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ABSTRACT

Dynamic Path Planning (DPP) in urban road networks is challenging due to
rapidly changing traffic conditions that often invalidate pre-planned routes. Re-
inforcement Learning (RL) can adaptively handle such dynamics, but its effec-
tiveness depends on how those dynamics are represented in the state. Existing
methods either rely on global dynamics, which are complete but computationally
expensive, or on simplified local dynamics, which are efficient but may omit crit-
ical information, leading to suboptimal routes. To address this trade-off, we pro-
pose a Dynamics Feature Representation (DFR) framework that progressively re-
fines high-dimensional global dynamics into compact, decision-relevant features.
DFR introduces policy attention mechanism to identify a core subset of dynam-
ics based on distance-oriented policy, and uses n-hop neighborhoods method to
further decouples this subset into node-related local feature sequences. This hier-
archical refinement enables efficient near-optimal policy learning. Experiments on
realistic urban graphs show that DFR improves the performance of RL-based DPP
models and accelerates convergence compared to baselines. This work highlights
the importance of adaptive state representation and provides a general framework
for dynamic decision-making in practical urban transportation.

1 INTRODUCTION

With the rapid development of emerging applications such as on-demand delivery, urban logistics,
and intelligent transportation systems, achieving efficient path planning in urban road networks has
become a pressing demand (Gu et al., 2023; Mao et al., 2025). However, real-world traffic conditions
are time-varying, often rendering planned routes ineffective. Dynamic Path Planning (DPP) has thus
been proposed to address this issue (Du et al., 2024a), aiming to maintain robust and adaptive routing
under continuously evolving traffic conditions. A common way to formulate DPP is to model the
urban road network as a dynamic directed and weighted graph. Traditional methods then rely on
explicit traffic flow prediction or rule-based evolution models (Guo et al., 2024) (e.g., forecasting
link speeds for a future time horizon). However, such predictions suffer from limited accuracy and
poor generalization, particularly under unexpected events like accidents or road closures (Medina-
Salgado et al., 2022; Huang et al., 2022). Therefore, those approaches may be unreliable in practice.

Reinforcement Learning (RL) offers a new paradigm for handling dynamics. Instead of requiring
an accurate explicit model, RL incorporates dynamics into the state and learns optimal decisions
through interaction (Bouktif et al., 2023; Lin et al., 2025). The key advantage is that value function
estimation implicitly absorbs the statistical patterns of state transitions, thereby reducing reliance
on predictive accuracy and exhibiting stronger robustness to unseen events (Nguyen et al., 2025).
Despite this advantage, applying RL to DPP faces a fundamental challenge (Chen et al., 2023):
how to effectively represent traffic dynamics effectively within the state. Existing approaches strug-
gle with a dilemma. Global methods that encode the entire graph dynamics to ensure information
completeness but are computationally prohibitive Liu et al. (2024). Local methods that use partial
observations of the agent are efficient but risk overlooking essential non-local dynamics (Du et al.,
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2024b), leading to shortsighted and suboptimal routing (Francis et al., 2025). More critically, in-
sufficient state representation may undermine the Markov property, which leads to degraded model
performance and unstable training. Therefore, it is crucial for effective RL-based DPP to identify
suitable dynamics features.

To bridge this gap, we propose a Dynamics Feature Representation (DFR) framework to construct a
Markovian state representation by progressively distilling the global graph dynamics into a compact,
decision-centric feature. DFR employs a novel hierarchical refinement process: 1) Task-related
filtering via policy attention: We first pre-train a policy attention module that is expert in finding
shortest paths. Given an source and destination, it identifies the top-k shortest paths and extracts
a sparse, task-relevant subgraph from the global graph based on the nodes in those paths. The
dynamics of this subgraph form the first refined state. 2) Agent-centric decoupling via n-hop
neighborhoods: The above state is further refined at each timestep to focus on the agent’s immediate
context. We compute the n-hop neighborhoods around the current node and take its intersection with
the policy attention subgraph. The resulting dynamics provide a low-dimensional state vector that
captures the essential local traffic conditions within the context of the global task. By doing so,
DFR provides the RL agent with a state that is both computationally efficient and informationally
sufficient to approximate the Markov property.

Our core contributions are summarized as follows: 1) We propose the DFR framework, a novel hi-
erarchical approach to resolve the completeness-efficiency trade-off in state representation for RL-
based DPP. 2) We introduce two key technical innovations within DFR: a policy attention mechanism
for task-aware graph sparsification that extracts a task-related subgraph, and a n-hop neighborhood
method for agent-centric feature decoupling that provides a local state view. 3) We empirically val-
idate that our DFR framework achieves a significant improvement in performance and a remarkable
acceleration in convergence compared to standard baselines.

2 RELATED WORK

Path planning methods Traditional path planning algorithms, such as A* (Hart et al., 1968) and
D* Lite (Koenig & Likhachev, 2002), have been widely used in static environments. However,
their reliance on a pre-defined and fixed cost map makes them ill-suited for highly dynamic urban
networks where travel costs change rapidly. To address this, some learning-enhanced methods have
been proposed (Du et al., 2024a; Li et al., 2024). These typically involve first predicting future
traffic conditions using statistical or deep learning models (Guo et al., 2024; Yang et al., 2025),
and then executing a classic search algorithm on the predicted graph. However, the performance
of these planners is inherently bounded by the accuracy of the traffic forecast (Tian et al., 2025).
They are particularly vulnerable to distribution shift and unexpected events (e.g., accidents), often
leading to suboptimal or failed routes (Ren et al., 2025). In contrast, our method eliminates the need
for explicit prediction, and we employ RL to learn a policy that implicitly captures the statistics of
traffic dynamics through interaction, thereby achieving greater adaptability.

State representation RL has emerged as a powerful framework for solving DPP problems (Mao
et al., 2023; Xue et al., 2025). A common challenge is the design of the state representation (Francis
et al., 2025). In the context of path planning on graphs, previous work often resorts to simplistic
representations. Some methods use a local view (Zhao et al., 2025), which sacrifices global opti-
mality for efficiency. Others provide a global view of the entire network (Lin et al., 2025), which is
computationally prohibitive in large cities. In addition, graph neural networks offer a powerful way
to process graph-structured data for DPP problem (Zang et al., 2023; Sun et al., 2025), by encoding
the graph structure and dynamics into node embeddings. While they can theoretically capture the
entire graph’s information, the computational and memory overhead scale with the size of the graph
(Wu et al., 2020), making them impractical for real-time planning in massive urban networks. The
state for decision-making is often assumed to be given and Markovian, which is frequently not the
case in practice (Kaelbling et al., 1998). Our work attemps to refine global dynamics into a compact
form, drawing inspiration from feature decorrelation techniques (Huang et al., 2023).

Attention mechanisms The use of attention mechanisms for state abstraction and feature selection
is well-established (Brauwers & Frasincar, 2021; Hu et al., 2024). Soft attention, as in Transformers
(Min et al., 2022), allows agents to weight the importance of different parts of their input. Our
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Figure 1: The discrete timeline of dynamics in urban road network system: ranging from 0 to T −1,
each time tk ∈ {0, 1, . . . , T − 1} corresponds to a node v(k) in the path, where k = 0, 1, . . . , n.

proposed policy attention is a hard, pre-computed attention based on the structural semantics of the
task. This provides a strong, interpretable prior that drastically reduces the problem’s dimensionality
before the RL agent even begins learning, similar in spirit to knowledge distillation approaches used
in other domains (Papadopoulos et al., 2021).

3 PROBLEM FORMULATION

Next, we formally describe the DPP problem using graph theory and Markov decision process.

3.1 DYNAMIC PATH PLANNING IN DISCRETE URBAN MAPS

Assuming that the road network of a city is represented as a directed and weighted graph G =
(V,E), where V = {v1, v2, . . . , vN} is the node set, and E = {ei,j |vi, vj ∈ V, i ̸= j} is the edge
set. Each ei,j = (vi, vj) has a connection value l(vi, vj) and a weight value w(vi, vj ; t), where
l(vi, vj) = {0, 1} represents the connection relationship, and l = 1 indicates that node vi and vj are
directly connected and l = 0 means no direct connection; and w(vi, vj ; t) ∈ R denotes the traffic
cost (such as time or distance) from vi to vj at time t. For all t, |w(vi, vj ; t)| < ∞ if l(vi, vj) = 1,
and |w(vi, vj ; t)| = ∞ if l(vi, vj) = 0.

It is assumed that V remains constant, while the weight w(·, ·; t) of each edges may vary over time t.
The set of edge weights Wt : R|E| = {w(vi, vj ; t) | ∀(vi, vj) ∈ E} is referred to as the dynamics of
the urban road network system at time t. Furthermore, we define the discrete sequence of dynamics
over a time horizon T as W:T = ⟨W0,W1,W2, . . . ,WT−1⟩, which characterizes the temporal evo-
lution of the system. We define the path space P = {p}, and path p can be described as a sequence
of nodes, and adjacent nodes are directly connected, that is, p = ⟨v(0), v(1), . . . , v(n)⟩1≤n<∞, where
the kth node in p can be represented as pk = v(k) and l(pk, pk+1) = 1, k = 0, 1, . . . , n − 1.
Given a source node vi ∈ V and an goal node vj ∈ V , the path space between them is defined
as P[vi, vj ] ⊂ P = {p[vi, vj ]}, and p0 = vi, pn = vj for each path p[vi, vj ]. Figure 1 shows the
correspondence between nodes in the path and dynamics sequence on the timeline.

The DPP problem aims to find the optimal path with minimum traffic cost between any node pair
under changing traffic dynamics 1, formulated as a combination optimization problem over discrete
path spaces. Given a source vi and a goal vj , along with the temporal dynamics W:T , the DPP task
is defined as τ = (vi, vj ;W:T ). Aassuming that W:T is known in advance, the traffic cost of a path
p under W:T is denoted as c(p;W:T ). The optimal path between nodes vi and vj can be written as

p∗[vi, vj ;W:T ] = argmin
p∈P(vi,vj)

c(p;W:T ) = argmin
p∈P(vi,vj)

∑
k=1

w(pk, pk+1; tk) (1)

This is an ideal strategy that leverages the evolution of dynamics, enabling the planner to reason
about the long-term consequences of current paths and thus achieve global optimality. However, in
practice, future dynamics are typically unknown or inaccurate, making it a theoretical benchmark
for evaluating other strategies. To address the limitations, Markov Decision Process (MDP) is intro-
duced to rigorously reason about dynamics patterns by leveraging probability theory and stochastic
process and learn near-optimal policies without requiring knowledge of future traffic conditions.

1It is worth noting that ”dynamic” refers to the replanning of paths, while ”dynamics” refers to the changes
of traffic conditions in the urban road network. Dynamics is the direct cause of dynamic path planning.
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3.2 MARKOV DECISION PROCESS

Agent and environment Assuming that the vehicle is abstracted as a RL agent, and the DPP
problem in urban graph can be mapped into the finite-horizon and deterministic MDP model as a
6-tuple M = (S,A, T,R, γ,H):

State space S denotes the set of all possible states, and a state st ∈ S = {vt, vg, ft} consists of
the current node vt (with v0 = vi as the source node) 2, the goal node vg = vj , and the dynamics
features ft, where (vi, vj ;W:T ) is an instance of the DPP task. ft encodes current traffic conditions
observable by the agent, which is a compressed representation of W:T that provides environment
perception relevant to the current decision. Action space A ⊆ Rm is the set of possible actions taken
by the agent, and the action at = {0, 1, . . . , na} is designed to move to one of na neighbors of vta in
the graph. Transition function T : S × A× S → [0, 1] defines the probability of transitioning from
current state st to next state st+1 after taking action at, that is, T (st+1|st, at).
Reward function R : S ×A×S → R guides the agent to achieve the goal by assigning a numerical
reward to its each transition (st, at, st+1). In this paper, R is the negative value of the traffic cost
under dynamics Wt between current node vt in st and next node vt+1 in st+1,

R(st, at, st+1) = −c(vt, vt+1;Wt) + b · I(vt+1 == vg) (2)

where b ∈ R+ is a constant reward for reaching the goal node, and c(·, ·) is the traffic cost of two
nodes (see Equation 1). Discounted factor γ ∈ [0, 1] is used to balance between the future reward
(γ → 1) and immediate reward (γ → 0). Time horizon H ∈ N+ is the maximum number of steps,
that is, t ≤ H . If the agent cannot reach the goal within H steps, the task ends in failure.

Policy and value function Policy function π : S → ∆(A) defines a strategy of the agent to
decide the next action based on the current state. Given a DPP task τ with the initial state s0, a path
or state sequence p = {(st, at, st+1)

h−1
t=0 }h≤H can be automatically generated by at ∼ π(·|st) and

st+1 ∼ T (·|st, at). The ultimate goal is to obtain the optimal policy π∗ that can derive the optimal
path p∗. To quantitatively evaluate the utility of π, the state value function V : S → R and the
state-action value function Q : S×A → R are introduced, which is the expectation of accumulative
rewards under R at state s that the agent can obtain by following π and T . For the convenience of
calculation, V can be transformed into a recursive form, which is the famous Bellman Equation,

Vπ(s) =
∑
a∈A

π(a|s)Qπ(s, a) =
∑
a∈A

π(a|s)
∑
s′∈S

T (s′|s, a) [R(s, a, s′) + γVπ(s
′)] (3)

Solution optimality The decision condition that a policy is better than another policy is converted
to the ordering relationship between their value functions. The optimal policy π∗ is the policy
corresponding to the upper bound of V , e.g. π∗ = argmaxπ∈Π Vπ(s), ∀s ∈ S, and the Bellman
Optimality Equation is obtained, that is,

Vπ∗(s) = V ∗(s) = max
a

∑
s′

T (s′ | s, a) [R(s, a, s′) + γV ∗(s′)] (4)

Using classic DRL algorithms, such as Deep Q-Network (DQN) (Mnih et al., 2015) and its variants
(Van Hasselt et al., 2016; Wang et al., 2016), and Proximal Policy Optimization (PPO) (Schulman
et al., 2017), the optimal value function V ∗(s) can be uniquely determined by Equation 4. Even
in large-scale state spaces, DQN leverages neural networks to parameterize the value function and
employs sample-based updates to gradually improve its estimates until convergence to V ∗(s).

4 METHODOLOGY

4.1 CHALLENGES

We first analyze the key challenges in constructing effective state representations in the MDP-based
DPP model. In Section 3.2, the state is st = {vt, vg; ft}, where ft encodes the dynamics features

2The t here is different from the t in the previous part of graph theory. Simply put, t = n here represents
the nth decision step, which corresponds to t = tn on the time axis in graph theory part.
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Figure 2: The diagram illustrating how the policy function handle dynamics sequence in MDP-based
DPP. The colors of the edges in the graph represent different dynamics.

extracted from the environment (see Figure 2). The quality of ft directly determines the agent’s
planning ability to reason about dynamic traffic conditions. However, the design of ft faces an in-
herent trade-off. When ft is global dynamics, the formulation resembles a fully observable MDP,
where the agent has access to the complete system state. When ft is limited to local dynamics, the
formulation becomes partially observable, in which the agent act under incomplete and uncertain
knowledge of the environment. Such partial observability reflects real-world conditions, where fu-
ture states are inherently unavailable. Therefore, the major challenge of dynamics feature design is
sufficient yet compact: retaining the essential dynamics for decision-making while avoiding redun-
dancy and excessive complexity. Therefore, we propose a Dynamics Feature Representation (DFR)
framework, which aims to identify and encode task-relevant subsets of dynamics, striking a balance
between information sufficiency and computational tractability.

4.2 DYNAMICS FEATURE REPRESENTATION

Given a DPP task τ = (vs, vg;W:T ), and the state representation st = {vt, vg; ft}. We formalize
DFR as a three-level process, refining the global information into a compact, decision-relevant state.

W:T
τ,Ψ7−→ W′

:T
vt,Φ7−→ W′′

:T (5)

Global dynamics features W At decision step t, the full graph’s edge weights Wt serve as the
dynamics feature ft, that is, st = (vt, vg;Wt), where vt is the current node. As mentioned be-
fore, although Wt is extremely high-dimensional and redundant, making it unsuitable to be used
directly as the state input for a RL agent. Wt then provides the raw input for subsequent hierarchical
processing to produce more compact, task-relevant, and node-specific features.

Task-related key features W′ To reduce redundancy while retaining essential information, we
define a global key subset W ′

t (τ) = Ψ(τ,Wt), where Ψ is a function that extracts partial dynamics
from Wt, that is, W ′

t ⊆ Wt. W ′
t significantly reduces the dimensionality while preserving the

critical dynamics information required for optimal routing decisions. Formally, for task τ , W ′
t is

sufficient if the optimal policy conditioned on it approximates the policy conditioned on Wt:

π∗(vt, vg;W
′
t ) ≈ π∗(vt, vg;Wt) (6)

Node-related local features W′′ Even after global filtering, W ′
t may remain high dimensionality

in large-scale DPP scenarios. Therefore, we further define node-related local features W ′′
t (v

t) =
Φ(W ′

t , v
t), where Φ is a feature extraction function that maps W ′

t to a lower-dimensional subset
W ′′

t associated with the current node vt. W ′′
t can incorporate a spatial and temporal neighborhood,

forming a time-aware feature sequence. Similarly, the optimality of policy is preserved, that is,

π∗(vt, vg;W
′′
t ) ≈ π∗(vt, vg;W

′
t ) (7)
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Figure 3: The diagram of dynamics feature design using policy attention mechanism and n-hop
neighborhood method (n = 2 is shown in the example). The colors of the edges in the graph
represent different dynamics.

Theoretical Basis. The local feature ft = W ′′
t must ensure the compactness of the state represen-

tation, meaning that it preserves all decision-relevant information from the original dynamics. Pre-
dictive State Representations (PSR) provide a theoretical foundation for this requirement (Littman
& Sutton, 2001). PSR posits that the state of a system can be defined by predictions of future observ-
able outcomes given possible action sequences, without resorting to latent variables. In this sense,
W ′′

t serves as a predictive representation of the state: it encodes sufficient information to forecast
the effects of future actions, thereby ensuring that the optimal policy based on W ′′

t approximates the
policy based on the full dynamics sequence W:T :

π∗(vt, vg;W
′′
t ) ≈ π∗(vt, vg;W:T ) (8)

Beyond spatial abstraction, DFR also preserves the temporal dependencies inherent in traffic dy-
namics. Each Wt reflects the evolving traffic state at time t, and the refinement process (Equation 5)
operates over the sequential structure W:T rather than on a single snapshot. By filtering and ag-
gregating temporally adjacent representations, DFR implicitly captures short-term temporal correla-
tions—such as local congestion propagation and flow continuity—while maintaining computational
efficiency. From the PSR perspective, this design enables W ′′

t to function as a predictive summary
of future dynamics conditioned on the current observation window, thereby preserving both spatial
and temporal decision-relevant information. This mechanism aligns with the Markov assumption,
which requires the current state to represent all information necessary for decision-making.

Grounding DFR in PSR principles thus guarantees that the resulting representations are compact,
temporally predictive, and theoretically sufficient. This not only stabilizes training and mitigates
suboptimality under partial observability, but also enhances interpretability and generalization when
applying RL to the DPP problem.

4.3 DYNAMICS FEATURE EXTRACTION

After formalizing the DFR framework with Ψ for task-related key feature selection and Φ for node-
related local feature extraction, we now instantiate these mappings with concrete methods.

Policy Attention Method. Given the global dynamics features Wt, the policy attention mecha-
nism is employed to construct a task-relevant key subset W ′

t (see Figure 3). It leverages a distance-
based optimal policy π∗

d , which computes the shortest paths from the current node vt to the desti-
nation vg under static conditions. The paths derived from π∗

d are ranked by length, and the top-k
shortest paths are selected to form a subgraph G′ = (V ′, E′). The edge weights of this subgraph
define W ′

t , where the parameter k controls the trade-off between completeness and compactness: a
smaller k may omit critical paths, whereas a larger k may introduce redundant information.

Formally, to obtain π∗
d , the MDP formulation in Section 3.2 is simplified by removing the dynam-

ics feature component ft from origin state representation, and the reward function is redefined as
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Rd(s, a, s
′) = −d(s, s′), where d denotes the road length between the current state s and the next

state s′. Substituting the new state representation and reward function Rd into Equation 4, π∗
d can

be obtained after a certain number of trainning iterations.

As discussed above, DPP aims to find optimal paths under multiple objectives—such as distance,
travel time, and energy consumption—by training an RL agent to learn a multi-objective optimal pol-
icy. In contrast, the policy π∗

d used in the pre-training stage of our DFR framework is distance-based
only, without considering temporal variations in edge weights. This corresponds to RL-based static
path planning, where the goal is to learn a policy capable of generating shortest paths in a static road
network. The reason for using π∗

d is that, even when the ultimate objective of DPP is multi-criteria,
distance naturally serves as one of the most fundamental constraints. Thus, emphasizing edges
along the shortest paths ensures that critical dynamics influencing near-optimal planning decisions
are captured, making the extraction of W ′

t both reasonable and effective. In addition, inter-node dis-
tances do not vary over time as long as the topological structure of the urban graph remains constant.
Consequently, the pretraining process of π∗

d can be one-time and offline, which provides a stable and
interpretable reference for subgraph extraction during DPP.

n-hop neighborhood method Based on W ′
t , local features are extracted for current node vt

through an n-hop neighborhood method. Let N i(vt) denote the i-th order neighbors of vt, and
V ′ and E′ are the node set and egde set of the policy attention subgraph G′, respectively. The
local node set of vt is then defined as Vl(v

t) =
⋃n

i=0 N i(vt) ∩ V ′ and the corresponding edges
form the node-related subgraph. The weights of these edges define the local dynamics feature
ft = W ′′

t (v
t) = {w(vi, vj ; t) ∈ E′ | vi, vj ∈ Vl(v

t)}. n determines the spatial scale of W ′′
t :

smaller n captures highly localized dynamics but may overlook broader context, while larger n
expands coverage but increases dimensionality and computational cost.

It is noteworthy that our DFR framework incurs negligible additional computational overhead. The
total cost involves updating dynamic traffic information and executing the DPP model. By leverag-
ing policy attention and n-hop neighborhoods, DFR reduces the scope of dynamics feature collec-
tion to small, pre-computable subgraphs. Both policy attention—derived from a static path planning
policy—and n-hop neighborhoods depend only on the fixed road network topology, allowing of-
fline computation and reuse. Consequently, DFR achieves significant feature compression without
affecting online efficiency, making it suitable for real-world traffic scenarios with live updates.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

Scenarios The experiments are conducted on three urban road networks in China—Nanjing, the
Chaoyang District of Beijing, and the Pudong District of Shanghai—sourced from OpenStreetMap
(OSM). Each road network for driving is preprocessed and modeled as a directed weighted graph,
as illustrated in Figure 4. For each region, we specify a center node in the corresponding network
and extract a subgraph by including all nodes within a certain radius. Each scenario corresponds to
a single DPP task with a source node, a goal node, and a dynamics sequence. The source and goal
nodes are randomly sampled from a subgraph. In this work, we take traffic time as the dynamics, and
the path with minimum traffic time is regarded as the optimal path (see Equation 2). Edge weight
w(vi, vj ; t) are parameterized by a congestion factor β(vi, vj ; t) ∈ [0.1, 1.5]. Here, a smaller β
indicates heavier congestion or higher traffic density, and a larger β corresponds to smoother traffic
conditions. For instance, β(vi, vj ; t) = 0.1 means that the road (vi, vj) at t can only be traversed at
one-tenth of the base speed. Given the distance d(vi, vj) and the base speed ν0, the traffic time of a
road (vi, vj) under dynamics Wt is then written by

c(vi, vj ;Wt) = d(vi, vj)/(ν0 × β(vi, vj ; t)) (9)

Baselines We consider three baseline RL algorithms 3: DQN (value-based), PPO (policy-gradient,
stabilized actor–critic for discrete actions), and GCN+DQN (graph-based with GCN feature extrac-
tion). Each algorithm is evaluated both with and without DFR. For evaluation, we adopt four metrics:

3As the advantages of RL-based approaches over traditional methods in DPP have been well established in
the literature. Our work instead aim to investigate the impact of the DFR framework within the RL paradigm.
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Figure 4: Urban road network of three cities or districts. For each region, a center node and radius
are specified, and all nodes and edges within this range are extracted to form a subgraph (magenta).

1) Mean GAP: the average relative difference of cost between the learned paths and the ground-truth
paths, and lower is better. The ground-truth paths are computed by the dynamic Dijkstra algorithm;
2) Success Rate (SR): the proportion of scenarios in which the learned path successfully reaches
the goal node, and higher is better; 3) Compactness Rate (CR): the proportion of the reduced fea-
ture dimension after DFR to the original dimension, and lower is better. Planning Time (PT): the
average computation time required by an algorithm to generate a complete path for a given planning
query, and lower is better.

Model Training Given a subgraph, the DPP model is trained using the above algorithms over N
episodes, where each episode corresponds to a new scenario. During training, the DQN updates its
Q-function by minimizing the temporal-difference (TD) loss:

L(θ) = E(s,a,r,s′)∼D

[(
r(s, a, s′) + γmax

a′
Q(s′, a′; θ−)−Q(s, a; θ)

)2]
, (10)

where θ and θ− denotes the parameters of the Q-network and target network, respectively, γ is the
discount factor, and D is the experience replay buffer.

For all experiments 4, we use the Adam optimizer with a learning rate of 10−3 and a discount factor
γ = 0.99. The number of training episodes is fixed to 75, 600 episodes (about 200 epochs), and the
model performance under the above metrics is reported. The size of the replay buffer is 106 and the
batch size is 32. Each episode has a fixed horizon of 100 steps. The policy network is updated every
100 steps, and when applicable, the target network is also updated every 100 steps. ReLU is used
as the activation function for all networks. For exploration, an ϵ-greedy strategy is employed with ϵ
decaying linearly from 1.0 to 0.1. The architectures are as follows: DQN uses an MLP with a 64-
unit embedding layer and two 64-unit hidden layers; the target network shares this structure. PPO
uses a shared MLP for policy and value networks with the same layer sizes; Generalized Advantage
Estimation (GAE) is applied with λ = 0.95, the clip ratio is 0.05, and an entropy coefficient of
0.01 encourages exploration. GCN+DQN uses a graph convolutional layer for feature extraction,
followed by an MLP with two 64-unit hidden layers, mirrored by the target network.

5.2 MAIN RESULTS

The experiments were conducted using three algorithms: DQN, GCN+DQN, and PPO, each with
or without our DFR framework. This yields six algorithm settings, including DQN+DFR v.s.
DQN+AD, GCN+DQN+DFR v.s. GCN+DQN+AD, and PPO+DFR v.s. PPO+AD, where ”AD”
stands for All Dynamics. Based on these parameter settings (see Section 5.1), we trained the DPP
model on three different graphs (see Figure 4) and conducted statistical analysis on key metrics, in-
cluding Mean GAP, SR, and CR. Since smaller values of GAP and CR indicate better performance,
whereas larger SR is preferable, we plot 1−GAP and 1−CR to maintain a consistent interpretation.

As shown in Figure 5, each model’s performance is visualized as a triangle formed by 1−GAP, SR,
and 1−CR, with it area serving as a summary of overall performance. Across all algorithm settings,

4The source code of all experiments is publicly available at https://anonymous.4open.science/
r/UrbanDynamicPathPlanning-A59E.
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Figure 5: Performance comparison of different algorithms across three regions. ”DFR” stands for
our framework, while ”AD” refers to the use of All Dynamics features from the entire graph.

DFR-enhanced models exhibit larger triangle areas compared to their AD counterparts, indicating
superior overall performance. A closer examination reveals that GCN-based models, while achiev-
ing high SR, can still exhibit high GAP (i.e., low 1 − GAP). This occurs because, although GCN
introduces structural representation capability, the combination of a relatively small network and
high feature dimensionality limits the model’s ability to fully exploit dynamic information. Conse-
quently, the model completes planning tasks but remains largely insensitive to dynamic variations,
resulting in high GAP. Incorporating DFR mitigates this limitation and improve the sensitivity of
GCN-based models to dynamic changes.

Moreover, DFR substantially reduces feature dimensionality, which corresponds to an increase in
1− CR. This indicates that the model’s input dimensionality decreases and the computational over-
head for collecting dynamics features is reduced. After incorporating DFR, the average path plan-
ning time is 8.18 ± 1.74 ms for DQN/PPO and 27.26 ± 6.8 ms for GCN+DQN. Correspondingly,
DFR reduce the average time of planning paths by 85.59%, 46.08%, and 79.32%, compared to
DQN+AD, GCN+DQN+AD, and PPO+AD, respectively. Overall, our DFR framework achieves
the fastest planning among RL baselines while maintaining high performance, highlighting that
structural representation learning and dynamics feature reduction are complementary.

5.3 ABLATION STUDY

We conduct the ablation experiments of k and n on Subgraph 1 (a region of Nanjing; see the left
side of Figure 4): 1) k = {0.2, 0.4, 0.6, 0.8, 1.0,−1.0}, which specifies the proportion of top-100
shortest paths used to construct the subgraph. For instance, k = 0.6 selects the top 60 paths, while
k = −1.0 disables policy attention. 2) n = {1, 2, 3, 4,−1} determines the order of neighboring
nodes incorporated when constructing local features. For example, n = 2 includes 2-hop neighbors,
and n = −1 corresponds to no hop selection. We use (−1.0,−1) to represent (k = −1.0, n = −1).

The top of Figure 6 shows heatmaps for Mean GAP, SR, and CR across all (k, n) configurations,
and several trends can be observed from the experimental results. First, by comparing the baseline
(DQN+AD or k = −1.0, n = −1) with DQN+DFR (k > 0.0, n > 0), the role of DFR in dynam-
ics feature compression can be clearly observed. The baseline exhibits a SR of 0.884 and a Mean
GAP of 0.170. With the introduction of DFR and appropriate tuning of k and n, the model achieves
higher SR and lower Mean GAP and CR. For instance, when n = 4 and k is set from 0.4 to 1.0, the
Mean GAP values are 0.095, 0.113, 0.108, and 0.108, respectively, while CR remains below 5.7%
in all cases. Overall, policy attention selects globally relevant dynamics, whereas n-hop neighbor-
hoods captures local dependencies. Together, they enable the DFR framework to improve the model
performance while minimizing input dimensionality.

Next, we aim to observe a clear relationship between the degree of neighborhood reduction, the
strength of policy attention, and the overall model performance. When k is fixed, for example
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Figure 6: Top: Performance headmaps of the models under various combinations of k and n
(k = −1.0, n = −1 means no policy attention mechanism and no n-hop neighborhood selection).
Bottom: Training curves under k = 0.6 with varying n.

k = 0.6, the model performance is relatively poor when n is small. Specifically, for n = 1, the
Mean GAP and SR are 0.151 and 0.723, respectively. As n increases, the performance improves
noticeably; for instance, when n = 2, the Mean GAP decreases to 0.118 and the SR increases to
0.867. However, as shown in the bottom of Figure 6, further increasing n yields limited performance
gains, and the curves exhibit a trend of aggregation. For example, when n = 4, the Mean GAP and
SR are 0.113 and 0.892. On the other hand, when n is fixed, increasing k generally improves perfor-
mance, but if k exceeds a certain range, performance may decline. For example, when n = 4 and k
increases from 0.4 to 0.6, the Mean GAP rises slowly from 0.095 to 0.113, while the SR decreases
from 0.908 to 0.892. In summary, compared with n, k has a more complex and less predictable im-
pact on model performance, which poses greater challenges for parameter tuning. Therefore, based
on these systematic conclusions from small-scale experiments, it is recommend that in large-scale
graph deployment, configurations with moderate k and smaller n should be preferred. n increases
until the aggregation boundary of n is found, and k can be further explored.

6 CONCLUSIONS

In this paper, we present a Dynamics Feature Representation (DFR) framework for RL-based dy-
namic path planning (DPP), which refines global traffic dynamics into compact, node-related local
features. By incorporating policy attention mechanism and n-hop neighborhood method in DFR,
our approach enables the RL agent to effectively capture task-relevant and time-varying dynamics
while reducing the dimensionality of state representation. Extensive experiments on realistic urban
road networks demonstrate that our DFR framework significantly affects the performance of RL-
based DPP model, highlighting the importance of appropriately designing dynamics features. Our
study provides insights into how hierarchical feature refinement can improve the adaptability and
efficiency of RL-based path planning under dynamic environments. However, the two parameters
of k and n in DFR are manually selected in this study, which may limit its practical applicability in
real-world urban road networks. In the future, a self-adaptive approach could automatically adjust
k and n to allow the DFR framework to dynamically focus on the large-scale road network without
manual intervention, thereby enhancing the scalability and real-world deployment potential.
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A USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used to assist with language polishing, improving clarity and
readability of the text. All scientific content, experiments, and results were designed and conducted
by the authors.
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