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Abstract

Generative diffusion models have emerged as a pow-
erful tool for high-quality image synthesis, yet their iter-
ative nature demands significant computational resources.
This paper proposes an efficient time step sampling method
based on an image spectral analysis of the diffusion process,
aimed at optimizing the denoising process. Instead of the
traditional uniform distribution-based time step sampling,
we introduce a Beta distribution-like sampling technique
that prioritizes critical steps in the early and late stages of
the process. Our hypothesis is that certain steps exhibit sig-
nificant changes in image content, while others contribute
minimally. We validated our approach using Fourier trans-
forms to measure frequency response changes at each step,
revealing substantial low-frequency changes early on and
high-frequency adjustments later. Experiments with ADM
and Stable Diffusion demonstrated that our Beta Sampling
method consistently outperforms uniform sampling, achiev-
ing better FID and IS scores, and offers competitive effi-
ciency relative to state-of-the-art methods like AutoDiffu-
sion. This work provides a practical framework for enhanc-
ing diffusion model efficiency by focusing computational re-
sources on the most impactful steps, with potential for fur-
ther optimization and broader application.

1. Introduction

Generative diffusion models have emerged as a power-
ful tool for high-quality image generation, producing results
that rival or surpass traditional generative adversarial net-
works (GANSs) [7]. These models iteratively refine images
through a diffusion process, where noise is progressively
added and then removed, ultimately generating realistic im-
ages from random noise [ | | ]. However, this iterative nature
comes with a significant computational cost, necessitating
numerous time steps to achieve high-quality outputs. Effi-

*These authors contributed equally to this work.

—— Low Frequency
—— High Frequency

Relative Log Magnitude Change

0 200 400 600 800 1000

i Lk

(a) Spectral analysis of the denoising process

Uniform

10steps ¢ 500 1000
Beta

10steps ¢ 500 1000

(b) Uniform and Beta Sampling for denoising process

4 steps 6 steps 10 steps

Uniforrn . . .

15 steps

20 steps
-

FID: 4.35

FID: 138.66

- IR

FID: 23.71 FID: 8.86 FID: 5.38

FID: 31.64 FID: 13.12 FID: 6.13 FID: 443 FID: 3.93

(c) Samples generated by ADM-G with uniform and Beta Sampling

Figure 1. An Overview. (a) We analyzed the Fourier transform of
images generated at each time step during the denoising process
and found that the changes in low- and high-frequency compo-
nents are concentrated in the early and the later stages, respec-
tively. (b) Based on this, we propose a Beta distribution-like sam-
pling method that focuses on key stages with significant frequency
changes. (c) Experiments show our method generates higher qual-
ity images at lower steps compared to uniform sampling.
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cient methods are therefore crucial to reduce computational
burden while maintaining the quality of generated images.

Previous efforts to improve the efficiency of diffusion
models have focused on reducing the number of sampling
steps in denoising process to improve the efficiency of dif-
fusion models. Some approaches model the sampling pro-
cess as ordinary differential equations (ODEs), which en-
ables fewer steps using first-order and higher-order solvers
[16,18,30]. Another effective strategy is to use knowledge
distillation techniques repeatedly to condense multiple steps
into a single step [3, 19,26]. This enables the generation of
high-quality images in 10 steps or fewer. Recently, new ap-
proaches have been proposed based on the idea that the sam-
pling process of diffusion models plays a different role at
each step [2,23,35]. Some works aim to reduce the number
of sampling steps by selecting only the optimal step for par-
ticular diffusion models [&, 14, 31], while others aim to in-
crease efficiency by using multiple smaller but step-specific
models for each step [13, 14,34,35].

In this paper, we propose a novel Beta Sampling method
for improving the efficiency of generative diffusion mod-
els. By conducting an image spectral analysis of the dif-
fusion process using Fourier transform, we identified that
significant changes in image content occur predominantly
at the early and late stages of the denoising process. Based
on this insight, we introduce a Beta distribution-like time
step sampling method that emphasizes critical steps in the
early and late stages of the process. Our key hypothesis is
that certain steps in the diffusion process exhibit signifi-
cant changes in image content, while others contribute min-
imally. By focusing on these impactful time steps, we aim
to enhance the efficiency of image generation without com-
promising quality, in contrast to traditional uniform sam-
pling. We validate our approach through experiments with
ADM and Stable Diffusion models, demonstrating that our
Beta Sampling method consistently achieves better FID and
IS scores compared to uniform sampling and exhibits com-
petitive efficiency against the state-of-the-art AutoDiffusion
method. Our findings highlight the potential for substantial
computational savings and quality improvements in image
generation tasks.

Our contributions are as follows.

* We provide a spectral analysis of the diffusion process
through Fourier transform, identifying that the signifi-
cant changes in frequency component are concentrated
in the early and later stages of the denoising process.

* Based on our analysis, we introduce a Beta
distribution-like sampling method that prioritizes steps
with substantial changes in low and high-frequency
components.

* We demonstrate through experiments with ADM and
Stable Diffusion that our proposed sampling method

consistently achieves improved FID and IS scores
compared to uniform sampling, and offers competitive
efficiency against state-of-the-art methods like AutoD-
iffusion in terms of computational complexity.

2. Related works
2.1. Denoising process of diffusion models

There is an active research effort to analyze and improve
the denoising process of diffusion models from various as-
pects. So far, most analyses agree that the diffusion model’s
denoising process proceeds in a coarse-to-fine manner, i.e.,
it generates the overall structure of the image by focusing on
low-frequency components at the beginning, and then com-
pletes the details through changes in high-frequency com-
ponents at the end, resulting in progressively better images.

Several efforts have been focused on analyzing the de-
noising process of the diffusion models. First, Choi et al. [4]
analyzed the process of adding noise to an image using
LPIPS distance, with the idea that the diffusion model has
a different pretask for each step, and proposed that the de-
noising process of the diffusion model can be divided into
three stages: 1) creating coarse features 2) generating per-
ceptually rich contents 3) and removing remaining noise.

To analyze how the latent structure of the diffusion
model varies with the diffusion timestep, Park er al. [21]
identified the frequency domain of the local latent basis by
power spectral density (PSD) analysis, and confirmed the
shift from low-frequency to high-frequency as the denois-
ing process progresses. By analyzing the frequency domain
of the image obtained at each step, we also confirmed that
the low-frequency part is restored at the beginning and the
high-frequency detail is restored at the end [13,35]. Further-
more, Li et al. [14] argued that the difficulty and importance
of each of these different steps is different, and that efficient
sampling can be achieved by finding an optimal time step.

More recently, researchers have tried to visually inter-
pret the denoising process through a text to image diffu-
sion model [20]. This paper investigated the spatial recovery
level at each timestep in the denoising process and showed
that the focal region of the model changes from semantic
information to fine-grained regions.

2.2. Frequency Analysis on Diffusion Models

Frequency analysis has long been a fundamental tool for
image processing and analysis in the field of computer vi-
sion. It enables the separation of high and low-frequency
components of an image. The Fourier transform has been
widely used for frequency analysis in identifying major pat-
terns in images, removing noise, and compressing images.

Research has shown that deep neural networks ini-
tially adapt to low-frequency signals, while learning high-
frequency details more gradually [22, 32, 33]. This phe-
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nomenon, known as spectral bias, has also been observed
in deep generative models such as GANs [9, 12,28]. A sim-
ilar spatial frequency bias has been found in diffusion mod-
els. Choi et al. [4] suggests that the denoising process of
diffusion models shows three distinguishable phases. The
first phase captures coarse attributes, while the subsequent
phases progressively incorporate finer details. Other studies
have noted that throughout the progression of the denoising
process, low-frequency components are preserved, while
high-frequency components undergo rapid changes [29] or
the ratio of high-frequency increases as the denoising pro-
gresses [21].

This observation indicates that the denoising task of dif-
fusion models varies at each time step, leading to distinct
characteristics in spectral analysis at each step. Recent stud-
ies have utilized this fact to enhance the quality of gener-
ated samples [29] or computational efficiency [ |3, 35]. For
example, some studies give more weight to a specific fre-
quency at each step [29, 35], while Lee ef al. [13] utilizes
different smaller models at each step, each specialized for a
particular range of frequencies.

3. Spectral Analysis of Denoising Processes in
Diffusion Models

The denoising process in diffusion models has been

demonstrated to encompass several distinct stages, each
characterized by unique model behaviors [4, 5]. This vari-
ability in behavior across time steps suggests that the impor-
tance of each step in the denoising process may not be uni-
form. To investigate the relative importance of each step in
the denoising process, we conducted a comprehensive spec-
tral analysis of the denoising procedure in pre-trained diffu-
sion models. This analytical approach allows us to inspect
which parts of the denoising process contribute most signif-
icantly to meaningful changes in the generated image. By
decomposing the process into its spectral components, we
aim to provide insights into the differential contributions of
each denoising step to the final output quality.
Diffusion Models. To investigate the frequency character-
istics of diffusion models, we conducted a comprehensive
analysis on two prominent models: ADM-G [7] and Sta-
ble Diffusion [23]. The ADM-G model was trained on Ima-
geNet 64 x64 [6], while Stable Diffusion was trained on the
LAION-5B [27] dataset.

For the ADM-G model, we observed the denoising pro-
cess for a total of 10,000 image generations. Specifically,
we generated 10 images for each class in the ImageNet
dataset, ensuring a broad representation across all cate-
gories. In the case of Stable Diffusion, we randomly se-
lected 1,000 captions from the validation set of COCO [15]
dataset to serve as prompts for image generation.

Spectral Analysis. To conduct spectral analysis of the de-
noising process, we applied a 2D Fourier transform to the
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Figure 2. Spectral analysis of denoising process in ADM-G [7]
and Stable Diffusion (SD) [23]. The trend in the changes of high-
frequency and low-frequency components during the denoising
steps demonstrates that the core of the diffusion model’s image
denoising process lies in the early and late stages.

images generated at each step of the diffusion model. We
then calculated the relative log magnitude of each fre-
quency component. For an image x, we denote this result
as RLM (x). When it comes to Stable Diffusion, a latent
diffusion model, we utilized a pre-trained variational au-
toencoder to transform the latent at each step into the im-
age domain for frequency component analysis. The visual-
ized results of RLM (z) across all time step ¢ are depicted
in Figs. 2a and 2b. As anticipated, the frequency compo-
nents of the image 1999 at ¢ = 1000, which represents pure
Gaussian noise, exhibited a flat distribution. However, as
the denoising process progressed, we observed changes in
the frequency components of the images. To quantify these
changes, we defined the frequency change at a specific step
t as the difference between the frequency components of
consecutive steps: RLM () — RLM (x411). These differ-
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ences by time step ¢ are shown in Figs. 2c and 2d. This
approach allows us to track the evolution of frequency com-
ponents throughout the denoising process. By examining
these spectral changes, we can gain insights into how differ-
ent frequency bands are affected at various stages of image
generation.

Major Changes Occur in the Early and Late Stages. The
visualization of our spectral analysis is presented in Fig. 2.
Consistent with previous works, we observe that the early
stages of the denoising process (closer to ¢ = 1000) pri-
marily form coarse, low-frequency components, as evident
in the lower right area of Figs. 2c and 2d. The red re-
gions indicating an increase in the heatmap demonstrate that
the low-frequency components are formed predominantly
in the early stages. Conversely, the later stages (approach-
ing t = 0) are dominated by changes in fine, high-frequency
components, as shown in the upper left area of these graphs.
To further clarify this phenomenon, we isolated the increas-
ing low-frequency components in the early stages and the
decreasing high-frequency components in the later stages,
and show their respective averages in Figs. 2e and 2f. This
separation demonstrates that low-frequency elements un-
dergo significant changes early in the process, while high-
frequency elements experience substantial modifications in
the later stages. Notably, the intermediate stages show rela-
tively minor changes in image information from a frequency
perspective.

4. Beta Sampling for Step Reduction

Inspired by spectral analysis, we propose a novel sam-
pling technique for step reduction in diffusion models. Our
previous investigations revealed a significant phenomenon
in the image-denoising process of diffusion models: the
most critical and substantial changes are predominantly
concentrated in the initial and final stages of the model’s
operation. This observation suggests that when selecting a
reduced number of steps compared to the total time steps
used during training, there is a compelling need to develop
a method that can allocate more steps to the early and late
stages of the process. Consequently, we propose a novel
sampling strategy that allocates a higher density of steps
to the initial and final stages of the denoising process based
on Beta distribution. This method aims to concentrate com-
putational resources on the periods where the most crucial
transformations occur.

To sample Beta distribution-like time steps in the denois-
ing process, our method leverages the Probability Integral
Transform (PIT), a well-established method for generating
samples from a target distribution using uniform random
variables [1]. We begin with a set of uniformly sampled
time steps ¢;, where 1 = 1,2,...,N, and t; € [0,T — 1].
Then we normalize the time steps: t; = ¢;/7". These time
steps are initially equidistant, following a Uniform distribu-

tion U (0, 1). We choose a Beta distribution B(«, 3) as our
target distribution for the time steps. The Beta distribution
is selected for its flexibility in modeling various shapes over
a finite interval [0, 1], which aligns well with the normalized
time step range. The CDF of the beta distribution, denoted
as F(z;«a, f3), is computed. We apply the PIT to transform
our uniform samples into samples from the Beta distribu-
tion. For each uniformly sampled time step ¢, we compute:
tf = F~\(th; . B) (1)

K2

where F~! is the inverse CDF (or Percent Point Function,
PPF) of the Beta distribution. If necessary, we rescale the
transformed time steps ¢ to ensure they span the full range
of the diffusion process. Our method does not involve ran-
dom sampling from the Beta distribution. Instead, it em-
ploys distribution equalization through the PIT to achieve
fixed-point sampling. This approach ensures a determinis-
tic and consistent allocation of time steps that adheres to the
desired Beta distribution, offering a more controlled and re-
producible sampling process compared to random sampling
methods.

By carefully selecting the « and 8 parameters of the Beta
distribution, we can precisely control the density of time
steps at different stages of the denoising process. This adap-
tive sampling strategy enables a more efficient allocation
of computational resources, focusing on the most critical
phases of the diffusion process while maintaining a smooth
transition throughout the entire range.

5. Experiments
5.1. Experimental Setup

Diffusion Models. To validate the effectiveness of our
method, we conducted experiments using representative
pre-trained diffusion models without retraining or fine-
tuning. As in Sec. 3, we employed the ADM-G [7] trained
on ImageNet 64 x64 and the Stable Diffusion [23] for our
experiments. For ADM-G, we utilized the DDIM [30] sam-
pler, while for Stable Diffusion, we employed PLMS [16].
Metrics. We used Fréchet Inception Distance (FID) [10]
and Inception Score (IS) [25] as our evaluation metrics, con-
sistent with most previous works in this field. FID measures
the quality difference between generated images and tar-
get images, with lower values indicating greater similarity.
Higher IS values suggest that the generated images exhibit
high quality and diversity.

Baselines. We conducted a comparative analysis with uni-
form sampling and AutoDiffusion [14]. uniform sampling
is the most commonly used technique when decreasing the
number of time steps. AutoDiffusion, introduced to address
the limitations of uniform sampling, employs an evolution-
ary search algorithm to identify optimal time steps that min-
imize the FID. We implemented AutoDiffusion as described
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in the original paper, conducting a 10 epoch evolutionary
search and selecting the optimal time step configuration.
Implementation Details. In our experiments with ADM-G,
we generated 50,000 samples using random class guidance.
For Stable Diffusion, we produced 10,000 samples using
captions from the COCO dataset. We then calculated FID
and IS scores for these generated samples to assess the per-
formance of our method.

5.2. Results

Beta Sampling Outperforms Uniform Sampling and
Competes with AutoDiffusion. Table 1 and Table 2 present
a comparison of FID and IS scores for generated images us-
ing different sampling methods (Beta Sampling, AutoDif-
fusion, and uniform sampling) in ADM-G and Stable Dif-
fusion (SD) models, respectively. In both ADM and SD ex-
periments, the three sampling methods show similar trends.
At 50 and 100 steps, AutoDiffusion’s genetic algorithm
search consumes significant time, and since the step count
is high enough to approach a solution-like image, the FID
and IS scores for both uniform and Beta Sampling become
similar. [24] However, at 10, 15, and 20 steps, Beta Sam-
pling shows clear improvements over uniform sampling.
In ADM-G, Beta Sampling even outperforms AutoDiffu-
sion, while in Stable Diffusion, AutoDiffusion performs
slightly better. Nevertheless, considering AutoDiffusion’s
long search time, Beta Sampling proves more efficient. In
very low step settings of 4 and 6, AutoDiffusion yields bet-
ter FID and IS scores than Beta Sampling However, while
uniform sampling shows a significant performance drop,
Beta Sampling exhibits only marginal performance degra-
dation. In summary, at higher step counts (50, 100), the
difference between sampling methods is negligible, but at
practical step counts (10, 15, 20), Beta Sampling excels in
both quality and efficiency, whereas in near one-shot envi-
ronments (4, 6 steps), AutoDiffusion performs better.

Figure 3 shows generated examples from identical initial
noise. At 4 steps, Beta Sampling produces blurrier results
compared to AutoDiffusion. However, at 6 and 10 steps,
both Beta Sampling and AutoDiffusion yield clearer images
than uniform sampling. Given the computationally intensive
search process of AutoDiffusion, Beta Sampling emerges as
a more efficient alternative. At 15 and 20 steps, all strategies
produce clear images, with both uniform and Beta Sampling
offering efficient options. Overall, except for 4 steps, Beta
Sampling demonstrates competitive image quality without
the additional time or computational burdens.

The quality of examples generated with Stable Diffusion
can be observed in Fig. 4. At 4 and 6 steps, uniform sam-
pling exhibits structural defects and poor color representa-
tion. Beta Sampling mitigates these issues but remains in-
ferior to AutoDiffusion, which employs a more extensive
search process for large models. At 10 steps, Beta Sampling

Steps  Sampling Strategies FID (}) IS (1)

Uniform 138.66 7.09

4 AutoDiffusion 17.86 34.88
Ours (Beta) 31.64 25.27
Uniform 2371 31.53

6 AutoDiffusion 11.17 4347
Ours (Beta) 13.12  41.30
Uniform 8.86  46.50

10 AutoDiffusion 6.24 57.85
Ours (Beta) 6.13 58.15
Uniform 5.38 54.82

15 AutoDiffusion 492 64.03
Ours (Beta) 443 66.28
Uniform 435 58.41

20 AutoDiffusion 393 68.05
Ours (Beta) 393 7142

50 Uniform 320 69.32
Ours (Beta) 3.17 73.85

100 Uniform 3.19 71.50
Ours (Beta) 3.19 73.85

Table 1. FID ({) and IS (1) scores for ADM-G [7] on ImageNet
64 x 64 with various number of time steps and sampling strategies.
For Beta Sampling, we set « = 8 = 0.5 for steps from 4 to 20,
and o = 8 = 0.9 for steps 50 and 100.

produces samples comparable in quality to AutoDiffusion.
Interestingly, at 20 steps, AutoDiffusion occasionally in-
troduces undesired artifacts into the examples. While there
is considerable fluctuation depending on the prompt, Beta
Sampling demonstrates competitive efficiency in all cases
except at 4 steps.

Ablation Study (1): Symmetric Beta Sampling Performs
Better. Tab. 3 and Fig. 5 present the FID and IS evaluations
and sample images generated using these three Beta Sam-
pling with different parameters. For Beta(2,5) with a < /3,
which concentrates sampling in the later stages, the gen-
erated images lacked the necessary low-frequency gener-
ation, resulting in noisy and incomprehensible images, as
evidenced by very poor FID and IS scores. This demon-
strates that the early steps are crucial for forming low-
frequency components, which need to be shaped before the
high-frequency components are generated. Beta(5,2) with
a > [ focused on early stages, producing images with good
low-frequency content but lacking high-frequency details,
resulting in blurred edges and inferior FID and IS scores
compared to uniform sampling. In contrast, our proposed
Beta(0.5,0.5) with o = 3 balanced early and late stage sam-
pling, preserving both content and detail, and achieving the
best FID and IS scores. These results confirm our hypoth-
esis that the early and late steps of the denoising process
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Figure 3. Examples generated by ADM-G [7] on ImageNet 64 x 64 with various sampling strategies.
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Figure 4. Examples generated by Stable Diffusion [23] with various sampling strategies. The text prompts used for generation are ”A man
who is wearing a suit and tie” and ”Two large elephants are standing beside each other”.

are crucial for enhancing low-frequency and high-frequency
components, respectively.

Ablation Study (2): Hyperparameter Analysis. Figure 6
illustrates the changes in FID and IS performance as a func-
tion of the hyperparameter « = 5. When a = f = 1,
the distribution is equivalent to a uniform distribution. The
observed changes in FID and IS performance as the hyper-
parameter decreases from the uniform distribution demon-
strate the effectiveness of Beta Sampling. Specifically, we
set « = 8 = 0.5 for ADM-G, and o = 3 = 0.6 for Sta-
ble Diffusion except for the 50- and 100-step scenarios. For
this relatively large NFE region, we identified the optimal
parameters individually.

Ablation Study (3): Performance by Guidance Scale.
Figure 7 shows FID scores for various guidance scales with
and without Beta Sampling on Stable Diffusion. Across
multiple steps, the Beta Distribution consistently reduces
FID scores at all scales, demonstrating its stable perfor-
mance.

4 steps 6 steps 10 steps

20 steps  Frequency

-
Beta ¥

(0.5,0.5)

Beta
(5,2)

Beta
2.5)

(0.5,0.5)
(52) e
(2,5)

500 1000

Figure 5. Examples generated by ADM-G [7] on ImageNet 64 x 64
using Beta Sampling with various distribution shapes. The fre-
quency column provides a relative frequency analysis of the 20-
step generation, highlighting differences in the process.
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Steps  Sampling Strategies FID (}) IS (1)

Uniform 38.22  16.06

4 AutoDiffusion 20.18 23.10
Ours (Beta) 3471 16.95
Uniform 3240 17.99

6 AutoDiffusion 17.57 23.83
Ours (Beta) 22.48  21.83
Uniform 19.16 22.04

10 AutoDiffusion 13.20 26.52
Ours (Beta) 16.45 25.51
Uniform 14.57 27.40

20 AutoDiffusion 13.08 25.21
Ours (Beta) 15.10 27.46

50 Uniform 1592 27.76
Ours (Beta) 1589 27.85

100 Uniform 15.66 27.76
Ours (Beta) 15.65 27.78

Table 2. FID ({) and IS (1) scores for Stable Diffusion [23] with
various number of time steps and sampling strategies. For Beta
Sampling, we set « = 8 = 0.6 for steps from 4 to 20, « = =
0.7 for 50 steps and o = 8 = 0.9 for 100 steps.

Steps  Sampling Strategies FID (}) IS (1)

Beta (0.5,0.5) 31.64 2527
4 Beta(52) 52.65 16.89
Beta (2,5) 417.03  1.16
Beta (0.5,0.5) 1312 41.30
6  Beta(52) 31.74  25.18
Beta (2,5) 41933 118
Beta (0.5,0.5) 613 58.15
10 Beta(5,2) 19.82  34.00
Beta (2,5) 42046 121
Beta (0.5,0.5) 443  66.28
15  Beta(52) 15.17  39.53
Beta (2,5) 41837 1.8
Beta (0.5,0.5) 3.93 7142
20  Beta(5,2) 1321 4231
Beta (2,5) 41631 132

Table 3. FID () and IS (1) scores for ADM-G [7] on ImageNet
64 x64 with Beta Sampling of various distribution shape and their
corresponding sampled step distributions.

6. Discussion

Beta Sampling is Highly Efficient. One key feature of
Beta Sampling is that it is both training-free and highly effi-
cient. Various denoising speed-up techniques typically rely
on either distillation from existing models or require addi-
tional training. For instance, in the case of InstaFlow [17],
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Figure 7. FID (] ) scores for Stable Diffusion [23] with Beta Sam-
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Method Steps Search Cost FID
AutoDiffusion 10 Genetic Algo. 31h+ 6.24
Ours 10 Param. Search  19m  6.10

Table 4. Efficiency comparison with AutoDiffusion

26 —@— 2k samples —@— 50k samples
i \‘\."—/‘

T T T T T T T

0.3 0.4 0.5 0.6 0.7 0.8 0.9
alpha

FID score

Figure 8. FID scores measured with 2k samples and 50k samples
across o = (3 of Beta distribution.

the process takes 199 days on an A100. In contrast, both
AutoDiffusion and our method are training-free, search-
based approaches, but differ significantly in efficiency. Ta-
ble 4 demonstrates the superior efficiency of Beta Sampling
compared to AutoDiffusion. For the ADM-G 10-step set-
ting, AutoDiffusion requires a minimum of 31 hours for the
search, while our method takes only 19 minutes with a sin-
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Figure 9. A cumulative histogram of occurrence number of time
steps sampled by AutoDiffusion [14] on ADM-G [7] with various
number of time steps. To enhance the visibility of the histogram,
the time steps were sampled 150 times for 4 and 6 steps, and 100
times for 10 and 15 steps, respectively.

gle A100. As shown in Fig. 8, by sampling just 2k images
for parameter search, we were able to effectively determine
the optimal «. This process includes denoising sample gen-
eration, and the gap in efficiency becomes even more pro-
nounced for high-resolution models or when a higher num-
ber of steps is involved.

AutoDiffusion Behaves Like Beta Sampling. Our experi-
ments revealed that Beta Sampling achieves results compa-
rable to AutoDiffusion when using 10 or more time steps,
but underperforms with extremely small time steps, such
as 4 or 6 steps. To better understand these differences, we
analyzed the distribution of time steps extracted from Au-
toDiffusion by examining the cumulative histogram of step
frequencies, as shown in Fig. 9. For enhanced visibility, we
repeated step sampling 150 times for 4 and 6 steps, and 50
times for 10 and 15 steps. The histogram revealed that for 4
and 6 steps, the distribution was nearly uniform, whereas for
10 and 15 steps, the distribution resembled a Beta distribu-
tion. This indicates that AutoDiffusion effectively operates
similarly to Beta Sampling when using 10 or more steps.
Consequently, for scenarios requiring 10 or more time steps,
Beta Sampling emerges as a more efficient choice compared
to AutoDiffusion, which involves a longer searching time.

ADM-G vs. Stable Diffusion. We validated the effective-
ness of Beta Sampling using two diffusion models, ADM-
G and Stable Diffusion. Our results demonstrated that Beta
Sampling is more advantageous than uniform sampling for
both models and is particularly more efficient than Au-
toDiffusion for ADM-G with steps greater than 10. How-

ever, in the case of Stable Diffusion, Beta Sampling showed
marginally inferior results to AutoDiffusion even at 10
steps. This discrepancy can be attributed to the differences
in the spectral analysis of ADM-G and Stable Diffusion.
As depicted in Fig. 2, ADM’s frequency changes exhibit
peaks in both high and low frequencies concentrated at the
extremities of the steps with a steep decline in variance.
In contrast, Stable Diffusion’s frequency changes show a
high-frequency peak around the 100-step mark, with low-
frequency changes tapering off more gradually. Therefore,
while Beta Sampling is well-suited to ADM’s frequency
change distribution, it is not entirely compatible with Sta-
ble Diffusion’s distribution. Future improvements in gener-
ation performance for Stable Diffusion could be achieved
by identifying hyperparameters or distributions that better
align with its frequency change characteristics.
Limitations and Future Works. One limitation is that our
approach relies on pre-determined spectral analyses, which
may not fully capture the dynamic nature of the diffusion
process across different datasets and model architectures.
Future work could address these limitations by adaptively
sampling the most critical steps to further enhance the effi-
ciency and generalizability of our method.

7. Conclusion

In this paper, we introduced an efficient time step sam-
pling method for generative diffusion models, leveraging
frequency domain analysis to optimize the image gener-
ation process. Our approach replaces traditional uniform
sampling with a Beta distribution-like method, emphasizing
critical steps in the early and late stages of diffusion. We
validated our hypothesis—that significant changes in im-
age content occur at specific steps—through Fourier trans-
form analysis, revealing substantial low-frequency changes
early on and high-frequency adjustments later. Experiments
with ADM-G and Stable Diffusion showed our method con-
sistently outperforms uniform sampling, achieving better
FID and IS scores, and offers competitive efficiency com-
pared to state-of-the-art techniques like AutoDiffusion. This
work provides a practical framework for enhancing diffu-
sion model efficiency by focusing computational resources
on the most impactful steps, with potential for further opti-
mization and adaptive techniques in future research.
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