24, 29], and because (statistically) it is more frequent than the discrete version [30]. The advantage of continuous Gaussian formulation is that the general description of the paradox under the common cause is feasible; see section 6. For this situation, we show conceptually the same result as for the discrete version: in the minimal (and most widespread) version of the paradox, the very existence of an (unobservable) common cause leads to preferring the fine-grained option of the paradox.

The rest of this paper is organized as follows. Section 2 is a short but sufficiently inclusive review of Simpson’s paradox and its resolutions proposed in the literature³. It also discusses two basic examples for illustrating different aspects of the paradox; see section 2.2.2. In section 3 we reformulate Simpson’s paradox by assuming that there is a common cause (or screening variable) C behind the three variables. Now C need not be observable, since we show that it will be sufficient to assume that it exists and (provided that all variables are binary) Simpson’s paradox is resolved by choosing its fine-grained option. A similar conclusion is reached for Gaussian variables; see section 6. Section 4 considers published data from Ref. [16] on a case of smoking and surviving. This example is not easily treated via the existing methods. Still, we show that the existence of a common cause for this situation is plausible and that Simpson’s paradox can be studied via our method and leads to a reasonable result. Section 5 treats data on COVID-19, which was suggested in Ref. [31]. We demonstrate that an assumption of a plausible common cause points to different conclusions than in Ref. [31]. The last section summarizes our results and their limitations. It also outlines future research directions.

³Among the issues not addressed in this paper is the explanation of Simpson’s paradox using counterfactual random variables. This subject is reviewed in [6].

2 Formulation of Simpson's paradox and previous works

2.1 Formulation of the paradox for binary variables and its necessary conditions

To formulate the paradox in its simplest form, assume three binary random variables $A_1 = \{a_1, \bar{a}_1\}$, $A_2 = \{a_2, \bar{a}_2\}$, $B = \{b, \bar{b}\}$. The target event is a_1 , and we would like to know how it is influenced by A_2 which occurs at an earlier time than the time of A_1 : $t_{A_2} \leq t_{A_1}$. This can be done by looking at conditional probability. For

$$p(a_1|a_2) < p(a_1|\bar{a}_2), \quad (1)$$

which is equivalent to $p(a_1) < p(a_1|\bar{a}_2)$, we would conclude that \bar{a}_2 enables a_1 . However, (1) is compatible with

$$p(a_1|a_2, b) > p(a_1|\bar{a}_2, b), \quad (2)$$

$$p(a_1|a_2, \bar{b}) > p(a_1|\bar{a}_2, \bar{b}), \quad (3)$$

where B also occurred in an earlier time: $t_B \leq t_{A_1}$. Examples supporting (1–3) are studied below (sections 2.2.2, 4 and 5) and also Appendix C. Since (2, 3) hold for each value of B we should perhaps conclude that a_2 enables a_1 in contrast to (1). Decision-makers would not know whether to apply (1) or (2, 3). This is Simpson's paradox. Its equivalent formulation is when all inequalities in (1–3) are inverted⁴.

For Simpson's paradox (1–3) to hold, it is necessary to have one of the following two conditions:

$$p(a_1|\bar{a}_2, b) < p(a_1|a_2, b) < p(a_1|\bar{a}_2, \bar{b}) < p(a_1|a_2, \bar{b}), \quad (4)$$

$$p(a_1|\bar{a}_2, \bar{b}) < p(a_1|a_2, \bar{b}) < p(a_1|\bar{a}_2, b) < p(a_1|a_2, b). \quad (5)$$

To find these relations, expand $p(a_1|a_2)$ and $p(a_1|\bar{a}_2)$ over the probabilities in (4, 5) [cf. (56, 57)], and note that e.g. $p(a_1|a_2)$ is a weighted mean of $p(a_1|a_2, b)$ and $p(a_1|a_2, \bar{b})$. Given (4) or (5), Simpson's paradox can be generated via suitable choices of $p(b|a_2)$ and $p(b|\bar{a}_2)$; see Appendix A.

2.2 Attempts to resolve the paradox

2.2.1 Replacing prediction with retrodiction

Over time, several resolutions to the paradox have been proposed. Barigelli and Scozzafava [10, 11] proposed to replace (1) by

$$p(a_2)p(a_1|a_2) < p(\bar{a}_2)p(a_1|\bar{a}_2), \quad (6)$$

i.e. to interchange A_1 and A_2 in (1). Then it is easy to see that its inversion under additional conditioning over B is impossible. While (1) stands for prediction – i.e. aiming at a_2 (and not at \bar{a}_2) will more likely produce \bar{a}_1 (than a_1) – the proposal by Ref. [10, 11] looks for retrodiction. Though retrodiction (in contrast to predicting) does not suffer from Simpson's paradox, retrodiction and predicting are different things, and cannot generally be substituted for each other.

Rudas also sought to change the criterion (1) so that it does not allow inversion after additional conditioning over B , but still has several reasonable features [32]. The proposal is to employ $p(a_2)[p(a_1|a_2) - p(\bar{a}_1|a_2)] < p(\bar{a}_2)[p(a_1|\bar{a}_2) - p(\bar{a}_1|\bar{a}_2)]$ instead of (1) [32]. Notice the conceptual relation of this with the previous proposal (6).

An unnatural point of both these proposals is that they depend on the ratio $p(a_2)/p(\bar{a}_2)$; e.g. for the **Example 1** mentioned below this means that if the treatment was applied more, it has better chances to be accepted. This drawback is acknowledged in [32].

2.2.2 Exchangeability and causality

According to Lindley and Novick, the paradox may be resolved by going beyond probabilistic considerations (as we do below as well) and by employing the notion of exchangeability or causality [9]; see

⁴We leave aside the following pertinent problem; see [19] for details. If probabilities are extracted from finite populations, the more conditioned version (2, 3) is less reliable, because it is extracted from a smaller population. For us all probability-providing populations will be sufficiently large.

[33] for a recent discussion on causality and exchangeability. Within that proposal, the data generally provides only propensities, and one needs additional assumptions of sample homogeneity (exchangeability) for equating propensities with probabilities *even* for a large sample size. Exchangeability and the closely related notion of ergodicity remain influential in the current analysis of statistical problems exemplified by Simpson's paradox [34]. Lindley and Novick studied the following two examples that support Simpson's paradox (more examples are discussed in sections 4, 5, and Appendix C).

Example 1. Medical treatment [9]. $A_1 = \{a_1, \bar{a}_1\}$ (the target variable) is the recovery rate of medical patients: $a_1 = \text{recovery}$, $\bar{a}_1 = \text{no recovery}$. $A_2 = \{a_2, \bar{a}_2\}$ refers to a specific medical treatment: $a_2 = \text{treatment}$, $\bar{a}_2 = \text{no treatment}$. $B = \{b, \bar{b}\}$ is the sex of patients: $b = \text{male}$, $\bar{b} = \text{female}$. The times to which the random variables A_1 , A_2 and B refer clearly hold $t_B < t_{A_2} < t_{A_1}$.

Example 2. Plant yield [9]. $A_1 = \{a_1, \bar{a}_1\}$ (the target variable) is the yield of a single plant: $a_1 = \text{high}$, $\bar{a}_1 = \text{low}$. $A_2 = \{a_2, \bar{a}_2\}$ refers to the variety (color) of the plant: $a_2 = \text{dark}$, $\bar{a}_2 = \text{light}$. $B = \{b, \bar{b}\}$ refers to the height of the plant: $b_1 = \text{tall}$, $\bar{b} = \text{low}$. The times hold $t_{A_2} < t_B < t_{A_1}$.

Lindley and Novick proposed that assumptions on exchangeability lead to preferring (1) for **Example 2** and (2, 3) for **Example 1** [9]. They also proposed that the same results can be found by using causality instead of exchangeability [9]. The same proposal was made earlier by Cartwright in the context of abstract causality [7, 8]. Pearl elaborated this proposal assuming that the above examples can be represented via time-ordered direct acyclic graphs (TODAG) [13, 14], where an arrow \rightarrow represents the influence of an earlier variable to the later one; see Fig. 1 for details. If we follow this assumption, then - given the time constraints for the examples - each of them can be related to a unique TODAG:

$$\text{Example 1} : B \rightarrow A_2 \rightarrow A_1 \leftarrow B, \quad (7)$$

$$\text{Example 2} : A_2 \rightarrow B \rightarrow A_1 \leftarrow A_2. \quad (8)$$

In (7) the suggestion is to condition over B [hence using (2, 3)] if B influences both A_1 and A_2 [9, 13, 14]. This is because conditioning over the cause reduces spurious dependencies. This reasoning was generalized as the back-door criterion [13]. In contrast, it is advised to use (1) in (8) since B is an effect of A_2 , but still a cause of A_1 [9, 13, 14]. The intuition of this suggestion is seen in the extreme case when B screens A_1 and A_2 from each other, i.e. A_1 , B and A_2 form a Markov chain. Then the conditional probability $p(A_1|A_2, B) = p(A_1|B)$ will not depend on A_2 begging the original question in (1). Thus, for the two examples considered in [9], Refs. [13, 14] make similar recommendations. The basis of these recommendations was criticized in [17].

Refs. [13, 14] imply that Simpson's paradox for (7, 8) can be solved via do-calculus. This is only partially correct: only (7) is solved with do-calculus. Indeed, the do-calculus in (7) defines $p(a_1|\text{do}(A_2)) = \sum_b p(b)p(a_1|A_2, b)$. Now $p(a_1|\text{do}(A_2 = a_2)) > p(a_1|\text{do}(A_2 = \bar{a}_2))$, amounts to the fine-grained version (2, 3) of the paradox, which agrees with the conclusion of [9]. However, for (8) we have $p(a_1|\text{do}(A_2)) = p(a_1|A_2)$, and it is not clear what prevents us from going back to the original formulation of Simpson's paradox, i.e., comparing $p(a_1|\text{do}(A_2 = a_2)) \leq p(a_1|\text{do}(A_2 = \bar{a}_2))$, with $p(a_1|\text{do}(A_2 = a_2), b) > p(a_1|\text{do}(A_2 = \bar{a}_2), b)$ and $p(a_1|\text{do}(A_2 = a_2), \bar{b}) > p(a_1|\text{do}(A_2 = \bar{a}_2), \bar{b})$.

Let us now argue that realistically, **Example 1** and **Example 2** need not to support TODAGs (7, 8), respectively. In fact, both arrows $B \rightarrow A_2$ and $B \rightarrow A_1$ in **Example 1** are generally questionable: sex need not influence the selection of the treatment, $B \not\rightarrow A_2$ (unless the data was collected in that specific way), and many treatments are sex-indifferent, i.e. $B \not\rightarrow A_1$. For **Example 1** it is more natural to assume that B does not causally influence A . In such a situation, the common cause principle proposes that there is an unobserved random variable C , which is a common cause for A and B [35, 36]; see section 3. Similar reservations apply to **Example 2**: now $A_2 \rightarrow B$ is perhaps argued on the basis of color (A_2) being more directly related to the genotype of the plant, while the height (B) is a phenotypical feature. First, color-genotype and height-phenotype relations need not hold for all plants. Second (and more importantly), it is more natural to assume that the plant genotype influences both its color and height than that the color influences height. Hence the genotype can be a common cause for A and B . Implications of such common cause scenarios are studied below.

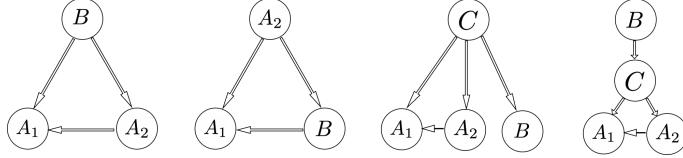


Figure 1: Directed acyclic graphs between random variables $A = (A_1, A_2)$, B and C involved in discussing Simpson's paradox. The first and second graphs were studied in Refs. [13, 14]; see (7, 8). The third or fourth graphs are basic assumptions of this work; see (9). In the first graph, B influences A_1 and A_2 , but B is not the common cause in the strict sense, because there is an influence from A_2 to A_1 . A similar interpretation applies to the second graph. We emphasize that the joint probability $p(A_1, A_2, B)$ for the first and second graphs has the same form, i.e. such graphs are extra constructions employed for interpretation of data. In contrast, the third and fourth graph imply a definite (but the same for both graphs) limitation on the joint probability $p(A_1, A_2, B, C)$, which is expressed by (9).

3 Common cause principle and reformulation of Simpson's paradox

3.1 Common cause and screening

The common cause for $A = (A_1, A_2)$ and B means that there exists a random variable $C = \{c\}$ [35, 36]

$$p(A_1, A_2, B|C) = p(A_1, A_2|C)p(B|C), \quad (9)$$

$$p(A_1, A_2, B) = \sum_{c \in C} p(c)p(A_1, A_2|c)p(B|c), \quad p(c) > 0 \quad (10)$$

where (9) holds for all values assumed by A_1 , A_2 , B and C , and where (10) follows from (9)⁵. The same (9) applies if C causes A and screens A from B . These two scenarios are shown in Fig. 1 as (resp.) the third and fourth graphs. Sections 4, 5, and Appendix C provide several examples of a causing (or screening) variable C in the context of Simpson's paradox. $p(A_1, A_2, B)$ in (10) can be considered as a matrix, where (A_1, A_2) [B] enumerates rows [columns]. Now there is a minimal value of $|C|$ (the number of realizations of C) such that (10) holds [37]. This minimal number is called the positive rank (rank₊[p]) of the matrix $p(A_1, A_2, B)$ [3]. There are methods for its estimation [38]; e.g., it holds $\text{rank}_+[p] \leq \min[|A_1| \cdot |A_2|, |B|]$, where $|B|$ is the number of realization of B . Representations (10) are not unique, even for a fixed $|C|$ [38].

The common cause principle was proposed to explain probabilistic dependencies [35, 36]. It later found important applications in data science, where approximate relations similar to (9) are applied to effective data compression (Non-negative matrix factorization, Probabilistic Latent Dirichlet indexing, etc) [39, 40]. Pearson and Yule expressed early ideas about the common causes that explain certain dependencies; see [41] for a historical review. Involving a common cause in Simpson's paradox means that we do not consider this paradox as referring to a causally sufficient situation; for recent discussions on causal (in)sufficiency see [42, 43].

Note from (9) that C gets rid of the conditional dependence on B in $p(A_1, A_2|B, C)$. Thus, a sensible way of looking at the association between a_1 and a_2 is to check the sign of

$$p(a_1|a_2, C) - p(a_1|\bar{a}_2, C) \quad \text{for each value of } C. \quad (11)$$

To support the usage of the common cause C for decision-making, we note that (9) has an important implication in the context of (1). (This implication generalizes the argument given in [36].) Assume that $p(a_2, b, c) > 0$ for all values c of C . Note from (9) that there exists an event c such that $p(a_1|a_2, b) \leq p(a_1|a_2, b, c) = p(a_1|a_2, c)$, and an event c' such that $p(a_1|a_2, b) \geq p(a_1|a_2, b, c') = p(a_1|a_2, c')$. Hence, if conditioning over b facilitates (hinders) the association between a_1 and a_2 , then conditioning over c (c') is not worse in this facilitation (hindering)⁶.

⁵There are formulations of the common cause principle that look for (9) holding for certain events only and not for random variables [35, 36]. We do not focus on them.

⁶To deduce the first relation assume that $p(a_1|a_2, b) < p(a_1|a_2, b, c) = p(a_1|a_2, c)$ for all c , multiply both parts by $p(a_2, b, c) > 0$, sum over c and get contradiction $p(a_1, a_2, b) < p(a_1, a_2, b)$. Likewise for the second relation.

After the above reformulation, Simpson's paradox seems even less resolvable since C is not observed. Indeed, there are common causes that reproduce (1), those that reproduce (2, 3), but there are many other possibilities. Common causes that are close to B ($C \approx B$) imply option (2, 3) of the paradox, while $C \approx A$ leads to (1). These conclusions are based on the fact that (9) holds exactly for $C = B$ and $C = A$. Thus, Simpson's paradox is not a choice between two options (2, 3) and (1), it is a choice between many options given by different common causes C .

Finally, two remarks about the applicability of (9–11). First, if C is a common cause for both $A = (A_1, A_2)$ and B , the times of these variables naturally hold $t_C < \min[t_{A_1}, t_{A_2}, t_B]$. When C screens A from B , it holds $t_B < t_C < \min[t_{A_1}, t_{A_2}]$. In certain applications of (11), it will suffice to have even a weaker condition $t_C < t_{A_1}$.

Second, we note that for applying (1, 2, 3) we do not need $p(A_2)$, i.e. only $p(B|A_2)$ is needed for connecting (1) with (2, 3). Indeed, A_2 does not necessarily need to be a random variable, but can simply be a label describing the situation. Now the same holds for (11): once (9) is written as

$$p(A_1, B|A_2, C) = p(A_1|A_2, C)p(B|C), \quad (12)$$

we need only $p(C|A_2)$ to pass from (12) to quantities involved in (1, 2, 3); i.e., $p(A_2)$ is not needed.

3.2 A common cause (or screening variable) resolves Simpson's paradox for binary variables

The following theorem shows a definite statement for all binary causes. The message of the theorem is that once we know that C is binary, then the correct decision is (2, 3).

Theorem 1: If A_1, A_2, B and $C = \{c, \bar{c}\}$ are binary, and provided that (1) and (2, 3) are valid, all causes C hold

$$p(a_1|a_2, c) > p(a_1|\bar{a}_2, c), \quad p(a_1|a_2, \bar{c}) > p(a_1|\bar{a}_2, \bar{c}), \quad (13)$$

i.e. all C holding (9) predict the same sign of association between a_1 and a_2 as (2, 3). This theorem is proved in Appendix B. The main idea is that to prove (13), we need to invert (9).

The resolution of Simpson's paradox offered by Theorem 1 is consistent with the do-calculus; see [13] for a review. To show this, consider from Fig. 1 two TODAGs that support the causal structure of Theorem 1:

$$B \leftarrow C \rightarrow A_2 \rightarrow A_1, \quad C \rightarrow A_1, \quad (14)$$

$$B \rightarrow C \rightarrow A_2 \rightarrow A_1, \quad C \rightarrow A_1. \quad (15)$$

For both these TODAGs we have

$$p(a_1|\text{do}(A_2 = a_2)) = \sum_{C=c, \bar{c}} p(a_1|a_2, C)p(C). \quad (16)$$

If (as stated in our theorem 1) $p(a_1|a_2, c) > p(a_1|\bar{a}_2, c)$ and $p(a_1|a_2, \bar{c}) > p(a_1|\bar{a}_2, \bar{c})$ then we get $p(a_1|\text{do}(A_2 = a_2)) > p(a_1|\text{do}(A_2 = \bar{a}_2))$. Hence, if the influence of A_2 on a_1 is decided via do-conditioning over A_2 , then the conclusion agrees with the option (2, 3) of Simpson's paradox.

An important aspect of theorem 1, is that once we can motivate one of the above TODAGs (14, 15) with binary C , then no additional data-gathering is necessary for resolving the paradox, i.e., we do not need to know $P(A_1, A_2|C)$, etc.

Note the difference between TODAGs (7, 8) and (14, 15): (7, 8) are consistent with any joint probability $p(A_1, A_2, B)$. In contrast, (14, 15) require a specific probabilistic feature (9).

3.3 Non-binary causes

Let us assume that we have Simpson's paradox (1, 2, 3) and also the common cause condition (9). However, $C = \{c_1, c_2, c_3\}$ is now a tertiary random variable. It turns out that now all three options of Simpson's paradox become possible: there are common causes C that support (1):

$$p(a_1|a_2, C) < p(a_1|\bar{a}_2, C), \quad \text{for } C = \{c_1, c_2, c_3\}. \quad (17)$$

There are also common causes C which support (2, 3). Eventually, there are tertiary common causes $C = \{c_1, c_2, c_3\}$ for which $p(a_1|a_2, c_i) - p(a_1|\bar{a}_2, c_i)$ has different signs for different values of $i = 1, 2, 3$; i.e., neither (1), nor (2, 3) are supported. Hence, already for the tertiary cause, one needs

prior information on the common cause to decide on the solution of Simpson's paradox. Alternatively, we can infer this unknown cause via one of the methods proposed recently for obtaining the most plausible common cause [44, 45]. It is not excluded that such inference methods will provide further information on the solution of Simpson's paradox.

Note that (17) is a counter-example to an opinion that the structure of the TODAG as such can determine which option – (1) or (2, 3) – of Simpson's paradox applies. Indeed, (17) and **Theorem 1** support the same TODAGs (14, 15), but they lead to different options of the paradox.

4 Example: smoking and surviving

In section 2.2.2 we discussed two examples studied in the literature and argued that they can be also interpreted via the common cause principle. In the present case, the standard approaches do not seem to apply, but the common cause can still be motivated. This example on survival of smokers *versus* nonsmokers is taken from Ref. [16]. Its technical details are discussed in Appendix D. Binary A_1 represents the survival in a group of women as determined by two surveys taken 20 years apart:

$$A_1 = \{a_1, \bar{a}_1\} = \{\text{died, alive}\}, \quad (18)$$

$$A_2 = \{a_2, \bar{a}_2\} = \{\text{smoker, nonsmoker}\}, \quad (19)$$

$$B = \{b, \bar{b}\} = \{\text{age 18} - 64, \text{age 65} - 74\}, \quad (19)$$

where $p(\bar{b}) = 0.1334$, and where b and \bar{b} denote age-groups. According to the data of [16], Simpson's paradox reads [see Appendix D.1 for several technical clarifications]:

$$p(a_1|a_2) = 0.2214 < p(a_1|\bar{a}_2) = 0.2485, \quad (20)$$

$$\begin{aligned} p(a_1|a_2, b) &> p(a_1|\bar{a}_2, b), \\ p(a_1|a_2, \bar{b}) &> p(a_1|\bar{a}_2, \bar{b}). \end{aligned} \quad (21)$$

Note that B here influences A_1 : the age of a person is a predictor of his/her survival. There are few people who quit or started smoking, so causal influences from B to A_2 can be ignored [16]. We can assume that influences from smoking to age are absent. Then this example is intermediate between two situations considered in [7–9, 13]. Recall that when B influenced A_2 , these references advised to decide via the fine-grained option of the paradox, while for the case of the inverse influence (from A_2 to B) they recommend to employ the coarse-grained version; see (7, 8) and Fig. 1.

Hence, we should expand on the above situation to achieve a workable model. We can assume that A_2 and B are influenced by a common cause. Genetic factors influence an individual's age and tendency to smoke. Originally proposed by Fisher [46], this hypothesis was later substantiated in several studies; see Refs. [47, 48] for reviews. Note that this refers to genetics of the smoking behavior itself, and not to health problems that can be caused by smoking plus genetic factors. Several sets of studies that contributed to genetic determinants of smoking behavior are as follows. (i) Children of smoking parents tend to smoke. (ii) Smoking behavior of adopted kids correlates stronger with that of their biological parents. (iii) Monozygotic (genetically identical) twins correlate in their smoking behavior much stronger than heterozygotic twins. Smoking behavior includes both the acquisition and maintenance of smoking. Monozygotic twins show correlations in both these aspects.

As a preliminary hypothesis, we suggest that genetic factors are the common cause of both smoking and age. To apply **Theorem 1** we introduce genetic variable $C = \{\text{risk to smoking, no risk to smoking}\}$. TODAG (14) can describe our simplified model. Now we need to consider genes, which can have influence nicotine addiction and show evidence of pleiotropy, i.e., they can influence more than one aspect of health and survival [49]. CHRNA5 is a pleiotropic gene that encodes subunits of the nicotinic acetylcholine receptor, which is important in neural signaling and nicotine addiction. The receptor can influence various aspects of smoking behavior: nicotine binding and response, reward pathways, craving intensity, smoking cessation success rates, *etc*; see Ref. [50] for a review. CHRNA5 has two alleles G (guanine) and A (adenine), which differ by a single nucleotide. Now A is the risk allele, which is associated with increased smoking. G is the non-risk allele [50]. A is the dominant allele with respect to G, and we treat CHRNA5 as binary genetic variable; see Appendix D for clarifications. Thus, **Theorem 1** applies and we conclude – consistently with other studies – that smoking is not beneficial for survival.

5 Example: COVID-19, Italy *versus* China

Here the COVID-19 death rates are compared in Italy and China [31, 51]. According to the data, aggregated death rates in Italy are higher than in China, but in each age group, the death rates are higher in China. More precisely,

$$A_1 = \{a_1, \bar{a}_1\} = \{\text{died, alive}\}, \quad (22)$$

$$A_2 = \{a_2, \bar{a}_2\} = \{\text{China, Italy}\}, \quad (23)$$

$$B = \{b, \bar{b}\} = \{\text{age 60} - 79, \text{age 80+}\}, \quad (24)$$

where $p(a_1)$ is the death rate out of COVID-19, $p(B)$ is found from the number of positively tested people in each age group, $p(\bar{b}) = 0.1012$, and where $p(\bar{b}|a_2) = 0.1017$ and $p(\bar{b}|\bar{a}_2) = 0.3141$. According to the data of [31], Simpson's paradox reads

$$p(a_1|a_2) = 0.0608 < p(a_1|\bar{a}_2) = 0.0760, \quad (25)$$

$$p(a_1|a_2, b) = 0.0507 > p(a_1|\bar{a}_2, b) = 0.04900, \quad (26)$$

$$p(a_1|a_2, \bar{b}) = 0.150 > p(a_1|\bar{a}_2, \bar{b}) = 0.135. \quad (27)$$

The authors of [31] proposed that this situation is described by TODAG $A_2 \rightarrow B \rightarrow A_1 \leftarrow A_2$; cf. (8). Then the conclusion from [9, 13] will be that the aggregated version of Simpson's paradox works, i.e. Italy did worse than China. The authors of Ref. [31] reached the same conclusion.

When applying the common cause set-up from section 3.1, we can look at (12), because A_2 is better described as a label (avoiding dealing with the probability of country). Hence, from the viewpoint of (12), we need a common cause that supplements A_2 and acts on both A_1 and B . We propose that the quality of healthcare system can be the common cause C here. In particular, a more affordable healthcare system may cause a higher proportion of older people in the country's society. Indeed, for 2019, Italy had a larger percentage of people aged above 65 than China: 24.05 % *versus* 12.06 %. On the other hand, the healthcare system will influence death rates in all age groups. If C is binary, then our conclusion from **Theorem 1** is opposite to that of [31]: China did worse than Italy.

6 Simpson's paradox and common cause principle for Gaussian variables

6.1 Formulation of Simpson's paradox for continuous variables

Simpson's paradox is uncovered earlier for continuous variables than for the discrete case [1]. Researching the continuous variable paradox and identifying it in big datasets is currently an active research field [23, 24, 29, 52–54].

The association between continuous variables $A_1 = \{a_1\}$ and $A_2 = \{a_2\}$ can be based on a reasonable definition of correlation coefficient [1, 30]. We focus on Gaussian variables, because this definition is unique for them and amounts to conditional variance. These variables are also important in the context of machine learning (e.g. linear regressions) [55].

Hence the formulation of Simpson's paradox given $B = \{b\}$ reads instead of (1–3) [1, 23, 24, 30]:

$$\sigma[a_1, a_2]\sigma[a_1, a_2|b] < 0 \text{ for all } b, \quad (26)$$

$$\sigma[a_1, a_2] \equiv \langle (a_1 - \langle a_1 \rangle)(a_2 - \langle a_2 \rangle) \rangle, \quad (27)$$

$$\sigma[a_1, a_2|b] \equiv \langle (a_1 - \langle a_1 \rangle_b)(a_2 - \langle a_2 \rangle_b) \rangle_b, \quad \langle a \rangle_b \equiv \int da a p(a|b), \quad (28)$$

where $\langle a \rangle_b$ and $\sigma[a_1, a_2|b]$ are the conditional mean and covariance; $\langle a \rangle$ and $\sigma[a_1, a_2]$ are the mean and covariance; $p(a|b)$ is the conditional probability density of $A = \{a\}$.

The message of (26) is that the usual and conditional covariance have different signs, i.e., they predict different types of associations between A_1 and A_2 . For instance, $\sigma[a_1, a_2] > 0$ means correlation, while $\sigma[a_1, a_2|b]$ implies anti-correlation. Note a subtle difference between this formulation of Simpson's paradox and that presented in section 2.2. In (26–27) the formulation is symmetric with respect to A_1 and A_2 .

6.2 General solution for Gaussian variables

For fuller generality, we shall assume that $A = \{\mathbf{a}\}$, and $B = \{\mathbf{b}\}$ are Gaussian column vectors with a number of components (i.e., dimensionality) n_A , and n_B , respectively. We also define

$$\mathbf{y}^T = (\mathbf{a}, \mathbf{b}), \quad \mathbf{y}^T \mathbf{y} \text{ is a number,} \quad \mathbf{y} \mathbf{y}^T \text{ is a matrix,} \quad (29)$$

where T means transposition. We assume that a Gaussian n_X -dimensional variable $X = \{\mathbf{x}\}$ is the common cause variable for A and B :

$$P(\mathbf{y}|\mathbf{x}) = (2\pi)^{-n_A/2} (\det[\mathcal{Q}])^{-1/2} e^{-\frac{1}{2}(\mathbf{y}-\mathcal{C}\mathbf{x})^T \mathcal{Q}^{-1}(\mathbf{y}-\mathcal{C}\mathbf{x})}, \quad (30)$$

$$P(\mathbf{x}) = (2\pi)^{-n_X/2} (\det[\mathcal{S}])^{-1/2} e^{-\frac{1}{2}\mathbf{x}^T \mathcal{S}^{-1} \mathbf{x}}, \quad (31)$$

$$\mathcal{Q} = \begin{pmatrix} \mathcal{A} & 0 \\ 0 & \mathcal{B} \end{pmatrix}, \quad \langle \mathbf{y} \rangle_{\mathbf{x}} = \mathcal{C}\mathbf{x}, \quad (32)$$

$$\langle (\mathbf{y} - \langle \mathbf{y} \rangle_{\mathbf{x}})(\mathbf{y}^T - \langle \mathbf{y}^T \rangle_{\mathbf{x}}) \rangle_{\mathbf{x}} = \mathcal{Q}, \quad (33)$$

where the common cause feature of $X = \{\mathbf{x}\}$ is ensured by the block-diagonal structure of the covariance matrix \mathcal{Q} : \mathcal{A} and \mathcal{B} are (resp.) covariance matrices for A and B . In (30), \mathcal{C} is $(n_A + n_B) \times n_X$ matrix that ensures the coupling between (A, B) and X . For simplicity and without loss of generality we assumed that $\langle \mathbf{x} \rangle = 0$ and hence $\langle \mathbf{y} \rangle = 0$ in (30). We get from (30) after arranging similar terms (and omitting normalization):

$$P(\mathbf{x})P(\mathbf{y}|\mathbf{x}) \propto e^{-\frac{1}{2}[\mathbf{x}^T - \mathbf{y}^T \mathcal{Q}^{-1} \mathcal{C} \mathbf{V}^{-1}] V [\mathbf{x} - \mathbf{V}^{-1} \mathcal{C}^T \mathcal{Q}^{-1} \mathbf{y}] - \frac{1}{2} \mathbf{y}^T [\mathcal{Q}^{-1} - \mathcal{Q}^{-1} \mathcal{C} \mathbf{V}^{-1} \mathcal{C}^T \mathcal{Q}^{-1}] \mathbf{y}}, \quad (34)$$

$$V = \mathcal{S}^{-1} + \mathcal{C}^T \mathcal{Q}^{-1} \mathcal{C}. \quad (35)$$

Employing (87) from Appendix F we obtain:

$$\mathcal{Q}^{-1} - \mathcal{Q}^{-1} \mathcal{C} \mathbf{V}^{-1} \mathcal{C}^T \mathcal{Q}^{-1} = (\mathcal{Q} + \mathcal{C} \mathcal{S} \mathcal{C}^T)^{-1}, \quad (36)$$

$$P(\mathbf{y}) \propto e^{-\frac{1}{2} \mathbf{y}^T (\mathcal{Q} + \mathcal{C} \mathcal{S} \mathcal{C}^T)^{-1} \mathbf{y}}, \quad (37)$$

$$\langle \mathbf{y} \mathbf{y}^T \rangle = \mathcal{Q} + \mathcal{C} \mathcal{S} \mathcal{C}^T, \quad (38)$$

We now recall (29, 33), introduce the block-diagonal form for $\mathcal{C} \mathcal{S} \mathcal{C}^T$, and find

$$\mathcal{Q} + \mathcal{C} \mathcal{S} \mathcal{C}^T = \begin{pmatrix} \mathcal{A} + \mathcal{J} & \mathcal{K} \\ \mathcal{K}^T & \mathcal{B} + \mathcal{L} \end{pmatrix}, \quad (39)$$

$$(\mathcal{Q} + \mathcal{C} \mathcal{S} \mathcal{C}^T)^{-1} = \begin{pmatrix} (\mathcal{A} + \mathcal{J} - \mathcal{K}(\mathcal{B} + \mathcal{L})^{-1} \mathcal{K}^T)^{-1} & \dots \\ \dots & \dots \end{pmatrix}, \quad (40)$$

where (40) is deduced via formulas from Appendix F. In (40) we need only the upper-left block, so that all other blocks are omitted. Collecting pertinent expressions from (29, 38, 40, 33), we obtain along with (38):

$$\langle (\mathbf{y} - \langle \mathbf{y} \rangle_{\mathbf{x}})(\mathbf{y}^T - \langle \mathbf{y}^T \rangle_{\mathbf{x}}) \rangle_{\mathbf{x}} = \mathcal{Q}, \quad (41)$$

$$\langle (\mathbf{a} - \langle \mathbf{a} \rangle_{\mathbf{b}})(\mathbf{a}^T - \langle \mathbf{a}^T \rangle_{\mathbf{b}}) \rangle_{\mathbf{b}} = \mathcal{A} + \mathcal{J} - \mathcal{K}(\mathcal{B} + \mathcal{L})^{-1} \mathcal{K}^T. \quad (42)$$

6.3 The minimal set-up of Simpson's paradox: 3 scalar variables + scalar cause

For this simplest situation, $\mathbf{y}^T = (a_1, a_2, b)$ is a 3-dimensional vector, \mathcal{A} is a 2×2 matrix, \mathcal{C} is a 3×1 matrix, while \mathcal{S} and \mathcal{B} are positive scalars. Now (38, 41, 42) read:

$$\langle (a_1 - \langle a_1 \rangle_b)(a_2 - \langle a_2 \rangle_b) \rangle_b = \mathcal{A}_{12} + \mathcal{C}_{11} \mathcal{C}_{21} \mathcal{S} \epsilon, \\ 0 < \epsilon \equiv \frac{\mathcal{B}}{\mathcal{B} + \mathcal{C}_{31}^2 \mathcal{S}} < 1, \quad (43)$$

$$\langle (a_1 - \langle a_1 \rangle_x)(a_2 - \langle a_2 \rangle_x) \rangle_x = \mathcal{A}_{12}, \quad (44)$$

$$\langle a_1 a_2 \rangle = \mathcal{A}_{12} + \mathcal{C}_{11} \mathcal{C}_{21} \mathcal{S}. \quad (45)$$

Now consider a scenario of Simpson's paradox, where

$$\langle a_1 a_2 \rangle = \mathcal{A}_{12} + \mathcal{C}_{11} \mathcal{C}_{21} \mathcal{S} > 0 \text{ and} \quad (46)$$

$$\langle (a_1 - \langle a_1 \rangle_b)(a_2 - \langle a_2 \rangle_b) \rangle_b = \mathcal{A}_{12} + \mathcal{C}_{11} \mathcal{C}_{21} \mathcal{S} \epsilon < 0. \quad (47)$$

Due to $0 < \epsilon < 1$, these two inequalities demand $\mathcal{A}_{12} < 0$. Likewise, $\langle a_1 a_2 \rangle = \mathcal{A}_{12} + \mathcal{C}_{11} \mathcal{C}_{21} \mathcal{S} < 0$ and $\mathcal{A}_{12} + \mathcal{C}_{11} \mathcal{C}_{21} \mathcal{S} \epsilon > 0$ demand $\mathcal{A}_{12} > 0$. It is seen that under Simpson's paradox for this minimal situation, the sign of $\langle (a_1 - \langle a_1 \rangle_x)(a_2 - \langle a_2 \rangle_x) \rangle_x$ coincides with the sign of $\langle (a_1 - \langle a_1 \rangle_b)(a_2 - \langle a_2 \rangle_b) \rangle_b$. We are thus led to the following:

Theorem 2: In the minimal situation (43–45) with the (minimal) common cause, the continuous Simpson's paradox (26) is resolved in the sense that the decision on the sign of correlations should proceed according to the fine-grained option: $\langle (a_1 - \langle a_1 \rangle_b)(a_2 - \langle a_2 \rangle_b) \rangle_b$; see (26–27).

For non-minimal common causes, all possibilities of the paradox can be realized; see Appendix G.

7 Conclusion

We addressed Simpson's paradox: the problem of setting up an association between two events a_1, a_2 given the lurking variable B . This decision-making paradox provides two plausible but opposite suggestions for the same situation; see (1) and (2, 3). Either the first option is correct, the second option is correct, or none of them is correct.

We focus on cases when there is a common cause C for B and $A = (A_1, A_2)$ (which combines a_1, a_2 and their complements). Alternatively, C screens out A from B ; cf. Fig. 1. These cases include those in which there is no causal influence from A to B , as well as from B to A . Hence, the dependency between A and B are to be explained via the common cause C , which is a statement of the common cause principle [35, 36]. Now the association between a_1 and a_2 is to be decided by looking at $p(a_1|a_2, c)$ for various values of C . This task is normally difficult given the fact that C is frequently not fully known and is not observed. However, provided that A_1, A_2, B and C are binary, $p(a_1|a_2, c)$ shows the same association as the option (2, 3) of Simpson's paradox. In this sense, Simpson's paradox is resolved in the binary situation, provided that the situation allows a binary cause or a binary screening variable. The same conclusion on resolving Simpson's paradox was reached for Gaussian variables in the minimal situation. Several examples can illustrate the plausibility of a minimal C .

Our solution of Simpson's paradox is not a generalization of the existing solution, since it employs a different idea. As we argued in section 2.2.2, the only unambiguous solution proposed so far refers to the directed acyclic graph (7). We also provided a counter-example against an opinion that the solution of Simpson's paradox can be decided based on the directed acyclic graph structure only.

We provide the first resolution of Simpson's paradox for Gaussian variables. This scenario of the paradox differs from the discrete in at least one essential aspect (it is symmetric), and was historically known earlier than the discrete version, and is more frequent in practice. This scenario of the paradox cannot be analyzed via standard directed acyclic graphs, and has to be worked out directly.

Our results have several limitations, but (we believe) these can be overcome with further research. (i) We limited ourselves to results that hold for all (minimal) common causes. For many applications, this is too stringent: if the common cause is known to exist, but is not observed directly, then it may be sufficient to infer it e.g. via the (generalized) maximum likelihood [45] or the minimal entropy method [44]. This may provide pertinent information on the real common cause and the structure of Simpson's paradox. (ii) We insisted on a precise common cause. The screening relation (10) is also useful, when it does hold approximately, but the support of C is relatively small. Such an approximate relation (10) provides data compression via feature detection, which is the main message of unsupervised methods such as Non-negative Matrix factorization and Probabilistic Latent Dirichlet indexing [39, 40]. The impact of such approximate, but efficient causes on probabilistic reasoning is an interesting research subject that we plan to explore in the future. (iii) All examples we presented are observationally incomplete: a plausible cause had to be inferred, but it was not shown to exist or function from the real data.

Acknowledgments and Disclosure of Funding

This work was supported by the HESC of Armenia under Grants 24FP-1F030, 21AG-1C038 and 21T-1C037.

References

- [1] K. Pearson, A. Lee, and L. Bramley-Moore. “VI. Mathematical contributions to the theory of evolution.—VI. Genetic (reproductive) selection: Inheritance of fertility in man, and of fecundity in thoroughbred racehorses”. In: *Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character* 192 (1899), pp. 257–330.
- [2] G. U. Yule. “Notes on the theory of association of attributes in statistics”. In: *Biometrika* 2.2 (1903), pp. 121–134.
- [3] M. R. Cohen and E. Nagel. *An Introduction to Logic and the Scientific Method*. New York: Harcourt, Brace and Company, 1934.
- [4] E. H. Simpson. “The interpretation of interaction in contingency tables”. In: *Journal of the Royal Statistical Society: Series B (Methodological)* 13.2 (1951), pp. 238–241.
- [5] C. R. Blyth. “On Simpson’s paradox and the sure-thing principle”. In: *Journal of the American Statistical Association* 67.338 (1972), pp. 364–366.
- [6] L. Wasserman. *All of statistics: a concise course in statistical inference*. Springer Science & Business Media, 2013.
- [7] N. Cartwright. “Causal Laws and Effective Strategies”. In: *Nous* 13 (1979), pp. 419–437.
- [8] N. Cartwright. “Causal laws and effective strategies”. In: *Arguing About Science*. Routledge, 2012, pp. 466–479.
- [9] D. V. Lindley and M. R. Novick. “The role of exchangeability in inference”. In: *The annals of statistics* (1981), pp. 45–58.
- [10] B. Barigelli and R. Scozzafava. “Remarks on the role of conditional probability in data exploration”. In: *Statistics & probability letters* 2.1 (1984), pp. 15–18.
- [11] B. Barigelli. “Data exploration and conditional probability”. In: *IEEE transactions on systems, man, and cybernetics* 24.12 (1994), pp. 1764–1766.
- [12] J. Zidek. “Maximal Simpson-disaggregations of 2×2 tables”. In: *Biometrika* 71.1 (1984), pp. 187–190.
- [13] J. Pearl. *Causality*. Cambridge university press, 2009.
- [14] J. Pearl. “Comment: Understanding Simpson’s Paradox”. In: *The American Statistician* 68.1 (2014), pp. 8–13.
- [15] M. A. Hernán, D. Clayton, and N. Keiding. “The Simpson’s paradox unraveled”. In: *International journal of epidemiology* 40.3 (2011), pp. 780–785.
- [16] D. R. Appleton, J. M. French, and M. P. Vanderpump. “Ignoring a covariate: An example of Simpson’s paradox”. In: *The American Statistician* 50.4 (1996), pp. 340–341.
- [17] T. W. Armistead. “Resurrecting the third variable: A critique of Pearl’s causal analysis of Simpson’s paradox”. In: *The American Statistician* 68.1 (2014), pp. 1–7.
- [18] A. Agresti. *Categorical data analysis*. Vol. 792. John Wiley & Sons, 2012.
- [19] J. E. Cohen. “An uncertainty principle in demography and the unisex issue”. In: *The American Statistician* 40.1 (1986), pp. 32–39.
- [20] S. E. Fienberg and S.-H. Kim. “Positive Association Among Three Binary Variables and Cross-Product Ratios”. In: *Biometrika* 94.4 (2007), pp. 999–1005.
- [21] R. A. Kievit et al. “Simpson’s paradox in psychological science: a practical guide”. In: *Frontiers in psychology* 4 (2013), p. 513.
- [22] M. Mangalam. *Simpson’s Paradox in Psychology*. 2022. URL: https://www.researchgate.net/profile/Madhur-Mangalam/publication/353317264_Simpson’s_paradox_in_psychology/_links/615e0d75c04f5909fd89e586/Simpsons-paradox-in-psychology.pdf.
- [23] N. Alipourfard, P. G. Fennell, and K. Lerman. “Can you trust the trend? discovering simpson’s paradoxes in social data”. In: *Proceedings of the eleventh ACM international conference on web search and data mining*. 2018, pp. 19–27.
- [24] K. Lerman. “Computational social scientist beware: Simpson’s paradox in behavioral data”. In: *Journal of Computational Social Science* 1.1 (2018), pp. 49–58.
- [25] R. D. Luce and H. Raiffa. *Games and decisions: Introduction and critical survey*. Courier Corporation, 1989.

[26] L. J. Savage. *The foundations of statistics*. Courier Corporation, 1972.

[27] J. Baron. *Thinking and deciding*. Cambridge University Press, 2000.

[28] V. G. Bardakchyan and A. E. Allahverdyan. “Regret theory, Allais’ paradox, and Savage’s omelet”. In: *Journal of Mathematical Psychology* 117 (2023), p. 102807.

[29] J. Wang et al. “Learning to Discover Various Simpson’s Paradoxes”. In: *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*. 2023, pp. 5092–5103.

[30] N. Kock. “How likely is Simpson’s paradox in path models?” In: *International Journal of e-Collaboration (ijec)* 11.1 (2015), pp. 1–7.

[31] J. von Kügelgen, L. Gresele, and B. Schölkopf. “Simpson’s paradox in Covid-19 case fatality rates: a mediation analysis of age-related causal effects”. In: *IEEE transactions on artificial intelligence* 2.1 (2021), pp. 18–27.

[32] T. Rudas. “Informative allocation and consistent treatment selection”. In: *Statistical Methodology* 7.3 (2010), pp. 323–337.

[33] O. Saarela, D. A. Stephens, and E. E. Moodie. “The role of exchangeability in causal inference”. In: *Statistical Science* 38.3 (2023), pp. 369–385.

[34] J. K. Adolf and E. I. Fried. “Ergodicity is sufficient but not necessary for group-to-individual generalizability”. In: *Proceedings of the National Academy of Sciences* 116.14 (2019), pp. 6540–6541.

[35] H. Reichenbach. *The direction of time*. Vol. 65. University of California Press, 1956.

[36] P. Suppes. *A probabilistic theory of causality*. North-Holland, Amsterdam, 1970.

[37] J. E. Cohen and U. G. Rothblum. “Nonnegative ranks, decompositions, and factorizations of nonnegative matrices”. In: *Linear Algebra and its Applications* 190 (1993), pp. 149–168.

[38] N. Gillis. *Nonnegative Matrix Factorization*. SIAM, 2021.

[39] C. Ding, T. Li, and W. Peng. “On the equivalence between non-negative matrix factorization and probabilistic latent semantic indexing”. In: *Computational Statistics & Data Analysis* 52.8 (2008), pp. 3913–3927.

[40] E. Khalafyan, A. E. Allahverdyan, and A. Hovhannisyan. “Nonnegative matrix factorization and the principle of the common cause”. In: *Proceedings of the IEEE International Conference on Data Science and Advanced Analytics (DSAA 2025)*. To appear in DSAA 2025; preprint available at arXiv. Birmingham, UK: IEEE, Oct. 2025, xx–yy. arXiv: 2509.03652 [cs.LG]. URL: <https://arxiv.org/abs/2509.03652>.

[41] J. Aldrich. “Correlations genuine and spurious in Pearson and Yule”. In: *Statistical science* (1995), pp. 364–376.

[42] A. G. Reddy and V. N Balasubramanian. “Detecting and measuring confounding using causal mechanism shifts”. In: *Advances in Neural Information Processing Systems* 37 (2024), pp. 61677–61699.

[43] P. O. Hoyer et al. “Estimation of causal effects using linear non-Gaussian causal models with hidden variables”. In: *International Journal of Approximate Reasoning* 49.2 (2008), pp. 362–378.

[44] M. Kocaoglu et al. “Applications of common entropy for causal inference”. In: *Advances in neural information processing systems* 33 (2020), pp. 17514–17525.

[45] A. Hovhannisyan and A. Allahverdyan. “The most likely common cause”. In: *International Journal of Approximate Reasoning* 173 (2024), p. 109264.

[46] R. A. Fisher. “Lung cancer and cigarettes?” In: *Nature* 182.4628 (1958), pp. 108–108.

[47] J. R. Hughes. “Genetics of smoking: A brief review”. In: *Behavior Therapy* 17.4 (1986), pp. 335–345.

[48] V. Batra et al. “The genetic determinants of smoking”. In: *Chest* 123.5 (2003), pp. 1730–1739.

[49] “Genome-wide meta-analyses identify multiple loci associated with smoking behavior”. In: *Nature genetics* 42.5 (2010), pp. 441–447.

[50] G. Lassi et al. “The CHRNA5–A3–B4 gene cluster and smoking: from discovery to therapeutics”. In: *Trends in neurosciences* 39.12 (2016), pp. 851–861.

[51] J. Sprenger and N. Weinberger. “Simpson’s Paradox”. In: *The Stanford Encyclopedia of Philosophy*. Ed. by E. N. Zalta. Summer 2021. Metaphysics Research Lab, Stanford University, 2021.

- [52] J. Xu, J. Pei, and Z. Cong. “Finding Multidimensional Simpson’s Paradox”. In: *ACM SIGKDD Explorations Newsletter* 24.2 (2022), pp. 48–60.
- [53] Y.-K. Tu, D. Gunnell, and M. S. Gilthorpe. “Simpson’s Paradox, Lord’s Paradox, and Suppression Effects are the same phenomenon—the reversal paradox”. In: *Emerging themes in epidemiology* 5 (2008), pp. 1–9.
- [54] C. A. Nickerson and N. J. Brown. “Simpson’s Paradox is suppression, but Lord’s Paradox is neither: clarification of and correction to Tu, Gunnell, and Gilthorpe (2008)”. In: *Emerging Themes in Epidemiology* 16.1 (2019), p. 5.
- [55] C. K. Williams and C. E. Rasmussen. *Gaussian processes for machine learning*. Vol. 2. 3. MIT press Cambridge, MA, 2006.
- [56] M. G. Pavlides and M. D. Perlman. “How likely is Simpson’s paradox?” In: *The American Statistician* 63.3 (2009), pp. 226–233.
- [57] B. A. Frigyik, A. Kapila, and M. R. Gupta. “Introduction to the Dirichlet distribution and related processes”. In: *Department of Electrical Engineering, University of Washington, UWEETR-2010-0006* 6 (2010), pp. 1–27.
- [58] Y. W. Teh et al. “Dirichlet Process.” In: *Encyclopedia of machine learning* 1063 (2010), pp. 280–287.
- [59] J. D. Norton. *Paradoxes From Probability Theory: Independence*. 2023. URL: https://sites.pitt.edu/~jdnorton/teaching/paradox/chapters/probability_from_independence/probability_from_independence.html.
- [60] K. Ross. *A mathematician at the ballpark: Odds and probabilities for baseball fans*. Penguin, 2007.

A How frequent is Simpson's paradox: an estimate based on the non-informative Dirichlet density

To estimate the frequency of Simpson's paradox under fair data-gathering, we can try to generate the probabilities in (1–3) randomly in an unbiased way, and calculate the frequency of holding the paradox [30, 56]. The best and widely accepted candidate for an unbiased density of probabilities is the Dirichlet density, which is widely employed in statistics and machine learning [57, 58]. The Dirichlet probability density for n probabilities (q_1, \dots, q_n) reads:

$$\mathcal{D}(q_1, \dots, q_n | \alpha_1, \dots, \alpha_n) = \frac{\Gamma[\sum_{k=1}^n \alpha_k]}{\prod_{k=1}^n \Gamma[\alpha_k]} \prod_{k=1}^n q_k^{\alpha_k-1} \delta\left(\sum_{k=1}^n q_k - 1\right), \quad (48)$$

$$\int_0^\infty \prod_{k=1}^n dq_k \mathcal{D}(q_1, \dots, q_n | \alpha_1, \dots, \alpha_n) = 1, \quad (49)$$

where $\alpha_k > 0$ are the parameters of the Dirichlet density, $\delta(x)$ is the delta-function, and $\Gamma[x] = \int_0^\infty dq q^{x-1} e^{-q}$ is the Euler's Γ -function. Since $\mathcal{D}(q_1, \dots, q_n)$ is non-zero only for $q_k \geq 0$ and $\sum_{k=1}^n q_k = 1$, the continuous variables themselves have the meaning of probabilities.

Many standard prior densities for probabilities are contained in (48); e.g., homogeneous ($\alpha_1 = \dots = \alpha_n = 1$), Haldane's ($\alpha_1 = \dots = \alpha_n = \alpha \approx 0$), Jeffreys ($\alpha_1 = \dots = \alpha_n = 1/2$). For estimating the frequency of Simpson's paradox, Ref. [56] employed homogeneous and Jeffreys prior.

For modeling a non-informative Dirichlet density we find it natural to take

$$\alpha_1 = \dots = \alpha_n = 1/n. \quad (50)$$

The homogeneity feature, $\alpha_1 = \dots = \alpha_n$ in (50) is natural for an unbiased density. The factor $\frac{1}{n}$ in (50) makes an intuitive sense, since $\alpha_1 = \dots = \alpha_n$ become homogeneous (non-informative) probabilities. Eq. (50) arises when we assume that the distribution of random probabilities is independent of whether they were generated directly from (48) with n components, or alternatively from (48) with nm components $\alpha_1 = \dots = \alpha_{nm}$, and then marginalized. This requirement indeed leads to (50), as can be checked with the following feature of (48):

$$\begin{aligned} & \int_0^\infty dq'_{n-1} dq'_n \delta(q_{n-1} - q'_{n-1} - q'_n) \times \\ & \mathcal{D}(q_1, \dots, q_{n-2}, q'_{n-1}, q'_n | \alpha_1, \dots, \alpha_n) \\ & = \mathcal{D}(q_1, \dots, q_{n-2}, q_{n-1} | \alpha_1, \dots, \alpha_{n-2}, \alpha_{n-1} + \alpha_n). \end{aligned} \quad (51)$$

The message of (51) is that aggregating over two probabilities leads to the same Dirichlet density with the sum of the corresponding weights α_{n-1} and α_n .

We estimated the frequency of Simpson's paradox assuming that 8 probabilities $p(A_1, A_2, B)$ in (1–3) are generated from (48, 50) with $n = 8$ (binary situation). This amounts to checking two relations (they amount to (1–3) and its reversal)

$$\begin{aligned} & [p(a_1|a_2) - p(a_1|\bar{a}_2)][p(a_1|a_2, b) - p(a_1|\bar{a}_2, b)] < 0, \\ & [p(a_1|a_2, b) - p(a_1|\bar{a}_2, b)][p(a_1|a_2, \bar{b}) - p(a_1|\bar{a}_2, \bar{b})] > 0. \end{aligned} \quad (52)$$

Our numerical result is that the frequency of two inequalities in (52) is $\approx 4.29\% \pm 0.001\%$. For this precision it was sufficient to generate $N = 10^7$ samples from (48, 50) with $n = 8$. This result compares favorably with $\approx 1.66\%$ obtained for $\alpha_1 = \dots = \alpha_8 = 1$ (homogeneous prior), and $\approx 2.67\%$ obtained for $\alpha_1 = \dots = \alpha_8 = 0.5$ (Jeffreys prior) [56]. It is seen that the frequency of Simpson's paradox is a decreasing function of $\alpha_1 = \dots = \alpha_8 = \alpha$ [56].

Roughly, the above result $\approx 4.29\%$ means that in every 1000 instances of 3 binary variables, 42 instances will show Simpson's paradox. This number is reassuring: it is not very large meaning that the standard decision-making based on the marginal probabilities in (1) will frequently be reasonable. But it is also not very small, showing that Simpson's paradox is generic and has its range of applicability.

B Proof of Theorem 1

The main idea of proving (13) is inverting (9):

$$\begin{aligned} & p(a_1|a_2, c) \\ &= \frac{p(\bar{b}|\bar{c})p(a_1|a_2, b)p(b|a_2) + (p(\bar{b}|\bar{c}) - 1)p(a_1|a_2, \bar{b})p(\bar{b}|a_2)}{p(\bar{b}|\bar{c})p(b|a_2) + (p(\bar{b}|\bar{c}) - 1)p(\bar{b}|a_2)} \end{aligned} \quad (53)$$

$$= p(a_1|a_2, \bar{b}) + \frac{p(\bar{b}|\bar{c})p(b|a_2)[p(a_1|a_2, \bar{b}) - p(a_1|a_2, b)]}{1 - p(\bar{b}|\bar{c}) - p(b|a_2)}, \quad (54)$$

$$\begin{aligned} p(c|a_2) &= \frac{p(\bar{b}|\bar{c})p(b|a_2) + (p(\bar{b}|\bar{c}) - 1)p(\bar{b}|a_2)}{p(b|c) + p(\bar{b}|\bar{c}) - 1} \\ &= \frac{p(\bar{b}|\bar{c}) + p(b|a_2) - 1}{p(b|c) + p(\bar{b}|\bar{c}) - 1}, \end{aligned} \quad (55)$$

where unknown quantities $p(a_1|a_2, c)$ and $p(c|a_2)$ are represented via known ones (i.e. $p(A_1, A_2, B)$) and free parameters $p(B|C)$. Eqs. (54, 55) hold upon changing a_2 by \bar{a}_2 and are deduced in Appendix E via specific notations that should be useful when dealing with (9) for a non-binary C .

The rest of the proof is algebraic but non-trivial. It also works out and employs constraints (4, 64) on Simpson's paradox itself. Expanding both sides of (1),

$$p(a_1|a_2) = p(a_1|a_2, b)p(b|a_2) + p(a_1|a_2, \bar{b})p(\bar{b}|a_2), \quad (56)$$

$$p(a_1|\bar{a}_2) = p(a_1|\bar{a}_2, b)p(b|\bar{a}_2) + p(a_1|\bar{a}_2, \bar{b})p(\bar{b}|\bar{a}_2), \quad (57)$$

and using there (2, 3) we subtract the sides of (1) from each other and find:

$$\begin{aligned} & p(a_1|a_2, b) + p(\bar{b}|a_2)[p(a_1|a_2, \bar{b}) - p(a_1|a_2, b)] < \\ & p(a_1|\bar{a}_2, b) + p(\bar{b}|\bar{a}_2)[p(a_1|\bar{a}_2, \bar{b}) - p(a_1|\bar{a}_2, b)]. \end{aligned} \quad (58)$$

We return to (2, 3) and note that we can assume without loosing generality

$$p(a_1|a_2, \bar{b}) > p(a_1|a_2, b). \quad (59)$$

Eqs. (56, 57) imply that for the validity of (1–3, 59) it is necessary to have $p(a_1|\bar{a}_2, \bar{b}) > p(a_1|a_2, b)$, which together with (2, 3, 59) revert to (4). Now (1, 56, 57) read

$$p(a_1|a_2, b) + [1 - p(b|a_2)][p(a_1|a_2, \bar{b}) - p(a_1|a_2, b)] \quad (60)$$

$$< p(a_1|\bar{a}_2, b) + [1 - p(b|\bar{a}_2)][p(a_1|\bar{a}_2, \bar{b}) - p(a_1|\bar{a}_2, b)),$$

$$p(a_1|a_2, \bar{b}) - p(b|a_2)(p(a_1|a_2, \bar{b}) - p(a_1|a_2, b))$$

$$< p(a_1|\bar{a}_2, \bar{b}) - p(b|\bar{a}_2)(p(a_1|\bar{a}_2, \bar{b}) - p(a_1|\bar{a}_2, b)), \quad (61)$$

where (60) and (61) are equivalent. Eqs. (60, 61, 4) imply

$$\begin{aligned} & [1 - p(b|a_2)][p(a_1|a_2, \bar{b}) - p(a_1|a_2, b)] < \\ & [1 - p(b|\bar{a}_2)][p(a_1|\bar{a}_2, \bar{b}) - p(a_1|\bar{a}_2, b)), \end{aligned} \quad (62)$$

$$\begin{aligned} & p(b|a_2)(p(a_1|a_2, \bar{b}) - p(a_1|a_2, b)) > \\ & p(b|\bar{a}_2)(p(a_1|\bar{a}_2, \bar{b}) - p(a_1|\bar{a}_2, b)). \end{aligned} \quad (63)$$

As checked directly, Eqs. (62, 63) lead to

$$p(b|a_2) > p(b|\bar{a}_2). \quad (64)$$

Now we return to (55) and assume there $p(b|c) + p(\bar{b}|\bar{c}) - 1 < 0$, which leads to $p(\bar{b}|\bar{c}) + p(b|a_2) - 1 < 0$ from (55). Writing down from (55) the formula for $p(c|\bar{a}_2)$ and making the same assumption we get $p(\bar{b}|\bar{c}) + p(b|\bar{a}_2) - 1 < 0$. Now look at (54) and its analog obtained via $a_2 \rightarrow \bar{a}_2$, and use there these two results together with (63, 64) and (4) to deduce the first inequality in (13) under assumption $p(b|c) + p(\bar{b}|\bar{c}) - 1 < 0$. It should be obvious that the second inequality in (13) holds under the same assumption since we nowhere used any specific feature of c compared to \bar{c} .

For $p(\bar{b}|\bar{c}) + p(b|a_2) - 1 > 0$ we need to use instead of (54) another form of (53)

$$\begin{aligned} p(a_1|a_2, c) &= p(a_1|a_2, b) - \\ &\frac{[1 - p(\bar{b}|\bar{c})]p(\bar{b}|a_2)[p(a_1|a_2, b) - p(a_1|a_2, \bar{b})]}{p(\bar{b}|\bar{c}) + p(b|a_2) - 1}. \end{aligned} \quad (65)$$

The rest is similar to the above: we proceed via (62, 64) and (4) and deduce (13) from (55), (65) and the analog of (65) obtained via $a_1 \rightarrow \bar{a}_2$.

C More examples of Simpson's paradox

We collected several examples of the paradox that are scattered in the literature. We discuss them employing our notations in equations (1–3) of the main text emphasizing (whenever relevant) the existence of the common cause (or screening) variable C .

Example 5. Snow tires provide cars with better traction in snowy and icy road conditions. However, nationally in the US, cars fitted with snow tires are more likely to have accidents in snowy and icy conditions [59]. $A_1 = \{a_1 = \text{accident}, \bar{a}_1 = \text{no - accident}\}$, $A_2 = \{a_2 = \text{changed tires}, \bar{a}_2 = \text{not changed}\}$, $B = \{\text{states}\}$. Here the choice of the state (warm or cold) has a direct causal link to accidents in winter conditions. Now snow tires tend to be fitted to cars only in snowy winter months and in states with colder weather. Cars in warmer months and in states with warmer weather are much less likely to have accidents in snowy and icy conditions. Plausibly, there is a random variable, $C = \{\text{good weather conditions, bad weather conditions}\}$, which causes A , and screens A from B : $p(A|CB) = p(A|C)$. The times are distributed as $t_B < t_C < t_{A_2} < t_{A_1}$.

Example 6. This example emerged from discussing our own experience with hospitals. We need to choose between two hospitals 1 and 2: $A_1 = \{a_1 = \text{recovered}, \bar{a}_1 = \text{not recovered}\}$, $A_2 = \{a_2 = \text{hospital 1}, \bar{a}_2 = \text{hospital 2}\}$, $B = \{\text{first half - year, second half - year}\}$, $C = \{\text{types of illness}\}$. Here we do not expect direct causal influence from B to A , if (as we assume) the hospitals do not treat seasonal illnesses. We expect that C causes A , and screens it from B .

Note that the data from which the probabilities for Simpson's paradox are calculated is the number of patients $N(A_1, A_2, B)$ that came to the hospital. Simpson's paradox does not occur if within each season the hospitals accept an equal number of patients: $\sum_{A_1} N(A_1, A_2, B)$ does not depend on the value of B . This creates a conceptual possibility for judging between the hospitals. This is however not realistic, because imposing on these hospitals an equal number of patients can disturb their usual (normal) functioning.

Example 7. Simpson's paradox is realized when comparing scores of professional athletes, e.g. the batting averages of baseball players [60]. Here A_1 refers to a score of an athlete in a game, e.g. $A_1 = \text{high score, low score}$, A_2 denotes concrete athletes, while B is the time-period (e.g. playing season). The causing variable C can refer to the psychological and physical state of an athlete that influences his/her game success, and the number of games he/she participated in each season.

D Elaborations on smoking and surviving

1. Our interest in this subject started from learning about the works by R. Fisher, who proposed that at least a part of the association between smoking and survival may be due to genetic common causes. Then we noted that qualitative geneticists clarified his statements in 1980s, but they are nearly forgotten in modern genetics, where genetic determinants of smoking are still studied actively [49].

The data presented in Ref. [16] considers three random variables $A_1 = \{\text{died, alive}\}$, $A_2 = \{\text{smoking, non-smoking}\}$, and $B = \{\text{younger, older}\}$. To this we added an unobserved genetic variable: $C = \{\text{risk to smoking, no risk to smoking}\}$, which roughly corresponds to the gene CHRNA5 described below.

A fairly general TODAG for this situation is

$$A_1 \leftarrow B \leftarrow C \rightarrow A_2 \rightarrow A_1, \quad A_2 \rightarrow B, \quad C \rightarrow A_1, \quad (66)$$

e.g. because once C can influence B , then potentially also A_2 can have a direct influence on B . At the present stage of our knowledge on pertinent genetic and age-dependent factor influencing smoking, this TODAG is not manageable. So we had to simplify it drastically.

First, we erased the link $A_1 \leftarrow B$, because the physical age by itself does not influence survival. The physiological age correlates well with the physical age for some people, which can already affect their survival rate. However, the physiological age in this experiment was not recorded or controlled.

Once we assumed $A_1 \not\leftarrow B$, then from the viewpoint of Simpson's paradox, it was already natural to assume $A_2 \not\rightarrow B$ as well, because the link $A_2 \rightarrow B$ does not influence $p(A_1|\text{do}(A_2))$. (Postulating the direct influences $A_2 \rightarrow B$ are more or less akin to predetermining the influences of smoking.) At any rate, we emphasize that both $A_1 \not\leftarrow B$ and $A_2 \not\rightarrow B$ are essential assumptions of the model. We these assumptions we end up from (66) with the following TODAG [cf. (14)]:

$$B \leftarrow C \rightarrow A_2 \rightarrow A_1, \quad C \rightarrow A_1. \quad (67)$$

It remains to explain in which sense the gene can influence the age. For example, if an allele of a gene (see below) can be a common cause of both smoking and (independently) smoking-generated deceases, then aged (but still healthy) people can be those which did not have this allele.

2. The classical Mendelian genetics assumed (and in many instances verified) that as far the influence on the phenotype is concerned, one can restrict a gene to a binary variable: recessive and dominant alleles of the gene. Each organism has two genes (one from mother and another one from father), and now the three pairs - recessive-dominant, dominant-recessive, dominant-dominant - amount to one type of influence to the phenotype, while the version recessive-recessive to another influence.

In modern genetics, many exclusion from this classical binary-gene law are known. For example, the gene of the blood type has 3 alleles (A, B, and O). Here A and B are dominant with respect to O, but together they are co-dominant and hence there are 4 blood groups: AO, BO, AB, OO.

To understand whether the genes controlling the smoking behavior can be modeled as binary (i.e. dominant and recessive), we need to consider concrete genes, which according to current genetics research have serious effects on nicotine addiction and show evidence of pleiotropy, i.e., they can influence more than one aspect of health and survival; see [49].

CHRNA5 is a gene that encodes subunits of the nicotinic acetylcholine receptor, which is important in neural signaling and nicotine addiction. The receptor can influence various aspects of smoking behavior: nicotine binding and response, reward pathways, craving intensity, smoking cessation success rates, *etc*; see Ref. [50] for a review.

CHRNA5 has two alleles G and A. They are denoted by G (guanine) and A (adenine), because the alleles differ by single nucleotide. Now A is the risk allele, which is associated with increased smoking. G is the non-risk allele [50]. Now A is the dominant allele with respect to G, and CHRNA5 can be said to be binary with the following reservation: there is a dose-effect and the pair AA turns out to be more risky than AG (in contrast to GG, which is risk free). Within our crude model we neglect this difference and treat CHRNA5 as binary.

D.1 Technical details on the example from section 4 of the main text

This example is taken from Ref. [16]. Its concise version was discussed in section 5. Here we provide more details on how the data was presented and how we analyzed it. In this case, binary A_1 represents the survival of a woman as determined by two surveys taken 20 years apart: $A_1 = \{\text{died, alive}\}$. The binary A_2 reads $A_2 = \{\text{smoker, nonsmoker}\}$, while $B = \{B_1, \dots, B_6\}$ means the age group of the person recorded in the first survey. The B_1 now includes women between the ages of 18 and 24. Likewise, B_2, B_3, B_4, B_5, B_6 refer to (resp.) ages (25 – 34), (35 – 44), (45 – 54), (55 – 64), (65 – 74). The corresponding probabilities read:

$$\begin{aligned} p(B_1) &= 0.0946, & p(B_2) &= 0.2272, & p(B_3) &= 0.1859, & p(B_4) &= 0.1681, \\ p(B_5) &= 0.1908, & p(B_6) &= 0.1334. \end{aligned} \quad (68)$$

There is also the seventh age group that included people who were 75+ at the time of the first survey. We shall, however, disregard this group, since the data is pathological: nobody from this group survived till the second survey. It turns out that the aggregated data (1) of the main text hints that smoking is beneficial for survival:

$$p(A_1, A_2) = \sum_{k=1}^6 p(A_1, A_2 | B_k) p(B_k), \quad (69)$$

$$p(A_1 = \text{died} | A_2 = \text{smoking}) = 0.2214 < p(A_1 = \text{died} | A_2 = \text{nonsmoking}) = 0.2485. \quad (70)$$

This conclusion is partially reversed, once the age group B is introduced:

$$p(A_1 = \text{died}|A_2 = \text{smoking}, B_k) > p(A_1 = \text{died}|A_2 = \text{nonsmoking}, B_k), \quad k = 1, 3, 4, 5, 6, \quad (71)$$

$$p(A_1 = \text{died}|A_2 = \text{smoking}, B_2) < p(A_1 = \text{died}|A_2 = \text{nonsmoking}, B_2). \quad (72)$$

We need to coarse-grain the above data to formulate the Simpson paradox clearly. Now

$$B = \{b, \bar{b}\}, \quad b = B_1 \cup B_2 \cup B_3 \cup B_4 \cup B_5, \quad \bar{b} = B_6, \quad (73)$$

$$p(A_1 = \text{died}|A_2 = \text{smoking}, b) = 0.1820 > p(A_1 = \text{died}|A_2 = \text{nonsmoking}, b) = 0.1206, \quad (74)$$

$$p(A_1 = \text{died}|A_2 = \text{smoking}, \bar{b}) = 0.8056 > p(A_1 = \text{died}|A_2 = \text{nonsmoking}, \bar{b}) = 0.7829. \quad (75)$$

This leads to the formulation of Simpson's paradox discussed in section V of the main text. Eq. (73) is the only coarse-graining that leads to the paradox.

The authors of Ref. [16] provide the following heuristic explanation for the prediction difference between (70) and (71): they noted that aged people from the survey are mostly not smokers and most would have died out of natural reasons. This is the statistical explanation of the Simpson paradox. This explanation is not especially convincing because of (68, 72): it is seen that B_2 is the most probable group, for which (70) and (72) agree.

E Matrix notations for inverting the common cause equation

Here we develop matrix notations for inverting the common cause equation:

$$p(A_1, A_2, B) = \sum_C p(A_1, A_2, C)p(B|C), \quad (76)$$

where the summation goes over all values of C . We work for the case when the variables A_1, A_2, B and C are binary, though the matrix notations we introduce below are useful more generally.

Eq. (76) can be written in matrix form

$$\begin{pmatrix} [ik1] \\ [ik2] \end{pmatrix} = \begin{pmatrix} (1|1) & (1|2) \\ (2|1) & (2|2) \end{pmatrix} \begin{pmatrix} (ik1) \\ (ik2) \end{pmatrix}. \quad (77)$$

where $ik = 11, 12, 21, 22$ and the following notations were introduced

$$\begin{aligned} [111] &\equiv p(a_1, a_2, b), \quad [121] \equiv p(a_1, \bar{a}_2, b), \dots, \\ (111) &\equiv p(a_1, a_2, c), \quad (121) \equiv p(a_1, \bar{a}_2, c), \dots, \\ (1|1) &\equiv p(b|c), \quad (2|1) \equiv p(\bar{b}|c), \dots, \\ D &= (2|2) + (1|1) - 1. \end{aligned} \quad (78)$$

Inversion of the Eq. (77) gives

$$\begin{pmatrix} (ik1) \\ (ik2) \end{pmatrix} = \frac{1}{D} \begin{pmatrix} (2|2) & -(1|2) \\ -(2|1) & (1|1) \end{pmatrix} \begin{pmatrix} [ik1] \\ [ik2] \end{pmatrix}. \quad (79)$$

Eq. (79) implies

$$\begin{pmatrix} (i|k1)\{1|k\} \\ (i|k2)\{2|k\} \end{pmatrix} = \frac{1}{D} \begin{pmatrix} (2|2) & -(1|2) \\ -(2|1) & (1|1) \end{pmatrix} \begin{pmatrix} [i|k1][1|k] \\ [i|k2][2|k] \end{pmatrix}, \quad (80)$$

where analogously to (78) we introduced the following notations:

$$\begin{aligned} [1|11] &\equiv p(a_1|a_2, b), \quad [1|21] \equiv p(a_1, \bar{a}_2, b), \dots, \\ (1|11) &\equiv p(a_1|a_2, c), \quad (1|21) \equiv p(a_1|\bar{a}_2, c), \dots, \\ [1|1] &\equiv p(b|a_2), \quad [2|1] \equiv p(\bar{b}|a_2), \dots, \\ \{1|1\} &\equiv p(c|a_2), \quad \{2|1\} \equiv p(\bar{c}|a_2), \dots. \end{aligned} \quad (81)$$

The matrix relation (80) results in

$$(i|k1)\{1|k\} = \frac{(2|2)}{D}[i|k1][1|k] + \frac{(2|2)-1}{D}[i|k2][2|k]. \quad (82)$$

Using (82, 79) we get relations employed in the main text:

$$(i|k1) = \frac{(2|2)[i|k1][1|k]+((2|2)-1)[i|k2][2|k]}{(2|2)[1|k]+((2|2)-1)[2|k]}, \quad (83)$$

$$\{1|k\} = \frac{1}{D}(2|2)[1|k] + \frac{1}{D}((2|2)-1)[2|k], \quad (84)$$

$$(i|k2) = \frac{((1|1)-1)[i|k1][1|k]+(1|1)[i|k2][2|k]}{((1|1)-1)[1|k]+(1|1)[2|k]}, \quad (85)$$

$$\{2|k\} = \frac{1}{D}((1|1)-1)[1|k] + [1|1][2|k]. \quad (86)$$

F Certain matrix relations

There is a useful formula for matrix inversion

$$(Z + UWV)^{-1} = Z^{-1} - Z^{-1}U(W^{-1} + VZ^{-1}U)^{-1}VZ^{-1}, \quad (87)$$

Eq. (87) is derived via two auxiliary formulas. First note that

$$V(1+UV)^{-1} = (1+VU)^{-1}V, \quad (88)$$

which follows from $(1+UV)^{-1} = (V^{-1}(1+VU)V)^{-1}$. Next, note moving U according to (88)

$$U(1+VU)^{-1}V = (1+UV)^{-1}UV = 1 - (1+UV)^{-1}, \quad (89)$$

which leads to

$$(1+UV)^{-1} = 1 - U(1+VU)^{-1}V. \quad (90)$$

To deduce (87) from (90), we manipulate Z and W in respectively LHS and RHS of (87), and hence transform (87) to the form (90), but with the following replacements: $U \rightarrow Z^{-1}U$ and $V \rightarrow WV$.

Eq. (87) leads to a generalized Sylvester formula:

$$\det[Z + UWV] = \det[Z] \det[W] \det[W^{-1} + VZ^{-1}U]. \quad (91)$$

The ordinary Sylvester formula for determinants reads

$$\det[I_{N|N} - K_{N|M}L_{M|N}] = \det[I_{M|M} - L_{M|N}K_{N|M}], \quad (92)$$

where $I_{N|N}$ is the $N \times N$ unit matrix, $K_{N|M}$ is a $N \times M$ matrix etc. Eq. (92) follows from the fact that (for $M \geq N$) $L_{M|N}K_{N|M}$ has the same eigenvalues as $K_{N|M}L_{M|N}$ (plus $M - N$ zero eigenvalues for $M - N > 0$).

Inverting a block matrix goes via

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}^{-1} = \begin{bmatrix} S^{-1} & -S^{-1}A_{12}A_{22}^{-1} \\ -A_{22}^{-1}A_{21}S^{-1} & A_{22}^{-1} + A_{22}^{-1}A_{21}S^{-1}A_{12}A_{22}^{-1} \end{bmatrix}, \quad (93)$$

$$S \equiv A_{11} - A_{12}A_{22}^{-1}A_{21}, \quad (94)$$

where dimensions of A_{11} , A_{12} , A_{21} and A_{22} are, respectively, $M \times M$, $M \times (N-M)$, $(N-M) \times M$, $(N-M) \times (N-M)$, and where S is the Schur-complement of the block matrix over its upper diagonal part. Eq. (93) is straightforward to prove.

$$\det \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \det[A_{11} - A_{12}A_{22}^{-1}A_{21}] \det[A_{22}]. \quad (95)$$

G Common cause with higher dimensionality for continuous variables

Let's discuss the scenario where the number of components of a common cause is two. Recall equation (55) of the main text and note that now \mathcal{C} is a 3×2 matrix and \mathcal{S} is a 2×2 matrix. For $\mathcal{C}\mathcal{S}\mathcal{C}^T$ we have

$$\mathcal{C}\mathcal{S}\mathcal{C}^T = \begin{bmatrix} v_1\mathcal{C}_{11} + v_2\mathcal{C}_{12} & v_1\mathcal{C}_{21} + v_2\mathcal{C}_{22} & v_1\mathcal{C}_{31} + v_2\mathcal{C}_{32} \\ v_1\mathcal{C}_{21} + v_2\mathcal{C}_{22} & u_1\mathcal{C}_{21} + u_2\mathcal{C}_{22} & u_1\mathcal{C}_{31} + u_2\mathcal{C}_{32} \\ v_1\mathcal{C}_{31} + v_2\mathcal{C}_{32} & u_1\mathcal{C}_{31} + u_2\mathcal{C}_{32} & k_1\mathcal{C}_{31} + k_2\mathcal{C}_{32} \end{bmatrix}, \quad (96)$$

where

$$v_1 = \mathcal{C}_{11}s_{11} + \mathcal{C}_{12}s_{21}, \quad v_2 = \mathcal{C}_{11}s_{12} + \mathcal{C}_{12}s_{22}, \quad (97)$$

$$u_1 = \mathcal{C}_{21}s_{11} + \mathcal{C}_{22}s_{21}, \quad u_2 = \mathcal{C}_{21}s_{12} + \mathcal{C}_{22}s_{22}, \quad (98)$$

$$k_1 = \mathcal{C}_{31}s_{11} + \mathcal{C}_{32}s_{21}, \quad k_2 = \mathcal{C}_{31}s_{12} + \mathcal{C}_{32}s_{22}. \quad (99)$$

We need to keep track of $_{12}$ element of the matrices, since

$$\langle (a_1 - \langle a_1 \rangle_b)(a_2 - \langle a_2 \rangle_b) \rangle_b = (\mathcal{A} + \mathcal{J} - \mathcal{K}(\mathcal{B} + \mathcal{L})^{-1}\mathcal{K}^T)_{12}, \quad (100)$$

$$\langle (a_1 - \langle a_1 \rangle_x)(a_2 - \langle a_2 \rangle_x) \rangle_x = \mathcal{A}_{12}, \quad (101)$$

$$\langle a_1 a_2 \rangle = (\mathcal{A} + \mathcal{J})_{12}, \quad (102)$$

and for which we have

$$(\mathcal{A} + \mathcal{J})_{12} = \mathcal{A}_{12} + v_1\mathcal{C}_{21} + v_2\mathcal{C}_{22}, \quad (103)$$

$$(\mathcal{K}(\mathcal{B} + \mathcal{J})^{-1}\mathcal{K}^T)_{12} = \frac{1}{\mathcal{B} + k_1\mathcal{C}_{31} + k_2\mathcal{C}_{32}}(v_1\mathcal{C}_{31} + v_2\mathcal{C}_{32})(u_1\mathcal{C}_{31} + u_2\mathcal{C}_{32}). \quad (104)$$

Now, we consider the simplest case for a common cause

$$S = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix}. \quad (105)$$

The equations simplify to

$$\langle (a_1 - \langle a_1 \rangle_b)(a_2 - \langle a_2 \rangle_b) \rangle_b = \mathcal{A}_{12} + s(\mathcal{C}_{11}\mathcal{C}_{21} + \mathcal{C}_{12}\mathcal{C}_{22}) \quad (106)$$

$$- \frac{s^2}{\mathcal{B} + s(\mathcal{C}_{31}^2 + \mathcal{C}_{32}^2)}(\mathcal{C}_{11}\mathcal{C}_{31} + \mathcal{C}_{12}\mathcal{C}_{32})(\mathcal{C}_{21}\mathcal{C}_{31} + \mathcal{C}_{22}\mathcal{C}_{32}) \quad (107)$$

$$\langle a_1 a_2 \rangle = \mathcal{A}_{12} + s(\mathcal{C}_{11}\mathcal{C}_{21} + \mathcal{C}_{12}\mathcal{C}_{22}). \quad (108)$$

By setting $\mathcal{C}_{31} = 0$ and considering $s \gg \mathcal{B}$, we get

$$\langle (a_1 - \langle a_1 \rangle_b)(a_2 - \langle a_2 \rangle_b) \rangle_b = \mathcal{A}_{12} + s\mathcal{C}_{11}\mathcal{C}_{21}, \quad (109)$$

$$\langle a_1 a_2 \rangle = \mathcal{A}_{12} + s(\mathcal{C}_{11}\mathcal{C}_{21} + \mathcal{C}_{12}\mathcal{C}_{22}). \quad (110)$$

Obviously, inequalities $\langle a_1 a_2 \rangle > 0$ and $\langle (a_1 - \langle a_1 \rangle_b)(a_2 - \langle a_2 \rangle_b) \rangle_b < 0$ (or their inverted alternatives), do not determine the sign of \mathcal{A}_{12} , hereby the sign of $\langle (a_1 - \langle a_1 \rangle_x)(a_2 - \langle a_2 \rangle_x) \rangle_x$. Thus, for a common cause with two components we already see that it can support both fine-grained and coarse-grained options.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: **[Yes]**

Justification: We tried to make the abstract as clear as possible, but we also had in mind that Simpson's paradox is currently a broad notion. Because of this, not only probabilistic causality experts will read and discuss our paper. Hence, we tried to keep the abstract non-technical.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: **[Yes]**

Justification: The introduction announces that limitations will be discussed in the last section. This section outlines the three main limitations, as well as ways to overcome them.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: The main technical results of the manuscript are summarized as two theorems. Theorem 1 is proved in Appendix B. The central idea of the proof is outlined in the main text. The second theorem is proved in section 6. For both cases, we provided all technical details needed to reproduce the proofs in a self-contained way. To this end, we supplied Appendix F, which will be useful for those readers who are not well-versed in the theory of multi-dimensional Gaussian densities.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The manuscript does not present new experimental results. However, we re-evaluated certain experimental results obtained in the previous literature. This is explained in Appendix D.1, which provides details about this re-evaluation.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [NA]

Justification: As we explained above, the manuscript does not present new experimental results.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [NA]

Justification: As we explained above, the manuscript does not present new experimental results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [NA]

Justification: As we explained above, the manuscript does not present new experimental results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [NA]

Justification: As we explained above, the manuscript does not present new experimental results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [Yes]

Justification: As we explained above, the manuscript does not present new experimental results and new data.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: Our work focuses on Simpson's paradox, a phenomenon that has received considerable attention across various fields of social science. A failure to account for this paradox can have negative societal consequences, a fact that should be obvious from our discussions. Our results aim to enhance awareness of the paradox. We examined two examples of Simpson's paradox that have been previously discussed—but not resolved—in the literature. These examples relate to the potential effects of smoking and to the evaluation of different strategies for managing COVID-19 across two countries. In our discussion, we tried to reflect all the available literature on these examples. We also avoided univocal recommendations, underlining the complexity of these examples. We believe that engaging with such examples (in the context of our theoretical results) does not pose a risk of negative societal impact. On the contrary, it can help raise public awareness.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: As explained above, we do not think that there is a high risk of misusing our theoretical results on Simpson's paradox.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]

Justification: The manuscript does not use existing assets.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The manuscript does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This manuscript cites and discusses some experiments presented in the literature that were carried out with human subjects. But it does not involve crowdsourcing, and does not involve new experiments with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This manuscript does not involve crowdsourcing nor new research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This manuscript does not involve LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.