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Abstract
Online linear programming plays an important
role in both revenue management and resource
allocation, and recent research has focused on de-
veloping efficient first-order online learning al-
gorithms. Despite the empirical success of first-
order methods, they typically achieve regret no
better than O(

√
T ), which is suboptimal com-

pared to the O(log T ) result guaranteed by the
state-of-the-art linear programming (LP)-based
online algorithms. This paper establishes several
important facts about online linear programming,
which unveils the challenge for first-order online
algorithms to achieve beyond O(

√
T ) regret. To

address this challenge, we introduce a new al-
gorithmic framework which decouples learning
from decision-making. For the first time, we
show that first-order methods can achieve regret
O(T 1/3) with this new framework.

1. Introduction
This paper presents a new algorithmic framework to solve
the online linear programming (OLP) problem. In this con-
text, a decision-maker receives a sequence of resource re-
quests with bidding prices, and makes irrevocable alloca-
tion decisions for these requests sequentially. The goal of
OLP is to maximize the accumulated reward subject to a
set of inventory constraints. OLP plays an important role
in a wide range of applications, such as revenue manage-
ment (Talluri et al., 2004), resource allocation (Katoh and
Ibaraki, 1998), cloud computing (Hussain et al., 2013), and
online advertising (Balseiro et al., 2022a).
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Most state-of-the-art algorithms for OLP are dual linear
programming (LP)-based (Agrawal et al., 2014; Kessel-
heim et al., 2014; Jiang et al., 2022; Li and Ye, 2022; Ma
et al., 2022). More specifically, they require solving a se-
quence of LPs to make online decisions. However, the
high computational cost of these LP-based methods pre-
vents them from being applied in many time-sensitive or
large-scale problems. For example, decisions have to be
made instantaneously in online advertising (Balseiro et al.,
2022a). This challenge motivates a recent line of research
using first-order methods to address OLP (Li et al., 2020;
Gao et al., 2023; Balseiro et al., 2022a;b). First-order meth-
ods are based on gradient information, and are more scal-
able and computationally efficient than LP-based methods.

Despite the advantage in computational efficiency, first-
order methods are still not comparable to LP-based meth-
ods in terms of regret for many settings. Existing first-order
OLP algorithms only achieve O(

√
T ) regret bound. The

only exception is when the distribution of requests and bid-
ding prices has finite support (Sun et al., 2020). Under the
continuous support setting, it remains open:

Can first-order methods go beyond O(
√
T ) regret?

Contributions. This paper takes a first step towards an-
swering this question with the following contributions:

• We characterize a dilemma empirically and theoretically
in applying first-order methods to OLP. The dilemma in-
terprets the difficulty in achieving regret and constraint
violation better than O(

√
T ) with first-order methods,

and also depicts the discrepancy between online learn-
ing and decision-making.

• To address the dilemma, we introduce a new online
decision-making framework. The idea is to decouple
the learning and decision-making procedures with two
separate first-order methods and achieve better decision-
making by efficiently combining them.

• With the help of this new framework, for the first
time, we show that first-order OLP algorithms achieve
O(T 1/3) regret and constraint violation, which is so far
the best result for first-order methods in OLP.
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Table 1: Regret bounds in current OLP literature. log log factors are ignored.

Paper Setting and assumptions Algorithm Regret Lower bound

(Li and Ye, 2022) Bounded, continuous support, non-degeneracy LP-based O(log T ) Yes
(Bray, 2019) Bounded, continuous support, non-degeneracy LP-based O(log T ) Yes

(Jiang et al., 2022) Bounded, finite support of at LP-based O(log2 T ) Unknown
(Ma et al., 2022) Bounded, continuous support, non-degeneracy LP-based O(log T ) Yes

(Chen et al., 2022) Bounded, finite support, non-degeneracy LP-based O(1) Yes

(Li et al., 2020) Bounded First-order Subgradient O(
√
T ) Yes

(Balseiro et al., 2022a) Bounded First-order Mirror Descent O(
√
T ) Yes

(Gao et al., 2023) Bounded First-order Proximal Point O(
√
T ) Yes

(Balseiro et al., 2022b) Bounded First-order and Momentum O(
√
T ) Yes

(Sun et al., 2020) Bounded, finite support, non-degeneracy First-order Subgradient O(T 3/8) No (O(1))
This paper Bounded, continuous support, non-degeneracy First-order Subgradient O(T 1/3) No (O(log T ))

Related Literature. There is a vast amount of litera-
ture on OLP (Ma and Simchi-Levi, 2020; Mirrokni et al.,
2012; Mahdian et al., 2012; Arlotto and Gurvich, 2019),
and we review some recent developments that reach beyond
O(

√
T ) regret in the stochastic input setting (Table 1).

These algorithms mostly follow the same principle of mak-
ing decisions based on the learned information: learning
and decision-making are closely coupled with each other.
We refer the interested readers to (Balseiro et al., 2023) for
a more detailed review on OLP and relevant problems.

LP-based OLP Algorithms. Most LP-based OLP algo-
rithms leverage the dual LP problem (Agrawal et al., 2014),
with only a few exceptions (Kesselheim et al., 2014). Un-
der assumptions of either non-degeneracy or finite sup-
port on resource requests and/or rewards, O(log T ) regret
has been achieved under different settings. More specifi-
cally, Li and Ye (2022) establish the dual convergence of
finite-horizon LP solution to the optimal dual solution to
the underlying stochastic program. In the continuous sup-
port setting, O(log T log log T ) regret is achieved. Bray
(2019) considers multi-secretary problem and establishes
an O(log T ) regret result. Ma et al. (2022) consider the
setting where a regularization term is imposed on the re-
source and also establish an O(log T ) result. Jiang et al.
(2022) establish O(log2 T ) regret without nondegeneracy,
which assumes that the distribution of resource requests has
finite support. Chen et al. (2022) consider the case where
both resource requests and prices have finite support, and
constant regret can be achieved in this case.

First-order OLP Algorithms. Early explorations of first-
order OLP algorithms start from (Li et al., 2020) and (Bal-
seiro et al., 2022a; Lobos et al., 2021), where O(

√
T ) regret

is established using mirror descent and subgradient meth-
ods. Gao et al. (2023) show that proximal point update also
achieves O(

√
T ) regret. Recently, Balseiro et al. (2022b)

analyze a momentum variant of mirror descent and get
O(

√
T ) regret. Under the finite support assumption, Sun

et al. (2020) design a three-stage algorithm that achieves
O(T 3/8) regret. To our knowledge, this is the only instance
of first-order OLP algorithm that goes beyond O(

√
T ).

Structure of the Paper. The rest of the paper is orga-
nized as follows. Section 2 introduces the problem setup
and main assumptions; In Section 3, we unveil a dilemma
between online learning and decision-making; In Section
4, we present our framework that decouples learning from
decision-making, and show that our framework achieves
better regret than O(

√
T ). In Section 5, we conduct nu-

merical experiments to validate our theoretical findings.

2. Problem Setup
Notations. Throughout the paper, we use ∥·∥ to denote Eu-
clidean norm and ⟨·, ·⟩ to denote Euclidean inner product.
Bold letters notations A and a denote matrices and vectors
respectively. Given a convex function f , its subdifferential
is denoted by ∂f(x) and f ′(x) ∈ ∂f(x) is called a sub-
gradient. [·]+ = max{·, 0} denotes element-wise positive
part function and I{·} denotes the 0-1 indicator function.
Given iteration count T , we use O(1/

√
T ),O(1/t) to de-

note stochastic gradient-based methods that use fixed step-
size and adaptive stepsize proportional to 1/t respectively.

2.1. Online Linear Programming and Duality

Consider an online resource allocation problem over time
horizon T ≥ 1: With an initial inventory of m ≥ 1 re-
sources b ∈ Rm and average inventory d = b

T , at time
t = 1, . . . , T , a customer with order (ct,at) ∈ R×Rm ar-
rives and requests resource at at bidding price ct. Decision
xt ∈ [0, 1] is made to either accept or reject the order. We
receive reward ct once the order is accepted.

Define reward vector c := (c1, . . . , cT )
⊤ ∈ RT and request

matrix A := (a1, . . . ,aT ) ∈ Rm×T . We can write the
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problem compactly as an “offline” LP:

max
0≤x≤1

⟨c,x⟩ subject to Ax ≤ b, (P)

where 0 and 1 denote vectors of all zeros and ones, respec-
tively. The dual problem of (P) is given by

min
(y,s)≥0

⟨b,y⟩+ ⟨1, s⟩ subject to A⊤y + s ≥ c. (D)

According to (Li et al., 2020), we can eliminate s ≥ 0, s ≥
c−A⊤y, and write (D) more compactly as

min
y≥0

fT (y) :=
1
T

∑T
t=1[⟨d,y⟩+ [ct − ⟨at,y⟩]+], (1)

and recall that d = b
T is the average inventory. fT (y) can

be viewed as the sample approximation of the function

f(y) := E[fT (y)] = ⟨d,y⟩+ E(c,a)[[c− ⟨a,y⟩]+], (2)

if coefficient pairs (ct,at) are drawn from some fixed dis-
tribution. Next, we respectively define

y⋆
T ∈ argmin

y≥0
fT (y) and y⋆ ∈ argmin

y≥0
f(y)

and LP optimality conditions reveal the following connec-
tion between the primal-dual optimal solution pair,

x⋆
t ∈

 {0}, ct < ⟨at,y⋆
T ⟩,

[0, 1], ct = ⟨at,y⋆
T ⟩,

{1}, ct > ⟨at,y⋆
T ⟩.

(3)

This connection suggests that the primal optimal solution
is largely determined by the dual through optimality condi-
tions. This motivates dual-based algorithms for OLP.

2.2. Dual-based OLP Algorithms

Dual-based OLP algorithms work as follows:
Given an online learning algorithm

y+ = At := A({(c1,a1), . . . , (ct,at)}),

we maintain and update a dual solution sequence {yt}Tt=1

in an online fashion; primal decisions {xt}Tt=1 are made
simultaneously based on {yt}Tt=1 and (3).

Algorithm 1 Dual-based OLP algorithm
Input: y1, (A,b, c), algorithm A
for t = 1 to T do

yt+1 = At (4)

Make decision xt according to (4) and (3)
end

Algorithm 1 illustrates the framework. The common
choices of A are summarized as follows:

• LP-based method: Let xt = I{ct ≥ ⟨at,yt⟩}, solve LP
with data {(cj ,aj), j ≤ t} and output yt+1 = y⋆

t .

• First-order method: Let xt = I{ct ≥ ⟨at,yt⟩}, compute
a stochastic subgradient of f at yt and output yt+1:

gt = d− atx
t ∈ ∂y=yt [⟨d,y⟩+ [ct − ⟨at,y⟩]+],

yt+1 = argmin
y≥0

{⟨gt,y⟩+ 1
2α∥y − yt∥2}. (5)

This paper focuses on the subgradient method. Variants
of the subgradient method, including mirror descent (Bal-
seiro et al., 2022a) and proximal point (Gao et al., 2023),
have also been analyzed in the literature. Compared to the
LP-based methods, first-order methods have much lower
computational costs and memory requirements.

2.3. Performance Metric

Given the output of online algorithm x̂ = (x1, . . . , xT ), we
define regret and constraint violation, respectively, to be

r(x̂) := max
Ax≤b,0≤x≤1

⟨c,x⟩ − ⟨c, x̂⟩, (6)

v(x̂) := ∥[Ax̂− b]+∥. (7)

These metrics are standard when measuring performance
of online algorithms (Gao et al., 2023; Li et al., 2020).

2.4. Assumptions and Auxiliary Results

We make the following assumptions throughout the paper.

A1: {(ct,at)} are generated i.i.d. from distribution P .

A2: There exist constants ā, c̄ > 0 such that ∥a∥∞ ≤ ā
and |c| ≤ c̄ almost surely.

A3: The average resource d = b/T satisfies

d · 1 ≤ d ≤ d̄ · 1,

where 0 < d ≤ d̄.

A4: Second moment E[aa⊤] is positive definite with min-
imum eigenvalue λ0.

A5: There exist λ1, λ2 > 0 such that for (c,a) ∼ P ,

λ1|⟨a,y − y⋆⟩|
≤ |P{c ≥ ⟨a,y⟩|a} − P{c ≥ ⟨a,y⋆⟩|a}|
≤ λ2|⟨a,y − y⋆⟩|

for all y ∈ Ξ1 := {y : y ≥ 0, ∥y∥ ≤ c̄
d + 1}.

A6: y⋆ satisfies y⋆i = 0 if and only if

di − E(c,a)[aiI{c > ⟨a,y⋆⟩}] > 0

for all i = 1, . . . ,m.
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The above assumptions are identical to Assumption 2 from
Li and Ye (2022), except Ξ1 is defined with respect to Eu-
clidean norm for convenience of analysis. To our knowl-
edge, Li and Ye (2022) require a stronger version of A5 to
get O(log T log log T ) regret, and so far, no first-order al-
gorithm can reach regret beyond O(

√
T ) under A1 to A6.

With the assumptions above, we immediately have the fol-
lowing auxiliary result from Li and Ye (2022).

Lemma 2.1 (Proposition 2 in (Li and Ye, 2022)). Assume
A1 to A6 and let µ = λ0λ1

2 > 0, then

f(y)− f(y⋆)− ⟨f ′(y⋆),y − y⋆⟩ ≥ µ
2 ∥y − y⋆∥2, (8)

⟨f ′(y⋆),y − y⋆⟩ ≥ 0,

for all y ∈ Ξ1, where f ′(y⋆) ∈ ∂f(y⋆) = {∇f(y⋆)}.
Moreover, y⋆ ∈ Ξ0 := {y : y ≥ 0, ∥y∥ ≤ c̄

d} is unique.

Remark 2.1. Our results essentially require uniqueness of
y⋆ and the growth condition in Lemma 2.1. In other words,
we can adopt the assumptions from other OLP literature
which result in the same conditions (Bray, 2019; Chen
et al., 2022; Jiang et al., 2022; Ma et al., 2022). Besides,
suppose distribution P has finite support, then the structure
of (D) guarantees the growth condition through polyhedral
error bound (Yang and Lin, 2018). Therefore, our results
can be extended to the finite-support setting if y⋆ is unique.

Lemma 2.1 shows that the expected dual objective (2) has
a unique optimal solution and exhibits quadratic growth,
also known as semi-strong convexity (Yang and Lin, 2018).
Since Li and Ye (2022) achieves O(log T log log T ) regret
with a slightly stronger version of A5 and Lemma 2.1, it
is natural to expect that first-order methods also achieve
regret better than O(

√
T ). However, in the next section,

we present a dilemma, which almost prevents first-order
OLP algorithms from achieving better performance.

3. Dilemma between Learning and Decision
In this section, we discuss a dilemma between learning
and decision-making for first-order methods solving OLP.
That is, a good estimation of y⋆ benefits decision-making
or achieving better regret and constraint violation than
O(

√
T ) for some first-order algorithms (Proposition 3.1).

To learn such a good estimation, one needs a slow updating
speed in Algorithm 1, or a tiny stepsize α in the updating
rule (5). However, such a tiny step size will prevent Al-
gorithm 1 from quickly updating the dual solution yt as a
response to new emerging reward and request pairs, result-
ing in a bad regret and constraint violation. Consequently,
it seems impossible to break O(

√
T ) regret through first-

order algorithms, since they cannot have small and large
stepsizes simultaneously.

3.1. Benefit in Learning Better

We start from discussing the benefit of learning a bet-
ter dual solution for the dual-based online algorithm
(Algorithm 1) by the following proposition.

Proposition 3.1. Under A1 to A6, given an estimate y1 of
y⋆ such that ∥y1 − y⋆∥ = O(1/T θ) for some θ ≥ 0, then
Algorithm 1 with the subgradient update (5) and stepsize

O(T− 2θ′+1
2θ′+2 ) achieves O(T

1
2θ′+2 ) regret and constraint vi-

olation, where θ′ = min{θ, 1/2}.

Proposition 3.1 shows that a better estimate of y⋆ ben-
efits the performance of OLP algorithms. In particular,
when y1 = y⋆, O(T 1/3) regret and constraint violation are
achieved at the same time. Proposition 3.1 also reveals the
significance of knowing the distribution P . Specifically, Li
and Ye (2022) show that even if the distribution P is given
such that y⋆ can be computed prior to the decision-making
process, Algorithm 1 with yt = y⋆ for all t only achieves
O(

√
T ) regret under A1 to A6. This result seems to sug-

gest that knowing P does not yield an improvement beyond
O(

√
T ). However, Proposition 3.1 points out that this

knowledge at least helps obtain O(T 1/3) regret, thereby
opening up the possibility of achieving even better regret
with knowledge of P .

To understand the discrepancy between Li and Ye (2022)
and Proposition 3.1, we remark that Proposition 3.1 com-
plements rather than conflicts with the results in Li and Ye
(2022). In particular, y⋆, the dual optimal solution for the
expectation problem (2), can be different from y⋆

T , the dual
optimal solution of the realized problem (1), because of
randomness. The fluctuations can result in O(

√
T ) regret

and constraint violation. Compared to making decisions
based on a fixed dual solution y⋆, Proposition 3.1 suggests
that combining y⋆ with SGD leads to better regret. In other
words, dual solution has to be adjusted, to adapt to realized
samples from the environment.

Although y⋆ brings benefits for OLP, in practice, y⋆ is gen-
erally unknown and needs to be learned along the horizon
T . When one does not design a good learning algorithm,
or when θ = 0 in Proposition 3.1, the algorithm in Propo-
sition 3.1 cannot achieve better regret and constraint vi-
olation than O(

√
T ) by itself. This challenge also exists

in the current literature about first-order methods for OLP.
Specifically, the existing first-order methods used in OLP
(Li et al., 2020; Balseiro et al., 2022a;b) are sub-optimal in
learning y⋆ and cannot break the O(

√
T ) barrier for regret

and constraint violation. They share the same convergence
rate as the first method listed in Table 2 in learning y⋆, but
they are worse than other algorithms in Table 2 which are
designed to exploit the quadratic growth property (8) with a
smaller stepsize. One natural idea is that, first-order meth-
ods, which are better at learning, also contributes to better
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decision-making. However, this intuition is incorrect.

3.2. Impossibility in Deciding Better

We now investigate the performance of Algorithm 1 with
first-order methods better at learning y⋆, such as SGD with
known µ, ASSG, and SADAGRAD in Table 2 that has
smaller stepsizes but a faster convergence rate compared
with SGD in Table 2. Unfortunately, achieving regret bet-
ter than O(

√
T ) remains impossible even with those first-

order methods with faster convergence rates in learning y⋆.
Particularly, we illustrate this impossibility by considering
the following one-dimensional linear programming prob-
lem (9), also known as the online multi-secretary problem:

max
0≤xt≤1

T∑
t=1

ctx
t subject to

T∑
t=1

xt ≤ T
2 . (9)

Here, ct is sampled uniformly from [0, 1] for all t =
1, . . . , T . We can compute µ = 1, y⋆ = 1

2 is the median
of the distribution of the objective, and y⋆T is the median
of the realized samples {ct}Tt=1. However, their regret and
constraint violation bounds still grow at order O(

√
T ).

To interpret this suboptimal performance of these gradi-
ent descent methods with a fast convergence rate but a
small stepsize, one key factor is their limited capability in
adaptability. Note that all these algorithms share a simi-
larity that their stepsizes are O(1/T ) in the last O(T ) it-
erations. This choice of stepsizes is required to guarantee
fast convergence, but it simultaneously reduces the chang-
ing rate of the dual solution. Consequently, it cannot adapt
to the changes of the emerging samples in online decision-
making. One specific example of lack of adaptability is
that, once a mistake is made in estimating the dual solu-
tion (i.e., the gap between the estimated dual solution and
y⋆ is large), these algorithms cannot mitigate the estima-
tion error for a long time. This estimation error will lead
to suboptimal decisions thereafter, even until the end of the
horizon. The following proposition theoretically illustrates
this slow-updating issue for SGD with known µ.

Proposition 3.2. Denote yt as the estimated dual solution
for the online secretary problem (9) at time t by SGD with
known µ. If there exists t0 ≥ T/10 + 1 such that yt0 ≥
y⋆ + 1√

T
, then E[yt|yt0 ] ≥ y⋆ + 1

20
√
T

for all t ≥ t0.

Proposition 3.2 tells that once SGD with known µ esti-
mates the dual optimal solution with an O(1/

√
T ) error for

one step, this error cannot be corrected and will be carried
for all succeeding steps on expectation. More importantly,
as shown in Proposition 3.3, this lack of adaptability also
leads to suboptimal performance in decision-making, rul-
ing out their possibility of achieving regret and constraint
violation better than O(

√
T ).

Proposition 3.3. Algorithm 1 using SGD with known µ

cannot achieve O(T β) regret and constraint violation si-
multaneously for any β < 1

2 .

We have shown that the discrepancy between online learn-
ing and decision-making: algorithms efficient in learn-
ing fail to achieve regret and constraint violation better
than O(

√
T ) due to their small stepsizes, and weakness

in adaptability. Conversely, the beginning of Section 3
shows the importance of online learning in online decision-
making: to achieve regret and constraint violation better
than O(

√
T ), a good estimate of the dual optimal solu-

tion is required for first-order methods. As in Proposi-
tion 3.1, the proposed algorithm has a relatively larger
stepsize to guarantee adaptability. However, this algo-
rithm cannot learn a good dual solution on its own. These
two sides depict a dilemma in first-order OLP algorithms:
good decision-making requires a large stepsize and a good
learned estimation, while good learning requires relatively
a small stepsize. First-order methods cannot achieve these
two aspects simultaneously.

Escaping the Horns of a Dilemma. The aforemen-
tioned dilemma seems discouraging for applying first-order
methods in online linear programming or online decision-
making. However, this dilemma is built on the assump-
tion that one learns a sequence of dual solutions and makes
decisions solely based on the same learned sequence. To
address this challenge, in the next section, we introduce a
two-path approach for online decision-making that main-
tains decision-making and learning paths independently.
This new approach enjoys the strengths of both aspects,
which leads to a first-order method achieving O(T 1/3) re-
gret and constraint violation without knowledge of y⋆.

4. Decoupling Learning and Decision-Making
In this section, we present our algorithm framework. The
dilemma we discussed in the previous section reveals a crit-
ical challenge: we might not be able to find a first-order
method that is good at both learning and decision-making.
However, the low cost of first-order methods opens up an-
other way: instead of having to choose between learning
and decision-making, it is possible to take the best of both
worlds by using two different algorithms simultaneously: a
learning algorithm AL and a decision algorithm AD.

This simple idea yields a highly flexible framework:

1) We can choose AL and AD to be good learning and
decision-making algorithms, respectively.

2) Information from AL is flexibly incorporated into AD.

To illustrate the power of the framework, we show how its
simple variant breaks the O(

√
T ) barrier of OLP. We also

remark that the framework is broadly applicable to prob-
lems where learning and decision happen simultaneously.
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Table 2: First-order methods for problems with quadratic growth property (8). SGD with µ refers to subgradient method
with known growth parameter µ. Stepsizes of ASSG and SADAGRAD decay to O(1/T ) in the last O(T ) iterations; ASSG
and SADAGRAD are parameter-free with respect to µ.

Algorithm Stepsize Convergence Rate ∥yk − y⋆∥ Parameter Free

SGD (Garrigos and Gower, 2023) O(1/
√
T ) O(1/k1/4) for all k = 1, . . . , T Yes

SGD with known µ (Rakhlin et al., 2011) O(1/(µt)) O(1/
√
k) for all k = 1, . . . , T No

Parameter-free ASSG (Xu et al., 2017) O(1) to O(1/T ) O(1/
√
T ), k = T Yes

Parameter-free SADAGRAD (Chen et al., 2018) O(1) to O(1/T ) O(1/
√
T ), k = T Yes

4.1. Algorithm Design

We are ready to introduce our algorithm, a realization of
the aforementioned framework. We start by choosing AD

to be subgradient method and AL to be any of the algo-
rithms from Table 2. AD and AL generate two paths of
dual sequences {yt}Tt=1 and {yt

L}Tt=1 respectively. AD ac-
cesses information from AL with a one-time restart strat-
egy: we divide total horizon T into two phases: exploration
and exploitation (Figure 1 and Algorithm 2).

Exploration. During exploration phase from t = 1 to Te,
AD and AL run simultaneously but independently. Sub-
gradient method AD is equipped with stepsize αe.

Exploitation. At t = Te +1, AD restarts from yTe+1
L with

a different stepsize αp. Due to our simple one-time restart
strategy, AL stops after t ≥ Te + 1, yt

L ≡ yTe+1
L , t > Te.

Algorithm 2 Decoupling learning and decision-making
Input: y1, (A,b, c), AL,AD, αe, αp

explore for t = 1 to Te do
yt+1 = At

D with stepsize αe and make decision xt

yt+1
L = At

L

end
restart AD by yTe+1

L

exploit for t = Te + 1 to T do
yt+1 = At

D with stepsize αp and make decision xt

end

Remark 4.1. Algorithm 2 is a simple realization of our
framework, and the framework can be implemented very
flexibly, for example, by using different AD or with a
multi-stage restart strategy.

4.2. Algorithm Analysis

The next two lemmas show the regret and violation using
the aforementioned two-path two-phase algorithm.
Lemma 4.1 (Regret). Assuming A1 to A6 hold, we have

E[r(x̂)] ≤ m(ā+d̄)2αe

2 Te +
m(ā+d̄)2αp

2 Tp

+ R
αp

E[∥yTe+1 − y⋆∥+ ∥yT+1 − y⋆∥],

where R := c̄
d +

[m(ā+d̄)2

2d +
√
m(ā+ d̄)

]
·max{αe, αp}.

Lemma 4.2 (Violation). Assuming A1 to A6 hold, we have

E[v(x̂)] ≤ R
αe

+ 1
αp

E[∥yTe+1 − y⋆∥+ ∥yT+1 − y⋆∥],

where R is defined in Lemma 4.1.
Remark 4.2. Lemma 4.1 and 4.2 suggest that the distance
to y⋆ indeed plays a role in the bound. We also observe
that:

1. Te cannot be too large, since the best we can do in the
exploration phase is O(

√
Te), and we cannot spend too

much time in exploration.

2. The distance term is dominated by ∥yTe+1 −y⋆∥ rather
than ∥yT − y⋆∥ alone. These two facts suggest that if
overly small stepsize is used to reduce ∥yT − y⋆∥, the
first term 1

αp
∥yTe+1 − y⋆∥ will instead blow up, which

aligns with our observation from Section 3.

In other words, after Te steps of exploration drive yTe to an
o(1) proximity of y⋆, the most “economical” strategy is to
keep impetus and travel around within this neighborhood.
Therefore, αp should be determined based on the radius of
the neighborhood around y⋆.

After establishing enough intuitions, we now present in-
stances of (AL, Te, αe, αp) in the theorem below.
Theorem 4.1. Assuming A1 to A6 hold, then for all T ≥
9m2(ā+d̄)4

4d2 , we have:

M0. If Te = 0, there is no exploration. With αp = T−1/2,

E[r(x̂) + v(x̂)] ≤ O(
√
T ).

M1. If AL is taken to be SGD with stepsize O(1/
√
Te),

then with Te = T 4/5, αe = T−2/5, αp = T−3/5,

E[r(x̂) + v(x̂)] ≤ O(T 2/5).

M2. If AL is taken to be SGD with stepsize O(1/(µt)),
then with Te = T 2/3, αe = T−1/3, αp = T−2/3,

E[r(x̂) + v(x̂)] ≤ O(T 1/3).

M3. If AL is taken to be either ASSG or SADAGRAD, then
with Te = T 2/3, αe = T−1/3, αp = T−2/3,

E[r(x̂) + v(x̂)] ≤ O(T 1/3 log T ).
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1
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1
T1/3

yTe
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1
T1/2

1
T2/3

Exploration Exploitation

Figure 1: Left: two-path, two-phase framework. Right: illustration of restart, exploration phase sends yTe into a neighbor-
hood of y⋆, and in the exploitation phase, yt stays in this neighborhood with not too tiny stepsize to make adjustments.

Based on the learning ability of AL, there exists some
choice of (Te, αa, αp) that captures the best trade-off be-
tween exploration and exploitation. With this framework,
the O(

√
T ) barrier in online LP is broken.

Discussion on µ. We make some remarks on the effect
of parameter µ. First, as in strongly convex optimization,
only an upper bound of µ is needed for the algorithm to
work. Second, even if there is no way to estimate µ, we can
use parameter-free algorithms discussed in M3, which will
incur a log T factor but can exhibit much better dependency
in constant. Finally, even if for some problems µ is close to
0 (as we will demonstrate in the experiment), our algorithm
is still robust and exhibits O(

√
T ) regret empirically.

Technical Intuitions. Technically, our algorithm design
follows the following intuitions:

1. Using theory of concentration (Li and Ye, 2022),

E[∥y⋆ − y⋆
T ∥] ≤ O(T−1/2).

2. Using theory of stochastic first-order methods, yt, the
sequence generated by SGD with fixed stepsize α, stay
in a noise ball of radius O(

√
α) around y⋆ if it starts

from some initial point y1 such that ∥y1 − y⋆∥ ≤
O(

√
α). In other words,

E[∥y⋆ − yt∥] ≤ O(
√
α)

3. The closer yt is to y⋆
T , the better regret we get.

With these intuitions, y⋆ naturally acts as a bridge between
y⋆
T and yt: we achieve improved regret so long as 1). y1

is close to y⋆ and 2). SGD stepsize α is taken proportional
to the initial distance. Particularly, since y⋆

T can appear
anywhere within the O(T−1/2) size neighborhood around
y⋆, we have to remain adaptive to “catch up with” y⋆

T in
this O(T−1/2) ball. Therefore, we should not take overly
small α to avoid “over-fitting” y⋆.

Lastly, in practice we do not have ∥y1−y⋆∥ ≤ O(
√
α) be-

forehand. This motivates us to consider first spending extra

time learning (exploring), so that a good initial y1 can be
obtained to adjust the algorithm. Further taking into ac-
count the dilemma from Section 3, we obtain the two-path
and two-phase algorithm framework in this section. The
intuition behind our algorithm design is simple but useful.

5. Numerical Experiments
This section conducts experiments to illustrate the perfor-
mance and the theoretical results of our framework. In par-
ticular, we consider a benchmark algorithm from literature,

• M0: No exploration with Te = 0 and αp = T−1/2.

and two instances from Theorem 4.1.

• M1: AL and AD are both SGD with fixed stepsize
T

−1/2
e in the first Te = T 4/5 time period.

• M2: AL is SGD with O(1/(µt)) stepsize and AD is
SGD with stepsize T

−1/2
e in the first Te = T 2/3 time.

We always take µ = 1, and do not tune it through the
experiments.

Our experiment contains four parts. In the first part, we
generate different distributions of {(ct,at)}Tt=1 that sat-
isfy the assumptions specified in Section 2, and assess the
above algorithms’ performance. In the second part, we turn
to the distributions that violate at least one of the assump-
tions and discuss the performance of our algorithm. In the
third part, we compare first-order and LP-based OLP algo-
rithms in regret and running time. Finally, we justify the
optimality of our stepsize choice in the fourth experiment.

5.1. Performance under Assumptions

In this part, we randomly generate {(ct,at)}Tt=1 from dis-
tributions satisfying A1 to A6. Three algorithms’ perfor-
mance is evaluated in terms of r(x̂) + v(x̂).

We choose m ∈ {1, 5} and T evenly spaced over [102, 106]
on log-scale. For each value of T , each algorithm’s per-
formance is averaged over 100 random trials under each
distribution. For all the distributions, each di is sampled
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Figure 2: Growth of normalized r(x̂) + v(x̂) and dual convergence of algorithms when the assumptions hold. Each pair
of the left figure and the right figure is plotted based on the experiment on the same distribution.
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Figure 3: Growth of normalized r(x̂) + v(x̂) of three tested algorithms when the assumptions are violated. The left two:
normal distribution; the right two: discrete distribution.

i.i.d. from uniform distribution U [1/3, 2/3]. {(ct,at)}Tt=1

is generated in the following way: 1). For the first distri-
bution (Li et al., 2020), we take m = 1, and sample each
ait and ct i.i.d. from U [0, 2]; 2). For the second distribu-
tion (Li and Ye, 2022), we let m = 1 and each ait = 1,
and randomly sample each ct i.i.d. from U [0, 1]; 3). For
the third distribution (Li and Ye, 2022), we randomly gen-
erate ait from the truncated standard Cauchy distribution
with the location parameter 1 and the threshold ±10, and
let ct =

∑m
i=1 ait − εt with εt from U [0,m]; 4). For the

fourth distribution, we let m = 5, sample ait and ct i.i.d.
from the U [1, 6] and U [0, 3], respectively.

For each distribution and algorithm, we normalize the av-
erage of r + v by its minimal empirical value and plot its
growth behavior with respect to T . Then we fix T = 106

and plot the convergence of {yt}Tt=1 for the case m = 1
and the last coordinate {ytm}Tt=1 of {yt}Tt=1 for the case
m = 5. Figure 2 clearly suggests that M1 and M2 have
better order of performance compared to M0, which is con-
sistent with our theory. Meanwhile, the dual solution in M0
converges slower than in M1, M2, and exhibits more oscil-
lation around the optimal dual solution y⋆.

5.2. Performance when Assumptions are Violated

In the second part, we turn to distributions that violate at
least one of the assumptions from A1 to A6. We choose
m, T and generate {di} as in the first experiment. We
generate {(ct,at)}Tt=1 as follows. 1). For the first distri-
bution (Li et al., 2020), we take m = 1, and each ait is
generated from normal distribution N (1, 1). We let each
ct =

∑m
i=1 ait− εt with εt from U [0,m]. This distribution

violates A2. 2). The second distribution has finite sup-
port and violates A5. More specifically, we choose m = 1
and randomly generate 10 different pairs of (ct,at). Each
ct and each element in at is sampled from U [0, 1]. After
obtaining {(ct,at)}Tt=1, at each time period t, we sample
(ct,at) from these pairs uniformly.

As in the first experiment, Figure 3 plots the growth of
normalized r+v and convergence of {yt}Tt=1. M1 and M2
perform better than M0 under the first distribution, with
the order still being O(T 1/3). Even for the discrete distri-
bution, M1 and M2 still exhibit slightly better performance
than M0. This further shows the robustness of our methods.
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Figure 4: Left: y-axis: normalized r(x̂) + v(x̂) under dif-
ferent choices of αp. x-axis: different T . Right: Dual con-
vergence under different αp.

5.3. Comparing First-order and LP-based Methods

In this section, we compare first-order OLP algorithms with
an LP-based method in both regret and running time. We
choose M0, M1, M2 and an LP-based algorithm MLP
from Li and Ye (2022, Algorithm 3). MLP solves an LP
of t columns at time t, and it achieves O(log T ) regret. We
generate instances according to the first distribution in Sec-
tion 5.1 with m = 2 and T ∈ {103, 104, 105}. For each
(m,T ) pair, we average the result over 10 experiments.

Table 3: Comparison of first-order and LP-based methods.

T Algorithm Avg. Regret Avg. Time(s)

103

M0 12.37 < 0.001
M1 7.04 < 0.001
M2 4.18 < 0.001

MLP 3.82 0.95

104

M0 38.24 < 0.01
M1 23.46 < 0.01
M2 13.83 < 0.01

MLP 4.12 37.5

105

M0 123.03 6.3× 10−2

M1 47.86 6.4× 10−2

M2 24.00 6.4× 10−2

MLP 5.91 4742.9

Table 3 summarizes the comparison between first-order
and LP-based methods. Although the LP-based method
demonstrates superior performance in terms of regret, it re-
quires significantly more computational time compared to
the first-order method. For instance, MLP takes over one
hour when T = 105, whereas the first-order method M2
only needs 0.064 seconds. Meanwhile, M2 shows up to 5x
improvement over M0, with an almost negligible computa-
tional cost. Therefore, our proposed framework effectively
balances efficiency and regret performance.

5.4. Validation of Stepsize Choice

Our last experiment serves as a validation of our theoretical
analysis. Theorem 4.1 shows that there exists an optimal
choice of αp and for M2 the choice is T−2/3. To verify

this, we search αp = T−β , β ∈ {1
2 ,

7
12 ,

2
3 ,

3
4 ,

5
6 ,

11
12 , 1} and

record performance of algorithms under different stepsizes.
We also plot the dual convergence behavior for T = 106 as
in previous subsections. Figure 4 suggests that the best
choice of αp exactly appears around T−2/3, which verifies
our theoretical findings.

6. Conclusion
In this paper, we unveil the dilemma of first-order online
linear programming algorithms. We develop a novel first-
order online learning framework that decouples learning
and decision-making, which for the first time achieves bet-
ter than O(

√
T ) regret under continuous distribution. Our

new framework and analysis provide new insights for on-
line linear programming, which we believe can motivate
new algorithms and better theoretical guarantees for online
decision-making problems.
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A. Auxiliary Results
In this section, we provide auxiliary results and definitions that will help present our main results. We start by assuming
the existence of a dual learning algorithm with θ-convergence rate.

A.1. θ-Convergence Rate of Dual Learning Algorithms

Proposition A.1. A dual learning algorithm At = A({(cj ,aj), j ≤ t}) has θ-convergence rate if at least with probability
1− 1

T , it outputs AT = yT such that

E[∥yT+1 − y⋆∥] ≤ c1 + c2 log T

T θ
,

where c1, c2 > 0 are constants independent of T .

Given a learning algorithm, Proposition A.1 can be verified through its convergence rate. Here are some examples.

Table 4: Summary of convergence rates

Algorithm First-order Knowledge of µ θ c2

LP-resolving (Li and Ye, 2022) No No 1/2 > 0
God’s perspective – – ∞ = 0

Subgradient with stepsize αt ≡ 1/
√
T Yes No 1/4 = 0

Subgradient with stepsize αt = 1/(µt) Yes Yes 1/2 = 0
Parameter-free ASSG (Xu et al., 2017) Yes No 1/2 > 0

Parameter-free SADAGRAD (Chen et al., 2018) Yes No 1/2 = 0

If θ = 0, we say that the learning algorithm does not converge. On the other hand, by θ = ∞, we mean the algorithm
outputs exactly y⋆. This happens, for example, if the distribution P is known. From now we assume the existence of a
dual learning algorithm with convergence rate θ > 0.

A7: There exists a dual learning algorithm with convergence rate θ > 0.

A.2. Verification of Convergence Rates

In this subsection, we verify the choice of θ, c1, c2 for the aforementioned algorithms.

A.2.1. LP-RESOLVING

In LP-resolving, we have yT = y⋆
T and we have the following result.

Lemma A.1 ((Li and Ye, 2022)). Assume that A1 to A6 hold and that T ≥ max{m, 3}. Then there exists some constant
C > 0 such that

E[∥yT+1 − y⋆∥] ≤
C
√
(m logm+ 1) log log T√

T

Lemma A.2. LP-resolving satisfies θ = 1/2.

A.2.2. SUBGRADIENT

Analysis of subgradient is similar to that in strongly convex case (Lacoste-Julien et al., 2012), where, at each iteration

yt+1 = ΠRm
+ ∩Ξ0(y

t − αtg
t) (10)

for some stepsize αt and ΠS(·) denotes orthogonal projection onto set S. Recall that in Lemma 2.1 we have Ξ0 = {y :
y ≥ 0, ∥y∥ ≤ c̄

d}. Unless specified, we will use Π(·) to denote ΠRm
+ ∩Ξ0(·) to simplify notation. The following lemma

characterizes the behavior of subgradient method.

12



Decouple Learning and Decision-making for Online LP

Lemma A.3. Assume that A1 to A6 hold, then if αt < µ, subgradient update (10) satisfies

Et[∥yt+1 − y⋆∥2] ≤ (1− αtµ)∥yt − y⋆∥2 + α2
tm(ā+ d̄)2

for all t ≥ 1, where Et[·] := E[·|{(cj ,aj), j ≤ t}] denotes the conditional expectation on history.

Plugging in different choices of αt, a telescopic sum completes the proof.

Lemma A.4 (Subgradient with constant stepsize). Under the same assumptions as Lemma A.3, if αt ≡ α < 1/µ, then

E[∥yT+1 − y⋆∥2] ≤ ∆2

µαT
+

m(ā+ d̄)2

µ
α,

where ∆ = ∥y1 − y⋆∥. Taking αt = 1/
√
T gives

E[∥yT+1 − y⋆∥2] ≤ ∆2 +m(ā+ d̄)2

µ
√
T

.

Therefore, subgradient with constant stepsize satisfies θ = 1/4 and c2 = 0.

Lemma A.5 (Subgradient with 1/(µt) stepsize). Under the same assumptions as Lemma A.3, if αt = 2/(µ(t+ 1)), then

E[∥yT+1 − y⋆∥2] ≤ 4m(ā+ d̄)2

µ2T
.

Therefore, subgradient with O(1/(µt)) stepsize satisfies θ = 1/2 and c2 = 0.

A.2.3. PARAMETER-FREE ALGORITHMS

In this subsection, we discuss the convergence rate of two parameter-free algorithms (Xu et al., 2017; Chen et al., 2018)
from literature. These two algorithms employ a double-loop multi-stage restart strategy and work without knowledge of µ.
We assume that T is sufficiently large and is taken exactly after some restart iteration.

Lemma A.6 (ASSG). For ASSG, we have θ = 1/2 and c2 > 0.

Lemma A.7 (SADAGRAD). For SADAGRAD we have θ = 1/2 and c2 = 0.

A.3. Proof of Results in Section A

Proof of Lemma A.2. Taking θ = 1/2, c2 = C
√
m logm+ 1 completes the proof.

Proof of Lemma A.3. We successively deduce that

∥yt+1 − y⋆∥2 = ∥Π(yt − αtg
t)− y⋆∥2 (11)

≤ ∥yt − αtg
t − y⋆∥2

= ∥yt − y⋆∥2 − 2αt⟨yt − y⋆,gt⟩+ α2
t ∥gt∥2

≤ ∥yt − y⋆∥2 − 2αt⟨yt − y⋆,gt⟩+ α2
tm(ā+ d̄)2, (12)

where (11) uses the non-expansiveness of the projection operator; (12) uses

∥d− I{ck > ⟨ak,y⟩}ak∥2 ≤ m(ā+ d̄)2.

Since E[gt] ∈ ∂f(yt), we have, by convexity of f , that

−2⟨yt − y⋆, αtE[gt]⟩ ≤ −2αt(f(y
t)− f(y⋆))

and we invoke Lemma 2.1 to get

f(yt)− f(y⋆) ≥ f(yt)− f(y⋆)− ⟨∇f(y⋆),yt − y⋆⟩ ≥ µ
2 ∥y

t − y⋆∥2.

13
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Conditioned on the history and taking expectation, we have

∥yt − y⋆∥2 − 2E[⟨yt − y⋆, αtg
t⟩] + α2

tm(ā+ d̄)2

≤ ∥yt − y⋆∥2 − 2αt(f(y
t)− f(y⋆)) + α2

tm(ā+ d̄)2

≤ ∥yt − y⋆∥2 − αtµ∥yt − y⋆∥2 + α2
tm(ā+ d̄)2

= (1− αtµ)∥yt − y⋆∥2 + α2
tm(ā+ d̄)2.

and this completes the proof.

Proof of Lemma A.4. Unrolling the recursion from Lemma A.3 till y1, we have

E[∥yT+1 − y⋆∥2] ≤ (1− µα)E[∥yT − y⋆∥2] + α2m(ā+ d̄)2

≤ (1− µα)T ∥y1 − y⋆∥2 +
∑T−1

j=0 α2m(ā+ d̄)2(1− µα)j (13)

≤ (1− µα)T ∥y1 − y⋆∥2 + m(ā+d̄)2

µ α

≤ 1
µαT ∥y

1 − y⋆∥2 + m(ā+d̄)2

µ α

= ∆2

µαT + m(ā+d̄)2

µ α, (14)

where (13) uses the relation
∑T−1

j=0 (1 − µα)j = 1−(1−µα)T

µα ≤ 1
µα and (14) is by (1 − µα)T ≤ 1

1+µαT ≤ 1
µαT since

µα < 1. This completes the proof.

Proof of Lemma A.5. Using Lemma A.3 and with our choice αt =
2

µ(t+1) ,

Et[∥yt+1 − y⋆∥2] ≤ (1− αtµ)∥yt − y⋆∥2 + α2
tm(ā+ d̄)2

=
t− 1

t+ 1
∥yt − y⋆∥2 + 4m(ā+ d̄)2

µ2(t+ 1)2
.

Multiply both sides by (t+ 1)2, we get

(t+ 1)2Et[∥yt+1 − y⋆∥2] ≤ (t2 − 1)∥yt − y⋆∥2 + 4m(ā+ d̄)2

µ2
(15)

4E1[∥y2 − y⋆∥2] ≤ 4m(ā+ d̄)2

µ2
(16)

Re-arranging the terms,

(t+ 1)2Et[∥yt+1 − y⋆∥2]− t2∥yt − y⋆∥2 ≤ 4m(ā+ d̄)2

µ2
.

Taking expectation over all the randomness and telescoping from t = 2 to T , with (16) added, gives

E[∥yT+1 − y⋆∥2] ≤ 4m(ā+ d̄)2T

µ2(T + 1)2
≤ 4m(ā+ d̄)2

µ2T

and this completes the proof.

Proof of Lemma A.6 Using Theorem 3 of (Xu et al., 2017), we have, with probability at least 1− δ, that the number of
iterations to obtain f(yT )− f(y⋆) ≤ ε is bounded by

K = C · 2
ε log(

1
δ ) ·

[
log2

(
2
ε [f(y

1)− f(y⋆)]
)
+ 1

]
for some C > 0. Given T > 0, we take ε = M log2 T

T , δ = 1/T and define

M := C · [2 log2(2
√
m(ā+ d̄) c̄d ) + 4].

14
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Then we successively deduce that

K = C(log2
( 2[f(y1)−f(y⋆)]

ε

)
+ 1) log( 1δ )

2
ε

= C[log2(2[f(y
1)− f(y⋆)]) + log2(

T
M log2 T

)] log T ( 2T
M log2 T

) + C · log T ( 2T
M log2 T

) (17)

≤ C[log2(2
√
m(ā+ d̄) c̄d ) + log2 T ]

2T
M log T + 2CT

M log T

≤ 2C log2(2
√
m(ā+ d̄) c̄d )

T
M + 4CT

M

= C[2 log2(2
√
m(ā+ d̄) c̄d ) + 4] TM ≤ T,

where (17) uses the relation

f(y1)− f(y⋆) ≤
√
m(ā+ d̄)∥y⋆ − y1∥

=
√
m(ā+ d̄)∥y⋆∥

≤
√
m(ā+ d̄) c̄d

Therefore, we have, with probability at least 1− 1
T that

∥yT − y⋆∥ ≤
√

2
µ [f(y

T )− f(y⋆)] ≤
√

2M log2 T
µT =

√
2M
µ

log T√
T

and this completes the proof.

Proof of Lemma A.7 By Theorem 3 of (Chen et al., 2018), there exists some C, λ > 0 that

E[f(yT )− f(y⋆)] ≤ ε

after Cλ/ε iterations. Taking ε = Cλ/T , we deduce that

µ

2
E[∥yT − y⋆∥2] ≤ E[f(yT )− f(y⋆)] ≤ Cλ

T

and E[∥yT − y⋆∥] ≤
√

2Cλ
µT . This completes the proof.

B. Algorithm Design and Analysis

Exploitation TpExploration Te

T

Path D. Decision

Subgradient αe Subgradient αp

Path L. Learning Algorithm AL

y1 → y2, …, → yTe

y1
L → y2

L, …, → yTe+1
L

yTe+1
L =: yTe+1 → yTe+2, …, → yT

Restart

Figure 5: Two-path and two-phase decision for online linear programming

In this section, we present our results in a general framework. Our algorithm design contains two phases: exploration (E)
and exploitation (P). See Figure 5 for an illustration.
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Exploration. This phase starts from time horizon t = 1 to t = Te. Two (first-order) methods simultaneously maintain
and update two dual sequences, which we call Path Decision and Path Learning. Path D maintains sequence {yt} that is
used for decision, and we restrict Path D to use subgradient update with stepsize αe

xt = I{ct > ⟨at,yt⟩}
yt+1 = [yt − αe(d− atx

t)]+.

From our discussion in Section A, subgradient has convergence rate θ = 1/4. In contrast, Path L should be equipped with
a learning algorithm with θ ≥ 1/4, which aims to output the best possible yTe+1

L when the exploration phase ends. Our
analysis allows Te = 0 or Te = T to encompass the analysis of one-phase algorithms.

Exploitation. At time horizon Te + 1, the online algorithm enters “exploitation” phase, where we no longer maintain
Path L and restarts Path D with yTe+1

L . In the exploitation phase, Path D still uses subgradient method but with a different
stepsize αp till the end of horizon T .

Table 5: Notations of algorithm design

Notation Meaning

AL Path L learning algorithm
θ Convergence rate of AL

αe Stepsize of subgradient in exploration
αp Stepsize of subgradient in exploitation
yt t-th dual iteration for decision algorithm
yt
L t-th dual iteration in exploration for learning algorithm AL

T Total decision horizon T
Te Time of transition from exploration to exploitation
Tp T − Te

Our analysis is done in two steps. In B.1, we focus on the behavior of dual iterations in Path D. In B.2, we analyze the
regret and constraint violation bounds for our two-phase algorithm. We show that given θ, (Te, αe, αp) can be optimally
determined to improve algorithm performance.

B.1. Dual Convergence

In this section, we analyze the behavior of {yt} along Path D, where iterate by yt+1 = [yt − αt(d− atx
t)]+ and

1. before restart, we take stepsize αp

2. after restart from yTe+1, we take stepsize αe

where yTe+1 ∈ Ξ0. The following lemma characterizes almost sure boundedness of the dual sequence {yt}.
Lemma B.1. Assume that A1 to A6 hold. Let {yt} be generated by Path D, then

∥yt∥ ≤ c̄

d
+

m(ā+ d̄)2αe

2d
+ αe

√
m(ā+ d̄), for all t ≤ Te,

∥yt∥ ≤ c̄

d
+

m(ā+ d̄)2αp

2d
+ αp

√
m(ā+ d̄), for all t ≥ Te + 1

almost surely. In other words, yt ∈ Ξ1 for all αp ≤ 2d

3m(ā+d̄)2
almost surely.

The next lemma will be used to obtain a stronger dual convergence result for {yt}, t ≥ Te + 1.
Lemma B.2. Assume that A1 to A6 hold, then

E[∥yT+1 − y⋆∥2|yTe+1] ≤ ∥yTe+1
e − y⋆∥2

µαpTp
+

m(ā+ d̄)2

µ
αp

16
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Proof of Lemma B.1. The first relation follows immediately from Lemma 5 of (Gao et al., 2023) using y1 = 0, while
the second relation uses the fact yTe+1 = yTe+1

L ∈ Ξ0 and that ∥yTe+1∥ ≤ c̄
d . To see yt ∈ Ξ1, we successively deduce

that, for αp ≤ 2d

3m(ā+d̄)2
, that

m(ā+ d̄)2αp

2d
+ αp

√
m(ā+ d̄) =

1

3
+

2d

3
√
m(ā+ d̄)

≤ 1

3
+

2(ā+ d̄)

3
√
m(ā+ d̄)

≤ 1

and this completes the proof.

Proof of Lemma B.2. The result is a direct consequence of Lemma A.3, where we consider yTe+1 as the starting point.

B.2. Performance Analysis of the Algorithm

In this section, we conduct the performance analysis of our algorithm. With the auxiliary results in hand, the proof focuses
on finding a proper trade-off between Te, αp, αd based on θ. To simplify notation, we define

R :=
c̄

d
+

[
m(ā+ d̄)2

2d
+
√
m(ā+ d̄)

]
·max{αe, αp} (18)

and from Lemma B.1 we know that ∥yt∥ ≤ R almost surely. Though we have not formally chosen αe, αp, they will be set
such that R = c̄

d + o(1) = O(1).

The following lemma analyzes the regret of the whole algorithm.
Lemma B.3. Assuming A1 to A6, we have

E[r(x̂)] ≤ m(ā+ d̄)2αe

2
Te +

m(ā+ d̄)2αp

2
Tp +

R

αp
E[∥yTe+1 − y⋆∥+ ∥yT+1 − y⋆∥].

The next lemma analyzes the constraint violation of the whole algorithm.
Lemma B.4. Assuming A1 to A6, we have

E[v(x̂)] ≤ R

αe
+

1

αp
E[∥yTe+1 − y⋆∥+ ∥yT+1 − y⋆∥].

Putting things together, we take a trade-off between Te, αp, αd and get the following result.
Theorem B.1. Under the same assumptions as Lemma B.3 as well as A7, let θ′ = min{θ, 1/2}. Then for all T ≥
9m2(ā+d̄)4

4d2 . If we choose

T ⋆
e = T

1
θ′+1 , α⋆

e = T
− 1

2(θ′+1) , α⋆
p = T

− 2θ′+1
2(θ′+1) ,

Then
E[r(x̂) + v(x̂)] ≤ O(T

1
2(θ′+1) ).

Proof of Lemma B.3. We first deduce that

E[r(x̂)] = E[⟨c,x⋆⟩ − ⟨c, x̂⟩]
= E[fT (y⋆

T )− ⟨c, x̂⟩] (19)
≤ E[fT (y⋆)− ⟨c, x̂⟩] (20)
= Tf(y⋆)− E[⟨c, x̂⟩]

≤ E
[ T∑

t=1

f(yt)− ⟨c, x̂⟩
]

=

T∑
t=1

E[⟨d,yt⟩+ [ct − ⟨at,yt⟩]+ − ctx
t] (21)

=

T∑
t=1

E[⟨d− atx
t,yt⟩],

17
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where (19) uses strong duality of LP; (20) uses the fact y⋆ is a feasible solution and that y⋆
T is the optimal solution to the

sample LP; (21) uses the definition of f(y) and that (ct,at) are i.i.d. generated.

Recall that given α ∈ {αp, αd},

∥yt+1∥2 − ∥yt∥2 = ∥[yt − α(d− atx
t)]+∥2 − ∥yt∥2

≤ ∥yt − α(d− atx
t)∥2 − ∥yt∥2 (22)

= − 2α⟨d− atx
t,yt⟩+ α2∥d− atx

t∥2

≤ − 2α⟨d− atx
t,yt⟩+m(ā+ d̄)2α2, (23)

where (22) uses ∥[x]+∥ ≤ ∥x∥ and (23) uses A2, A3. A simple re-arrangement gives

⟨d− atx
t,yt⟩ ≤ m(ā+ d̄)2α

2
+

∥yt∥2 − ∥yt+1∥2

2α
(24)

Now we decompose regret according to two phases

E[r(x̂)] =
T∑

t=1

E[⟨d− atx
t,yt⟩]

=

Te∑
t=1

E[⟨d− atx
t,yt⟩] +

T∑
t=Te+1

E[⟨d− atx
t,yt⟩]

=: re + rp

and we bound two parts of regret respectively. For re, we have

re =

Te∑
t=1

E[⟨d− atx
t,yt⟩]

≤ m(ā+ d̄)2αe

2
Te +

Te∑
t=1

∥yt∥2 − ∥yt+1∥2

2αe
(25)

≤ m(ā+ d̄)2αe

2
Te +

∥y1∥2 − E[∥yTe+1∥2]
2αe

(26)

≤ m(ā+ d̄)2αe

2
Te,

where (25) uses relation (24) and in (26) we use y1 = 0. For rp, we have

rp =

T∑
t=Te+1

E[⟨d− atx
t,yt⟩]

≤ m(ā+ d̄)2αp

2
Tp +

T∑
t=Te+1

E[∥yt∥2]− E[∥yt+1∥2]
2αp

(27)

=
m(ā+ d̄)2αp

2
Tp +

E[∥yTe+1∥2]− E[∥yT+1∥2]
2αp

=
m(ā+ d̄)2αp

2
Tp +

E[⟨yTe+1 + yT+1,yTe+1 − yT+1⟩]
2αp

(28)

≤ m(ā+ d̄)2αp

2
Tp +

R

αp
E[∥yTe+1 − yT+1∥] (29)

≤ m(ā+ d̄)2αp

2
Tp +

R

αp
E[∥yTe+1 − y⋆∥+ ∥yT+1 − y⋆∥], (30)

18
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where (27) again uses relation (24); (29) uses the Cauchy’s inequality

⟨yTe+1 + yTe+1,yTe+1 − yT+1⟩ ≤ ∥yTe+1 + yT+1∥ · ∥yTe+1 − yT+1∥

and almost sure boundedness of iterations derived from Lemma B.1:

∥yTe+1 + yT+1∥ ≤ ∥yT+1∥+ ∥yTe+1∥ ≤ 2R.

Finally (30) is obtained from the triangle inequality

∥yTe+1 − yT+1∥ = ∥yTe+1 − y⋆ + y⋆ − yT+1∥ ≤ ∥yTe+1 − y⋆∥+ ∥yT+1 − y⋆∥.

Summing up two bounds on re and rp completes the proof.

Proof of Lemma B.4. For constraint violation, recall that

E[v(x̂)] = E[∥[Ax̂− b]+∥] = E
[∥∥∥∥[ T∑

t=1

(atx
t − d)

]
+

∥∥∥∥]
and that

yt+1 = [yt+1 − α(d− atx
t)]+ ≥ yt − α(d− atx

t).

A re-arrangement gives, for α ∈ {αe, αp}, that

atx
t ≤ d+

1

α
(yt+1 − yt). (31)

Now we decompose
∑T

t=1(atx
t − d) by

T∑
t=1

(atx
t − d) =

Te∑
t=1

(atx
t − d) +

T∑
t=Te+1

(atx
t − d)

≤ 1

αe

Te∑
t=1

(yt+1 − yt) +
1

αp

T∑
t=Te+1

(yt+1 − yt) (32)

=
1

αe
(yTe+1 − y1) +

1

αp
(yT+1 − yTe+1)

=
1

αe
yTe+1 +

1

αp
(yT+1 − yTe+1),

where (32) uses (31). Now we deduce that

E[∥[Ax̂− b]+∥] ≤ E
[∥∥∥ 1

αe
yTe+1 +

1

αp
(yT+1 − yTe+1)

∥∥∥]
≤ 1

αe
E[∥yTe+1∥] + 1

αp
E[∥yT+1 − yTe+1∥]

≤ R

αe
+

1

αp
E[∥yTe+1 − y⋆∥+ ∥yT+1 − y⋆∥], (33)

where (33) again uses triangle inequality and this completes the proof.

Proof of Theorem B.1. For all T ≥ 9m2(ā+d̄)4

4d2 , we know

α⋆
p = T

− 2θ′+1
2(θ′+1) ≤ T−1/2 ≤ 2d

3m(ā+d̄)2
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since 2θ′+1
2(θ′+1) ≤ 0.5. Therefore αp ≤ 2d

3m(ā+d̄)2
and by Lemma B.1 we know, for all t, that yt ∈ Ξ1 almost surely.

Next we consider the sum of regret and violation by summing up Lemma B.3 and Lemma B.4.

E[r(x̂) + v(x̂)] ≤ m(ā+ d̄)2αe

2
Te +

m(ā+ d̄)2αp

2
Tp +

R

αp
E[∥yTe+1 − y⋆∥+ ∥yT+1 − y⋆∥]

+
R

αe
+

1

αp
E[∥yTe+1 − y⋆∥+ ∥yT+1 − y⋆∥]

= Ve + Vp,

where we define

Ve :=
m(ā+ d̄)2αe

2
Te +

R

αe

Vp :=
m(ā+ d̄)2αp

2
Tp +

R+ 1

αp
E[∥yTe+1 − y⋆∥+ ∥yT+1 − y⋆∥].

Next we invoke A7, where we have, with probability at least 1− 1/T , that

E[∥yTe+1 − y⋆∥] ≤ c1 + c2 log Te

T θ
e

≤ c1 + c2 log T

T θ
e

Denote the event E[∥yTe+1 − y⋆∥] ≤ c1+c2 log T
T θ
e

to be E, we have

E[∥yTe+1 − y⋆∥] = E[∥yTe+1 − y⋆∥|E] · P{E}+ E[∥yTe+1 − y⋆∥|Ē] · P{Ē}
≤ E[∥yTe+1 − y⋆∥|E] + E[∥yTe+1 − y⋆∥|Ē] · P{Ē}

≤ c1 + c2 log T

T θ
e

+
2R

T
(34)

∼=
log T

T θ
e

+
2R

T
,

where (34) uses Lemma B.1 and Lemma 2.1. Similarly we can deduce that

E[∥yT+1 − y⋆∥] = E[∥yT+1 − y⋆∥|E] · P{E}+ E[∥yT+1 − y⋆∥|Ē] · P{Ē}
≤ E[∥yT+1 − y⋆∥|E] + E[∥yT+1 − y⋆∥|Ē] · P{Ē}

≤ c1+c2 log T
√
µ
√

TpT θ
e

α−1/2
p +

√
m(ā+d̄)2

µ α1/2
p + 2R

T (35)

∼= log T
√
µ
√

TpT θ
e

α−1/2
p +

√
m
µ α1/2

p + 2R
T

where in (35) we invoke Lemma B.2 and the inequality
√
a+ b ≤

√
a+

√
b. Then we have

Vp ≲
m(ā+ d̄)2αp

2
Tp + (log T )T−θ

e α−1
p +

log T
√
µ

T−1/2
p T−θ

e α−3/2
p +

√
m

µ
α−1/2
p +

4R

αpT
.

And notice that αe only appears in

Ve =
m(ā+ d̄)2αe

2
Te +

R

αe

and αe =
√

2R
m(ā+d̄)2Te

= O( 1√
Te
) minimizes Vp, giving Vp = O(

√
Te). Therefore, we fix αe = T

−1/2
e and put all the

things together to choose Tp, αe, αp. Ignoring all the constants and log T terms, we have

Vp + Ve ≲ T 1/2
e + Tpαp + T−θ

e α−1
p + T−1/2

p T−θ
e α−3/2

p + α−1/2
p + α−1

p T−1

We now do case analysis.
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Case 1. If θ = 0, then learning algorithm does not converge. Tpαp+α−1
p ≥ 2

√
Tp and

√
Te+

√
Tp ≥

√
Te + Tp =

√
T .

In this case choosing Te = T, Tp = 0, αe =
√
T gives

Vp + Ve ≤ O(
√
T ).

Case 2. If 0 < θ < 1/2, then learning algorithm converges. Without loss of generality, we take Te = T β , β ∈ (0, 1) and
successively deduce that

Vp + Ve

≲ T 1/2
e + Tpαp + T−θ

e α−1
p + T−1/2

p T−θ
e α−3/2

p + α−1/2
p + α−1

p T−1

∼= T β/2 + T (1− TeT
−1)αp + T−θβα−1

p + T−1/2(1− TeT
−1)−1/2T−θβα−3/2

p + α−1/2
p + α−1

p T−1

∼= T β/2 + αpT + T−θβα−1
p + α−3/2

p T−1/2−βθ + α−1/2
p + α−1

p T−1

Now assume αp = T−λ, we have

Vp + Ve ≲ T β/2 + T 1−λ + Tλ−θβ + T
3
2λ−1/2−βθ + T

λ
2 + Tλ−1

and this reduces to an optimization problem

min
λ,β

max{β
2 , 1− λ, λ− θβ, 3

2λ− 1
2 − βθ, λ

2 , λ− 1}

subject to 0 ≤ β ≤ 1

λ ≥ 0

and solving the problem gives the following parameter setting

β⋆(θ) = 1
θ+1

λ⋆(θ) = 1− 1
2(θ+1)

α⋆
e(θ) = T− 1

2(θ+1)

α⋆
p(θ) = T− 2θ+1

2(θ+1)

T ⋆
e (θ) = T

1
θ+1

Vp + Ve ≲ O(T
1

2(θ+1) )

Case 3. If θ > 1/2, we have α⋆
e = T−1/3, α⋆

p = T−2/3, T ⋆
e = T 2/3 and Vp + Ve = O(T 1/3).

Putting all the results together, we have

θ′ = min{θ, 1/2}

T ⋆
e (θ) = T

1
θ′+1

α⋆
e(θ) = T

− 1
2(θ′+1)

α⋆
p(θ) = T

− 2θ′+1
2(θ′+1)

and Vp + Ve = O(T
1

2(θ′+1) ). Adding back log T terms, this completes the proof.

C. Proof of Main Results in Section 3
C.1. Proof of Proposition 3.1

Invoke Theorem B.1, plug in θ′ = min{θ, 1/2} and this completes the proof.
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C.2. Proof of Proposition 3.2

First, we establish the update rule formula for E[yt+1] in terms of E[yt]. Specifically, we have

E[yt+1] = E[[yt − 1
t (

1
2 − I{ct > yt})]+] (36)

≥ E[yt − 1
t (

1
2 − I{ct > yt})] (37)

≥ E[yt − 1
t y

t + 1
2t ] (38)

where (36) is obtained by the update rule of subgradient, (37) uses Jensen’s inequality, and (38) is obtained by the fact that
ct is independent of yt and it is drawn uniformly from [0, 1]. Indeed, we have

E[I{ct > yt}] = E[E[I{ct > yt}|yt]] = E[
∫ 1

0
I{c > yt}dc|yt] = E[1− yt].

Subtracting t/2 from both sides and multiplying both sides the the inequality by t, we have

t(E[yt+1]− 1
2 ) ≥ (t− 1)(E[yt]− 1

2 ), for all t = 1, . . . , T .

Next we condition on the value of yt0 and

t(E[yt+1|yt0 ]− 1
2 ) ≥ (t0 − 1)(yt0 − 1

2 ). (39)

Thus, given yt0 > y⋆ + 1√
T
= 1

2 + 1√
T

for some t0, we have

t(E[yt+1|yt0 ]− 1
2 ) ≥ (t0 − 1)(yt0 − 1

2 ) ≥
t0−1√

T
, (40)

As a result, when t0 ≥ T
10 + 1, (40) implies

E[yt+1|yt0 ] ≥ 1
2 + t0−1

t×
√
T
≥ 1

2 + 1
10

√
T
,

since we assume t0 ≥ T/10 + 1. This completes the proof.

C.3. Proof of Proposition 3.3

Based on (Rakhlin et al., 2011), there exists some universal constant c > 0 such that with probability no less than 1−1/T 4,
|yt − y⋆| ≤ c log T/

√
T for all t ≥ t0, where y⋆ = 1

2 and t0 = O(log T ). Thus, without loss of generality, we assume

yt ∈ [ 14 ,
3
4 ], and yt+1 = yt − 1

t (
1
2 − I{ct > yt}) (41)

for all t ≥ t0 by setting a new random initialization yt0 ∈ [1/4, 3/4] and ignoring the all decision steps before the t0 step.
In the following, we show that Algorithm 1 with SGD and known µ must have Ω(T 1/2) regret or constraint violation for
any initialization yt0 . We first calculate E[yt − 1

2 ] and E[(yt − 1
2 )

2] similar to the proof of Proposition 3.2. Specifically,
for E[yt − 1/2], we have

E[yt+1|yt] =
(
1− 1

t

)
yt +

1

2t
,

which implies

E[yt+1 − 1
2 |y

t0 ] =
t0 − 1

t
(y1 − 1

2 ) +
1
2 , (42)

Also, similarly, for E[(yt − 1/2)2] we have under assumption (41)

E[(yt+1 − 1
2 )

2|yt] = E[(yt − 1
t (

1
2 − I{ct > yt})− 1

2 )
2|yt]

= (1− 1
t )

2(yt − 1
2 )

2 + 1
4t2 − 1

t2 (y
t − 1

2 )
2

≥ (1− 1
t )

2(yt − 1
2 )

2 + 1
4t2 − c

t3 ,
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which implies

E[(yt+1 − 1
2 )

2|yt] ≥ (t0 − 1)2

t2
(yt0 − 1

2 )
2 +

1

4t
− c log t+ t0

t2
. (43)

Combining (42) and (43), we then can compute

E
[( T∑

t=t0

I{ct > yt} − T−t0+1
2

)2]
=

T∑
t=t0

E[(I{ct > yt} − 1
2 )

2] + 2
∑

t0≤i<j≤T

E[(I{cj > yj} − 1
2 )(I{ci > yi} − 1

2 )]

= T−t0
4 + 2

∑
t0≤i<j≤T

E[(I{cj > yj} − 1
2 )(I{ci > yi} − 1

2 )]

= T−t0
4 + 2

∑
t0≤i<j≤T

i−1
j−1E[(y

i − 1
2 )

2]− i−1
4i(j−1) (44)

≥ T−t0
4 − 2

∑
t0≤i<j≤T

c log T+t0
(i−1)2

= Ω(T ).

In addition, since |yt − 1
2 | ≤

c√
T

, by Hoeffding’s inequality, we have with probability no less than 1− 1
T 2∣∣∣ T∑

t=t0

I{ct > yt} − T − t0 + 1

2

∣∣∣ = O(
√
T log T ).

Consequently, by (44), we have

E
[∣∣∣ T∑

t=t0

I{ct > yt} − T − t0 + 1

2

∣∣∣] = Ω(

√
T

log T
). (45)

This is the summation of constraint violation and constraint (resource) leftover, and thus, the summation of constraint
violation and the regret must be no less than Ω(

√
T/ log T ).

C.4. Proposition of Disability in Mistake Correction

In this section we still consider the multi-secretary problem (9), and we show that other algorithms listed in Table 2 with
small stepsize also suffer from slow updating. In particular, Lemma C.1 reveals that all gradient-descent-based algorithms
listed in with high estimation accuracy and low learning rate can change no more than O( 1

T 1/2 ) within O(Tα) steps for all
α ∈ (0, 1).
Lemma C.1. Denote yt as the estimated dual price for the online secretary problem (9) at time t. Suppose (i) |yt+1−yt| ≤
1
t , (ii) E[|yt − y⋆|] ≤ 1

t , and (iii) yt ≤ 1 for all t = 1, . . . , T . Then, with probability no less than 1− 2
T 3 ,

|yt − yt+k| ≤ 2
√
k

t
· log T ≤ 8

√
k

T
· log T

for all t ≥ T
2 and 0 ≤ k ≤ T − t.

Here, the condition assumed in Lemma C.1 are abstracted from algorithms listed in Table 2: Condition (i) assumes
that the learning rate is O(1/t); Condition (ii) assumes the estimation error of the optimal dual price can be bounded by
1/t, which correspond to the convergence rate of optimizing strongly convex functions with stochastic gradient descent
algorithms; Condition (iii) assumes that bounteousness of the estimated dual price. These conditions are satisfied by fast
algorithms in Table 2 regardless of some universal constants.

Proof of Lemma C.1. This is a direct application of Hoeffding’s inequality. Specifically, based on Hoeffding’s inequality,
during steps t to t+ k, there are 1

2k ± 2
√
k log T acceptances and rejections. As a result, we have

|yt+k − yt| ≤
t+O(

√
k)∑

s=t

1

s
=

4
√
k log T

t
.

Plugging in t ≥ T
2 , we complete the proof.
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D. Proof of Main Results in Section 4
The main results in the paper can be directly obtained as special cases of Theorem B.1.

D.1. Proof of Lemma 4.1

In view of Lemma B.3, we complete the proof.

D.2. Proof of Lemma 4.2

In view of Lemma B.4, we complete the proof.

D.3. Proof of Theorem 4.1

In view of Theorem B.1, we complete the proof by taking θ = {0, 1
4 ,

1
2} respectively.

E. Additional Experiments
In this section, we provide some supplementary experiments to further demonstrate the superior performance of our pro-
posed framework. We still evaluate the performance of the two instances of the proposed framework, i.e., M1 and M2, and
compare them with the no-exploration algorithm M0.

E.1. More Choices of m

In this subsection, we focus on the case that there are more than one type of resources. To demonstrate, we let m = 5. We
conduct experiments on 4 distributions. The first 3 distributions are generated in the same way as those in Section 5.1. The
last distribution is generated as follows. We sample ct i.i.d. from uniform distribution U [0, 5], and sample ait i.i.d. such
that ait−5 follows the beta distribution B(1, 8). Each di is still sampled i.i.d. from uniform distribution U [1/3, 2/3]. Note
that all distributions satisfy Assumption A1 to A6.

The results are presented in Figure 6, and in the same way as Figure 2, with the only difference that we plot the first coor-
dinate yt

1 to demonstrate the convergence behavior of the sequence {yt}Tt=1. It clearly shows that, over all 4 distributions,
M1 and M2 has better order of regret and constraint violation than M0, and the dual solution sequence of M1 and M2
converge much faster than the one of M0. This demonstrates the superior and robust performance of our framework.
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Figure 6: Growth of normalized r(x̂) + v(x̂) and dual convergence of tested algorithms. Each pair of the left figure and
the right figure is plotted based on the experiment on the same distribution.

24



Decouple Learning and Decision-making for Online LP

E.2. More Experiments on Distributions which Violate Assumptions

In this subsection, we provide more experiments on distributions that violate the assumptions in Section 2. We generate 2
different distributions, and take m = 1. For the first distribution, we generate ct i.i.d. according to the uniform distribution
U [1, 6], and ait i.i.d. such that ait − 3 satisfies exponential distribution with parameter m. For the second distribution,
we consider the discrete distribution. Specifically, we randomly generate 5 different pairs of (ct,at). Each ait is sampled
i.i.d. from normal distribution N (1, 2), and each ct =

∑m
i=1 ait − εt with εt from U [0,m]. After obtaining these pairs

of {(ct,at)}, at each time period t, we sample (ct,at) from them with the same probability. Figure 7 plots the growth of
normalized r + v and the convergence behavior of {yt}Tt=1. It shows that even the assumptions are violated, M1 and M2
still enjoy better performance than M0.
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Figure 7: Growth of normalized r(x̂)+v(x̂) and dual convergence of tested algorithms when the assumptions are violated.
Each pair of the left figure and the right figure is plotted based on the experiment on the same distribution.
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