
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNLOCKING LONG-TERM DEPENDENCIES IN SPIKING
NEURAL NETWORKS WITH A RECURRENT LIF MEM-
ORY MODULE

Anonymous authors
Paper under double-blind review

ABSTRACT

Processing long sequence data such as speech requires models to maintain long-
term dependencies, which is challenging for recurrent spiking neural networks
(RSNNs) due to high temporal dynamics in neuron models that leaks stored infor-
mation in their membrane potentials, and faces vanishing gradients during back-
propagation through time. These issues can be mitigated by employing more com-
plex neuron designs, such as ALIF and TC-LIF, but these neuron-level solutions
often incur high computational costs and complicate hardware implementation,
undermining the efficiency advantages of SNNs. Here we propose a network-level
solution that leverages the dynamical interactions of a few LIF neurons to enhance
long-term information storage. The memory capability of this LIF-based micro-
circuits is adaptively modulated by global recurrent connections of the RSNN,
contributing to selective enhancement of temporal information retention, and en-
sures stable gradient gain when propagation through time. The proposed model
outperforms previous methods including LSTM, ALIF, and TC-LIF in long se-
quence tasks, achieving 96.52% accuracy on the PS-MNIST dataset. Furthermore,
our method also provides a compelling efficiency advantage, yielding up to 400×
improvement compared to conventional models such as LSTM. This work paves
the way for building cost-effective, hardware-friendly, and interpretable spiking
neural networks for long sequence modeling.

1 INTRODUCTION

Spiking neural networks (SNNs) offer energy-efficient computing paradigms by leveraging brain-
inspired neuron models as activation functions to enable sparse and event-driven computations Roy
et al. (2019). The leaky integrate-and-fire (LIF) is the most widely adopted neuron model in SNNs,
which integrates input signals and generates a spike once the membrane potential exceeds its firing
threshold Gerstner & Kistler (2002). To enhance temporal resolution for sequential inputs, the LIF
incorporates a leak mechanism that effectively filters out irrelevant long-term information, making
SNNs a good candidate for temporal signal processing tasks using recurrent spiking neural networks
(RSNNs) architectures Bellec et al. (2018).

Nonetheless, the performance of LIF-based RSNNs, particularly in long-sequence modeling, still
faces three major challenges: (1) the leak mechanism, while beneficial for short-term dynamics,
causes the LIF neuron to forget earlier inputs, hindering the capture of long-term dependencies;
(2) RSNNs with simple recurrent connections lack adaptive mechanisms to dynamically regulate
information flow based on input salience, making them ineffective at distinguishing useful informa-
tion from noises; (3) training RSNNs via backpropagation through time (BPTT) Werbos (2002) is
impeded by the gradient vanishing problem, which greatly limits the model’s overall performance.

To overcome the short-term memory limits of the vanilla LIF neuron, several complex neuron mod-
els have been proposed to incorporate additional mechanisms such as adaptive thresholds Yin et al.
(2021), compartmental dynamics Zhang et al. (2024a) , or variable time constants Fang et al. (2021a)
in individual spiking neurons. Although these approaches have demonstrated improved robustness
in long-sequence modeling, their model complexity leads to high computational cost and additional
design overhead for neuromorphic hardware.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Rather than relying on the intrinsic properties of individual neurons for long-term memory, an alter-
native approach is to leverage the collective dynamics at the network level. For example, long short-
term memory (LSTM) networks in artificial neural networks (ANNs) address the long-sequence
problem by introducing a gated cell state. However, the gating mechanism is not natively supported
by most neuromorphic processors, hindering their efficient implementation in SNNs. Alternatively,
RSNNs suitable for long-sequence tasks may be obtained through complex network structure de-
signs [ref], but have not been validated to comprehensively support selective long-term memory and
robust training in RSNNs.

In this work, we propose a recurrent memory module based on the interaction of a few vanilla LIF
neurons. A local memory loop between two LIFs maintains robust long-term dependencies, while
additional global recurrent inputs to these neurons regulate the stored information without gating
units, making it natively compatible with neuromorphic hardware. The loop can provably enhance
gradient propagation under BPTT, thus offering stable gradient retention for training of RSNNs.
We evaluated our model on several long-sequence benchmarks, including Sequential MNIST, SHD,
SSC, and the Binary Adding task. Our approach outperforms standard LIF networks and neuron-
centric complex models such as TC-LIF in terms of accuracy, gradient stability, and robustness to
long sequences, with comparable performance to LSTM, while maintaining excellent computing ef-
ficiencies compared to above methods, using up to 400× less energy than LSTM. Our contributions
are summarized as follows:

• We design a vanilla LIF based recurrent memory module that incorporates local memory
loop for long-term information retention without complex neuron designs.

• We employ additional global recurrent connections to regulate the firing activities of these
LIF neurons and achieve highly adaptive memory of input data.

• We show that the memory loop improves gradient propagation under BPTT and enhances
the gradient retention factor, thereby mitigating the vanishing gradient problem in training.

• We validate our model on four long-sequence benchmarks (Sequential MNIST, SHD, SSC,
and Binary Adding task), demonstrating improved accuracy, stable training dynamics, and
superior energy efficiency.

2 RELATED WORK

Long-Term Memory in SNNs. A key challenge in SNNs is retaining information over a long time.
Several neuron-centric approaches address this issue by modifying LIF dynamics, such as adaptive
thresholds in ALIF Bellec et al. (2018), radial dynamics in RadLIF Bohnstingl et al. (2022), and
dual-compartment coupling in TC-LIF Yin et al. (2023). Although effective, they increase model
complexity and require hardware-specific tuning, limiting their efficiency and scalability.

Gated Recurrent Models. Recurrent architectures such as LSTM Hochreiter & Schmidhuber
(1997) and GRU Cho et al. (2014) achieve strong performance in sequential tasks by explicitly
gating and storing information over time. However, both conventional and spiking counterparts,
such as Spiking-LSTM Lotfi Rezaabad & Vishwanath (2020), rely on complex gating and expensive
state updates, which limit their suitability for neuromorphic computing.

Structural Complexity in SNNs Another line of work enhances temporal processing in SNNs by
introducing architectural complexity, such as locally recurrent motifs Zhang et al. (2024c), small-
world connectivity Pan et al. (2024), and brain-inspired topologies Wang et al. (2024). These studies
suggest that structural complexity can benefit temporal modeling in SNNs, yet they do not provide
explicit mechanisms to sustain long-term dependencies.

3 METHOD

3.1 VANILLA LIF BASED RECURRENT MEMORY MODULE

Spiking Neuron Model. We employ the vanilla LIF neuron as the fundamental computational
unit in our RSNNs. The membrane potential u(t) evolves over time according to the following

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

differential equation:

τ
du(t)

dt
= −(u(t)− ureset) +RI(t) (1)

Here, τ is the membrane time constant, R the resistance, I(t) the synaptic input, and ureset the reset
potential. A spike S(t) is emitted when the membrane potential exceeds the threshold Vth, after
which it is reset to ureset. For practical implementation, we discretize the equation using the Euler
method. Assuming ureset = 0 and R = τ , the discrete-time update with soft reset is:

u[t+ 1] =
(
1− 1

τ

)
(u[t]− Vth S[t]) + I[t], S[t] = Θ(u[t]− Vth). (2)

Here, Θ(·) is the Heaviside step function, which outputs 1 when its argument is positive and 0
otherwise. This prevents runaway spiking while preserving the residual subthreshold voltage, and

the leak factor (1− 1

τ
) still governs the temporal decay between spikes.

Recurrent Memory Module Design Based on LIF Neurons. We propose a lightweight
and interpretable recurrent memory module composed entirely of vanilla LIF neurons.

NI NC

NM

NO

Concat

II
t

IF
t

∑ ∑

IO
t

∑

∑

FC⊕

Figure 1: Vanilla LIF based recurrent memory module
framework.

Each module contains four LIF units with
distinct functional roles: an input integra-
tion neuron NI that processes incoming
signals; a pair of memory neurons NM and
NC, where NM retains long-term tempo-
ral context and NC integrates it with the
current input; and an output control neu-
ron NO that determines whether the infor-
mation should be read out. These neurons
interact through structured local connec-
tions, enabling the module to retain long-
term information within a fully spike-
driven and biologically plausible frame-
work. The module receives feedforward inputs and recurrent feedback from its own past outputs.
The combined input is further decomposed into three modulatory currents II, IF, IO, which pro-
vide dynamic regulation of information flow based on input salience, thus supporting effective input
integration, memory updating, and selective information readout.

Each of the three input currents j ∈ {I,F,O} is computed from the same combination of the current
input input[t] and the previous output spike SNO

[t−1], using separate fully connected layers.

Ij [t] = Φ
(
Wj [input[t];SNO

[t−1]] + bj

)
, j ∈ {I,F,O}, (3)

where the modulation function Φ interpolates between the standard sigmoid and a piecewise-linear
(PL) hard-sigmoid:

Φ(z) = (1−m)σ(z) + mPL(z), m ∈ [0, 1], (4)

PL(z) = clip
(
0.5 +

z

2a
, 0, 1

)
, a > 0, (5)

with clip(x, 0, 1) = min(max(x, 0), 1). During training we anneal mt from 0 to 1. At inference,
we set m = 1 so that Ij [t] = PL(·), which provides a hardware-friendly approximation.

The four neurons in our recurrent memory module receive inputs from different sources and perform
distinct functions. NI integrates input current II [t] to capture external information. NM aggregates
contextual information from the previous state of NC and further incorporates the modulatory cur-
rent IF [t], which determines whether the representation in NC should be preserved or updated. NC

fuses activations from NI and NM , integrating temporal context from the previous step with input-
driven signals to build higher-level representations. And NO combines the activation of NC with
the output-gating current IO[t]. This integration allows selective information readout and keeps NO

involved in recurrent interactions inside the module. Current equations are formulated as:
INI

[t] = wI,NI
· II [t] (6)

INM
[t] = wNC ,NM

· SNC
[t− 1] + wF,NM

· IF [t] (7)
INC

[t] = wNI ,NC
· SNI

[t] + wNM ,NC
· SNM

[t] (8)
INO

[t] = wNC ,NO
· SNC

[t] + wO,NO
· IO[t] (9)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

U[t-1]l S[t-1]l

U[t-1]l

U[t-1]l

S[t-1]l

S[t-1]l

U[t]l S[t]l

U[t]l

U[t]l

S[t]l

S[t]l

S[t-1]l-1 S[t]l-1 S[t+1]l-1

Timestep t-1 Timestep t Timestep t+1

NC

NM

NI

U[t-1]l S[t-1]l U[t]l S[t]l

U[t+1]l S[t+1]l

U[t+1]l

U[t+1]l

S[t+1]l

S[t+1]l

U[t+1]l S[t+1]l

U[t-1]l+1 S[t-1]l+1

U[t-1]l+1

U[t-1]l+1

S[t-1]l+1

S[t-1]l+1

U[t]l+1 S[t]l+1

U[t]l+1

U[t]l+1

S[t]l+1

S[t]l+1

U[t-1]l+1 S[t-1]l+1 U[t]l+1 S[t]l+1

U[t+1]l+1 S[t+1]l+1

U[t+1]l+1

U[t+1]l+1

S[t+1]l+1

S[t+1]l+1

U[t+1]l+1 S[t+1]l+1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

...
...

...
...

...
...

...
...

...

NO

NC

NM

NI

NO

NC

NM

NI

NO

NC

NM

NI

NO

NC

NM

NI

NO

NC

NM

NI

NO

H
id

de
n

La
ye

r l
+1

H
id

de
n

La
ye

r l

Figure 2: Forward information flow in the proposed
recurrent memory module. Red bold arrows indicate
temporal feed-forward paths between NM and NC ;
black bold arrows denote intra-step concatenation and
fully connected operations. Note that during BPTT,
gradients propagate in reverse direction of the arrows.

Here, SX [t] denotes the spike output of
neuron X at time t, and IX [t] denotes
its corresponding input current. The
weight wa,b specifies the synaptic con-
nection from neuron a to neuron b. All
parameters {Wj , bj}j∈{I,F,O} in eq. (3)
and all synaptic scalars wa,b in eqs. (6)
to (9) are learnable and time-shared across
t. This schedule ensures causal updates
and avoid algebraic loops, since NM de-
pends on SNC

[t − 1] while NC consumes
the freshly produced SNI

[t] and SNM
[t].

The proposed LIF-based recurrent mem-
ory module facilitates temporal modeling
by exploiting dynamic interactions among
event-driven LIF neurons. Unlike ap-
proaches that rely on complex neuron-
level modifications, it provides a network-
level solution that not only enables short-
term modulation and long-term memory
integration within a fully spike-based ar-
chitecture, but also introduces adaptive
regulation of input salience, allowing the
module to selectively determine which in-
formation is integrated, stored, and read
out. Moreover, the design remains efficient and compatible with neuromorphic hardware imple-
mentations.

3.2 STABILITY ANALYSIS OF BACKPROPAGATION THROUGH TIME (BPTT)

In this subsection, we derive the backpropagation through time (BPTT) dynamics under a surrogate
computation graph used during training. The objective is to disentangle the temporal contribution,
which corresponds to gradient propagation along the time axis through membrane leak and reset,
from the spatial contribution, which arises from reverse-mode accumulation along spike-to-current
pathways within the same time step. This separation makes the sources of gradient amplification
and attenuation explicit, thereby enabling a principled stability analysis.

Notation. For clarity we defer all symbols and training-time surrogate details to Appendix A.2; in
the main text we only use AX [t] as the one-step temporal Jacobian defined in equation 10.

AX [t] =
∂UX [t+ 1]

∂UX [t]
= αX

(
1− Vth,X σ′

X(UX [t]− Vth,X)
)
. (10)

AX [t] is the one-step temporal gain of neuron X .It measures how membrane leak and threshold reset
contract or expand the mapping along time, with AX [t] ≈ αX when σ′

X ≈ 0 far from threshold and
a smaller value near threshold due to the subtractive reset.

Per-neuron one-step temporal recursion. At time t, UX [t+1] depends on UX [t] (leak+reset)
and exogenous IX [t+1]; SX [t] depends on UX [t]. We keep forward firing hard and use a smooth
surrogate only in backprop:

SX [t] = σX(UX [t]− Vth,X). (11)

Using the soft-reset update and equation 10, the one-step temporal gain is AX [t] as defined above.
With the boxcar surrogate A.2 and Hw = Vth,X/2 (normalize Vth,X = 1), σ′

X(·) ∈ {1, 0} and thus

AX [t] ∈ {αX , 0}, AX [t] = αX if |UX [t]− Vth,X | > Hw, and AX [t] = 0 otherwise. (12)

By the chain rule, the loss gradient to UX [t] decomposes into a temporal path and a spike path:

gUX [t] = AX [t] gUX [t+1]︸ ︷︷ ︸
temporal

+ σ′
X(UX [t]− Vth,X) gSX [t]︸ ︷︷ ︸

spatial

. (13)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Per-neuron one-step BPTT recursions. By equation 13, with σ′
X [t] ≡ σ′

X(UX [t] − Vth,X) and
AX [t] from equation 10, the adjoint for each neuron satisfies. Details are in A.2:

gUNI
[t] = ANI

[t] gUNI
[t+ 1] + σ′

NI
[t] wNI ,NC

gUNC
[t], (14)

gUNM
[t] = ANM

[t] gUNM
[t+ 1] + σ′

NM
[t] wNM ,NC

gUNC
[t], (15)

gUNC
[t] = ANC

[t] gUNC
[t+ 1] + σ′

NC
[t]
(
wNC ,NO

gUNO
[t] + wNC ,NM

gUNM
[t+ 1]

)
. (16)

Loop-Induced Effective Temporal Gain in NM–NC . We analyze how the NM–NC loop affects
the one-step temporal operator in BPTT. Starting from the per-unit adjoint recursions, we define the
loop couplings βt and γt and apply a single substitution. From the per-neuron BPTT recursions of
NC and NM in equation 15 and equation 16, we define

βt := σ′
NC

[t] wNC ,NM
, γt := σ′

NM
[t] wNM ,NC

. (17)

Substituting gU t+1
NM

= At+1
NM

gU t+2
NM

+ γt+1gU
t+1
NC

into gU t
NC

yields

gU t
NC

= (At
NC

+ βtγt+1)︸ ︷︷ ︸
effective temporal gain

gU t+1
NC

+ βtA
t+1
NM

gU t+2
NM

+ σ′
NC

[t] wNC ,NO
gU t

NO
. (18)

gU t
NM

= (At
NM

+ γtβt)︸ ︷︷ ︸
effective temporal gain

gU t+1
NM

+ γtA
t
NC

gU t+1
NC

+ γt σ
′
NC

[t] wNC ,NO
gU t

NO
. (19)

Equations equation 18 and equation 19 yield direct one-step recursions gU t
NC

→ gU t+1
NC

and
gU t

NM
→ gU t+1

NM
with effective temporal gains At

NC
+ βtγt+1 and At

NM
+ γtβt, respectively. Com-

pared with the leak-only LIF baseline where the gains equal At
NC

and At
NM

, the loop contributes an
additional coupling term βtγt+1 or γtβt, which establishes a direct pass-through across consecutive
steps and reduces reliance on the leak factor At

X .

Recall AX [t] = αX(1− σ′
X [t]) from equation 10, and define

Gt
NC

:= At
NC

+ βtγt+1 = αNC
(1− σ′

NC
[t]) + σ′

NC
[t] σ′

NM
[t+1] wNC ,NM

wNM ,NC
, (20)

Gt
NM

:= At
NM

+ γtβt = αNM
(1− σ′

NM
[t]) + σ′

NM
[t] σ′

NC
[t] wNM ,NC

wNC ,NM
. (21)

The quantities Gt
NC

and Gt
NM

comprise two complementary components that are active in different
operating regimes. For Gt

NC
one has

Gt
NC

= αNC
(1− σ′

NC
[t])︸ ︷︷ ︸

off-threshold contribution

+σ′
NC

[t] σ′
NM

[t+1] wNC ,NM
wNM ,NC︸ ︷︷ ︸

near-threshold loop contribution

,

and for Gt
NM

one has an analogous decomposition. Thus each gain contains an off-threshold term
proportional to 1 − σ′ and a near-threshold term proportional to σ′. This complementary structure
substantially improves the ability of gradients to propagate over time, since at least one component
remains active across typical operating regions. In particular, when σ′

NC
[t] ≈ 1 and σ′

NM
[t+1] ≈ 1

or when σ′
NM

[t] ≈ 1 and σ′
NC

[t] ≈ 1, the loop contribution dominates and gradients are conveyed
through the interconnecting synapses with magnitude controlled by wNC ,NM

wNM ,NC
. This reduces

sequences of zero temporal gain and preserves gradient connectivity at spike-adjacent time steps.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our models on four widely used benchmark datasets for sequential and event-
driven learning: SHD Cramer et al. (2020), SSC Warden (2018), PSMNIST Le et al. (2015), and
Binary Adding Ma et al. (2025). These datasets are chosen to cover a diverse range of tempo-
ral modeling challenges, including event-based auditory processing, speech command recognition,
long-range dependency reasoning, and numerical sequence addition. A detailed description of each
dataset is provided in Appendix A.3.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Datasets Method Recurrent Vanilla LIF Parameters Accuracy (%)

PS-MNIST

LIFZhang et al. (2024b) Y Y 0.155M 80.39
LSTM Rusch & Mishra (2021) Y N 0.27M 92.90
GLIF Yao et al. (2022) Y N 0.15M 90.47
ALIF Yin et al. (2021) Y N 0.15M 94.30
BRFN Higuchi et al. (2024) N N 0.068M 95.20
TC-LIF Zhang et al. (2024a) Y N 0.063M/0.15M 92.69 / 95.36
LRMM (ours) Y Y 0.054M 96.52
LRMM-ALIF (ours) Y N 0.054M 97.39

SSC

LIF Cramer et al. (2020) Y N 0.11M 50.90
TC-LIF Zhang et al. (2024a) Y N 0.11M 61.90
LSTM Cramer et al. (2020) Y N 0.43M 73.10
SNN-CNN Sadovsky et al. (2023) N N N/A 72.03
ALIF Yin et al. (2021) Y N N/A 74.20
SpikGRU Dampfhoffer et al. (2022) Y N 0.28M 77.00
RadLIF Bittar & Garner (2022) N N 3.9M 77.40
LRMM (ours) Y Y 0.32M 79.75
LRMM-ALIF (ours) Y N 0.32M 80.51

SHD

LIF Cramer et al. (2020) Y N 0.108M 71.40
LSTM Cramer et al. (2020) Y N 0.43M 89.20
TC-LIF Zhang et al. (2024a) Y N 0.15M 88.91
ALIF Yin et al. (2021) Y N N/A 90.40
RadLIF Bittar & Garner (2022) Y N 3.9M 94.62
LRMM (ours) Y Y 0.27M 94.70
LRMM-ALIF (ours) Y N 0.27M 95.32

Binary Adding

LIF Ma et al. (2025) N Y 0.04M 53.35
PLIF Fang et al. (2021b) Y N N/A 53.25
adLIF Bellec et al. (2018) Y N N/A 68.00
ALIF Yin et al. (2021) Y N N/A 99.05
GLIF Teeter et al. (2018) Y N N/A 63.60
TC-LIF Zhang et al. (2024a) Y N N/A 19.90
LM-H Hao et al. (2023) Y N N/A 96.10
CLIF Huang et al. (2024) Y N N/A 64.30
DH-LIF Zheng et al. (2024) Y N N/A 99.35
LRMM (ours) Y Y 0.056M 99.55
LRMM-ALIF (ours) Y N 0.056M 100.00

Table 1: Results on Temporal Benchmarks. LRMM uses only LIF neurons throughout the circuit;
LRMM-ALIF replaces the input neuron NI and the output neuron NO with ALIF while keeping
others as LIF. We report accuracy (%) and parameter counts across PS-MNIST, SSC, SHD, and
Binary Adding.

Models. Sequential inputs are fed directly into the network without spike encoding. All recurrent
computations are handled by our proposed LIF-based recurrent memory module (LRMM), which
uses structured recurrence among LIF neurons to support memory formation in a fully spike-driven
and biologically plausible manner. This recurrent design enables stable gradient propagation, long-
term temporal integration, and selective retention of salient input patterns. Unless otherwise noted,
we use a two-layer LRMM backbone with 128 units per layer, followed by a linear classifier on the
final hidden state.

Training Details. All training configurations, including hyperparameters, and optimization strate-
gies, are provided in Appendix A.4.

Baseline Models and Comparative Methodology. Detailed baseline configurations and compari-
son settings are provided in Appendix A.5.

4.2 MAIN RESULTS

We present a comprehensive evaluation of LRMM that substantiates four main claims about per-
formance, gradient behavior, memory capability, and gating selectivity in long horizon temporal
classification. First, on standard benchmarks including PS-MNIST, SHD, SSC, and Binary Adding,
LRMM achieves state of the art or highly competitive accuracy at matched or lower parameter counts
under a unified training protocol. Second, on memory dependent reconstruction and recall settings,
LRMM maintains accurate retrieval after extended noise gaps and long delays, demonstrating robust

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

long term memory. Third, analysis of circuit-level activity shows that the recurrent loop adaptively
modulates memory traces, enhancing informative segments and suppressing irrelevant ones. Causal
interventions further demonstrate the necessity of this adaptive recurrence for long-term retention.
Fourth, analysis of gradient flow shows that LRMM mitigates vanishing gradients and preserves
more temporal credit assignment over long horizons, as quantified by the Gradient Retention Factor.

Results on Temporal Benchmarks. Under a unified protocol with matched parameter budgets,
LRMM attains strong accuracy across four long sequence benchmarks. On PSMNIST, LRMM
achieves 96.52% with 0.054M parameters, exceeding TC LIF at 95.36% with 0.15M. On SSC,
LRMM reaches 79.75% with 0.32M, outperforming RadLIF at 77.40% with 3.9M. On SHD, LRMM
obtains 94.70% with 0.27M compared with 94.62% for RadLIF with 3.9M. On Binary Adding,
LRMM records 99.55% with 0.056M, slightly higher than the 99.35% baseline. These results,
summarized in Table 1, indicate consistent improvements at compact model sizes. Our method is
also compatible with endogenous complex neuron architectures: while keeping the memory neuron
NM and the aggregation neuron NC as LIF, we replace the input encoder NI and the readout neuron
NO with ALIF and obtain higher accuracy of 97.39% on PSMNIST, 80.51% on SSC, 95.32% on
SHD, and 100.00% on Binary Adding under the same parameter counts.

Evaluating Long-Term Memory. We evaluate the long-term memory capacity of LRMM
using the copy task Graves et al. (2014); Bellec et al. (2020), a canonical benchmark for
measuring temporal credit assignment across extended delays. Each input consists of a se-
quence of L ∈ {2, . . . , 10} tokens drawn from an alphabet of size K ∈ {2, . . . , 10}, fol-
lowed by a stop signal and a fixed delay of delayt = 20 time steps. After receiving
the readout cue, the model must reproduce the original sequence in exact order and length.
Figure 3 reports test accuracy across the (L,K) grid. With two layers of 128 circuits,
LRMM maintains near-perfect accuracy (≥ 0.99) on short sequences across all alphabet sizes.

Figure 3: The accuracy of copy task. Ours 2
layers 128 dim network(left) compare with 2
layers 1024 dim network ALIF(right).

Under the most challenging configuration
(L=10,K=10), LRMM achieves 66.9% accu-
racy, outperforming a large ALIF model with two
layers and 1024 neurons, which reaches only 43.0%.
In a moderately difficult setting (L=8,K=8),
LRMM attains 88.9%, while the ALIF baseline
reaches 58.4%. Despite using significantly fewer
neurons and parameters, LRMM consistently out-
performs ALIF across all conditions. We attribute
this advantage to the memory loop between NM

and NC , which preserves task-relevant information
across long idle gaps.

Adaptive Recurrent Dynamics. To analyze how LRMM adaptively processes information across
memory stages, we modify the copy task to contain structured noise and interleaved control
signals as shown in Figure 5(a). Each input sequence comprises 20 time steps, organized as
5 informative data followed by 5 noise, then another 5 informative data followed by 5 noise.

10 20 30 40
Temporal horizon H

3

2

1

lo
g 1

0
(G

RF
ab

s(H
))

LIF
ALIF
TC-LIF
LRMM

Figure 4: Log-scale abso-
lute GRF log10(GRFabs(H))
across temporal horizons H .
MALC consistently outper-
forms LIF, ALIF, and TC-LIF,
especially as H increases.

At each time step, a control signal indicates whether the current
input should be remembered or ignored.

After the entire input sequence, a readout signal is issued, and the
model must output the concatenated informative segments in or-
der. As shown in Figures 5(b)–(d) and (g), during noise segments,
both the forget signal F and input signal I are significantly reduced
compared to informative data, indicating that the model avoids for-
getting stored content while ignoring irrelevant input. At the same
time, Figures 5(e), (f), and (h) show stronger Hamming correlation
between NM and NC , suggesting more stable internal recurrence.
In contrast, during informative data, both F and I increase, reflect-
ing active integration of new input with existing memory, accom-
panied by more dynamic activity between NM and NC . During the
readout phase, the output O becomes selectively active, not merely
propagating memory but enabling targeted information retrieval.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

These results suggest that LRMM achieves robust memory control through adaptive recurrent mech-
anisms that filter, store, and extract information in noisy temporal settings.

Figure 5: The input sequence consists of 20 time steps, as
shown in (a). The green regions denote informative symbols
that must be remembered, while the red regions represent
noise. (b–d) illustrate the temporal dynamics of the I, F, and
O gates across all neurons, while their respective mean val-
ues are summarized in (g). The I and F gates exhibit high
activation during informative segments and remain nearly
inactive during noise, whereas the O gate is selectively acti-
vated during the readout phase. (e) and (f) show the spiking
activity of the NC and NM neurons, respectively. The cor-
relation matrix between them is shown in (h).

Gradient Retention Analysis. We
further evaluate the temporal gra-
dient stability by computing the
relative Gradient Retention Factor
(GRF) A.6.1 across training. As
shown in As shown in Figure 6,
LRMM achieves consistently higher
single-step geometric gain compared
to the baseline without inter-loop re-
currence, exceeding it by more than
1.5× on average. This indicates
significantly improved gradient flow
and more effective temporal credit
assignment over long horizons. As
shown in Fig. 4, LRMM achieves the
highest absolute GRF A.6.1 across all
tested horizons. The gap becomes in-
creasingly significant as H grows, in-
dicating that the structured recurrent
feedback in LRMM enables more sta-
ble gradient propagation over long
sequences, compared to LIF, ALIF
and TC-LIF).

4.3 ABLATION STUDY

To evaluate the contribution of each
structural component in our LIF
memory circuit, we conduct a se-
ries of controlled ablation experi-
ments. All variants are trained un-
der the same protocol on PS-MNIST
and SHD. We measure classification
accuracy and BPTT gradient stabil-
ity to assess the effect of circuit mod-
ifications. Specifically, we ablate:
(1) the recurrent feedback from the
memory neuron NC to the controller
NM , (2) the recurrent output path
from NO to the current layer, and
(3) the gating mechanism, replacing
all three gates with a shared static in-
put gate.

Dataset Ablation Setting Accuracy(%) ↑

PS-MNIST

Full Model 96.52
w/o NC → NM connection 86.11↓9.41
w/o Recurrent connections 93.74↓2.78
w/o Gate Separation 92.35↓4.17

SHD

Full Model 94.70
w/o NC → NM connection 86.28↓8.42
w/o Recurrent connections 92.47↓2.23
w/o Gate Separation 90.81↓3.89

Table 2: Ablation study of LRMM.

As shown in Table 2, all three ab-
lations cause consistent performance
drops across both datasets, validat-
ing the necessity of feedback modu-
lation, temporal recurrence, and gate
specialization in the proposed mem-
ory circuit.

Memory-State Modulated Feed-
back. Removing the feedback from
the memory neuron NC to the con-
troller NM results in the most signif-
icant degradation: PS-MNIST accu-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Model Theoretical energy Measured energy (nJ)

LRMM nEMAC + n(3mFrin + 3FrNO + FrNI + FrNM + 2FrNC)EAC/4 46.66
TC-LIF 2nEMAC + (mnFrin + (n2+2n) Frout)EAC 212.27
LIF nEMAC + (mnFrin + (n2+n) Frout)EAC 186.60
LSTM (4(mn+n2) + 17n)EMAC 21145

Table 3: Energy consumption comparison on SHD. 2layers 512neurons.

racy drops from 96.52% to 86.11%,
and SHD drops from 94.70% to 86.28%. This ablation breaks the memory-control loop, impair-
ing the circuit’s ability to retain and coordinate long-term information. Recurrent Memory Path.
Eliminating the output recurrence from NO to the current layer weakens temporal integration. Ac-
curacy drops moderately by 2.78% on PS-MNIST and 2.23% on SHD. Although the model retains
basic temporal processing via internal delays, the lack of global recurrence leads to reduced gradient
stability and more localized memory formation, especially in longer sequences.

Gate Separation. Replacing the three distinct gates (II , IF , IO) with a single shared input gate im-
pairs selective signal routing. This simplification causes accuracy to drop by 4.17% on PS-MNIST
and 3.89% on SHD, suggesting that dedicated gating enables fine-grained temporal filtering of rele-
vant versus irrelevant information streams.

4.4 HIGH ENERGY EFFICIENCY

We use the accounting: total energy = #MAC·EMAC + #AC·EAC. EAC=0.9 pJ, EMAC=4.6 pJ.
Horowitz (2014) Setup for SHD: 2 hidden layers, hiddenneurons = 512, n=20, SHD firing
rate:0.114. LRMM Firing rates:FrNI=(0.168, 0.196), FrNO=(0.311, 0.269), FrNC=(0.366, 0.330),
FrNM=(0.274, 0.197), Frout = 0.08; LIF Firing rates: (0.274,0.226), Frout=0.085; TC-LIF firing
rates: (0.294, 0.241), Frout=0.108.

Energy efficiency. Under the SHD configuration, LRMM achieves substantially lower event-driven
energy cost than LIF, reducing EAC consumption by approximately 77%, while maintaining the
same MAC-level complexity, as we can see in 4.3. Compared to LSTM, LRMM requires over
4000× fewer multiply–accumulate operations per step, with details in A.8. This efficiency partly
stems from LRMM’s localized memory design, which limits recurrent computation to O(n) event
paths, avoiding the dense O(n2) recurrence found in typical gated architectures.

5 SUMMARY AND DISCUSSION

We introduced the Local Recurrent Memory Module (LRMM), a lightweight spiking memory ar-
chitecture built entirely from vanilla LIF neurons with fixed, structured connectivity. By augment-
ing LIF dynamics with a localized memory loop, LRMM achieves long-range temporal integration
while preserving low firing rates, low parameter count, and high energy efficiency. The architec-
ture ensures and stable gradient flow, enabling effective temporal credit assignment without relying
on trainable adaptation or explicit synaptic delays. Extensive experiments on benchmark sequence
tasks demonstrate that LRMM achieves high performance among SNNs, while consuming up to
77% less event-driven energy than LIF and over 400× fewer energy than LSTM. Despite these ad-
vantages, LRMM has not yet been deployed on neuromorphic hardware. Future directions include
hardware-aligned implementations, multi-scale memory integration, and scaling to large real-world
environments such as continuous control and autonomous agents.

6 ETHICAL CONSIDERATIONS AND COMPLIANCE WITH THE OPEN SCIENCE
POLICY

6.1 ETHICAL CONSIDERATIONS

This study proposes the LRMM architecture to improve the long-term memory capacity of spiking
neural networks using structured recurrence and vanilla LIF neurons. All experiments were con-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ducted using publicly available benchmark datasets such as PS-MNIST, SHD, and SSC. The work
does not involve the use of personal data, content generation, or any human-related applications. Our
research is intended for theoretical analysis and academic benchmarking, with a focus on advancing
the understanding of memory mechanisms in energy-efficient spiking models.

6.2 COMPLIANCE WITH THE OPEN SCIENCE POLICY

To support reproducibility and transparency, we provide all necessary details for reproducing our
experiments in the appendix. This includes a comprehensive description of the datasets used, the
evaluation metrics such as Gradient Retention Factor, and the experimental configurations. We also
include an extended explanation of how LRMM enhances BPTT gradient stability. An anonymized
code repository is referenced in the appendix to allow reviewers to verify our implementation and
results without compromising the double-blind review process.

REFERENCES

Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass. Long
short-term memory and learning-to-learn in networks of spiking neurons. Advances in Neural
Information Processing Systems, 31, 2018.

Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj, Robert Legenstein,
and Wolfgang Maass. A solution to the learning dilemma for recurrent networks of spiking neu-
rons. Nature communications, 11(1):3625, 2020.

Alexandre Bittar and Philip N Garner. A surrogate gradient spiking baseline for speech command
recognition. Frontiers in Neuroscience, 16:865897, 2022.

Tobias Bohnstingl, Johannes Brandstetter, Guillaume Bellec, and Wolfgang Maass. Radlif: A
spiking neuron model with learned radial dynamics for long-term memory. arXiv preprint
arXiv:2203.10192, 2022.

Kyunghyun Cho et al. Learning phrase representations using rnn encoder–decoder for statistical
machine translation. In EMNLP, 2014.

Benjamin Cramer, Yannik Stradmann, Johannes Schemmel, and Friedemann Zenke. The heidelberg
spiking data sets for the systematic evaluation of spiking neural networks. IEEE Transactions on
Neural Networks and Learning Systems, 33(7):2744–2757, 2020.

Manon Dampfhoffer, Thomas Mesquida, Alexandre Valentian, and Lorena Anghel. Investigating
current-based and gating approaches for accurate and energy-efficient spiking recurrent neural
networks. pp. 359–370, 2022.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
residual learning in spiking neural networks. Advances in Neural Information Processing Systems,
34:21056–21069, 2021a.

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian. In-
corporating learnable membrane time constant to enhance learning of spiking neural networks.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 2661–2671,
2021b.

Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons, populations,
plasticity. Cambridge university press, 2002.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Ilyass Hammouamri, Ismail Khalfaoui-Hassani, and Timothée Masquelier. Learning delays in spik-
ing neural networks using dilated convolutions with learnable spacings. 2023.

Zecheng Hao, Xinyu Shi, Zihan Huang, Tong Bu, Zhaofei Yu, and Tiejun Huang. A progressive
training framework for spiking neural networks with learnable multi-hierarchical model. In The
Twelfth International Conference on Learning Representations, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Saya Higuchi, Sebastian Kairat, Sander M Bohté, and Sebastian Otte. Balanced resonate-and-fire
neurons. arXiv preprint arXiv:2402.14603, 2024.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Mark Horowitz. Computing’s energy problem (and what we can do about it). in 2014 ieee interna-
tional solid-state circuits conference digest of technical papers (isscc). In IEEE, feb, 2014.

Yulong Huang, Xiaopeng Lin, Hongwei Ren, Haotian Fu, Yue Zhou, Zunchang Liu, Biao Pan, and
Bojun Cheng. Clif: Complementary leaky integrate-and-fire neuron for spiking neural networks.
In International Conference on Machine Learning, pp. 19949–19972. PMLR, 2024.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize recurrent networks
of rectified linear units. arXiv preprint arXiv:1504.00941, 2015.

Ali Lotfi Rezaabad and Sriram Vishwanath. Long short-term memory spiking networks and their
applications. In International Conference on Neuromorphic Systems 2020, pp. 1–9, 2020.

Chenxiang Ma, Xinyi Chen, Yanchen Li, Qu Yang, Yujie Wu, Guoqi Li, Gang Pan, Huajin Tang,
Kay Chen Tan, and Jibin Wu. Spiking neural networks for temporal processing: Status quo and
future prospects. arXiv preprint arXiv:2502.09449, 2025.

Wenxuan Pan, Feifei Zhao, Bing Han, Yiting Dong, and Yi Zeng. Emergence of brain-inspired
small-world spiking neural network through neuroevolution. Iscience, 27(2), 2024.

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
with neuromorphic computing. Nature, 575(7784):607–617, 2019.

T Konstantin Rusch and Siddhartha Mishra. Unicornn: A recurrent model for learning very long
time dependencies. In International Conference on Machine Learning, pp. 9168–9178. PMLR,
2021.

Erik Sadovsky, Maros Jakubec, and Roman Jarina. Speech command recognition based on convo-
lutional spiking neural networks. pp. 1–5, 2023.

Corinne Teeter, Ramakrishnan Iyer, Vilas Menon, Nathan Gouwens, David Feng, Jim Berg, Aaron
Szafer, Nicholas Cain, Hongkui Zeng, Michael Hawrylycz, et al. Generalized leaky integrate-
and-fire models classify multiple neuron types. Nature communications, 9(1):709, 2018.

Yongjian Wang, Yansong Wang, Xinhe Zhang, Jiulin Du, Tielin Zhang, and Bo Xu. Brain topol-
ogy improved spiking neural network for efficient reinforcement learning of continuous control.
Frontiers in Neuroscience, 18:1325062, 2024.

Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition. arXiv
preprint arXiv:1804.03209, 2018.

Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560, 2002.

Xingting Yao, Fanrong Li, Zitao Mo, and Jian Cheng. Glif: A unified gated leaky integrate-and-fire
neuron for spiking neural networks. Advances in Neural Information Processing Systems, 35:
32160–32171, 2022.

Bojian Yin, Federico Corradi, and Sander M Bohté. Accurate and efficient time-domain classi-
fication with adaptive spiking recurrent neural networks. Nature Machine Intelligence, 3(10):
905–913, 2021.

Zhiheng Yin et al. Temporal coupling enables long-term memory in spiking neural networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.

Shimin Zhang, Qu Yang, Chenxiang Ma, Jibin Wu, Haizhou Li, and Kay Chen Tan. Tc-lif: A two-
compartment spiking neuron model for long-term sequential modelling. In Proceedings of the
AAAI conference on artificial intelligence, volume 38, pp. 16838–16847, 2024a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shimin Zhang, Qu Yang, Chenxiang Ma, Jibin Wu, Haizhou Li, and Kay Chen Tan. Tc-lif: A two-
compartment spiking neuron model for long-term sequential modelling. In Proceedings of the
AAAI conference on artificial intelligence, volume 38, pp. 16838–16847, 2024b.

Wenrui Zhang, Hejia Geng, and Peng Li. Composing recurrent spiking neural networks using
locally-recurrent motifs and risk-mitigating architectural optimization. Frontiers in Neuroscience,
18:1412559, 2024c.

Hanle Zheng, Zhong Zheng, Rui Hu, Bo Xiao, Yujie Wu, Fangwen Yu, Xue Liu, Guoqi Li, and Lei
Deng. Temporal dendritic heterogeneity incorporated with spiking neural networks for learning
multi-timescale dynamics. Nature Communications, 15(1):277, 2024.

A APPENDIX

A.1 AUTHOR DISCLOSURE OF LLM USAGE

In accordance with the ICLR 2026 policy on the use of large language models (LLMs), we dis-
close that LLMs were used solely for language polishing purposes during the preparation of this
manuscript. All LLM-generated content was manually reviewed and edited by the authors to ensure
accuracy and appropriateness. LLMs were not used for literature review, method design, experiment
implementation, analysis, or any other substantive aspect of the research.

A.2 BPTT PROOF

Notation. We index time t and units X ∈ {NI, NM, NC, NO} and current gates j ∈ {I,F,O}.
Each unit keeps membrane UX [t], spike SX [t], input IX [t], leak αX ∈ (0, 1), threshold Vth,X . We
reuse gZ[t] = ∂L/∂Z[t] for any symbol Z (e.g., gUX [t], gSX [t], gIj [t]) and parameter gradients
∂L/∂w.

Soft-reset update and derivation of AX [t]. During training we adopt a soft-reset LIF update

UX [t+1] = αX(UX [t]− Vth,XSX [t]) + IX [t+1], (22)

and treat IX [t+1] as exogenous when differentiating w.r.t. UX [t] so that inter-step structural effects
are accounted for separately in the spatial graph. With the surrogate SX [t] = σX(UX [t] − Vth,X)
and ∂SX [t]/∂UX [t] = σ′

X(·), we obtain

AX [t] =
∂UX [t+1]

∂UX [t]
= αX

(
1− Vth,X σ′

X(UX [t]− Vth,X)
)
. (23)

This coefficient quantifies the local temporal gain induced jointly by membrane leak and subtract-
threshold reset.

Surrogate gradients (training only). We keep the forward dynamics hard and invoke surro-
gates only in the backward pass. For the modulation clamp in equation 3, when the forward path
uses the piecewise-linear hard-sigmoid PL(z), its derivative is approximated by the logistic-sigmoid
derivative:

∂Ij [t]

∂zj [t]
≈ σ(zj [t])(1− σ(zj [t])), zj [t] = Wj [input[t]; SNO

[t−1]] + bj , (24)

where σ(z) = 1/(1 + e−z). For spikes in equation 2, we adopt the rectangular (boxcar) surrogate
with half-width Hw > 0:

∂SX [t]

∂UX [t]
=


1

2Hw
, |UX [t]− Vth,X | ≤ Hw,

0, otherwise.
(25)

Gradients through the reset factor (1 − SX [t]) use the same spike surrogate ∂SX [t]/∂UX [t]. At
inference time we employ the hard PL(·) clamp and the Heaviside firing function without surrogates.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Step-by-step BPTT for each neuron in details. We write σ′
X [t]≡ σ′

X(UX [t] − Vth,X) and use
AX [t] from equation 10. Input neuron NI :

gUNI
[t] = ANI

[t] gUNI
[t+ 1]︸ ︷︷ ︸

temporal

+σ′
NI

[t]wNI ,NC
gUNC

[t]︸ ︷︷ ︸
spatial

(26)

Neuron NM :

gUNM
[t] = ANM

[t] gUNM
[t+ 1]︸ ︷︷ ︸

temporal

+σ′
NM

[t]wNM ,NC
gUNC

[t]︸ ︷︷ ︸
spatial

(27)

Neuron NC :

gUNC
[t] = ANC

[t] gUNC
[t+ 1]︸ ︷︷ ︸

temporal

+σ′
NC

[t](wNC ,NO
gUNO

[t]︸ ︷︷ ︸
spatial

+wNC ,NM
gUNM

[t+ 1]︸ ︷︷ ︸
temporal

) (28)

Neuron NO:

(29)

gUNO
[t] =

(
ANO

[t] + σ′
NO

[t] cO[t+ 1]wNO,OwO,NO

)
gUNO

[t+ 1]︸ ︷︷ ︸
temporal

+σ′
NO

[t]
(
cI [t+ 1]wNO,IwI,NI

gUNI
[t+ 1]︸ ︷︷ ︸

temporal

+ cF [t+ 1]wNO,FwF,NM
gUNM

[t+ 1]︸ ︷︷ ︸
temporal

+
∂L

∂SNO
[t]︸ ︷︷ ︸

spatial

)

Here cj [t + 1] collects the local slope along the path SNO
[t]→ Ij [t + 1] through the modulation Φ

and the corresponding linear map, for j ∈ {I,F,O}.

A.3 DATASETS

SHD (Spiking Heidelberg Digits) Cramer et al. (2020) is a neuromorphic dataset that consists of
spike-based representations of spoken digits (0–9), recorded using a model of the auditory periphery.
Each sample is represented as a sequence of spatio-temporal spike events across 700 input channels
over a duration of 1 second. The dataset contains 8,144 training samples and 2,264 test samples. It
is particularly suited for evaluating the temporal processing capabilities of spiking neural networks
(SNNs).

SSC (Spiking Speech Commands) Warden (2018) is an event-driven version of the Google Speech
Commands dataset, converted into spike trains using biologically inspired auditory models. It in-
cludes 35 spoken keywords mapped to 20 classes, with a total of 8,000 training and 2,000 test sam-
ples. Like SHD, SSC emphasizes temporal precision and robustness in spike-based representations,
making it a suitable testbed for SNN-based models.

PSMNIST (Permuted Sequential MNIST) Le et al. (2015) is a sequential version of the standard
MNIST handwritten digit dataset. Each 28×28 image is flattened into a 784-dimensional sequence,
and then a fixed random permutation is applied to the sequence order. The dataset contains 60,000
training and 10,000 test samples. PSMNIST is widely used to benchmark recurrent and sequential
models due to its requirement for long-range dependency modeling.

Binary Adding (long-range marked-sum). Following Ma et al. (2025), this synthetic sequence
task is designed to evaluate a model’s ability to capture long-range temporal dependencies. Each
input contains two binary sequences of length T : a value sequence x1 ∈ {0, 1}T and a marker
sequence x2 ∈ {0, 1}T . The marker x2 selects 9 positions within x1, and the label is the sum of
x1 at these positions, yielding a 10-class target (0–9). The model must process the entire sequence
before prediction, making it a strict test of temporal integration. We generate 50,000 training and
2,000 test samples, and vary T to control task difficulty.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.4 TRAINING DETAILS.

All LRMM units share the same LIF parameters: a trainable leak factor initialized to 0.95, a fixed
firing threshold Vth = 1.0, and a reset potential Vreset = 0. All feedforward and recurrent weights
are initialized using Xavier uniform initialization. We adopt a boxcar surrogate gradient with width
w = 1.0. Full input sequences are used without truncation during BPTT. Training is performed
using the Adam optimizer with β1 = 0.9 and β2 = 0.999, an initial learning rate of 1 × 10−2, a
batch size of 128, and a total of 50 epochs. Classification is performed based on the firing rates of
the output neurons, and the model is trained using the standard cross-entropy loss.

A.5 BASELINE MODELS AND COMPARATIVE METHODOLOGY.

We evaluate three categories of baselines under controlled model capacity and training set-
tings. First, to test whether network-level structure can replace neuron-level complexity,
we compare against ALIF Yin et al. (2021), TC-LIF Zhang et al. (2024a), RadLIF Bit-
tar & Garner (2022), and DCLS-Delays Hammouamri et al. (2023), which incorporate adap-
tive thresholds, compartmental dynamics, radial memory, or delay-based recurrence. Sec-
ond, we include an LSTM Hochreiter & Schmidhuber (1997) with matched parameter bud-
get to assess compute cost and energy efficiency relative to a standard ANN baseline.

0 200 400 600 800
Checkpoint index k

0.5

1.0

1.5

2.0

g
=

GR
F1/

H
re

l
g = GRF1/H

rel ,H=32
baseline: diag-only Dt

Figure 6: Single-step geometric gain
g = (GRFrel)

1/H on SHD (H =
32). LRMM shows consistently higher
gain than the baseline without inter-loop
connections.

Third, we test a stacked LIF network without the LRMM
loop, isolating the effect of our proposed structural
design. These comparisons help disentangle neuron-
intrinsic mechanisms from architectural complexity, and
quantify the impact of LRMM under consistent experi-
mental conditions

A.6 METRICS

A.6.1 METRICS FOR TEMPORAL
STABILITY AND GRADIENT PROPAGATION

We use a compact metric suite to characterize (i) global multi-step gradient retention and (ii) the
local stability of the MALC microcircuit.

Absolute Gradient Retention Factor (GRF). Let Jt = ∂ut+1/∂ut be the per-step Jacobian of a
neuron/microcircuit state (scalar for LIF, coupled blocks for ALIF/TC-LIF, and a 3×3 operator for
MALC). Over horizon H starting at t,

GRFabs(H; t) =
∥∥∥H−1∏

k=0

Jt+k

∥∥∥
2
, GRFabs(H) = mediant∈T GRFabs(H; t).

Larger values indicate stronger long-range gradient preservation.

Loop-Sensitive Relative GRF (MALC). To isolate the NM ↔NC loop effect, define the MALC
temporal operator

Mt =

[
At

NM
+ γtβt γtA

t
NC

βt At
NC

]
, Dt = diag(At

NM
, At

NC
),

with At
X = αX(1− Vth,X σ′

X(U t
X−Vth,X)), βt = σ′

NC
(U t

NC
−Vth,NC

)wNC ,NM
, γt =

σ′
NM

(U t
NM

−Vth,NM
)wNM ,NC

, where σ′ is the surrogate derivative. The loop contribution is

GRFrel(H; t) =
∥
∏H−1

k=0 Mt+k∥2
∥
∏H−1

k=0 Dt+k∥2
, GRFrel(H) = mediant∈T GRFrel(H; t).

Values > 1 indicate loop-induced amplification beyond diagonal decay.

Spectral Radius. Local stability is summarized by ρ(Mt) = maxi|λi(Mt)|: ρ(Mt)<1 suggests
contraction, ρ(Mt)≈1 near-critical memory, and ρ(Mt)>1 potential instability.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.7 ENERGY COUNTING OF LRMM UNDER THE EVENT-DRIVEN CONVENTION

Counting convention. We follow the event-driven convention used in prior SNN energy tables:
(i) event-triggered computations (including projections, gates, and loop updates) are accounted as
accumulations with unit cost EAC and reported with a hardware-equivalence factor of 1/4; (ii)
only the per-neuron temporal state update (leakage/reset) is treated as a dense multiply–accumulate
(MAC), yielding nEMAC per step.

Notation. Let m be the input width and n the hidden size. Denote by Frin the average input firing
ratio (active inputs per step), and by FrNO

the average hidden/output firing ratio (node NO). Within
the local loop, FrNI

, FrNM
, and FrNC

denote the firing ratios associated with nodes NI , NM , and
NC , respectively. If FrNI

is not tracked separately in implementation, it can be merged into FrNM
.

The symbols EMAC and EAC denote the unit energy of a MAC and an accumulation, respectively.

LRMM structure. At each time step, LRMM computes three gates I, F,O ∈ [0, 1]n and updates
a two-node reciprocal loop (NM ↔ NC) in an event-driven manner:

It = σ(·), Ft = σ(·), Ot = σ(·), (30)

U t
M = αMU t−1

M + It − Vth,MSt−1
M + wC→MSt−1

C , (31)

U t
C = αCU

t−1
C + Ft − Vth,CS

t−1
C + wM→CS

t−1
M , (32)

St
NO

= Ot ⊙ St
M . (33)

Event-triggered operations are charged as EAC; temporal leakage/reset contributes the nEMAC base-
line.

Operation counting per step. We decompose the per-step energy into four parts and then aggre-
gate.

(A) Per-neuron temporal state update. Each neuron incurs one dense update per step,

EA = nEMAC. (34)

(B) Input-driven accumulations. The three gates consume input events over m× n connections,

EB = 3mnFrin EAC. (35)

(C) Output-driven accumulations. Hidden/output spikes at node NO trigger three path updates,

EC = 3nFrNO
EAC. (36)

(D) Two-node loop accumulations. The reciprocal loop (NM ↔ NC) adds local event interactions,

ED = n(FrNI
+ FrNM

+ 2FrNC
)EAC. (37)

Aggregate cost. Summing equation 34–equation 37 gives

ELRMM/step = nEMAC + (3mnFrin + 3nFrNO
+ n(FrNI

+ FrNM
+ 2FrNC

))EAC. (38)

Reporting with 1/4-MAC equivalence for event ops. Following the table’s reporting convention,
event-driven terms are shown with a 1/4 equivalence factor:

ELRMM/step = nEMAC + (3mnFrin + 3nFrNO
+ n(FrNI

+ FrNM
+ 2FrNC

))
EAC

4
. (39)

Complexity remarks. The loop contribution in equation 39 scales linearly with n, reflecting the
locality of the two-node loop, in contrast to O(n2) event terms in some two-compartment designs.
When all firing ratios vanish, the cost reduces to the baseline nEMAC; the upper bound is attained
as Frin = FrNO

= FrNI
= FrNM

= FrNC
= 1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.8 ENERGY COUNTING FOR TC-LIF, LIF, AND LSTM ON SHD

Setup. Two hidden layers with total neurons per layer n = 512. Layer-1 takes external input
of width m1 = 700. Layer-2 takes the output of Layer-1 with effective width m2 = 512. The
theoretical per-step energies used are

E
(ℓ)
TC-LIF = 2nEMAC + (mℓnFr

(ℓ)
in + (n2 + 2n)Frout)EAC, (40)

E
(ℓ)
LIF = nEMAC + (mℓnFr

(ℓ)
in + (n2 + n)Frout)EAC, (41)

E
(ℓ)
LSTM = (4(mℓn+ n2) + 17n)EMAC. (42)

Firing rates. LIF: (Fr
(1)
in , F r

(2)
in) = (0.274, 0.226), Frout = 0.085.

TC-LIF: (Fr
(1)
in , F r

(2)
in) = (0.294, 0.241), Frout = 0.108.

LIF

Layer-1:

E
(1)
LIF = 512EMAC + (700 · 512 · 0.274 + (5122 + 512) · 0.085)EAC

= 512EMAC + 120527.36EAC. (43)

Layer-2:

E
(2)
LIF = 512EMAC + (512 · 512 · 0.226 + (5122 + 512) · 0.085)EAC

= 512EMAC + 81570.304EAC. (44)

Two-layer total:
ELIF,total = 1024EMAC + 202097.664EAC. (45)

TC-LIF

Layer-1:

E
(1)
TC-LIF = 1024EMAC + (700 · 512 · 0.294 + (5122 + 2 · 512) · 0.108)EAC

= 1024EMAC + 133791.744EAC. (46)

Layer-2:

E
(2)
TC-LIF = 1024EMAC + (512 · 512 · 0.241 + (5122 + 2 · 512) · 0.108)EAC

= 1024EMAC + 91598.848EAC. (47)

Two-layer total:
ETC-LIF,total = 2048EMAC + 225390.592EAC. (48)

LSTM

Layer-1:

E
(1)
LSTM = (4(700 · 512 + 5122) + 17 · 512)EMAC

= 2490880EMAC. (49)

Layer-2:

E
(2)
LSTM = (4(512 · 512 + 5122) + 17 · 512)EMAC

= 2105856EMAC. (50)

Two-layer total:
ELSTM,total = 4596736EMAC. (51)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 4: Total per-step energy on SHD (two hidden layers, n=512 each). Counts follow Etotal =
#MAC · EMAC +#AC · EAC with EMAC = 4.6 pJ and EAC = 0.9 pJ. LRMM total includes the
128→20 readout.

Model (2 layers) Theoretical per-step count Measured energy (nJ)

LRMM (2 layers + out) 1024EMAC + 46,609.408EAC 46.6589
LIF (2 layers) 1024EMAC + 202,097.664EAC 186.5983
TC-LIF (2 layers) 2048EMAC + 225,390.592EAC 212.2723
LSTM (2 layers) 4,596,736EMAC + 0EAC 21,144.9856

A.9 ENERGY COUNTING OF LRMM ON SHD (2 LAYERS, SUB-POPULATIONS)

Setup. Two LRMM layers, each with nh = 512 neurons split evenly: |NI |= |NM |= |NC |=
|NO|= 128. Layer–1 uses external input of width m1 = 700 with firing rate Fr

(1)
in = 0.114. Layer–

2 takes input from Layer–1’s output sub-population, hence m2 = |N (1)
O |= 128 and Fr

(2)
in = Fr

(1)
NO

.

A final linear readout maps |N (2)
O |= 128 to 20 classes. Per-neuron temporal updates contribute

nhEMAC per step; all event-triggered operations are accounted as accumulations and reported with
a 1/4-MAC equivalence (EAC/4).

Per-layer counting (using total n). Let n = 512 be the total number of hidden neurons per
LRMM layer. For layer ℓ ∈ {1, 2} with input width mℓ and input firing Fr

(ℓ)
in , the per-step energy

under the event-driven convention is

E
(ℓ)
step = nEMAC +

(
3mℓ nFr

(ℓ)
in + 3nFr

(ℓ)
NO

+ n(Fr
(ℓ)
NI

+ Fr
(ℓ)
NM

+ 2Fr
(ℓ)
NC

)
) EAC

4
. (52)

Firing rates (given).

Layer 1: (Fr
(1)
NI

, F r
(1)
NO

, F r
(1)
NC

, F r
(1)
NM

) = (0.168, 0.311, 0.366, 0.274),

Layer 2: (Fr
(2)
NI

, F r
(2)
NO

, F r
(2)
NC

, F r
(2)
NM

) = (0.196, 0.269, 0.330, 0.197).

Layer–1 (m1=700, Fr
(1)
in =0.114).

EL1 = 512EMAC + 30912.896EAC.

Layer–2 (m2=128, Fr
(2)
in =Fr

(1)
NO

=0.311).

EL2 = 512EMAC + 15524.352EAC.

Final readout (|N (2)
O |=128 → 20). Under the same event-driven convention, the linear readout

cost per step is

Ereadout = (128× 20× Fr
(2)
NO

)
EAC

4
= (2560× 0.269)

EAC

4
= 172.16EAC. (53)

Two-layer total per step (with readout).

Etotal/step = 1024EMAC + 46609.408EAC. (54)

17

	Introduction
	Related Work
	Method
	Vanilla LIF based recurrent memory module
	Stability Analysis of Backpropagation Through Time (BPTT)

	Experiments
	Experimental Setup
	Main Results
	Ablation Study
	High Energy Efficiency

	Summary and Discussion
	Ethical Considerations and Compliance with the Open Science Policy
	Ethical Considerations
	Compliance with the Open Science Policy

	Appendix
	Author Disclosure of LLM Usage
	BPTT proof
	Datasets
	Training Details.
	Baseline Models and Comparative Methodology.
	metrics
	Metrics for Temporal Stability and Gradient Propagation

	Energy Counting of LRMM under the Event-Driven Convention
	Energy Counting for TC-LIF, LIF, and LSTM on SHD
	Energy Counting of LRMM on SHD (2 layers, sub-populations)

