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Abstract

Researchers have adapted large language models (LLMs)
for mathematical reasoning by fine-tuning them with math-
specific datasets to create math-specialized LLMs. This pa-
per evaluates such models not only on solving accuracy but
also on their ability to identify similar problems. We intro-
duce an indicator task—retrieving a similar problem given a
query word problem—to assess whether the model’s inter-
nal representations of the word problems capture mathemati-
cal semantics. A model capable of solving a problem should
also be adept at identifying problems requiring similar rea-
soning, as human experts do. Using a dataset of Probability
Word Problems with formal symbolic annotations, we show
that math-specialized LLMs often prioritize linguistic simi-
larity over mathematical similarity. This underscores the need
for symbolic intermediate representation during fine-tuning
of a LLM to better capture mathematical essence of a problem
aiding improvement in model’s consistency and reliability.

Introduction
Since their introduction, large language models (LLMs)
have been applied to mathematical reasoning, as proficiency
in mathematical tasks indicates strong cognitive skills (Iu-
culano and Menon 2018). A math word problem is a math-
ematical task expressed in natural language. Solving it re-
quires linguistic skills to understand the problem and trans-
late it into its mathematical form, as well as mathematical
skills to solve the task embedded within the problem. Re-
searchers have explored the application of LLMs to math
word problem solving, given the vast amount of data they are
trained on, which enables them to possess advanced linguis-
tic skills and embedded mathematical and world knowledge.
While significant progress has been made, gaps remain, pri-
marily due to the brittleness of LLMs in handling word prob-
lems in general (Ahn et al. 2024). This has prompted rig-
orous efforts from researchers to enhance the performance
of LLMs in mathematical reasoning. A common approach
among research groups is to fine-tune LLMs, already pre-
trained on large generic datasets, for mathematical tasks
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using data specifically designed for mathematical reason-
ing (Wang et al. 2023), (Imani, Du, and Shrivastava 2023).
Consequently, research is increasingly focused on acquiring
large-scale training data in the form of (math word problem,
solution with an explanation) pairs (Toshniwal et al. 2024).

In this paper, we analyze several recent math-LLMs, in-
cluding Qwen (Yang et al. 2024), Mathstral (a math model
from Mistral) (Jiang et al. 2023), and DeepseekMath (Shao
et al. 2024). Our objective is to examine whether addi-
tional fine-tuning on math-specialized data truly enhances
the models’ understanding of the domain’s semantics. We
quantify this semantic understanding by evaluating the per-
formance of these models on an auxiliary indicator task:
given a query math word problem and a knowledge base
(KB) of word problems, retrieve the problem from the KB
that is most similar to the query. We consider this retrieval
task an ideal indicator task to assess whether the internal rep-
resentation of a problem used by the math-LLM effectively
captures the problem’s semantics with respect to its math-
ematical essence. The concept of indicator tasks for eval-
uating dense vectorial representations has been extensively
studied (Levy, Goldman, and Tsarfaty 2023).

We focus on a specific subset of mathematical reason-
ing problems, namely, probability word problems. Dries et
al. introduced a dataset, NLP4PLP , of probability word
problems where each problem was annotated with its so-
lution and a formal representation based on a declarative
programming language (Dries et al. 2017). Problems with
similar formal representations share similar solving strate-
gies, meaning they are mathematically alike. The availability
of such formal representations enables a systematic evalua-
tion of math-LLMs not only in terms of accuracy but also
in terms of consistency—i.e., whether similar problems are
treated similarly—and the semantics captured by the inter-
nal representation of a problem, as measured through the
indicator retrieval task described.

The paper is organized as follows - the dataset is described
in detail, following which we present the experiments per-
formed along with an analysis of the results.



Dataset
Dries et al. (Dries et al. 2017) introduced a dataset of proba-
bility word problems collected from online sources and text-
books. The dataset contains 2160 problems manually anno-
tated by three job students. Here is an example problem from
the dataset:

Problem P1: A class of 20 boys and 10 girls has 15 Math
majors and 15 Physics students. What is the probability of
picking a student who is both a boy and a physics major?

The annotation encompasses the solution and a formal
representation based on the declarative language introduced
in the paper. The language defines a set of predicates that
are instantiated with arguments to describe the objects, their
arrangement, and the questions of the problem. Objects
are described by means of the predicates group, size,
property, and given. The first two statements’ argu-
ments define, respectively, the name of a set of objects and
its cardinality. The property statement declares the rele-
vant attributes of the objects. Finally, the given predicate
expresses the number and combinations of observable prop-
erties, taking as argument a constraint. Constraints quantify
objects or properties in a group, using dedicated predicates
(exactly, at least, some, all,...). Boolean
predicates (and, or, not) are available to form com-
plex constraints. For example, the following statements de-
scribe the set of objects of Problem 1:

group(students).
property(gender, [boy, girl]).
property(major, [physics, math]).
given(exactly(10, students, girl)).
given(exactly(20, students, boy)).
given(exactly(15, students, physics)).
given(exactly(15, students, math)).

The statements take and take wr define actions on the
initial set that produce a new arrangement, its specific form
can be prescribed with the predicate observe. The state-
ments take and take wr describe the probabilistic se-
lection of a given number of objects from the initial set.
take wr denotes that an object can be selected multiple
times (selection with replacement), conversely, take de-
notes that each object can be selected at most once (selec-
tion without replacement). For example the action “picking
a student” is defined by the statement:

take(students, pick, 1).

observe is similar to given, but while given describes
the inital set of objects, observe describes the result of a
take or take wr action.
Finally, a probability predicate defines a question of
the problem, taking as argument a constraint: the goal is to
find the probability that the final arrangement satisfies the
given constraint. For example the probability of picking “a
boy and a physics major” is declared as:

probability(and(all(pick, boy),
all(pick, physics))).

It is worth noting two aspects of this declarative language:
first, the statements are order-invariant, second, they define

Figure 1: Experiments - given the world problem q, (1) gen-
erate the solution (2) retrieve the top-k most similar prob-
lems p1, ..., pk from the knowledge base.

only what the problem is about, and not how to compute the
solution. How to compute the solution is devolved to a ded-
icated solver based on the probabilistic logic programming
tool ProbLog (Fierens et al. 2015). Therefore this dataset
is designed for an end-to-end approach based on two steps:
first the translation of the problem from natural language
to its formal representation; second, the application of sym-
bolic reasoning techniques to solve the formal definition of
the problem. For the experiments in this paper, we leverage
the formal representations of the problems to identify sim-
ilar problems in the dataset - problems with similar formal
representations are likely to adopt similar solving strategies.
Further details about the language and solver can be found
on the project’s webpage 1.

Experiments
The objectives of our experiments are to evaluate the perfor-
mance of recent Math LLM models, focusing on their ability
to:
• Solve problems accurately (Accuracy): The Math-

LLM model is used to solve each problem q in the test
set.

• Treat similar problems similarly (Consistency): Here,
we analyse the inconsistencies in the behavior of a Math-
LLM model. If q1 and q2 are two problems with similar
mathematical forms or solving strategies, we estimate the
inconsistency in the Math-LLM model by counting the
number of instances where the Math-LLM model solves
only one of them accurately.

• Represent problems while capturing their mathemat-
ical semantics (Semantic Representation Quality): We
assess the quality of a Math-LLM model’s internal rep-
resentation of a word problem by evaluating the task of
similar problem identification. For each problem q in the
test set, the goal is to retrieve the problem from a speci-
fied knowledge base (KB) of problems that have the same
mathematical form. Notably, there is exactly one such
problem in the KB, denoted as qsimilar, that shares the
same mathematical archetype as the query q. The objec-
tive is to evaluate whether qsimilar is included in the top-k

1https://dtai.cs.kuleuven.be/problog/natural\ language/



retrieved results from the KB. We use the FAISS (Face-
book AI Similarity Search) library (Douze et al. 2024)
for efficient similarity search.

Figure 1 illustrates the experiments performed to evaluate
the different Math-LLM models with respect to the three ob-
jectives mentioned above.

Models
In this paper, we compare three of the Math-LLM models
released this year - February 2024 - DeepSeekMath, July
2024 - Mathstral, and August 2024 - Qwen2.5-Math.

• Qwen 2.5-Math-Instruct-7B (Yang et al. 2024) is a
model built on top of its precursor model, Qwen 2-Math.
Pre-training and post-training of Qwen 2.5-Math model
(supervised fine-tuning and reward model) include high-
quality mathematical data generated by Qwen 2-Math
model which optimizes the model’s performance. Qwen
2.5 model also used the trained reward model during the
inference stage to guide sampling.

• DeepSeekMath (Shao et al. 2024) is a Math LLM
model built from the predecessor model, DeepSeek-
Coder-Base-v1.5 by continuing to pretrain it with pub-
licly available mathematical data from Common Crawl
and code data.

• Mathstral is yet another Math LLM model, and it is built
on top of Mistral (Jiang et al. 2023).

Data: Test Set and Knowledge Base
Knowledge Base (KB): Utilizing the formal representations
of the problems described in Section Dataset, we construct
a KB of probability word problems. This KB is designed
to encompass the entire dataset in terms of the mathemati-
cal form of the problems. Each mathematical archetype is
characterized by the predicates present in its formal repre-
sentation.

The predicates in the intermediate declarative program-
ming language used to represent the intermediate programs
are: aggcmp, observe, nth, atleast, atmost, all same, all diff,
more than, take wr, size, none, max, min, less than, not, and,
or, all, union, some, sum, is even, is odd, =:=, >=, >, <,
rest, outcome. A specific combination of these predicates
defines a mathematical archetype. For instance, problems
whose formal representations include logical operators such
as and and or define one archetype, while problems that in-
clude these logical operators alongside comparison opera-
tors like max and min define another archetype, and so on.
We identified 282 distinct mathematical archetypes, and the
KB contains a total of 282 problems, each corresponding to
a unique mathematical archetype.
Test Set: The test set is created by randomly selecting 375
questions from the remaining dataset.
Similar problems: Similar pairs are formed by matching
each problem in the test set with the problem in the KB that
shares the same mathematical archetype (notably there is ex-
actly one such problem in the KB).

Evaluation
We evaluate the three models above using the following met-
rics:
• Accuracy: The accuracy measures the percentage of

problems the model answers correctly.
• Inconsistency: To assess the consistency of a model as

a solver, we examine if the model handles similar prob-
lems in the same way. These problems may differ lin-
guistically but share the same mathematical archetype.
Inconsistency is measured as the percentage of similar
pairs where the model solves only one accurately.

• Recall@k For each problem in the test set, we retrieve
the most similar problem from KB. The standard metric
Recall@k measures the retrieval performance (Harman
2011).

Recall@k =
No. of queries where qsimilaris in top k retrieved

Total number of queries
(1)

Results
Table 1 presents the results—accuracy, inconsistency, and
Recall@k—for the three Math-LLM models. Among them,
the Qwen2.5 Math model demonstrates the highest accuracy.
This can be attributed to its training pipeline, which lever-
aged high-quality mathematical data generated by its pre-
decessor, the Qwen2 Math model, during supervised fine-
tuning and reinforcement learning stages.

Notably, higher solving accuracy is accompanied by re-
duced inconsistency in the model’s outputs. In other words,
problems with similar archetypes are solved more consis-
tently by the models, and vice versa.

However, a significant limitation shared by all three mod-
els is their inability to effectively capture the mathemati-
cal semantics of problems within their internal representa-
tions. When word problems are represented using Qwen2.5
Math-based embeddings, closer embeddings often indicate
linguistic rather than mathematical similarity. As shown in
Figure 2, a query word problem set in the context of “color
and balls” is retrieved as more similar to another problem
with the same context. The problem sharing its mathemat-
ical semantics does not appear among the top 10 retrieved
results as it is set in a completely different context of “store
and magazines”.

It is also worth highlighting that retrieval performance
does not correlate directly with solving accuracy. For in-
stance, while DeepSeekMath achieves better accuracy than
Mathstral, the latter outperforms it in retrieval tasks.

Discussion
The evaluation of the three Math-LLM models—Qwen2.5
Math, DeepSeekMath, and Mathstral—provides valuable
insights into their problem-solving capabilities and inter-
nal representations of mathematical concepts. Incorporating
higher-quality mathematical data during training, as done
in Qwen2.5, enhances the solving accuracy of Math-LLM
models. This raises an important research question: How can
we further enhance the quality of mathematical data used for



Figure 2: An example: Comparison of similar problem retrieved using Qwen2.5 embeddings with the ground truth similar
problem in KB.

Model Accuracy (%) Inconsistency (%) Recall@10 (%)
Qwen2.5-Math 85.86 24.92 12.26
DeepSeekMath 61.86 43.08 4.53
Mathstral 53.6 52.20 12.53

Table 1: Accuracy, Inconsistency, Semantic Representation Quality using Recall@k, with k = 10 of Qwen 2.5-Math, DeepSeek-
Math and Mathstral models.

training such large models while simultaneously reducing
the amount of data required?

Despite the improvement in solving accuracy achieved,
all three models share a common limitation: an inability to
adequately capture the mathematical semantics of problems
within their internal representations. This indicates that the
models are more attuned to surface-level language features
than to the deeper mathematical relationships that define
problem archetypes.

These findings underscore the need for enhancements in
how Math-LLMs internalize and represent mathematical se-
mantics. Improving the semantic representations could lead
to models that not only solve problems more accurately but
also retrieve and relate problems based on their mathemat-
ical structures rather than merely their linguistic features.
This would be particularly beneficial for applications that
require understanding and manipulating mathematical con-
cepts, such as educational tools that provide personalized
learning experiences.

Future research should focus on developing techniques
that enable models to better grasp the mathematical seman-
tics inherent in problems. This could involve augmenting
training datasets with intermediate mathematical represen-
tations of the problems that emphasizes mathematical rela-
tionships. Incorporating data augmented with such semantic

structures into the training process of these models would
encourage them to learn patterns that map mathematical
archetypes to solving strategies, instead of relying on just
the linguistic features. Notably, relying on linguistic features
can also increase the data requirements, as similar linguistic
patterns may correspond to entirely different solution strate-
gies. By shifting the focus to mathematical semantics, we
could reduce the reliance on large datasets.

Conclusion

This study evaluates the performance of three recent Math-
LLM models highlighting their strengths and limitations in
solving mathematical problems and capturing mathematical
semantics. While incorporating higher-quality mathematical
data during training, as seen with Qwen2.5 Math, improves
solving accuracy, all models still rely heavily on linguis-
tic features rather than mathematical semantics in their in-
ternal representations. This limitation impacts their ability
to retrieve and relate problems based on underlying mathe-
matical structures. To address these challenges, in future we
would like to explore methods to integrate semantically rich
data into training, emphasizing mathematical relationships
over linguistic patterns.
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