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Abstract

3D Ultrasound (3D-US) is a powerful imaging modality, but the high storage requirement
and low spatial resolution challenge wider adoption. Recent advancements in Neural Fields
suggest a potential for efficient storage and construction of 3D-US data. In this work,
we show how to effectively represent 3D-US data with Neural Fields, where we first learn
the 2D slices of the 3D ultrasound data and expand to 3D. This two-stage representation
learning improves the quality of 3D-US in terms of Peak Signal-to-Noise Ratio (PSNR) to
31.84dB from 28.7dB, a significant improvement directly noticeable to the human eye.
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1. Introduction

Ultrasound is a versatile medical imaging technology since it is low-cost, non-ionizing, and
can display information in real-time. 3D ultrasound (3D-US) provides more comprehensive
imaging of a region of interest than its more ubiquitous 2D counterpart. However, 3D
volumes require more storage than 2D images, which puts high pressure on hospital data
centers, and 3D-US generally have lower spatial resolution than 2D at a similar price point
(Muraru et al., 2018).

Neural fields (Xie et al., 2021) provide a potential solution to both storage and spatial
resolution problems. In essence, they learn to represent one data-point by deliberately
overfitting to it on a voxel level. Reconstruction of the voxels using neural field weights
leads to a more compact solution for storage. Furthermore, this neural representation
is continuous, allowing for interpolation at arbitrary resolutions and quick slicing of the
volume.

However, neural fields can be impractical since they are wholly trained on a single
data-points of the entire volume, which is not how 3D-US data is stored or acquired—they
come in slices. Here, we show that blindly training the entire 3D volume based on slices
provide suboptimal results. Instead, we show that incorporating Meta-Learning (Tancik
et al., 2021) to pretrain the network to learn a good global initialization for any 2D-US
slice, then learning the entire 3D-US volume with this initialization leads to significantly
improved results.
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Figure 1: Left: Illustration of the training workflow. We conduct perform meta-learning on
an initialized SIREN model before training slice-wise on the 3D volume. Right:
Slices taken from ground-truth and learned SIREN representations for 3D cardiac
ultrasound volumes.

2. Method and Discussion

We train a SIREN model (Sitzmann et al., 2020) to map coordinates x = (x, y, z) to
grayscale voxel intensities y = I(x). First, we use a meta-learning technique for SIREN
which leverages the more commonly used high-resolution 2D-US image to build an inter-
mediate representation. 2D-US images are mapped to (x, y, z) as slices, by projecting to
random xy-plane (Meta-slice) and to random planes (Meta-random). We then train the
SIREN on xy-plane slices of the volume, since the volume is too large to wholly fit into
memory.

The SIREN model uses 3 hidden layers and ω = 30, but we modify ω0 = 240 for faster
training with respect to high-frequency characteristics like ultrasound speckle. We perform
meta-learning with 2D-US using Reptile with 105 outer loops, 2 inner loops, and meta-
learning rate β = 10−5. For fitting 3D-US slices, we use the Adam optimizer with lr = 10−4

and a batch size of 4 over 20000 iterations. 3D-US volumes are obtained from the STACOM
dataset (Tobon-Gomez et al., 2013) with 2083 voxels. 2D-US images are retrieved from an
ethics-cleared, anonymous ultrasound dataset acquired by Vancouver General Hospital with
GE Vivid 7, Vivid i, Vivid E9, and Philips iE33 transducers. We implement SIREN and
Reptile in Pytorch, and train/test on an NVIDIA Titan V GPU. The code for this project
is available at https://github.com/an-michaelg/NeuralField3DUS, the supplementary
materials within contain videos showing the SIREN’s performance over every slice, with
hyperparameter and meta-learning changes.

Our method successfully replicates high-level features of the cardiac ultrasound, such
as bright regions indicating presence of the myocardium (heart muscle), heart valves, and
the general ”grainy” texture from speckle (Figure 1). Table 1 shows the average PSNR
over xy-plane slices. Meta-learning improved the final PSNR since the 2D-US helped the
initialization develop domain-specific properties. Meta-slice enhanced subsequent training
more thanMeta-random possibly due to a more comprehensive meta-learning of the volume.
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Compared to storing the 3D volume as an .npy array which uses 8.9MB, the SIREN model
can be stored as a 0.5MB Pytorch state dict, which is a compression ratio of around 18:1.

Method Average slice PSNR

Glorot + 3D-Vol 28.68dB
Meta-slice + 3D-Vol 31.84dB
Meta-random + 3D-Vol 31.14dB

Table 1: PSNR comparison between standard (Glorot), slice-based and random projection-
based meta-learning initializers on the 3D-US fitting task.

3. Conclusion

We learn an implicit representation for 3D ultrasound using the SIREN neural field archi-
tecture, and leverage meta-learning to develop a domain-specific initialization that improves
its quality. Future work includes representation of 3D spatial-temporal or ”4D”-US, recon-
struction methods specific to certain anatomy (e.g. echocardiography), and whether more
targeted forms of projections for 2D-US would be helpful during meta-learning.
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