
Abstract

Scope of Reproducibility1

In this study, we evaluate the paper ’Identifying Through Flows for Recovering2

Latent Representations’. Specifically, we evaluate the papers’ claimed practical ad-3

vantages and effectiveness of their proposed method iFlow over previous methods,4

namely iVAE.5

Methodology6

First, we reproduce the obtained MCC scores for both iFlow and iVAE using7

the original code-base. To place these results into context, we also evaluate two8

baseline Flow models. Furthermore, we discuss the proposed method’s usability,9

and apply it on a different Flow model, which is trained on the Half Moon dataset10

to analyse the learned latent representation. With this, we assess the benefit of11

using the proposed method over regular Flow. It takes around 20 minutes for an12

iFlow model, and 75 seconds for an iVAE model to train and evaluate conform13

to the original implementation and dataset on an RTX 2080 Ti GPU with 11GB14

of VRAM. Additionally, the iFlow network with planar-flow Flow model takes15

around 7 minutes to train on the same hardware. Finally, the two Flow models on16

the half moon datasets are trained on an AMD 3900X CPU with 32GB of DDR417

RAM, each taking roughly 3 minutes.18

Results19

Our results are within 2.5% of the values presented by the paper, verifying the20

authors’ claim of iFlow’s theoretical advancements over iVAE. However, when21

compared to the baseline Flow models, iFlow only shows up to 10% improvement22

in MCC scores, compared to a 45% improvement over iVAE. Furthermore, when23

analysing the learned latent representation for the Half Moon dataset iFlow does24

learn a more robust latent representation compared to Flow, and unlike Flow, is25

sometimes able to reach principled disentanglement, partly verifying the paper’s26

claim of iFlow’s practical advantages and effectiveness.27

What was easy28

The original code implementation was not difficult to setup and run specifically29

for the iFlow model. The code provided the proper run script for training and30

evaluating iFlow. Furthermore, implementing the proposed identifiability method31

to different flow models is not difficult - the authors provide a clear derivation32

of the objective function. Finally, in the code, a different use of the activation33

for the natural parameters is suggested, which we found to be straightforward to34

implement.35

What was difficult36

The code-base lacked documentation, thus besides running the default iFlow setup,37

running different models such as iVAE was quite challenging. In general, under-38

standing the code itself, particularly the code used to generate the dataset, was not39

straightforward. No code was offered to save the results and construct the figures40

from the paper. Finally, despite the supposed support for using planar-flow instead41

of the default cubic spline-flow in the code base, training iFlow with planar-flow42

was not trivial. This was due to both an incorrect initialization of the planar-flow43

model, where it called the wrong class, and an incorrect return statement.44

Communication with original authors45

There has been no communication with the authors.46
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1 Introduction47

One of the most fundamental goals of unsupervised representation learning is recovering the true48

joint distribution over the observed data and latent variables from which the data is generated. If49

we are able to learn this true distribution, we would also recover the true distribution over the latent50

variables. Since by definition latent variables are not observed, this is generally considered to be an51

extremely difficult task. However, it is shown that for a broad family of deep-latent-variable models52

recovering the true latent representation is possible [5]. Specifically, it is possible to recover the true53

latent representation if the model is identifiable. In broad terms, a model is identifiable if and only if54

it has a unique solution for a given set of parameters. By recovering the true latent representations,55

models are able to achieve principled disentanglement.56

To build a deep latent-variable model which allows for recovery of true latent representations the57

authors of [7]. propose unifying identifiability with normalizing flows. Their proposed method iFlow58

is mainly built upon the foundation of the previous identifiable Variational Auto Encoder (iVAE)59

introduced by [5]. The authors of [7]. claim that flow-based models are particularly suitable for60

identifiable models, as the objective directly maximises the density of the estimation model. In61

contrast, VAEs only optimise a lower bound, which leads to a less identifiable model.62

In this report, we perform an extensive study on both the reproducibility of the results presented in the63

paper as well as the supposed benefits of using iFlow over existing representation learning methods as64

claimed by the authors [7]. The contribution of this work is therefore two-fold: We reproduce original65

results presented in paper using the existing implementation, add some baseline experiments to better66

place the obtained results into context, and discuss the metric used for evaluation. Next, we analyse67

the claimed practicality of the proposed method and perform experiments to gauge the benefits that68

identifiability brings to learning stronger, and more importantly, explainable latent representations.69

We provide the source code1 to run the experiments performed in this report.70

1.1 Target Questions71

To verify the results presented in the paper and to asses the claimed superiority of iFlow over previous72

deep generative models on representation learning tasks, this report mainly focuses on answering the73

following four questions:74

• Can the claimed superiority of iFlow over iVAE with respect to MCC-scores be reproduced75

using only the methods described in the paper and provided source code?76

• How well does iFlow perform compared to its non-identifiable counterparts, considering77

multiple flow-based models such as Spline-Flow and Planar-Flow?78

• To what extent does iFlow offer practical advantages over existing deep representation79

learning frameworks such as ICA, iVAE and Flow?80

1A link to our code-base will be made available in the camera-ready version of our paper.
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• To what extent does identifiability improve upon normalising flows?81

2 Reproducibility of Mean Correlation Coefficients82

Recently, [5] proposed an identifiable Variational Auto Encoder (iVAE) that reaches identifiability by83

conditioning the latent variables on an auxiliary variable. However, the authors of [7] claim that iVAE84

leads to sub-optimal identifiability, both in theory and practice. This is due to the intractable KL85

divergence between the approximate and true posterior and iVAE only maximising the lower bound86

log-likelihood evidence. To overcome these limitations, the authors propose identifiable generative87

model through flows (iFlow). According to the authors, its ability to directly maximise the likelihood88

yields stronger identifiable latent representations, achieving better principled disentanglement.89

In this section, we reproduce the original results as presented by the authors. We will evaluate90

using the implementation provided by the authors. Specifically, we reproduce the Mean Correlation91

Coefficient (MCC) scores, which is a standard measure used in independent component literature.92

As the MCC metric can be sensitive to synthesised data for different seeds, the authors run the93

experiment for 100 different data seeds. Due to time constraints, we run our experiments for 20 data94

seeds, which is ample to verify the original results. We use the same Gaussian time-series dataset as95

used in the paper, as described in [3] (see Supplemental Material Section B). For the flow function,96

the authors use RQ-NSF(AR) cubic-spline flow [2]. All the relevant hyper parameters and hardware97

configurations can be found in Supplementary Materials Section A.1.98

It must be noted that there is some discrepancy between the paper and the provided implementation.99

In the paper, it is mentioned that the softplus non-linearity is applied to the final layer of the auxiliary100

mapping function λ. To ensure finiteness, a negative activation is then taken over the second order101

parameters. In the implementation, however, it is suggested that the softplus non-linearity should only102

be applied to the second order parameters. Therefore, we evaluate both methods. The different models103

used throughout the experiments are implemented using the PyTorch Deep Learning Framework [8].104

Figure 1: Left: results using the implementation as described in the paper. Right: results using the
implementation as suggested in the code-base. Legend includes mean MCC, and standard deviation
in parenthesis.

Figure 1 shows the MCC scores achieved by iFlow and iVAE for both the original implementation105

as described in the paper and the alternative implementation suggested in the code-base. When106

comparing our results to those presented in the original paper, we observe merely small differences.107

For the original implementation, our experiment yields slightly lower results for iFlow for the mean108

MCC and standard deviation with a difference of 0.011 and 0.005 respectively. For iVAE, our mean109

MCC scores 0.0263 below the result of the paper, and the standard deviation is more or less equal.110

For the alternative implementation, we reach an mean MCC score higher than both our previous111

result and those presented in the paper, with a difference of 0.0258 for the latter. We also observe a112

slightly higher standard deviation. Our results do not make clear which of the two implementation is113

correct, as the differences between the results are minor.114

Both our results and those presented in the paper show a relatively high standard deviation over115

different data seeds, while net network seed remains fixed. Therefore, we conduct a further experiment116

where we compare a fixed network and variable data seed with a variable network and fixed data117
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seed for both iFlow and iVAE to gauge model stability. Again, we evaluate on 20 different seeds118

for each experiment. For iFlow, Figure 2 shows very comparable mean MCC scores and standard119

deviations when fixing either the data or network seed. This suggests the seed chosen to run the120

experiments in the paper was not cherry-picked. For iVAE, we observe very similar mean MCC121

scores, but the standard deviation is halved when the data seed is fixed. This may be attributed to122

having a particularly well suited data seed for this specific case. In conclusion, our results seems123

to be in line with those presented in the paper, also when considering variable network seeds. We124

observe that iFlow indeed performs significantly better than iVAE, verifying the authors’ claim.125

Figure 2: Left: results for iFlow. Right: results for iVAE. Legend includes mean MCC, and standard
deviation in parenthesis.

3 Comparing iFlow to Flow126

As is shown in Section 2, our findings are in line with those that are reported in the original paper [7].127

The results show that iFlow reaches higher MCC scores compared to iVAE. However, these results128

are not placed into context: Two inherently different models are being compared. Therefore, we129

conduct an experiment where we compare the identifiable flow models with their non-identifiable130

counterparts. It is important to note the difference in parameter complexity between iFlow and iVAE.131

The authors use the Q-NSF(AR) cubic-spline flow [2], making their iFlow implementation contain132

2.944.980 compared to 18.170 parameters for iVAE. Furthermore, the original code base also includes133

Planar-Flow model containing 2.170 parameters. We evaluate MCC-scores for both flow models.134

The result are displayed in Figure 3 and include iVAE performance for reference.135

Figure 3: Right: results for Spline-Flow. Left: results for Planar-Flow. Legend includes mean MCC,
and standard deviation in parenthesis.

We immediately observe that both non-identifiable flow models reach significantly higher MCC136

scores compared to iVAE. Clearly, both flow-based models allow for learning a richer representation.137

We also observe that the spline-based model outperforms the planar-flow model, likely due to its138

increased parameter count. Interestingly, we do notice slightly higher mean MCC-scores for the139

identifiable flow models. However, since performance is measured using MCC, these difference are140
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slim, and seem to suggest a slight improvement at best, especially for the planar-flow model. This is141

something the authors fail to mention, but we feel it is an important aspect to gain a better perspective142

on the actual benefit of using iFlow.143

We also want to raise two important observations regarding the MCC metric used to evaluate the144

performance of the identifiable models. First of all, it must be noted that the discussed identifiable145

models are described as being identifiable up to some equivalence class. Specifically, they are146

identifiable up to some invertible affine transformation over the sufficient statistics. This does not147

seem to be accounted for when the MCC is calculated between the original sources and learned latent148

representation.149

Moreover, we ran a small experiment where we replaced the flow mapping function to an identity150

function. With this model, we measured a significant correlation between the data samples and151

sources from which these samples are generated. For the data used in the experiments described in152

Section 2, we found an MCC score of 0.58 between data and sources. This means that the model153

often learns a latent representation that is less correlated with the original sources compared to the154

data itself. Note that in general the MCC metric varies greatly between both different data seeds and155

different network seeds because the MCC metric can be quite susceptible to small deviations in the156

learned latent representations. Because of these reasons, we question the effectiveness of the MCC157

metric to evaluate the model’s ability for learning a true latent representation.158

4 Assessing iFlow’s Usability159

In this section, we clarify to what extent iFlow offers practical advantages over previous representation160

learning methods. In the paper [7], the authors specifically mention three existing representation161

learning frameworks: Nonlinear independent component analysis (ICA) [4], identifiable Variational162

Auto-Encoders (iVAEs) [5], and Flow-based models [6]. The authors explicitly ascribe all three163

frameworks specific shortcomings and claim that by adding identifiability to flow-based models,164

iFlow provides practical advantages over existing methods. However, besides expanding on iFlow’s165

theoretical ability to recover the true latent space, and showcasing that iFlow achieves higher MCC-166

scores (Section 2) than iVAE on synthesized Gaussian time-series data [3], the authors do not167

explicitly make clear to what extent iFlow overcomes or preserves other mentioned shortcomings of168

ICA, iVAE and Flow. In this section, we elaborate on iFlow’s practical usability as compared to these169

previous methods by investigating how readily iFlow can be used on various datasets.170

We explored iFlow’s practical usability by attempting to apply it to two datasets: the MNIST dataset171

and the Gaussian Blob dataset. We chose these two datasets because MNIST is one of the most172

frequently used datasets in machine learning research in general, and because the Gaussian Blob173

dataset is frequently used particularly in representation learning research.2 For a more elaborate174

explanation of the datasets, see Figure S3 and Figure S4 in the supplementary materials. For both175

datasets, we took the source code for iFlow and tried to re-implement it such that iFlow should be176

able to learn the dataset’s latent distribution. Our findings are summarized in Table 1.177

Table 1: Overview of iFlow’s practical usability compared to alternative representation learning
methods.

Requires
Auxiliary
Variable

Identifiable Latent Space
Distribution

Allows for
Sampling

Allows for
Dimensionality
Reduction

ICA Yes Yes N/A N/A Assumed Not
iVAE Yes Yes Approximation Yes Yes
iFlow Yes Yes Exact Yes 3 No 4

Flow No No Exact Yes No 4

For MNIST, we found that the provided labels (i.e. numbers) could function as auxiliary variables.178

Nevertheless, both in the paper as well as in the provided source code, the dimension of the observed179

2The Gaussian Blob dataset is also used by the β-VAE paper to show its principled disentanglement.
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datapoints and the latent space must be of the same size for iFlow to work. 4 However, in MNIST180

datapoints are of size 28 by 28, and it is very unlikely that that the underlying latent space is of size181

784: That would imply that each pixel is an explanatory source in itself, while we reason that there182

should be no more explanatory sources for recognizing single numbers than that there are single183

numbers to begin with. iVAE does not have this limitation: There actually is an implementation iVAE184

for MNIST available. Furthermore, in contrast to the synthesizes Gaussian data used in the paper, we185

do not know beforehand what the latent space of MNIST should look like. It is therefore difficult to186

evaluate how well iFlow recovers this latent space because we cannot compare it to the original latent187

space; making it impossible, for instance, to compute MCC-scores.188

In contrast to MNIST, for the Gaussian Blob dataset the latent space is known beforehand, potentially189

making it a candidate for evaluating iFlow’s performance. However, the constraints iFlow puts on the190

dimensions of the observed and latent space are again problematic: because the datapoints are again191

images, iFlow’s assumption that the latent space is of the same size as the observed datapoints seems192

once again to result in a latent space with much more dimensions that we should reasonably expect.193

Furthermore, it is not straightforward to determine what should be used as the auxiliary variable194

for this dataset. We could use the quadrant indices indicating in which quadrant the blob appears195

as auxiliary variable, but this is only possible because this dataset, just like synthesized Gaussian196

Time-series data, is generated artificially and we therefore know the underlying distribution.197

In conclusion, our exploration of attempting to apply iFlow to different datasets shows that iFlow198

practical usability has more caveats than warranted by the authors. First of all, we assume the199

dimensionality of latent space to be (much) smaller than dimensionality of the observed datapoints.200

Nevertheless, iFlow’s current implementation requires the latent space to be of the same size as201

the observed datapoints, leading to unreasonably high-dimensional latent spaces when working202

with pixel-valued image data. Furthermore, using datasets where the underlying distribution is203

not known beforehand (which can be reasonably be expected to be the most common case for204

practical applications) makes it non-trivial to evaluate iFlow’s performance and to come up with205

the required auxiliary variable. While this requirement for an auxiliary variable is inherent to all206

identifiable methods, this does put severe limits on the applicability of these models. Consequently,207

non-identifiable models such as Flow can be more readily applied to a much wider range of datasets.208

Why then, one would consider using iFlow at all, we discuss in Section 5.209

5 Evaluating iFlow’s Disentangled Identifiability210

In addition to the supposed practical advantages iFlow has over other methods, which we have211

nuanced in Section 4, the authors mainly emphasize iFlow’s theoretical guarantee for learning the212

true latent representation. Furthermore, while the authors do provide visualisations of learned latent213

representations, these visualisations do not lend themselves well for identifying whether the model214

has learned a principled disentangled representation. In this section, we aim to further analyse215

iFlow’s recovered latent representation, and how it improves upon the representation recovered by its216

non-identifiable counterpart Flow. First, we provide a brief overview of the notion of entanglement.217

Disentangled representations differ from entangled ones in at least one significant way. Both entangled218

as well as disentangled representations help leverage a significant bottleneck conventionally present in219

machine learning work: instead of having to labor-intensively use human ingenuity to feature-engineer220

the representations that support effective machine-learning, representation learning frameworks221

use available data to learn these representations in an unsupervised-manner [1]. Disentangled222

representations not only learn representations that lead to discriminative information for the task at223

hand, but they also learn to successfully separate the various explanatory sources underlying the data5224

3Theoretically iFlow should allow for sampling, but the source code provides no such functionality.
4Theoretically, we should be able to circumvent this limitation of iFlow by engineering the latent space of

the underlying flow-based model in a very task-specific way, but we found no code or suggestions in the paper to
do so.

5For example, when we look at a glass on a table, in our mind we can very readily separate the glass from the
table, and even from the shadows it casts on that table. However, the stimuli of all three sources reach our retina
in the same way. Apparently, something in our brain learns to separate these various sources that explain the
stimuli we receive. A disentangled representation learning framework aims to achieve the same for machine
learning models that receive input data.
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[1]. Principled disentangled representations go a step further: not only are these explanatory sources225

successfully separated, the components modeling these sources are independent.226

To investigate to what extent iFlow leads to a more principle disentangled learned representation than227

Flow, we used the provided source code to implement an identifiable RealNVP model. From here228

on, we refer to RealNVP as Flow, and the identifiable RealNVP as iFlow. We evaluated both models229

on the Half Moon dataset and compared their respective learned representations. The reasons for230

choosing this dataset are twofold: First of all, both Flow and iFlow can be readily applied to this231

dataset because the dataset has a well-defined auxiliary variable and has none of the dimensionality-232

problems as described in Section 4. Secondly and more importantly, the dataset has a latent space233

that is relatively easy to comprehend and therefore allows us to manually evaluate to what extent both234

frameworks entangle or disentangle the learned latent representation. For more details on the dataset,235

see Figure S2 in the supplementary materials.236

The paper and provided source-code do not offer a method to generate new datapoints using iFlow.237

We found that coming up with a own sampling technique is not straightforward, because nowhere238

during the forward pass of the model is the latent space saved for later use. Nevertheless, it seems239

theoretically possible to design and implement an additional deep model that learns this encoding240

step. However, due to time-constraints, we choose to model the data as a simple two-dimensional241

multivariate Gaussian (tuning µ and σ on the data). For Flow, the data is generated using the given242

prior and is classified using the nearest neighbour algorithm and previously observed data. The results243

are shown in Figure 4.244

Figure 4: Top row: results for Flow. Bottom row: results for iFlow. From left to right: data samples,
learned latent representation, estimated latent density function, generated samples. Note that for
visualisation purposes we randomly sampled 1000 points from the used dataset. These samples were
not used for training.

The results seem to show that iFlow indeed leads to slightly better disentanglement than Flow:245

iFlow more distinctly separates both group of datapoints into independent clusters. Consequently,246

generated datapoints using iFlow also seem to more accurately map back onto the originally observed247

distribution. However, for principled disentanglement we should also check whether moving along248

one axis within the recovered latent clusters only results in variation along one underlying explanatory249

source while keeping other sources relatively constant. To investigate this, we ran one final experiment250

for both trained models.251

Ideally, we want to observe the mapped latent space in a continuous and global way, where each axis252

corresponds to an independent property of observed data. This would suggest the model has learned a253

principled disentangled latent representation. Figure 5 shows the mapping of the well-defined region254

of the learned latent representation to the original data space. Here, we segmented the latent space255

using different icons to distinguish the gradient of the space in the horizontal direction and colours256

for the gradient in the vertical direction.257
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Figure 5: Top: results for Flow. Bottom: results for iFlow. From left to right: learned latent
representation and the mapping of this representation to data space. To gauge latent gradients
different icons and colours are used for the horizontal and vertical components respectively.

In Figure 5 we can indeed observe the desired properties for the identifiable model. The meaning of258

the latent space is globally defined. When we move across the horizontal dimension while fixing the259

vertical dimension, a clear gradient across the original half moons is present. The vertical position260

indicates which half moon the latent space is mapped to. For the non-identifiable model, this is less261

defined. Here, the horizontal dimension encodes both the position on each half moon and to which262

half moon a point is mapped to. The vertical dimension only encodes the vertical position of a point263

on the half moons.264

However, it must be noted that the results presented in Figure 5 are not guaranteed. First, we observe265

that for both Flow and iFlow the meaning of the latent space is not always globally defined, although266

local meaning may still be present, as in Figure S7c. Also, the identifiable model often does not267

reach the claimed principle disentanglement, showing a learned latent representation that is similar to268

Flow which can be observed in Figure S7a. One key difference that is consistently observed between269

Flow and iFlow, the the ability to learn a continuous latent representation. It seems that for iFlow, the270

relative structures in the learned latent representation remain intact, whereas for regular Flow, this271

does not have to be the case. This is shown in Figure S8b. These preliminary findings indicate that272

iFlow can indeed be effective in learning a stronger latent representation compared to Flow.273
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6 Conclusion274

In this work, we investigated the reproducibility of the results presented in [7], comparing iFlow’s275

performance in recovering a true latent representation to the previously proposed iVAE. Next, we276

elaborated on the fairness of the metrics used in the paper. Finally, we assessed the usability and277

practical advantages the authors claim iFlow has over existing representation learning methods.278

We found that we could reproduce the reported MCC-scores of iFlow and iVAE to acceptable279

precision, having us conclude that the results in the paper showing that iFlow outperforms iVAE280

with respect to these MCC-scores are valid. However, we found that the paper does not put these281

results into context. Therefore, we investigated iFlow’s performance when replacing its underlying282

cubic-spline flow model with a less parameter-intensive planar-flow model. We found that while283

planar-based iFlow still outperforms iVAE with respect to MCC-scores, it does so by a significant284

lesser degree. Furthermore, we show that their non-identifiable counterparts outperform iVAE as285

well, and the difference in MCC-scores between the identifiable and non-identifiable models is less286

profound when compared to the difference between iFlow and iVAE.287

Next, we found a significant correlation between the data and the underlying distributions from which288

this data is generated. This raises the question whether MCC-scores alone are sufficient and valid289

in determining whether the true latent representation is found. We also attempted to apply iFlow to290

recover the latent representations of two datasets not presented in the paper: The MNIST dataset291

and the Gaussian Blob dataset. We found that mainly iFlow’s requirement for auxiliary variables292

and specifically sized input data puts significant constraints on datasets it can be used for, having us293

conclude that the authors claim for iFlow’s practical advantages over other existing methods seems294

too simplistic.295

Finally, we evaluated how well iFlow delivers on its promise for principled disentanglement as296

compared to its more readily applicable, but non-identifiable, counterpart Flow. By visually exploring297

the learned representations of both models on the half-moon dataset, we found that iFlow is capable298

of recovering principled disentangled representations, where Flow is not. However, often this state of299

representation is not reached, and the obtained representation is similar to that of Flow. Nevertheless,300

we do observe a consistent stronger recovered latent representation when utilising iFlow.301

In conclusion, iFlow shows us a promising next step in the area of recovering true latent represen-302

tations and reaching principled entanglement. Future research in identifiable models and possible303

metrics to further analyse their performance is definitely warranted, as this could solve many of the304

issues illustrated in this reputability report.305
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Supplementary Materials: [Re] Identifying Through Flows for Recovering328

Latent Representations329

A Hyperparameters and Hardware for Conducted Experiments330

A.1 Original Paper Experiments331

Table S1: Hardware configurations used to train the various models. Time indicates the amount of
minutes required to fully train a single model.

Model GPU CPU RAM Time (minutes)
(i)Flow (spline) RTX 2080 Ti - 32 GB DDR4 20
(i)Flow (planar) RTX 2080 Ti - 32 GB DDR4 7
iVAE RTX 2080 Ti - 32 GB DDR4 1.25
(i)RealNVP - AMD 3900X 32 GB DDR4 3

Table S2: Overview of hyper-parameters for the models used in the reproducibility paper.
iFlow (Spline) iFlow (Planar) iVAE RealNVP iRealNVP

lr (ADAM) 0.001 0.001 0.001 0.0001 0.0001
scheduler on plateau on plateau on plateau after 104 steps after 104 steps
lr drop factor 0.25 0.25 0.25 0.1 0.1
lr patience 10 10 10 - -
batch size 64 64 64 64 64
epochs 20 20 20 1 1
steps/epoch 625 625 625 15000 15000
lambda MLP dims 40, 30, 20, 10 40, 30, 20, 10 - - 2, 8, 4
lambda activation ReLU + SoftPlus ReLU + SoftPlus - - ReLU + SoftPlus

iVAE architecture - - MLP (5,50,50,5)
leaky ReLU - -

number of bins 8 - - - -
flow length 10 10 - 3x2 3x2
coupling layer
architecture - - - MLP (2,256,256,2)

leaky ReLU
MLP (2,256,256,2)
leaky ReLU

1



B Datasets Explanation332

B.1 TLC Dataset333

Figure S1: A visualization of the Gaussian time-series dataset consisting of U labels/segments of L
i.i.d. points [1]. Each source signal is an 5-dimensional vector sampled from a multivariate Gaussian
N (µ, σ|U), where µ ∈ R5 is sampled from a uniform distribution U(−5, 5) and σ ∈ R5 is sampled
from U(0.5, 3). X is obtained by f(z), 3 non-linear transformations with xtanh activation of the source
signal z. Time (t) is not used to create this synthetic data.
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B.2 Half Moon Dataset334

Figure S2: A visualization of the half moon dataset with two labels. The data, X, consists of green
points labeled zero which are generated from the top half of a circle with centre (0, 0) and red points
labeled one which are generated from the bottom half of a circle with centre (0.5, 1). [2]

B.3 MNIST Dataset335

Figure S3: Examples from the MNIST dataset. The labels can be used as auxiliary variables.
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B.4 Gaussian Blob Dataset336

Figure S4: A possible implementation of auxiliary values for the Gaussian blob dataset. The centre
of the figure represents the latent space coloured per auxiliary variable U . The four corners represent
the original data created from the latent space given U . The data in each corner is created using a
function f(z|U) defined as a bi-variate Gaussian distribution with a identity covariance matrix and
the latent space z as the mean. It should be noted here that U can only be created/used because the
dataset is a synthetic dataset with a known latent space.
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C Encoding, Decoding and Sampling for iFlow and Flow337

C.1 iFlow338

Figure S5: Five iFlow models (RealNVP) on the half moon dataset. The fourth model(top down)
can also be found in the review. The models and the order in which they are placed are the same for
the models in D.1. Left: original data (X), left middle: encoded data (f(X), right middle: sampled
latent data from the approximated Gaussian distributions (z), right: the decode sampled latent data
(g(z)).
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C.2 Flow339

Figure S6: Five Flow models (RealNVP) on the half moon dataset. The fourth (top down) can also be
found in the review. The models and the order in which they are placed are the same for the models
in D.2. Left: original data (X), left middle: encoded data (f(X), right middle: sampled latent data
from the Gaussian prior (z), right: the decode sampled latent data (g(z)).
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D Latent Space Exploration for iFlow and Flow340

D.1 iFlow341

(a)

(b)

(c)
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(d)

(e)

Figure S7: Five iFlow models (RealNVP) on the half moon dataset. The fourth (top down) can also
be found in the review. The models and the order in which they are placed are the same for the models
in C.2. Left: the latent space divide in a 6x6 grid, where each grid contains 200 samples uniformly
sampled for each cell. Right: the original space, where the previous sampled latent space points are
decode to the original space. Each cell has the same color and symbol in both spaces.
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D.2 Flow342

(a)

(b)

(c)
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(d)

(e)

Figure S8: Five Flow models (RealNVP) on the half moon dataset. The fourth (top down) can also be
found in the review. The models and the order in which they are placed are the same for the models
in C.2. Left: the latent space divide in a 6x6 grid, where each grid contains 200 samples uniformly
sampled for each cell. Right: the original space, where the previous sampled latent space points are
decode to the original space. Each cell has the same color and symbol in both spaces.
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