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ABSTRACT

The recent surge of interest in comprehensive multimodal models has necessitated
the unification of diverse modalities. However, the unification suffers from disparate
methodologies. Continuous visual generation necessitates the full-sequence-attend
diffusion-based approach, despite its divergence from the autoregressive modeling
in the text domain. In this paper, we explore an interpolation between autoregres-
sive and modeling to model visual information. At its core, we present ACDiT,
an Autoregressive blockwise Conditional Diffusion Transformer, where the block
size of diffusion, i.e., the size of autoregressive units, can be flexibly adjusted to in-
terpolate between token-wise autoregression and full-sequence diffusion denoising.
ACDiT is easy to implement, as simple as creating a Skip-Causal Attention Mask
(SCAM) during training. During inference, the process iterates between diffusion
denoising and autoregressive decoding that can make full use of KV-Cache. We
show that ACDiT performs best among all autoregressive baselines under similar
model scales on image and video generation tasks. We also demonstrate that bene-
fiting from autoregressive modeling, pretrained ACDiT can be transferred in visual
understanding tasks despite being trained with the diffusion objective. The analysis
of the trade-off between autoregressive modeling and diffusion demonstrates the
potential of ACDiT to be used in long-horizon visual generation tasks. These
strengths make it promising as the backbone of future unified models.

1 INTRODUCTION

The concept of predicting the future has been a fundamental principle of Artificial Intelligence,
ranging from the “next token prediction” objective of autoregressive language modeling (Radford
et al., 2019; Brown, 2020; Achiam et al., 2023) to predicting the next action in Reinforcement
Learning (Mnih, 2013; Schulman et al., 2017; Chen et al., 2021; Reed et al., 2022). The recent
renascence of the concept “World Model” also builds upon forming an internal state that is both
capable of predicting the future and influenced by the prediction of the future (Ha & Schmidhuber,
2018). The success of Large Language Models (LLMs) (Touvron et al., 2023a;b; Brown, 2020;
Achiam et al., 2023; Jiang et al., 2023; Bai et al., 2023; Yang et al., 2024) also exemplify the power
of such philosophy, demonstrating that complex abilities can arise from this simple objective.

However, the multimodal aspects of information beyond language have yet to fully capitalize on this
paradigm. In the realm of visual generation, diffusion models (Ho et al., 2020; Song et al., 2020a;
Dhariwal & Nichol, 2021; Song et al., 2020b) have demonstrated superior generative capabilities,
producing creative outputs that are virtually indistinguishable from human-generated content, as
evidenced by innovations like Sora (Brooks et al., 2024) and Stable Diffusion (Rombach et al., 2022;
Podell et al., 2023; Esser et al.). Notwithstanding their remarkable achievements, these models
operate in a non-autoregressive manner. Diffusion models receive corrupted target sequences with
complete length and reconstruct the intended output through in-place iterative refinement. The term
“in-place” underscores the distinct nature of this approach compared to the autoregressive model,
which provides subsequent prediction, thereby extending the sequence and progressing towards the
future. Such variation makes the model struggle to learn temporal correlation in vision data and
poses difficulties for developing integrated frameworks capable of seamlessly bridging the vision
foundation model with unified multimodality modeling (Dong et al., 2024; Team, 2024; Zhou et al.,
2024a; Wang et al., 2024b; Xie et al., 2024; Wu et al., 2024b) and world model (Yang et al., 2023;
Du et al., 2023; Bruce et al., 2024; Zhou et al., 2024b; Ko et al., 2023; Wu et al., 2024a).
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Existing works attempt to unify modalities by converting multimodal generation tasks into discrete
token prediction tasks with vector quantization techniques (Esser et al., 2021; Team, 2024; Wang
et al., 2024b; Tian et al., 2024) and training on the mixed sequences with a next-token prediction
objective. However, approaching the continuous distribution requires huge vocabulary sizes and
a high utilization rate (Yu et al., 2023; Weber et al., 2024), which is a complex objective. The
information loss during vector quantization poses challenges for visual understanding tasks that
require detailed information, such as the Optical Character Recognition task.

As a first step for exploring a unified framework, we propose ACDiT, an Autoregressive blockwise
Conditional Diffusion Transformer that fuses the diffusion process with the autoregressive paradigm.
At a high level, we extend the autoregressive units from the individual text token to blocks. The
generation of each block can be formulated as a conditional diffusion process based on the previous
block, where each block consists of visual patches of flexible size.

ACDiT is easy to implement, as simple as adding a Skip-Causal Attention Mask to the current
DiT architecture during training. The inference process is formatted as an iteration between the
conditional diffusion denoising process within a block, conditioned on the complete clean context,
and autoregressive generation of a new block appended as the new context. In this way, KV-Cache
can be used for faster inference. In general, ACDiT offers the following inherent advantages: (i)
ACDiT simultaneously learns the causal interdependence across blocks with autoregressive modeling
and the non-causal dependence within blocks with diffusion modeling. This serves as a versatile
framework for expanding into unified multimodal and world models without conflict. (ii) ACDiT
is endowed with clean continuous visual input, which can benefit visual understanding tasks in
multimodal models. (iii) ACDiT makes full use of KV-Cache for flexible autoregressive generation
in any length and potentially other latest long-context techniques in text for long video generation.

2 RELATED WORK

Diffusion Models. The field of image generation has witnessed remarkable advancements with the
introduction of diffusion models (Ho et al., 2020; Song et al., 2020a; Dhariwal & Nichol, 2021;
Nichol & Dhariwal, 2021). U-Net (Ronneberger et al., 2015) is the early mainstream choice of
network architecture (Song et al., 2020b; Nichol & Dhariwal, 2021; Rombach et al., 2022; Podell
et al., 2023). Following that, Transformer (Vaswani et al., 2017) is applied to diffusion models for
image generation, with groundbreaking work such as DiT (Peebles & Xie, 2022) and U-ViT (Bao
et al., 2023) marking significant milestones. A series work, including PixArt-{α, δ,Σ} (Chen et al.,
2023; 2024c;b), demonstrate the capability of DiT on text-to-image tasks. Additionally, several
studies have applied DiT to video generation, such as Lumiere (Bar-Tal et al., 2024) and Movie
Gen (Polyak et al., 2024).

Autoregressive Visual Generation. Autoregressive models have shown promising results in visual
generation (Chen et al., 2020; Esser et al., 2021; Tian et al., 2024; Li et al., 2024a; Wang et al.,
2024b; Li et al., 2024b). The iGPT (Chen et al., 2020) first proposes autoregressively generating raw
image pixels as a raster-scan sequence. VQGAN (Esser et al., 2021) improves the performance by
training an autoregressive transformer on discrete tokens produced by VQVAE (Van Den Oord et al.,
2017). LlamaGen (Sun et al., 2024) enhances the image tokenizer and scales up the autoregressive
transformers to 3.1B parameters, building on the latest Llama architecture (Touvron et al., 2023a;b).
Also, several works demonstrate the potential of token-base visual generation in text-to-image
tasks (Yu et al., 2022; Liu et al., 2024; Sun et al., 2024; Wang et al., 2024b). Inspired by RQ-
Transformer (Lee et al., 2022), VAR (Tian et al., 2024) proposes the next-scale prediction and obtain
good improvement. In video generation, some works (Ho et al., 2022; Ruhe et al., 2024) utilize
sliding windows for progressive generation. Diffusion Forcing (Chen et al., 2024a) and MAR (Li
et al., 2024a) are two highly related works. Diffusion Forcing trains a causal autoregressive model to
generate blocks without fully diffusing past ones and implement it on small RNN. MAR proposes the
diffusion loss to learn the autoregressive conditional distribution on the head of the main Transformer
with a small MLP network. Differently, ACDiT generates each block based on clear past and utilizes
the full parameters of Transformer to denoise each block.

Unified Model for Understanding and Generation. Unified models for visual understanding and
generation have recently garnered widespread attention. Some early efforts have aimed to align both
the visual encoder and visual decoder with pre-trained Large Language Models (Dong et al., 2024;
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Wu et al., 2023). Some works utilize the discrete visual token to unify the image understanding and
generation tasks, such as VILA-U (Wu et al., 2024b), EMU3 (Wang et al., 2024b), and Show-o (Xie
et al., 2024). Transfusion (Zhou et al., 2024a) tries the first attempt of joint training with language
modeling loss and diffusion loss in a single transformer.

World Model. World models obtain great attention in various domains. Genie (Bruce et al.,
2024) introduces interactive game video simulation by learning latent actions on unlabeled
video. Unisim (Yang et al., 2023) builds real-world interaction simulations with web video data.
iVideoGPT (Wu et al., 2024a) train an autoregressive transformer on a mixed sequence of tokens
organized with visual observations, actions, and rewards. Despite the success, world models face
challenges in leveraging the powerful generative capabilities of diffusion models due to their non-
autoregressive nature.

3 PREREQUISTE

3.1 AUTOREGRESSIVE MODELING

Autoregression asserts that the value at each timestep is contingent upon its preceding values. This
principle is exemplified in autoregressive language models, which iteratively predict the probability
distribution of subsequent tokens. Given a sequence of tokens (x1, x2, . . . , xn), a salient characteristic
of autoregression is that the prediction of xi is only dependent on its prefix (x1, x2, . . . , xi−1). Upon
determining ci, it is concatenated with the preceding sequence, thereby forming the conditioning
context (x1, x2, . . . , xi) for predicting xi+1. Thus, the sequence likelihood can be factorized as:

p(x1, x2, . . . , xn) =

n∏
i=1

p(xi+1|x1, x2, . . . , xi). (1)

Thanks to the flexibility of self-attention in Transformers, autoregressive models can be effectively
implemented by adding a causal mask in Transformer attention block (Vaswani et al., 2017).

3.2 DIFFUSION

Diffusion models, in contrast, conceptualize a noise-infusion and denoising process, which is defined
by gradually adding noise to the initial data n0 and training the model to learn the inverse mapping.
Formally, the noised data n(t) at each step t is sampled by q(n(t)|n(t−1)) = N (xt;

√
α(t)n(0), (1−

α(t))I)1, which is equivalent to add a Guassain noise to the previous samples: n(t) =
√
α(t)n(t−1) +√

1− α(t)ϵ(t), ϵ(t) ∼ N (0, I) while the diffusion model pθ is trained to learn the reverse process
pθ(n

(t−1)|n(t)) = N (µθ(n
(t)), β(t)I). With the reparameterization trick, the network µθ(n

(t)) can
be reparameterized as noise prediction network ϵθ(n

(t)) and the training objective can be simple as:

Lθ = Et∼U [0,1],ϵ∼N (0,I)||ϵθ(n(t), t)− ϵ(t)||2. (2)

During the inference phase, the denoising process is initialized with a random Gaussian noise sample
n(T ), followed by T ′ denoising steps, ultimately yielding a single deterministic samples ñ(0) from
its underlying distribution. Typically, the denoising process in diffusion models operates “in-place”,
meaning that each new denoising step directly replaces the previous step’s input. This differs from
autoregressive modeling, where the value of a subsequent step is appended to the existing sequence.

3.3 DESIDERATA

A robust autoregressive diffusion method should integrate the strengths of both autoregressive
modeling and diffusion. To achieve this synergy, we have identified three critical desiderata that the
framework must meet:

1. The generation of future elements should be predicated on a precise representation of antecedent
sequences. This is imperative because any ambiguity in the past inevitably complicates future

1For clarification, we use subscript t to denote timesteps in autoregressive models and superscript (t) to
denote the timesteps in diffusion models.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

𝑛!

𝑛"
𝑐!

𝑛#

𝑛$

𝑐"

𝑐#

𝑛! 𝑐! 𝑛" 𝑐" 𝑛# 𝑐# 𝑛$

group
𝑛!
𝑛"

𝑐!

𝑛#
𝑛$

𝑐"
𝑐#

𝑐! 𝑐" 𝑐# 𝑛!𝑛"𝑛#𝑛$

No mask position Mask position

(a) Skip-Causal Attention Mask.

Cached Past Cached Past
New 

Cache

𝑐! 𝑐" 𝑐# 𝑐$ 𝑛% 𝑐! 𝑐" 𝑐# 𝑐$ 𝑐% 𝑛&
InputInput

𝑐%

Diffusion Step Autoregressive Step

(b) Inference process of ACDiT.

B
L

T

Attention
Diffusion 
Order

Autoregressive 
Order

(c) 3D view of ACDiT.

Figure 1: (a) For noised block ni, it attends previous clean latent c0, c1, . . . , and ci−1. Each clean
block ci only attends the previous clean latent block. (b) ACDiT effectively utilizes the KV-Cache
for autoregressive inference. (c) The 3D view of ACDiT, where B, L, and T denote the block size,
number of blocks, and denoising time steps, respectively. Darker color indicates higher noise levels.

predictions. This approach preserves the efficacy of autoregressive modeling and potentially
facilitates the development of an “internal world model.” Furthermore, adherence to this principle
enhances performance in discriminative tasks (e.g., visual understanding), as these tasks necessitate
the input of all observable features into the model.

2. Both the autoregressive modeling and the denoising process should optimally utilize the entire
parameter space of the neural network. In an elegant fusion of autoregressive models and
diffusion, neither component should be relegated to an auxiliary role. Instead, they should function
as integral, complementary elements of the system.

3. The denoising process should directly attend comprehensively to the entire sequence of past
sequences. Failure to do so would necessitate that the denoise process’s condition encapsulates all
preceding information, placing an unrealistic demand on the lossless compression capabilities of
the feature space. On the contrary, a holistic input of all past information in each denoise step
ensures a more effective processing of temporal dependencies.

Based on these desiderata, we analyze representative existing autoregressive diffusion methods.
Diffusion-Forcing (Chen et al., 2024a) proposes to use different-level random noise in the different
positions of a sequence. Thus, in the inference process, denoising the subsequent positions from
a clean past and be seen as a special case denoising different levels of noise. Their method does
not meet the first desideratum. In the training process, the future is not predicted from the precise
representation of the past. In MAR (Li et al., 2024a), the diffusion process is trained based on the
latent in the last position, which does not satisfy the third desideratum. Moreover, the diffusion
process sorely leverages the head part of the network, which conflicts with the second desideratum.
In Transfusion (Zhou et al., 2024a), despite that the diffusion utilizes the full network parameters for
both autoregressive modeling and diffusion, it does not utilize the “predicting the future” objective
within the multimodal information. Moreover, when trained with multiple blocks of multimodal
information, such as multiple images, the latter image will attend to the noise version of the former
image. To comprise this deficiency, they use half of the noise schedule, i.e., limiting maximum noise
steps to 500 instead of 1000, in 20% image captioning pairs, which is not an optimal strategy.

4 ACDIT

4.1 FRAMEWORK

To satisfy the desiderata discussed above, we propose a versatile framework for autoregressive
diffusion called ACDiT. For generality, ACDiT runs block-wise autoregression instead of token-
wise autoregression. We identify there are two kinds of blocks: the clean blocks ci and the noise
blocks ni, where ni is corrupted from ci. ACDiT learns several conditional distribution p(ci|c<i)
factorized with Eq. 1, where p(ci|c<i) is optimized by learning the conditional noise prediction
network ϵθ(n

(t)
i ; t, c<i) with Eq. 2. The final training objective is:

Lθ = Et∼U [0,1],ϵ∼N (0,I)

n∑
i=1

||ϵθ(n(t)
i ; t, c<i)− ϵ(t)||2. (3)
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Given the aforementioned desiderata, we can conceptualize all ni and all ci as occupying separate
positions, effectively transforming the dependency structure into an attention pattern between different
positions. We designate this pattern as the Skip-Causal Attention Mask (SCAM), which is shown in
Figure 1a. The figure elucidates that ni attends to all preceding clean blocks {cj |j = 0, ..., i− 1} and
itself, while ci also attends to all preceding clean blocks {cj |j = 0, ..., i− 1} and itself. In training,
for both simplicity and efficiency, we can group the attention mechanisms as illustrated in the right
matrix of Figure 1a. Suppose the number of blocks is N , then the unmasked positions form two
triangular matrices of side length N − 1, complemented by a diagonal matrix of side length N .

During the inference phase, each autoregressive step executes a conditional diffusion process for ni

based on {cj |j = 0, ..., i − 1}’s KV-Cache. Upon finishing denoising, it is appended to the clean
sequence as ci followed by the maximal noise version of the next block ni+1. The key-value tensor
will be computed for these two blocks, and the key-value tensor of the clean block ci will be kept in
KV-Cache. All noise-corrupted version of ni is disregarded. The process is visualized in Figure 3. A
three-dimensional view of our method is presented in Figure 1c. By bridging full-sequence diffusion
and autoregressive paradigms, ACDiT gains flexibility and expressivity, allowing it to generate videos
of any length using the latest long-context techniques from language models.

4.2 POSITIONAL ENCODING

ACDiT is designed to be versatile, capable of handling one-, two-, three-, or even higher-dimensional
data, including but not limited to text (1D), images (2D), and video (3D). For any given dimension
of data, the position of that data is a critical attribute that must be made known to the model. This
positional awareness enables the model to contextualize its current focus relative to historical data.
In the domain of textual data, the Rotary Position Embedding (RoPE) (Su et al., 2024) has gained
widespread adoption as an effective relative positional encoding method. To address the challenges
posed by multi-dimensional positional indices, we introduce RoPE-ND, a natural extension of RoPE.

For a token of a D dimensional data, its positional index is [m1,m2, ...,mD]. Given query and key
vectors in Transformer’s attention module, we partition the hidden dimension into D segments. It is
imperative that each segment’s hidden dimension be an even number. For each segment j, we apply a
RoPE with a specific base bj , as defined in the following equation:

R =


Rd1

Θ1,m1
0 · · · 0

0 Rd2

Θ2,m2
· · · 0

...
...

. . .
...

0 0 · · · RdD

ΘD,mD

 (4)

In this formulation, each R
dj

Θj ,mj
represents a dj-dimensional rotary matrix2 with rotation angles

Θj = {θji = b
−2(i−1)/dj

j , i ∈ [1, 2, · · · , dj

2 ]}. The base bj is empirically determined as 100⌈ 8Lj

100π ⌉,
where Lj denotes the maximum position index in data dimension j. This formulation ensures that the
highest wavelength of RoPE is approximately eight times the maximum position, thereby mitigating
rapid decay in long-term dependencies. It is worth noting that ACDiT inherently supports length
extrapolation (Su et al., 2024), although a comprehensive exploration of this capability falls beyond
the scope of the present work.

4.3 EFFICIENCY ANALYSIS AND BLOCK SIZE CHOICE

In this section, we provide a brief analysis on the computational efficiency of ACDiT in terms of
floating-point operations (FLOPS). We first assume that denoising each block requires the same
number of time steps T as the full sequence diffusion, despite that when the block size is small, it
may require fewer denoising steps, thus making ACDiT potentially more efficient. Let θ denote the
number of parameters in one layer of the transformer block, h represents the hidden dimension and n
as the number of attention heads. The FLOPS is formed by a O(L) component 2Lθ, from the product
between input and weight matrices, and a O(L2) component from the pairwise computation between

2For a detailed explanation, please refer to Equation 15 in version 5 of the arXiv preprint of
(?)su2024roformer.
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Q-K pairs in the attention dot product, which is 4(h + n) for each Q-K pair in the L2 Q-K pairs.
Consequently, given that n ≪ h, the total FLOPS can be expressed as: F = 2Lθ + 4(h+ n)L2 ≈
2Lθ + 4hL2.

When employing ACDiT with KV-Cache, the FLOPS consumed by FFN and attention parameters
remain unchanged. However, the attention mechanism transforms into causal attention with block
size B. In this scenario, the number of Q-K pairs to be calculated is given by:

L/B∑
i=1

iB2 =
1

2
(
L

B
+

L2

B2
)B2. (5)

Thus, the FLOPS saved can be expressed as 4hL2( 12 (1−
B
L )). The saved percentage is

4hL2( 12 − B
2L )

4hL2 + 2Lθ
=

1−B/L

2 +m/k
, (6)

where m = θ
h2 and k = L

h . This equation shows that when the sequence length significantly exceeds
the hidden size, transforming a full sequence diffusion into ACDiT can save up to 50% of FLOPS.

However, in practice, it is not always beneficial for small B. Setting B to an excessively small
value may not fully leverage the iterative modification inherent in the diffusion process, potentially
compromising generation quality. Furthermore, given the parallel computing nature of computational
kernels, a very small B may not yield speed improvements, a phenomenon analogous to the rationale
behind speculative decoding (Leviathan et al., 2023). Conversely, setting B to a very large value
diminishes efficiency both in terms of attention calculation, as shown in Equation 6. It also fails to
capitalize on the strengths of auto-regressive generation. We analyze the influence of block size on
performance and efficiency in Sec. 5.3.

4.4 MODEL ARCHITECTURE

ACDiT mainly inherits the main architecture of DiT. However, since we want to keep the architecture
as simple and unified as possible, we use linear layers instead of convolution in the input layer and
final layer. Besides, we replace the absolute position embedding and Layer Normalization with
RoPE (Su et al., 2024) and RMSNorm (Root Mean Square Layer Normalization) (Touvron et al.,
2023a), respectively. We find that QK-norm is important to stabilizing the video generation training,
thus we use QK-norms in all experiments. The additional conditional information timesteps and
labels are injected into the model with adaLN-Zero only on the noise part. For both image and video
generation, we follow DiT and leverage the pre-trained image VAE (Kingma, 2013) from Stable
Diffusion (Rombach et al., 2022), whose downsample factor is 8. For image generation under B
block size, we group square latent representation patches with

√
B ×

√
B shape as a block.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset. For image generation tasks, we consider the ImageNet (Russakovsky et al., 2015) dataset
with 256×256 resolution, which consists of around 1.28M images from 1K classes. For video
generation, we consider the UCF-101 (Soomro et al., 2012) dataset with 16 frames, where each frame
is an image with 256×256 resolution. UCF-101 contains 13320 videos from 101 classes.

Implementation details. In the image generation task, we set the patch size as 1 and the autoregres-
sive unit block size as 256 = 16× 16. Therefore, for a 256× 256× 3 image in 32× 32× 4 latent
shape, the total sequence length and autoregressive length are 1024 and 4, respectively. We explore
4 different model sizes, as shown in Table 4. ACDiT-B is used for design verification and analyze.
ACDiT is trained on ImageNet for 1.2M iterations with a batch size of 1024. We use the AdamW
optimizer (Loshchilov, 2017) and WSD (Warmup Steady Decay) learning rate scheduling (Hu et al.,
2024) with the peak learning rate 3e-4 and no weight decay. The learning rate begins to decay in the
last 15% training iteration. Following the common training recipe of generative models, we keep

6
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Table 1: Image generation results on ImageNet 256x256.

Model Type Latent KV-Cache Params FID↓ IS↑ Pre↑ Rec↑
ADM (Dhariwal & Nichol, 2021) Diff. - - 554M 10.94 101.0 0.69 0.63
LDM-4-G (Rombach et al., 2022) Diff. Cont. - 400M 3.60 247.7 - -
DiT-XL/2 (Peebles & Xie, 2022) Diff. Cont. - 675M 2.27 278.2 0.83 0.57

MaskGIT (Weber et al., 2024) Mask. Disc. - 227M 6.18 316.2 0.83 0.58
MAGE (Li et al., 2023) Mask. Disc. - 230M 6.93 195.8 - -

VQGAN (Esser et al., 2021) AR Disc. ✓ 1.4B 15.78 78.3 - -
RQTran (Lee et al., 2022) AR Disc. ✓ 3.8B 7.55 134.0 - -
VAR-d16 (Tian et al., 2024) VAR Disc. ✓ 310M 3.30 274.4 0.84 0.51
VAR-d20 (Tian et al., 2024) VAR Disc. ✓ 600M 2.57 302.6 0.83 0.56
LlamaGen-L (Sun et al., 2024) AR Disc. ✓ 343M 3.07 256.1 0.83 0.52
LlamaGen-XL (Sun et al., 2024) AR Disc. ✓ 775M 2.62 244.1 0.80 0.57
LlamaGen-XXL (Sun et al., 2024) AR Disc. ✓ 1.4B 2.34 253.9 0.80 0.59
ImageFolder (Li et al., 2024b) AR Disc. ✓ 362M 2.60 295.0 0.75 0.63
MAR-L (Tian et al., 2024) AR Cont. ✓ 479M 4.07 232.4 - -
MAR-L (Tian et al., 2024) MAR Cont. - 479M 1.78 296.0 0.81 0.60

ACDiT-L AR+Diff Cont. ✓ 460M 2.53 262.9 0.82 0.55
ACDiT-XL AR+Diff Cont. ✓ 677M 2.45 267.4 0.82 0.57
ACDiT-H AR+Diff Cont. ✓ 954M 2.37 273.3 0.82 0.57

Table 2: Video generation results on UCF-101. ACDiT-XL-
LT means training for longer epoch.

Model Type Params FVD↓
LVDM (He et al., 2022b) Diff. 437M 372
Latte (Ma et al., 2024) Diff. 674M 478
Matten (Gao et al., 2024) Diff. 853M 211
VideoFusion (Luo et al., 2023) Diff. 510M 173

MMVG (Fu et al., 2023) Mask. 230M 328
MAGVITv2 (Yu et al., 2023) Mask. 307M 58
TATS (Ge et al., 2022) AR 331M 332
CogVideo (Hong et al., 2022) AR 9.4B 626
MAGVITv2-AR (Yu et al., 2023) AR 307M 109
OmniTokenizer (Wang et al., 2024a) AR 650M 191

ACDiT-XL AR+Diff. 677M 111
ACDiT-H AR+Diff. 954M 104
ACDiT-H-LT AR+Diff. 954M 90

Table 3: Supervised fine-tuned Top-1
accuracy on Imagenet.

Model Type Top-1 Acc
ViT-H Supervised 83.1
MAGE Masked. 84.3
MAE Masked. 85.9

iGPT Generative 72.6
DiT-XL Generative 82.8
ACDiT-XL Generative 84.0

an exponential moving average (EMA) of the ACDiT weights during training using a decay rate of
0.9999. We sample images with DPM-Solver (Lu et al., 2022) for 25 steps within each block and use
classifier-free guidance (Ho & Salimans, 2022) with a guidance scale of 1.5. In video generation, we
sample 16 frames from each video and set the patch size as 2 and the block size as 1024 = 256× 4.
For a 16×256×256×3 video in 16×32×32×4 latent shape, the sequence length of each frame is
256 and the total sequence length is 4096, with 4 frames grouped into one block. We train ACDiT on
UCF-101 for 400K iterations with a batch size of 96. The classifier-free guidance scale is 2.5. Other
training configs are the same as image training. All models are implemented with PyTorch (Paszke
et al., 2019) and trained on NVIDIA H100 GPUs. Specifically, we use FlexAttention3 to implement
the SCAM for both customization and efficiency.

5.2 MAIN RESULTS

Image Generation. We report the FID-50K (Heusel et al., 2017), Inception Score (Salimans
et al., 2016), Precision and Recall (Kynkäänniemi et al., 2019) of ACDiT and baselines in Table 1.
Compared with previous autoregressive models and masked generative models utilizing discrete
tokens, such as VQGAN, VAR, LlamaGen, and MaskGIT, ACDiT consistently achieves superior
performance with lower FID scores at comparable model scales. Notably, ACDiT-XL achieves 2.45
FID scores, outperforming both LlamaGen-XXL and VAR-d20 with similar parameters. Additionally,

3https://pytorch.org/blog/flexattention
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Figure 2: FID and FVD curves of ACDiT-B over training
steps with different sequence lengths and autoregressive
lengths. PS means patch size.
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Figure 4: (a): ACDiT shows scaling performance similar to DiT. (b): ROPE-ND has consistent
improvement to the generation quality. (c): FID score sharply with the learning rate beginning to
decay when using the WSD scheduler.

when compared to the MAR-L variant that does not recompute attention, ACDiT-L significantly
improves performance across all metrics. Although MAR-L has lower FID than ACDiT, recomputing
attention makes it hard to generalize longer sequence generation. When compared with leading
diffusion-based methods, ACDiT also demonstrates competitive performance. For instance, despite
not employing full-sequence attention, ACDiT models achieve results close to DiT-XL. In general,
these results highlight the distinct advantages of ACDiT over other baselines with the continuous
latent representation and KV-Cache. Qualitative results are presented in Fig. 5.

Video Generation. Different from image generation, video inherently includes a temporal dimension,
making it more well-suited to autoregressive modeling. The FVD metric on UCF-101 for class-
conditional video generation is reported in Table 2. With hybrid AR+Diff architecture, ACDiT-H
achieves much lower FVD than other diffusion-based and autoregressive methods, even outperforming
MAGVITv2-AR, which utilizes a closed-source, specially designed video tokenizer. In contrast,
ACDiT simplifies the process by directly using an open-sourced image VAE. Although MAGVITv2
with masked generative methods has a lower than ACDiT, they rely on ”in-place” operation to
generate a video similar to the diffusion model. This constraint limits their ability to generalize to
generate longer video generation and build world models. Compared to image generation, ACDiT
demonstrates greater potential in modeling long visual sequences. Qualitative results of ACDiT-XL
are presented in Fig. 6.

Image Representation. We also assess the capability of ACDiT in image representation, which is
essential for building a unified visual understanding and generation model. We finetune ACDiT-XL
and DiT-XL on ImageNet using classification loss following the training setting in MAE (He et al.,
2022a) and report the Top-1 accuracy in Table 3. The accuracy of ACDiT surpasses that of ViT-H,
iGPT and DiT-XL. This superior performance over DiT-XL highlights the benefit of incorporating
clean latent inputs, which accelerates the model’s ability to learn better representations compared
to using only noised latent inputs. Furthermore, ACDiT is on par with MAGE in terms of Top-1
accuracy, while enjoying better generation capabilities than MAGE.

5.3 ANALYSIS

Trade off of block size. Fig. 2 illustrates the trend of trade-off under different sequence lengths and
block sizes in image and video generation tasks on ACDiT-B. The FID curve indicates that for image
generation, directly increasing the autoregressive length leads to a decline in image quality, since
each patch receives less attention information on average. However, we can mitigate this decline

8
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Figure 5: Sample images from ACDiT-H on ImageNet 256×256.

Figure 6: Sample videos from ACDiT-XL trained on UCF-101.

by increasing the total sequence length, which means reducing the patch size. For video generation,
ACDiT shows more advantages due to the inherent temporal dependence of videos. The FVD curve
demonstrates that increasing autoregressive length has minimal effect on the video quality, even with
slight improvement. As for efficiency, we test the sampling time for various sequence lengths with
a batch size of 4 on an NVIDIA A100 GPU. Fig. 3 shows that as the sequence length increases,
particularly beyond 16k, full-sequence attention (AR length of 1) becomes very time-consuming,
necessitating the autoregressive generation.

Scaling Performance. We present the scaling performance of ACDiT in Fig. 4a. For a fair com-
parison with DiT, we use the same batch size and learning rate as DiT in these training sessions.
When increasing the model size, ACDiT shows consistent improvement in image quality across
all autoregressive lengths, sharing a similar scaling trend with DiT. Notably, the improvement is
more pronounced with longer autoregressive lengths. We hypothesize that this is due to reduced
accumulation of errors when scaling the model size.

Ablation Study. We ablate the effectiveness of ROPE-ND positional embedding on image generation
with patch size as 2. As shown in Fig 4b, adding ROPE-ND results in consistent improvements.

Training dynamics of WSD scheduler. Unlike the constant learning rate used in DiT, we utilize the
WSD learning rate scheduler (Hu et al., 2024). WSD scheduler maintains a constant learning rate as
the main stage of training, while one can diverge from the main branch at any time, potentially based
on the compute budget, with a rapidly decaying learning rate. As Fig. 4c shows, the FID remains
almost converged during the constant learning rate state, while sharply dropping after the learning
decays, similar to the loss curve when using the WSD scheduler in LLM training. To the best of our
knowledge, we are the first to validate the effectiveness of the WSD scheduler in visual generation.

6 CONCLUSION

In this paper, we propose ACDiT that interpolates the autoregressive modeling and diffusion trans-
formers. With a simple but novel design of attention mask, ACDiT can achieve autoregressive
generation on any length while maintaining a clear latent input potentially for adding a visual un-
derstanding task. We demonstrate the performance and efficiency of ACDiT in image and video
generation tasks while endowing sufficient generalization by combining the advantages of both
autoregressive and diffusion models. We hope ACDiT can shed light on the architectural design of
building a unified multimodal model and world model in the future.

9
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Table 4: Configuration details of ACDiT.

Model #Layers Hidden Size MLP #Heads Params

ACDiT-B 12 768 3072 12 132M
ACDiT-L 24 1024 4096 16 460M
ACDiT-XL 28 1152 4608 18 677M
ACDiT-H 32 1280 5120 20 954M
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Figure 7: The model architecture of ACDiT. Both the clean latent and noise latent are input while
only noise tokens are scale shift with conditioning information.
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