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ABSTRACT

Natural language advice has the potential to accelerate reinforcement learning, but
despite significant efforts to leverage natural language for RL, utilizing diverse
forms of language efficiently remains unsolved. Existing methods focus on map-
ping natural language to individual elements of MDPs such as reward functions or
policies, but such approaches limit the scope of language they consider to make
such mappings possible. We propose to leverage general language advice by trans-
lating sentences to a grounded formal language for expressing information about
every element of an MDP and its solution, including policies, plans, reward func-
tions, and transition functions. We also introduce a new model-based reinforcement
learning algorithm, RLang-Dyna-Q, capable of leveraging all such advice, and
demonstrate in two sets of experiments that grounding language to every element
of an MDP leads to significant performance gains. In additional symbol-grounding
demonstrations we show how vision-language models can annotate important struc-
ture in the environent in the form of RLang vocabulary files, eliminating the need
for human labels.

1 INTRODUCTION

Language serves as a powerful means for humans to share information about the world, allowing us
to learn more quickly or even skip learning altogether by drawing upon the domain expertise of others
in the form of advice. An open question in reinforcement learning is how language advice can be
leveraged to speed up learning in Markov Decision Processes (MDPs), as learning tasks fabula rasa is
exceptionally difficult—and often impossible—in the real world. While many methods of leveraging
advice for learning have emerged in the literature, a coherent theory of language grounding that can
comprehensively support the use of language for reinforcement learning has not.

Virtually all research in language and RL grounds language to individual elements of MDPs such
as policies (Liang et al.,|2023; Vemprala et al.| 2024; [Wu et al.| 2023} |Andreas et al.| 2017)), reward
functions (MacGlashan et al., |2015)), and goals (Colas et al., 2020). The main drawbacks of these
works is that they restrict their approach to narrow fragments of natural language. For example, the
statement “if a mug is tipped over, its contents will spill out” clearly refers to a transition function,
and mapping this information to a policy is not straightforward. For this reason, works that ground
language to policies primarily focus on imperative sentences (e.g. “put the pallet on the truck”) that
naturally correspond to policies, plans, or reward functions. Likewise, works that ground language
to transition functions focus mainly on declarative sentences that provide information about the
dynamics of a domain. This divergence in methodology suggests that not all language should be
grounded to the same component of an MDP, and that a general language grounding system for
reinforcement learning agents should be capable of grounding language to every element of an MDP,
and its solution.

We propose a novel approach to grounding natural language for use in reinforcement learning that
formulates the language grounding problem as a machine translation task from natural language to
RLang (Rodriguez-Sanchez et al.,[2023), a formal language designed to express information about
MDPs. Our approach is akin to semantic parsing (Mooneyl, 2007)—a problem in natural language
understanding that involves translating natural language into a formal representation—because RLang
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Figure 1: Translating natural language advice to RLang. We extend the original RLang pipeline
(bottom) to include natural language translation and a Dyna-Q agent capable of leveraging all forms
of RLang advice.

is a grounded formal language that offers a systematic means of expressing knowledge about an
MDP. Such an approach calls for a learning agent capable of leveraging all such MDP components,
including a partial policy, reward function, plan, and transition function. We therefore also introduce
RLang-Dyna-Q, a model-based tabular RL agent based on Dyna-Q (Sutton et al., |1998)), that can
effectively leverage such advice. We demonstrate the strength and generality of our approach by
grounding a variety of natural language advice to RLang programs, which RLang-Dyna-Q can use to
significantly improve performance, sometimes making it possible to solve tasks that vanilla Dyna-Q
cannot solve. Our pipeline for these experiments relies on hand-specified RLang groundings that
generalize across tasks in the same domain (e.g. one grounding file for all Minigrid tasks), however,
we perform demonstrations showing how these groundings can instead be partially specified by a
vision-language model.

2 BACKGROUND

Reinforcement learning tasks are typically modeled as Markov decision processes (MDPs), which
can be represented by a tuple (S, A, R, T,~y), where S is the set of states, A is the set of actions, R is
the reward function, 7T is the transition function, and ~ is the discount factor. The goal of an agent
is to find a policy, 7(a|s)—a function that selects an action for each state—which maximizes the
expected sum of discounted rewards:

0o
Eﬂ ZVtR(St,at,8t+1)] .

t=0

Value-based reinforcement learning algorithms rely on estimating the optimal action-value function
@« defined as
0.(5.) = maxg.(s. a).

providing the expected return for taking action a in state s and subsequently following an optimal
policy (Sutton et al.l [1998). Q-learning (Watkins|, |1989) works to approximate ¢, by applying the
following update rule after taking roll-outs in the environment:

Q(St, Ay) + Q(Si, Ay) + o[ Ryyr + 7 max Q(Si41,a) — Q(St, Ay)].

Building on Q-learning, Dyna-Q (Sutton et al., [ 1998)) introduces an additional component: a model
of the environment. While Q-learning learns from direct interaction with the environment alone,
Dyna-Q builds an internal model of the environment and updates the action-value function using both
real and simulated roll-outs, enabling faster convergence to the optimal action-value function.

2.1 LEVERAGING FORMAL SPECIFICATION LANGUAGES FOR DECISION-MAKING

Formal specification languages have long been a useful tool to inform decision-making agents. In
classical planning, for example, it is standard to use the Planning Domain Description Language
(PDDL;|Ghallab et al.[1998) and its probabilistic extension PPDDL (probabilistic PDDL; Younes &
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Table 1: Selected MDP elements, corresponding RLang groundings, and natural language interpre-
tations. The first column shows a component of the MDP, the second shows an RLang expression
about such component, and the last column contains a description of the expression.

MDP Component RLang Declaration Natural Language Interpre-
tation
Policy build_bridge:
Policy if at_workbench: If you are at a workbench, use
m:SxA—[0,1] elg’:c“e use it. Otherwise, go to it.

Execute go_to (workbench)

Plan gather_materials:

Plan Execute go_to (wood) Go to the wood ?.nd pick .it up,
{Ao, A1, ..., An} Execute pickup then go to the string and pick it
Execute go_to(string) up.

Execute pickup

Effect common_sense:

Reward, Transition Func. if at (Wall) and A == walk: Walking into walls will get you
Re:SxAXxS—>R Reward 0, 8’ -> S nowhere. Walking into lava
T.:SXxAxS — [07 1] if at(Lava) and A == walk: will kill you.

Reward -1, S’ -> Sx0

Littman) 2004) to specify the complete dynamics of an environment. Other languages like Linear
Temporal Logic (LTL; |[Littman et al., [2017; Jothimurugan et al.,[2019) and Policy Sketches (Andreas
et al.,|2017) are sufficient for describing goals and hierarchical policies, respectively, for instruction-
following agents. While effective, one limiting factor of these formal languages is their narrow scope.
Natural language, by contrast, can be used to express rich and varied information about nearly all
formal elements of decision-making.

RLang (Rodriguez-Sanchez et al.| 2023)) is a recent formal language to emerge from the literature.
While previous languages for decision-making narrowly focus on individual components of an
MDP such as a policy or reward function, RLang was designed to provide information about every
component of a structured MDP and its solution. Formally, an RLang specification is a set of RLang
groundings G given by an RLang program P and an RLang vocabulary V, a file containing a set of
primitives that ground to important structured abstractions in the agent (e.g. as options, lifted skills,
etc.) and the environment (e.g. as objects, factors, etc.). Importantly, vocabulary files can be designed
once and reused across many tasks that occur in the same domain with little to no modifications.
Some example RLang programs and their natural language interpretations can be seen in Table|[I]
Crucially, advice specified by RLang can be compiled directly into many components of an MDP
including policies, transition functions, reward functions, and plans. Leveraging such components in a
learning algorithm is not always straightforward, however, and integrating more than one component
into an agent is a non-trivial problem that has not been addressed.

2.2 LEVERAGING NATURAL LANGUAGE FOR DECISION-MAKING

Language in RL |Luketina et al.|(2019) identify two variations of language usage in the reinforce-
ment learning literature. The first, language-conditional RL, is one in which language use is a
necessary component of the task. This includes environments where agents must execute commands
in natural language (Mirchandani et al., [2021)), or otherwise deal with language that is part of the
MDP, e.g., in the observation or action space (Fulda et al., 2017} [Kostka et al., [2017). The second
variation is language-assisted RL, in which natural language is used to communicate task-related
information to an agent that is not necessary for solving the task. In these settings, language can be
used to inform policy structure (Watkins et al., 2021)), reward functions (Goyal et al.,|2019), transition
dynamics (Narasimhan et al., [2018)), or Q-functions (Branavan et al., 2012).

Grounding Natural to Formal Languages for Planning and Learning The notion of grounding
natural language to a formal language for use in learning and planning is not new. |(Gopalan et al.
(2018)) and Berg et al.| (2020) translate natural language commands into Linear Temporal Logic
(LTL), which they use as reward functions for a learning agent or planning objectives, and Silver
et al.| (2024)) and Miglani & Yorke-Smith|(2020) ground natural language into PDDL, which is fed to
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a recurrent neural network to output solution plans. However, the advancement of large language
models (LLMs) has led to even more capable agents that for leveraging formal languages. In the
planning literature, |Ahn et al.|(2022); Huang et al.|(2022); |Song et al.| (2023) use primitive formal
languages for executing policies on real robots or in embodied environments, [Liu et al.|(2023a); Xie
et al.| (2023) translate natural language commands into PDDL plans with the help of LLMs, and [Liu
et al.| (2023b)) proposed a modular system to ground natural language into LTL formulas. Code is also
a popular choice for formal languages: [Liang et al.|(2023)); Vemprala et al.| (2024); [Wu et al.| (2023))
use an LLM to generate Python functions as policies from natural language instructions; Singh et al.
(2023) also generates programs by prompting LLMs for code completion. For learning, more recent
works focus on reward design with LLMs for RL agents: |[Yu et al.| (2023) specifies reward with LLMs
through code generation and Du et al.[(2023) leverage commonsense reasoning for designing reward
functions. While many methods excel at grounding to formal languages (Cohen et al.| (2024), no
existing method seeks to ground language to every component of the MDP.

2.3 LARGE LANGUAGE MODELS FOR MACHINE TRANSLATION

Large Language Models (LLMs), often based on architectures like the Transformer (Vaswani
et al., |2017)), are trained to predict the next token z; in a sequence given the preceding tokens
{z1, 2, ...,24_1} via the following objective:

L= —ZlogP(wtlxhxz,---,xt_l)-
t

In very large models, this objective results in emergent capabilities such as natural language under-
standing and generation, making them suitable for a variety of tasks beyond mere text completion
including question-answering, summarization, and more (Bubeck et al.,|2023). One useful emergent
capability of LLMs is the machine translation of text from one language to another. While specialized
neural machine translation systems are trained using a parallel corpus to maximize the conditional
probability P(y|z), where x is the source sequence and y is the target sequence (Bahdanau et al.,
2015)), LLMs have achieved similar translation capabilities despite not being trained explicitly on this
objective (Brown et al.,|2020). Furthermore LLMs have been shown to be proficient at generating
text in formal languages such as Python given a language prompt (Chen et al., 2021} |Li et al.| 2023).

3  GROUNDING NATURAL LANGUAGE ADVICE TO RLANG PROGRAMS

Results

:E;ggf’é“ Effect main:
RLang-D-Q-effect if at (Lava) and A == forward:

S’ —-> 8«0

Reward -1
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Figure 2: LavaCrossing Experiment. The agent was given the following advice: “Walking into lava
will kill you. Walking into walls will do nothing.” The initial state of LavaCrossing is pictured left,
reward curves are in the center, and the grounded RLang advice is on the right.

One major motivation for leveraging language advice in RL is to supply agents with the kinds of
commonsense reasoning that language can easily express. Consider the LavaCrossing environment in
Figure|2| Any human interacting with this environment would quickly learn that walking into the
lava squares kills you, or likewise that walking into walls will do nothing at all. Communicating
this knowledge to others with language is natural for humans, but leveraging such language advice
in RL is a major unsolved problem. An alternative approach to supplying commonsense advice to
RL agents involves specifying it in a formal language relevant to decision-processes, which can
more straightforwardly be used by a learning agent to improve learning. While such an approach is
limited by the expressivity of the formal language and how it is used by the learning agent, it is fully
grounded, easily interpretable, and can be extremely powerful.

As formal languages for decision-making grow more expressive, a natural next step for leveraging
language advice in reinforcement learning is to translate pieces of natural language advice into
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statements in such formal languages. RLang is a highly expressive candidate for language grounding
because it is capable of specifying information about every element of a structured MDP and
its solution, including plans, policies, transition functions, and reward functions (see Table 2 in
Rodriguez-Sanchez et al.| (2023))). Furthermore, we hypothesize that different kinds of advice can
most naturally be represented by different components of the MDP, and that methods that ground
language to a single component are insufficient to capture general language advice. For example,
the statement, “stacked dishes can topple if unevenly piled,” is precisely a statement about transition
dynamics, and while it can ultimately be used to inform a plan or policy, the information contained
in the statement would not be retrievable if it were not represented as a partial transition function;
the most harmonious representation of the advice is as a partial transition function. Likewise, the
sentence, “wear oven mitts whenever handling pots and pans,” is a statement about a policy, and
representing it as a reward function would only indirectly capture its meaning.

We therefore formulate the language grounding problem in RL as a machine translation task from
natural language to RLang. Our task is as follows: given an RLang vocabulary V—a set of task-
general groundings that act as primitives in an RLang program—for a given MDP and a piece of
natural language advice u, we seek a function ¢ : © X V — P, where P, is an executable RLang
program capturing the advice in u that can be leveraged by a learning agent. We propose to do
this translation entirely in-context using a general-purpose large language model in a two-stage
pipeline by 1) identifying which RLang grounding type would best capture the language advice;
and 2) translating the advice into an RLang program. Stage 1, the selection stage, instructs the
LLM to classify a novel piece of advice u into RLang grounding types such as Effects, Policies, and
Plans, consulting a small number of example classifications in the prompt. This ensures that the
advice will be represented by an appropriate component of the MDP/'| Stage 2, the translation stage,
instructs the LLM to translate « to an RLang program specifying the grounding type given by Stage 1
using roughly 5 example translations in the prompt that were hand-engineered to cover a wide range
of RLang’s syntax. These programs are compiled using RLang’s compiler into Python functions
corresponding to transition functions, reward functions, policies, and plans that can be leveraged by a
learning agent. In experiments we demonstrate that this pipeline effectively grounds the advice to
useful MDP components. Our pipeline is illustrated in Figure[I]

3.1 RLANG-DYNA-Q: A SINGLE AGENT FOR LEVERAGING ALL OF RLANG

In the original RLang paper, the authors presented a number of RLang-enabled agents—including
ones based on Q-Learning, PPO (Schulman et al.| 2017)), and DOORmax (Diuk et al., 2008)—each
capable of leveraging individual RLang groundings to improve learning. However, leveraging general
language advice requires integrating potentially all RLang groundings into a single learning agent.
We therefore introduce RLang-Dyna-Q, a learning agent based on Dyna-Q (Sutton et al.,|1998)) that
is capable of simultaneously leveraging a partial policy, plan, reward function, and transition function
given by an RLang program. Similar to Dyna-Q, RLang-Dyna-Q leverages the Bellman update rule
to update Q-values using rollouts collected both from environment interaction and from simulated
interaction, which is generated from a partial model of the environment that is learned over time.
However, RLang-Dyna-Q also leverages a partial model given by an RLang program to generate
simulated rollouts before learning begins (see Algorithm I} our modifications to Dyna-Q are in blue).
Dyna-Q is an appropriate core learning agent because integrating actions and dynamics is most
natural in a model-based learning algorithm that explicitly represents a policy, transition function,
and reward function.

4 EXPERIMENTS

We hypothesize that RLang is an effective grounding for natural language advice in the context of
reinforcement learning. However, evaluating whether language advice v and RLang program P,
have the same semantic content is difficult, so we designed our experiments to test the objective of
primary interest: the agent’s performance on a learning task. If we provide advice that is helpful to the
agent, then grounding it properly should improve performance. We therefore assessed our translation
pipeline by evaluating agent performance on multiple custom tasks based on the Minigrid/BabyAlI

'We assume that each piece of advice—which may contain multiple sentences—grounds to a single RLang
grounding type. This constraint can easily be relaxed in future work.
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Algorithm 1 RLang-Dyna-Q Agent

Given: TRrrang, TRLang> [PRLang from an RLang program
Init Q(s,a), T(s,a), R(s,a) forall s € S, a € A(s)
loop
s < current (nonterminal) state
a < €1, ex-greedy(s, Trrang, @) # With prob. e, we execute the RLang plan or policy
Execute action a; observe next state s’, and reward r
Q + Q(s,a) + alr+ymax, Q(s',a") — Q(s,a))
T(s,a),R(s,a) + s',r # Update our model
for i = 1to N; do
s < random previously observed state
a < random action previously taken in s
s',r <« T(s,a),R(s,a)
Q<Q(s,a) + a[r+ymax, Q(s',a’) — Q(s,a)]
end for
for i = 1to N5 do
s < random previously observed state
a <+ random action not previously taken in s

s’ 1 < TRiang(8, @), Rriang (S, @) Predict s,  using dynamics given by RLang
Q<Q(s,a) + a[r+ymax, Q(s',a’) — Q(s,a)]
end for
end loop

(Chevalier-Boisvert et al. 2023} |Chevalier-Boisvert et al., 2019) and VirtualHome (Puig et al.|
2018) environments given expert advice. We include ablations of different RLang components to
demonstrate our auxiliary hypothesis, that language is best grounded to every element of an MDP.
Additionally, we run a small user study to assess our pipeline’s efficacy on a wide range of non-expert
language advice. Finally, we perform a series of symbol-grounding demonstrations showing how
vision-language models can eliminate the need for human-readable RLang vocabulary files, which
require human labeling.

4.1 LEVERAGING EXPERT ADVICE IN MINIGRID

We designed custom environments using the Minigrid/BabyAl library, a platform for studying the
behavior of language-informed agents. In a typical Minigrid environment, an agent might reason
about opening and closing doors using keys which may be hidden in other rooms, managing a small
inventory of items, removing obstacles like balls out of the way to reach other rooms or objects, and
avoiding lava, all for the ultimate purpose of reaching a goal. Minigrid environments are an ideal
setting for our experiments for three reasons: 1) they can be solved using tabular RL algorithms,
which our informed, model-based RLang-Dyna-Q agent is based on; 2) there are clear and obvious
referents of language in both the state and action spaces of these environments (e.g. keys, doors, and
balls are represented neatly in a discrete state space and skills such as walking towards objects are
easy to implement); 3) many objects are shared across environments enabling the reuse of a common
RLang vocabulary for referencing these objects, which makes it easier for our translation pipeline to
ground novel advice.

We provide a domain-general RLang vocabulary file V containing a set of RLang groundings to
be used as primitives in a full RLang program. These vocabulary files are generated automatically
for each minigrid environment given a single general template, and include perception abstractions
such as the objects in the environment (e.g., yellow_key, red_door) and a short list of predicates
for reasoning with them (e.g., carrying (), reachable (), at () ), as well as a single abstract
action in the form of a lifted skill for walking to any reachable object (go_to () ). Importantly,
these groundings have semantically-meaningful labels, which enable a simple translation processé
All agents in the experiments, including the Random, Dyna-Q, and RLang-Dyna-Q agents, are

*In our final demonstrations, we relax this constraint by determining the semantic label of entity groundings
and utilizing images of the objects in the environment to ground the referents of ambiguous advice using an
off-the-shelf vision-language model.
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given access to this lifted skill. However, we do not provide the Dyna-Q agent with any perception
abstractions, as including them induces an equivalent state space in the tabular RL setting. Likewise,
the Random agent does not consider state when selecting an action. In Stage 2 of the translation
pipeline, we provide the list of available RLang groundings that can be referenced in an RLang
program along with the language advice. This prevents the LLM from hallucinating imaginary skills,
objects, and predicates when translating the advice into an RLang program. The LLM never interacts
with the MDP directly. The translation examples used in the prompts in both stages of translation
did not change across experiments, though these translations are vocabulary-specific and grounding
advice to environments outside of Minigrid will require domain-compatible example translations.

We evaluated our grounding pipeline on four diverse Minigrid environments: LavaCrossing, Multi-
Room, MidMazeLava, and HardMaze. For each environment, we collected multiple pieces of natural
language advice from human experts—people familiar with both the environment and how the agent
interacts with it via perception and action, i.e. the skills the agent has access to and the fact that
its perception consists of objects and simple predicates—and translated them into RLang programs
using our two-stage pipeline. Each piece of advice was translated to a single RLang grounding type,
and each piece of advice contained multiple sentences. We then evaluated our RLang-Dyna-Q agent
on each environment with the translated RLang programs. In the MidMazeLave environment, advice
was grounded to multiple RLang types. We include additional results for RLang-Dyna-Q utilizing
only one type of advice at a time—Effects, Plans, or Policies—to isolate their impact on performance.

RLang-Dyna-Q significantly outperformed vanilla Dyna-Q in all of the experiments. In LavaCrossing
(see Figure[2)), the agent is tasked with reaching a goal while avoiding lava, and merely advising the
agent about the dangers of lava and futility of walking into walls greatly increases performance. In
the MultiRoom environment (see Figure[J), in which the agent must open a series of doors to reach
a goal, providing a plan in natural language significantly increased performance. In MidMazeLava
(see Figure [3) and HardMaze (see Figure [)), the agent is faced with significantly more difficult
tasks. In the former, the agent must unblock doors and open them with keys to reach a goal while
avoiding lava, and in the latter the agent must traverse through many rooms, bringing keys across
rooms to doors which must be unblocked to reach a goal. We collected paragraphs-worth of advice
for these environments, which we translated into RLang plans, policies, and effects. In HardMaze,
this language advice made it possible to solve the task, as the vanilla Dyna-Q agent did no better than
random. For each experiment, 10 instances of each agent were run to generate a 95% confidence
interval on their cumulative reward over 50 episodes (LavaCrossing was run for 25 episodes only).
The number of timesteps per episode varied across environments.

4.2 LEVERAGING EXPERT ADVICE IN VIRTUALHOME

We ran additional experiments on custom environments based on the VirtualHome library, a platform
for simulating complex household activities. VirtualHome has an object-oriented state space, which
can be referenced natively in RLang. We engineered 2 tasks in a kitchen environment to assess our
language grounding pipeline: FoodSafety (see Figure [5)), where the agent is tasked with putting a
pie into the fridge and salmon into the microwave, and CouchPotato, where the agent is tasked with
bringing a remote control to a sofa and putting cereal into a kitchen cabinet, while avoiding picking
up toothpaste. In these environments, agents are given an RLang vocabulary file with groundings
for object-oriented perception and action abstractions such as the objects in the environment (e.g.
salmon_327, fridge_305), a short list of predicates (e.g. inside (), holding (), near ()),
and a set of lifted skills (e.g. walk_to (), open, grab). These groundings have semantically
meaningful labels, which make them easy targets for grounding natural language.

Our experimental design here is identical to the Minigrid experiments: for each environment we
collected multiple pieces of language advice from human experts and translated them into RLang
programs via our two-stage pipeline. We then evaluated the performance of an RLang-Dyna-Q
agent on our environments in comparison to a vanilla Dyna-Q agent. In all of our experiments, the
RLang-informed agents significantly outperformed Dyna-Q. For each experiment, 10 instances of
each agent were run to generate a 95% confidence interval on their cumulative reward over 50 and
70 episodes for FoodSafety and CouchPotato, respectively. The maximum number of timesteps per
episode varied. The agent parameters are listed in the appendix.
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“Pick up the blue ball and drop it to your right.

Results Then pick up the green key and unlock the
et green door. Then drop the key to your right.”
40 == Dyna-Q “Some general advice: If you are carrying a

RLang-D-Q-effect
=== RLang-D-Q-policy
=== RLang-D-Q-plan
== RLang-D-Q-combined

key and its corresponding door is closed, open
the door if you are at it, otherwise go to the
door if you can reach it. Otherwise, drop any
keys for doors you can’t reach. If you can

30

Cumulative Reward
N
S

& reach the goal, go to it.”” “Walking into lava
0 will kill you. If you’re not at a door, toggling
0 6 12 18 24 30 36 42 48 will do nothing. Trying to pick something up
Episode Number while you’re carrying something is pointless.

Walking into walls will do nothing.”

Figure 3: MidMazeLava Experiment. Language advice given to the agent was grounded to RLang
effects, plans, and policies. The full translated RLang program is available in the appendix. All
RLang-Dyna-Q agents outperformed Dyna-Q.

“Go and pick up the green ball, and drop it on your
Results left, and then go pick up the blue key, and go to the
— Repeh blue door and open it up and drop the key on your left,
~e= Dyna-Q and then go pick up the green key, and go to the green
RLang-D-Q-combined door to open it and drop the key on your left, and then
go pick up the purple ball and drop it on your right.”
“Nothing will happen if you walk towards the wall, or
try to open a purple door without the purple key if it is
locked. The applies for the yellow door and key as well
as the red door and key.” “If you can reach the grey
door and it is closed but you have the key, open it if you
0 6 12 18 24 30 36 42 48 are at it or otherwise go to it. The same applies to the
Episode Number purple door, yellow door, and red door. Lastly, if you

find the goal is reachable just go to the goal directly.”

Cumulative Reward
I
o o 0 o

o
o

Figure 4: HardMaze Experiment. Language advice given to the agent was grounded to RLang
effects, plans, and policies. The full translated RLang program is available in the appendix. Vanilla
Dyna-Q was not able to complete this task.

“Go to fridge and open it, and then go find the pie and

eSS pick it up, walk back to the fridge and put the pie in the

120 Qtiﬁgigigiﬁli{‘cy / fridge. You have to close the fridge too”, “If the salmon
100 DynaQ is in the microwave, and you are at the microwave and
Pl ;t::g:gigiig;%med it’s open, close it. Otherwise if you are holding salmon,

do the following: open the microwave if you are near it

but it’s closed, put the salmon into the microwave if it’s

open and you're near it, else walk to the microwave.”,

“If the pie is in the fridge, and the salmon is in the

microwave, then closing the fridge if the microwave is

0 4 8 12 16 20 24 28 closed or closing the microwave if the fridge is closed
Episode Number will give you reward and end the episode.”

Cumulative Reward
o
3

Figure 5: FoodSafety Experiment. Language advice given to the agent was grounded to RLang
effects, plans, and policies. The full translated RLang program is in the appendix. All RLang-Dyna-Q
agents outperformed Dyna-Q.

Results
200 ~ DynaQ
g - ™ ;tg:g'g'gﬂ?g:y “If you’re holding the toothpaste and can drop it, drop
a§; — RLang-D-Q-gffect‘ it”, “Go grab the remote control and put it on the
& 100 — Rlang-D-Q-combined sofa.”’, “If you’re holding the toothpaste and are not
g 50 trying to drop it, you will be penalized. Also, nothing
B 0 will happen if you try to walk to the remote control,
g _50 cereal, toothpaste, or salmon, if you try to walk to them
=3
O

and they are contained inside anything.”

l_,»’) i M

0 8 16 24 32 40 48 56 64 72
1 Episode Number

Figure 6: CouchPotato Experiment. Language advice given to the agent was grounded to RLang
effects, plans, and policies. All the RLang agents outperformed Dyna-Q with the exception of
the Effect-enabled agent. We note that bugs in the simulator non-deterministically prevent certain
actions from executing, so the advice specified only applies part of the time, leading to decreased
performance.
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The impact of each kind of advice (e.g. plans, policies, transitions, and rewards) varied across tasks
in the VirtualHome and Minigrid experiments, with some environments benefiting primarily from
plan-centric advice and others benefiting most from policy advice. In virtually all cases, model-centric
advice—about transitions and rewards—was less valuable than other forms of advice. We suggest
that this discrepancy is due to how useful model-based advice is in comparison to explicit policy and
planning advice. While policy and planning advice describe which actions to take in a given context,
model-based advice was often used to suggest which actions not to take, relying on the underlying
learning agent to find the best action. Furthermore, model-based advice was useful less of the time,
i.e. in fewer states. This is best illustrated by comparing the relative performance of effect-enabled
RLang-Dyna-Q agents with policy and plan-enabled agents in the MidMazeLava Experiment in
Figure 3| and the FoodSafety Experiment in Figure[5] The model-based advice in the first experiment
is to avoid lava, which there are many opportunities to walk into, resulting in the performance of the
effect-enabled agent closer to the plan and policy-enabled agents. By comparison, the model-based
advice in the second experiment is more niche, accounting only for a handful of transitions, and
the effect-enabled agent correspondingly performs closer to baseline Dyna-Q than to the plan and
policy-enabled agents.

4.3 GROUNDING SYMBOLS WITH A VISION-LANGUAGE MODEL

A crucial assumption made by our pipeline is that we are given semantically-meaningful labels for the
groundings we have, including labels for objects (e.g. salmon), skills (e.g. go_to (kitchen)),
and truth-valued predicates (e.g. is_open (fridge)). Assigning relevant labels for these ground-
ings enables a relatively simple translation from natural language into RLang. In a real-world setting,
we imagine that the labels for these groundings can be generated in two ways: 1) prescriptively, in
the case of skill engineering by humans, and 2) via a pre-trained foundation model for identifying
predicates and objects in the environment. Implementing a full symbol-grounding systerrﬂ is outside
the scope of this work, however, we performed an additional demonstration showing how the labels
for object groundings could be easily extracted from images of the VirtualHome environments using
a vision-language model.

In addition to performing the initial semantic labeling of objects, we demonstrated how incorporating
a vision-language model in-the-loop could expand the variety of advice our system is capable of
grounding. By asking a VLM to disambiguate referents using images of entities in the environment,
we are able to successfully ground entities for semantically-ambiguous advice. Given 11 images
of the entities in the VirtualHome environment, we asked GPT-4o to ground the referents of 17
ambiguous commands that would require visual and operational knowledge of the entities in the
scene. For example, we can ground noun phrases like “the white box you might put food in” to a
white microwave in the scene or “the tall red box™ to a tall red refrigerator (see Figure[7). These
additional experiments—the automatic semantic labeling of entities in the environment and the in-the-
loop semantic grounding of ambiguous referents in advice—ameliorate the need for expert-crafted,
semantically perfect RLang grounding files.

4.4 EVALUATING TRANSLATION AND RLANG EFFICACY

To assess RLang’s ability to capture the breadth of general language advice, we ran a small user
study. We asked 10 undergraduate students to solve the LockedRoom MiniGrid task (pictured in
Figure [8)) and then asked them to describe in one or two sentences any advice they would give to
an agent completing the task for the first time. We collected their responses and ran them through
our translation pipeline to arrive at the RLang groundings in Table [3] of the Appendix. Of 10 pieces
of advice collected, 9 were translated into valid RLang programs, while 1 referenced groundings
that did not exist (e.g. second_left_door). We used the remaining valid RLang programs to
inform 9 separate RLang-Dyna-Q agents that we compared against a baseline Dyna-Q agent given no
advice. With a few exceptions, providing advice either did not meaningfully impact performance
over the baseline or led to dramatic improvements in performance (see Table[2). In the cases where
advice did not impact performance, it was translated into a parsable RLang program that referenced
groundings that were not in the RLang vocabulary file (e.g. “the second left door” was translated to
second_left_door, but a proper reference would be yellow_door). We address this symbol-

3Learning a mapping from symbolic labels to groundings is explored in Steels & Hild| (2012).
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Visual perception:

Query:
“What is the object that the
character is looking at?”

Response:
“microwave”

Visual perception:

Advice:
“Put the blue box in the red box.”

Grounding:
“blue box’ refers to cereal
‘red box’ refers to fridge”

Class Cereal:
object_id: int

Class Fridge:
object_id: int

Class Microwave:
object_id: int

Object cereal_235 :
Cereal (235)
Object fridge_122 :
Fridge (122)

Microwave (98)

Object microwave_98 :

Figure 7: By capturing images of unnamed objects in the environment specified only by numeric
object ids we can prompt a VLM to provide us with semantic labels. The labels output by VLM can be
provided to the translation pipeline as semantic primitives (see right). Additionally, we demonstrate
how the VLM can be re-prompted after an initial labeling to resolve semantic ambiguities that require
visual knowledge of the entities in question. After disambiguation, the advice can be re-written to
incorporate the true grounding labels (e.g. cereal_235 instead of “blue box™), and then processed
by the remaining grounding pipeline. Additional grounding examples are reported in the appendix.

grounding failure in the VirtualHome environment by using a VLM to ground semantically-ambiguous
referents (see section4.3)). Failures also occurred when users specified plans whose pre-conditions
were not met at the start state of the environment and failed to execute (e.g. the last piece of advice
suggests to go to the room with the red key, but the agent cannot visit the room without first opening
the grey door).

5 DISCUSSION AND CONCLUSION

Natural language grounding (Steels & Hild, 2012)) has critical implications for all of AL Just as
RL is intended as a model of intelligent decision making, we propose that its core formalisms offer
a natural target for language grounding. If MDPs model human decision-making, and humans
invented language to share information that aids their decision-making, then the appropriate target
for language grounding should be an MDP, or a richer and perhaps more structured decision process
reflecting the complexity of human decision-making. One line of evidence for this claim is the direct
correspondence between parts of speech and elements of structured decision-processes
Sanchez et all [2020). For example, the object classes in Object Oriented MDPs
2008) naturally correspond to the concept of common nouns requiring determiners to single out
class instances, and the parameters in Parameterized Action MDPs[Masson et al.| (2016)) naturally
correspond to adverbs for modifying the execution of discrete macro-actions (verbs).

More practically, knowledge expressed in natural language has immense potential to inform rein-
forcement learning agents, and thereby alleviate the high sample complexity of having to learn rabula
rasa. We present a novel method for leveraging general natural language advice to expedite learning
in Markov Decision Processes by translating it into RLang, a formal language designed to specify
information about every element of an MDP and its solution. Our method can ground advice to
reward functions, transition functions, plans, and policies. We also introduce a modified Dyna-Q
agent capable of leveraging all of the types of information present in the partial MDP specification
represented by RLang. Our findings show that our approach can leverage a wide variety of language
advice to accelerate learning.
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A APPENDIX

A.l

Table 2: User Study. We collected 10 pieces of advice from 10 undergraduate students for the
LockedRoom environment. For each piece of advice, 5 agent instances were run for 25 episodes on
the LockedRoom environment for 500 steps. The cumulative discounted reward for the 25 episodes is
in the first column along with a 95% confidence interval. The average percent increase in cumulative
discounted reward over the baseline is present in the second column. The second-to-last piece of

USER STUDY

advice did not ground to a valid RLang program, so no experiment was run.

Avg Cumula- % improve- | Natural Language Advice

tive Return ment

17.86 £2.36 — No advice

22.01£0.71 +23.24 “Remember to toggle to open doors.”

16.79 £1.75 —5.99 “You don’t need to carry keys to open the grey door.”

17.224+1.75 —3.60 “Identify the room with the red key, move to that room by opening the
door. Pick up the key. Identify the room with the red door, proceed
there. Open the red door. Find the green square and go there to finish
the game.”

23.55£0.69 +31.86 “Move to the grey door, open it and enter the room until you get to the
red key, pick it up. Exit the room and move towards the red door, open
it and get into that room. Move to the green block and enter it.”

23.93+£0.37 +33.99 “Go to the grey door. open the grey door. go to the red key. pick up the
red key. go to the red door. open the red door. go to the green square.”

24.07 £0.22 +34.77 “Pick up the red key after opening the grey door. Then walk to the red
door, open it, and go to the goal.”

17.57+£0.78 —1.63 “You cannot open the red door without a red key.”
17.77+£0.54 —0.50 “Walking towards the red door is not very useful if it is closed.”

— — “Go down until the second door on the left and pick up the key. Then
exit the room and go down until the next door on the left and use it to
open the door and get to the green box.”

18.35+1.93 +2.76 “Go to the room that has the red key, pick it up, and then go to the room

with a red door. Enter the room, and go to the green goal object.”

Figure 8: The initial state of the LockedRoom environment.
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Figure 9: MultiRoom Experiment. The agent was given the following advice: “First go to the blue
door, then the green door, then the grey door, then the purple door.” The initial state of MultiRoom is
pictured on the left, reward curves are center, and the translated advice is on the right.

A.2 PROMPTS USED FOR TRANSLATION PIPELINE FOR MINIGRID EXPERIMENTS

A.2.1 [MINIGRID] PROMPT USED FOR STAGE 1 OF THE TRANSLATION PIPELINE. GIVEN A
NEW PIECE OF ADVICE, WE PROMPT THE LLM TO CLASSIFY IT AS AN EFFECT, PLAN,
OR PoLICY.

RLang is a formal language for specifying information about every element of a Markov
Decision Process (S,A,R,T). Each RLang object refers to one or more elements of an MDP.
Here is a description of three important RLang groundings:

Policy: a direct function from states to actions, best used for more general com-
mands.

Effect: a prediction about the state of the world or the reward function.

Plan: a sequence of specific steps to take.

Your task is to decide which RLang grounding most naturally corresponds to a given piece of
advice:

Advice = “Don’t touch any mice unless you have gloves on.”

Grounding: Effect

Advice = “Walking into lava will kill you.”

Grounding: Effect

Advice = “First get the money, then go to the green square.”

Grounding: Plan

Advice = “Go through the door to the goal.”

Grounding: Plan

Advice = “If you have the key, go to the door, otherwise you need to get the key.”
Grounding: Policy

Advice = “If there are any closed doors, open them.”

Grounding: Policy
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A.2.2 [MINIGRID] PROMPT USED FOR STAGE 2 OF THE PIPELINE TO TRANSLATE A PIECE OF
ADVICE INTO AN RLANG PLAN.

Your task is to translate natural language advice to RLang plan, which is a sequence of
specific steps to take. For each instance, we provide a piece of advice in natural language, a
list of allowed primitives, and you should complete the instance by filling the missing plan
function. Don’t use any primitive outside the provided primitive list corresponding to each
instance, e.g., if there is no ‘green_door’ in the primitive list you must not use ‘green_door’
for the plan function.

Advice = “Open the door with the key and go through it to the goal”

Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
“forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘yellow_key’, ‘yellow_door’, ‘agent’, ‘goal’, ‘at’,
‘in_inventory’]

Plan main:
Execute go_to(yellow_key)
Execute pickup
Execute go_to(yellow_door)
Execute toggle
Execute go_to(goal)

Advice = “Get the key behind the red door to open the grey door. Then drop the key to the
left.”

Primitives = [‘Agent’, “Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
“forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go-to’, ‘step_towards’, ‘yellow_key’, ‘yellow_door’, ‘agent’, ‘goal’, ‘at’,
‘in_inventory’]

Plan main:

Execute go_to (red_door)
Execute toggle

Execute go_to (grey_key)
Execute pickup

Execute go_to(grey_door)
Execute toggle

Execute left

Execute drop
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A.2.3 [MINIGRID] PROMPT USED FOR STAGE 2 OF THE PIPELINE TO TRANSLATE A PIECE OF
ADVICE INTO AN RLANG POLICY.

Your task is to translate natural language advice to RLang policy, which is a direct function
from states to actions. For each instance, we provide a piece of advice in natural language, a
list of allowed primitives, and you should complete the instance by filling the missing policy
function. Don’t use any primitive outside the provided primitive list corresponding to each
instance, e.g., if there is no ‘green_door’ in the primitive list you must not use “green_door’
for the policy function.

Advice = “If the yellow door is open, go through it and walk to the goal. Otherwise open the
yellow door if you have the key.”
Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
“forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘yellow_key’, ‘yellow_door’, ‘agent’, ‘goal’, ‘at’, ‘car-
rying’]
Policy main:

if yellow_door.is_open:

Execute go_to(goal)

elif carrying(yellow_key) and at (yellow_door) and not yellow_door.is_open:
Execute toggle

Advice = “If you don’t have the key, go get it.”
Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
“forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘grey_key’, ‘red-door’, ‘grey_door’, ‘agent’, ‘pur-
ple_ball’, ‘at’, ‘carrying’]
Policy main:

if at (grey_key):

Execute pickup

elif not carrying(grey_key):
Execute go_to (grey_key)

Advice = “If you are carrying a ball and its corresponding box is closed, open the box if you
are at it, otherwise go to the box if you can reach it.”
Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
“forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘green_ball’, ‘green_box’, ‘purple_box’, ‘agent’, ‘pur-
ple_ball’, ‘at’, ‘reachable’, ‘carrying’]
Policy main:
if carrying(green_ball) and not green_box.is_open:
if at (green_box):
Execute toggle

elif reachable (green_box) :
Execute go_to (green_box)

Advice = “Drop any balls for boxes you can’t reach”
Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
“forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘green_ball’, ‘green_box’, ‘purple_box’, ‘agent’, ‘pur-
ple_ball’, ‘at’, ‘reachable’, ‘carrying’]
Policy main:

if carrying(green_ball) and not reachable (green_box) :

Execute drop

if carrying(purple_ball) and not reachable (purple_box) :
Execute drop
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Advice = “if you have any key for a door that you cannot reach, you should drop it”
Primitives = [‘Agent’, “Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
‘forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘green_ball’, ‘green_box’, ‘purple_box’, ‘agent’, ‘pur-
ple_ball’, ‘at’, ‘reachable’, ‘carrying’]
Policy main:
if carrying(green_key) and not reachable (green_door):
Execute drop
if carrying(purple_key) and not reachable (purple_door) :
Execute drop

if carrying(red_key) and not reachable (red_door) :
Execute drop

Advice = “Hey listen, you can open the door if you have the key and at the door when the
door is closed”

Primitives = [‘Agent’, “Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
‘forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘green_ball’, ‘green_box’, ‘purple_box’, ‘agent’, ‘pur-
ple_ball’, ‘at’, ‘reachable’, ‘carrying’]

Policy main:

if carrying(purple_key) and not purple_door.is_open and at (purple_door) :
Execute toggle
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A.2.4 [MINIGRID] PROMPT USED FOR STAGE 2 OF THE PIPELINE TO TRANSLATE A PIECE OF
ADVICE INTO AN RLANG EFFECT.

Your task is to translate natural language advice to RLang effect, which is a prediction about
the state of the world or the reward function. For each instance, we provide a piece of advice
in natural language, a list of allowed primitives, and you should complete the instance by
filling the missing effect function. Don’t use any primitive outside the provided primitive list
corresponding to each instance, e.g., if there is no ‘green_door’ in the primitive list you must
not use ‘green_door’ for the effect function.

Advice = “Don’t go to the door without the key”
Primitives = [ ‘yellow_door’, ‘goal’, ‘pickup’, ‘yellow _key’, ‘toggle’, ‘go_to’, ‘carrying’, ‘at’]
Effect main:

if at (yellow_door) and not carrying(yellow_key):
Reward -1

Advice = “Don’t walk into closed doors. If you’re tired, don’t go forward.”

Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
“forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘green_ball’, ‘green_box’, ‘purple_box’, ‘agent’, ‘pur-
ple_ball’, ‘at’, ‘reachable’, ‘carrying’]

Effect main:

if at (yellow_door) and yellow_door.is_closed and A == forward:
Reward -1
s’ -> 8§

elif tired() and A == forward:

Reward -1

Advice = “Walking into balls is pointless. You will die if you walk into keys. Trying to open
a box when you aren’t near it will do nothing.”

Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
‘forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘green_ball’, ‘green_box’, ‘purple_box’, ‘agent’, ‘pur-
ple_ball’, ‘at’, ‘reachable’, ‘carrying’]

Effect main:
if at(Ball) and A == forward:
Reward 0
s’ -> 8
elif at (Key) and A == forward:
Reward -1
S’ —> Sx0
elif at (Box) and A == toggle:
Reward 0
s’ -> '8
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A.3 PROMPTS USED FOR TRANSLATION PIPELINE FOR VIRTUALHOME EXPERIMENTS

A.3.1 [VIRTUALHOME]| PROMPT USED FOR STAGE 1 OF THE TRANSLATION PIPELINE. GIVEN
A NEW PIECE OF ADVICE, WE PROMPT THE LLM TO CLASSIFY IT AS AN EFFECT, PLAN,
OR POLICY.

RLang is a formal language for specifying information about every element of a Markov
Decision Process (S,A,R,T). Each RLang object refers to one or more elements of an MDP.
Here is a description of three important RLang groundings:

Policy: a direct function from states to actions, best used for more general com-
mands.

Effect: a prediction about the state of the world or the reward function.

Plan: a sequence of specific steps to take.

Your task is to decide which RLang grounding most naturally corresponds to a given piece of
advice:

Advice = “Don’t touch any mice unless you have gloves on.”

Grounding: Effect

Advice = “Walking into lava will kill you.”

Grounding: Effect

Advice = “First get the money, then go to the green square.”

Grounding: Plan

Advice = “Go through the door to the goal.”

Grounding: Plan

Advice = “If you have the key, go to the door, otherwise you need to get the key.”
Grounding: Policy

Advice = “If there are any closed doors, open them.”

Grounding: Policy

Advice = “Open any doors if they are closed.”

Grounding: Policy
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A.3.2 [VIRTUALHOME] PROMPT USED FOR STAGE 2 OF THE PIPELINE TO TRANSLATE A

PIECE OF ADVICE INTO AN RLANG PLAN.

Your task is to translate natural language advice to RLang plan, which is a sequence of
specific steps to take. For each instance, we provide a piece of advice in natural language, a
list of allowed primitives, and you should complete the instance by filling the missing plan
function. Don’t use any primitive outside the provided primitive list corresponding to each
instance, e.g., if there is no ‘green_door’ in the primitive list you must not use ‘green_door’
for the plan function.

Advice = “Open the door with the key and go through it to the goal”

Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
“forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘yellow key’, ‘yellow_door’, ‘agent’, ‘goal’, ‘at’,
‘in_inventory’]

Plan main:
Execute go_to(yellow_key)
Execute pickup
Execute go_to(yellow_door)
Execute toggle
Execute go_to(goal)

Advice = “Get the key behind the red door to open the grey door. Then drop the key to the
left.”

Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
‘forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘yellow_key’, ‘yellow_door’, ‘agent’, ‘goal’, ‘at’,
‘in_inventory’]

Plan main:

Execute go_to(red_door)
Execute toggle

Execute go_to (grey_key)
Execute pickup

Execute go_to(grey_door)
Execute toggle

Execute left

Execute drop

Advice = ”Get the key behind the red door to open the grey door.” Primitives = ["Agent’,
"Wall’, *GoalTile’, "Lava’, ’Key’, *Door’, ’Box’, *Ball’, ’left’, 'right’, *forward’, *walk_to’,
’open’, ’close’, *putin’, ’grab’, ’inside’, *grey key_11°, 'red_door’, ’grey_door_127’, *agent’,
’purple_ball’, ’is_on_a’, ’at’, ’at_any’, ’in_inventory’]

Plan main:
Execute walk_to (red_door)
Execute open (red_door)
Execute walk_to(grey_key 11)
Execute grab (grey_key_11)
Execute walk_to(grey_door_127)
Execute open (grey_door_127)
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A.3.3 [VIRTUALHOME] PROMPT USED FOR STAGE 2 OF THE PIPELINE TO TRANSLATE A
PIECE OF ADVICE INTO AN RLANG POLICY.

Your task is to translate natural language advice to RLang policy, which is a direct function
from states to actions. For each instance, we provide a piece of advice in natural language, a
list of allowed primitives, and you should complete the instance by filling the missing policy
function. Don’t use any primitive outside the provided primitive list corresponding to each
instance, e.g., if there is no ‘green_door’ in the primitive list you must not use “green_door’
for the policy function.

Advice = “If the yellow door is open, go through it and walk to the goal. Otherwise open the
yellow door if you have the key.”
Primitives = [‘Agent’, “Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
‘forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘yellow_key’, ‘yellow_door’, ‘agent’, ‘goal’, ‘at’, ‘car-
rying’]
Policy main:

if yellow_door.is_open:

Execute go_to(goal)

elif carrying(yellow_key) and at (yellow_door) and not yellow_door.is_open:
Execute toggle

Advice = “If you don’t have the key, go get it”
Primitives = [’Agent’, *Wall’, *GoalTile’, "Lava’, ’Key’, "Door’, ’Box’, *Ball’, ’left’, 'right’,
*forward’, *pickup’, ’drop’, ’toggle’, ’done’, ’pointing_right’, "pointing_down’, ’pointing_left’,
’pointing_up’, ’go_to’, ’step_towards’, *grey _key_11’, 'red_door’, ’grey_door’, agent’, *pur-
ple_ball’, ’is_on_a’, "at’, ’at_any’, ’in_inventory’]
Policy main:

if at (grey_key_11):

Execute pickup

elif not carrying(grey_key_11):
Execute go_to(grey_key_ 11)

Advice = “If you’re at the fridge, close it.”

Primitives = [’ Toothpaste’, 'Bedroom’, ’Character’, ’Cereal’, ’Bathroom’, ’Sofa’, ’Cabinet’,
’Salmon’, ’Pie’, ’Kitchentable’, ’Remotecontrol’, "Fridge’, "Microwave’, ’Kitchen’, "Book-
shelf’, *Livingroom’, *walk_to’, open’, ’close’, ’putin’, *puton’, ’grab’, ’drop’, ’can_drop’,
’is_drop’, ’inside’, ’inside_something’, "on’, ’at’, ’is_closed’, ’is_open’, "holding’, 'near’, ’char-
acter_1’, ’kitchen_205’, *bookshelf_249’, ’fridge_305’, oven_133’, *pie_319’, *chicken_127’,
’cabinet_19’]

Policy main:

if at (fridge_305):
Execute close (fridge_305)
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A.3.4 [VIRTUALHOME] PROMPT USED FOR STAGE 2 OF THE PIPELINE TO TRANSLATE A
PIECE OF ADVICE INTO AN RLANG EFFECT.

Your task is to translate natural language advice to RLang effect, which is a prediction about
the state of the world or the reward function. For each instance, we provide a piece of advice
in natural language, a list of allowed primitives, and you should complete the instance by
filling the missing effect function. Don’t use any primitive outside the provided primitive list
corresponding to each instance, e.g., if there is no ‘green_door’ in the primitive list you must
not use ‘green_door’ for the effect function.

Advice = “Don’t go to the door without the key”
Primitives = [ ‘yellow_door’, ‘goal’, ‘pickup’, ‘yellow key’, ‘toggle’, ‘go_to’, ‘carrying’, ‘at’]
Effect main:

if at (yellow_door) and not carrying(yellow_key):
Reward -1

Advice = “Don’t walk into closed doors, since it takes no effect”
Primitives = [’ Agent’, "Wall’, GoalTile’, ’Lava’, ’Key’, Door’, ’Box’, *Ball’, ’left’, 'right’,
"forward’, *pickup’, *drop’, 'toggle’, ’done’, *pointing_right’, ’pointing_down’, ’pointing_left’,
’pointing_up’, ’go_to’, ’step-towards’, *agent’, *goal’, ’is_on_a’, ’at’, ’at_any’, ’in_inventory’]
Effect main:

if at (yellow_door) and not yellow_door.is_open and A == forward:

Reward -1
s’ -> 8§

Advice = “Walking to a broken object won’t do anything. You can’t grab the ball if it’s inside
something.”

Primitives = [’Agent’, *Wall’, *GoalTile’, *Lava’, ’Key’, Door’, ’'Box’, ’Ball’, ’is_broken’,
’left’, 'right’, *forward’, *grab’, *drop’, 'toggle’, *done’, ’pointing_right’, ’pointing_down’,
’pointing_left’, ’pointing_up’, ’inside_something’, ’go_to’, ’step_towards’, ’agent’, ’goal’,
’is_on_a’, ’at’, ’at_any’, ’in_inventory’, *gate_12’, ’door_16’, *ball_121’]

Effect main:

if A == walk_to(gate_12) and is_broken(gate_12):
s’ -> '8

if A == walk_to(door_16) and is_broken (door_16) :
s’ -> 8§

if A == grab(ball_121) and inside_something(ball_121):
s’ -> 8

Advice = “Don’t go to the purple ball”

Primitives = [’Agent’, *Wall’, *GoalTile’, "Lava’, ’Key’, "Door’, ’Box’, *Ball’, ’left’, 'right’,
forward’, *walk_to’, ’open’, ’close’, ’putin’, ’grab’, ’inside’, "holding’, ’grey key_11’,
’red_door’, *grey_door_127, agent’, "purple_ball’, ’is_on_a’, ’at’, "at_any’, ’in_inventory’]
Effect main:

if A == walk_to(purple_ball):
Reward -1
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Advice = “If you put the pie into the microwave and the chicken into the oven, and make sure
that they are both on, you will get reward and the episode will end.”
Primitives = [’ Toothpaste’, 'Bedroom’, ’Character’, ’Cereal’, ’Bathroom’, ’Sofa’, ’Cabinet’,
’Salmon’, *Pie’, *Kitchentable’, "Remotecontrol’, *Fridge’, "Microwave’, ’Kitchen’, ’Book-
shelf’, "Livingroom’, *walk_to’, "open’, ’turn_on’, ’close’, ’putin’, ’puton’, ’grab’, ’drop’,
’can_drop’, ’is_drop’, ’inside’, ’inside_something’, "on’, ’at’, ’is_closed’, ’is_open’, "holding’,
’near’, ’character_1’, ’kitchen_205’, *bookshelf_249’, ’fridge_305’, *oven_133’, ’pie_319’,
’chicken_127’, microwave_19’]
Effect main:
if inside(pie_319, microwave_19) and inside (chicken_127, oven_133):
if is_closed(microwave_19) and at (oven_133) and A == turn_on (oven_133):
Reward 5
s’ -> s
elif is_closed(oven_133) and at (microwave_19) and A == turn_on (microwave_19) :

Reward 5
s’ -> 8

Advice = “If you’re not trying to pick up the fridge, you will be penalized” Primitives =
[’Sofa’, ’Kitchentable’, ’Bathroom’, *Salmon’, ’Kitchen’, "Bookshelf’, *Cereal’, ’Cabinet’,
’Livingroom’, "Fridge’, 'Bedroom’, ’Character’, *Toothpaste’, *Pie’, "Microwave’, ’Remote-
control’, *walk_to’, *open’, ’close’, ’putin’, ’puton’, ’grab’, ’drop’, ’can_drop’, ’is_drop’,
’inside’, ’inside_something’, "on’, *at’, *fridge_305’, ’is_pickup’, ’is_closed’, ’is_open’, "hold-
ing’, 'near’, ’character_1’, ’bathroom_11’, ’toothpaste_62’, bedroom_73’, ’kitchen_205,
“kitchentable_231°, *bookshelf_249’, *fridge_305’, *microwave_313’, "pie_319’, ’salmon_327’,
“cereal_334’, ’livingroom_335’, ’sofa_368’, *cabinet 415°, ’remotecontrol 452°]

Effect main:

if fridge_305(fridge_305) and not is_pickup (A):
Reward -1

Advice = “if you have any key for a door that you cannot reach, you should drop it”
Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
“forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘green_ball’, ‘green_box’, ‘purple_box’, ‘agent’, ‘pur-
ple_ball’, ‘at’, ‘reachable’, ‘carrying’]
Policy main:
if carrying(green_key) and not reachable (green_door):
Execute drop
if carrying(purple_key) and not reachable (purple_door) :
Execute drop

if carrying(red_key) and not reachable (red_door):
Execute drop

Advice = “Hey listen, you can open the door if you have the key and at the door when the
door is closed”

Primitives = [‘Agent’, ‘Wall’, ‘GoalTile’, ‘Lava’, ‘Key’, ‘Door’, ‘Box’, ‘Ball’, ‘left’, ‘right’,
“forward’, ‘pickup’, ‘drop’, ‘toggle’, ‘done’, ‘pointing_right’, ‘pointing_down’, ‘pointing_left’,
‘pointing_up’, ‘go_to’, ‘step_towards’, ‘green_ball’, ‘green_box’, ‘purple_box’, ‘agent’, ‘pur-
ple_ball’, ‘at’, ‘reachable’, ‘carrying’]

Policy main:

if carrying(purple_key) and not purple_door.is_open and at (purple_door) :
Execute toggle

A.4 USER STUDY - TRANSLATED ADVICE FOR MINIGRID EXPERIMENTS
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Table 3: Advice from the user study translated to RLang.

Language Advice

| RLang Translation

“Remember to toggle to open doors.”

“You don’t need to carry keys to open the grey
door.”

“Identify the room with the red key, move
to that room by opening the door. Pick up
the key. Identify the room with the red door,
proceed there. Open the red door. Find the
green square and go there to finish the game.”

“Move to the grey door, open it and enter the
room until you get to the red key, pick it up.
Exit the room and move towards the red door,
open it and get into that room. Move to the
green block and enter it.”

“Go to the grey door. open the grey door. go
to the red key. pick up the red key. go to the
red door. open the red door. go to the green
square.”

Policy main:
if at (yellow_door) and not yellow_door.is_open

Execute toggle
elif at (red_door)

Execute toggle
elif at (purple_door
is_open:

Execute toggle
elif at (blue_door)
Execute toggle
elif at (green_door) and not green_door.is_open

and not red_door.is_open:

and not purple_door.

and not blue_door.is_open:

Execute toggle
elif at (grey_door)
Execute toggle

and not grey_door.is_open:

Effect main:
if at (grey_door)
s’ -> 8
Reward -1
elif at (grey_door) and carrying_something() :
s’ -> 8
Reward -1

and carrying(red_key):

Plan main:
Execute go_to (red_key)
Execute pickup
Execute go_to (red_door)
Execute toggle
Execute go_to(goal)

Plan main:
Execute go_to (grey_door)
Execute toggle
Execute go_to (red_key)
Execute pickup
Execute go_to(grey_door)
Execute toggle
Execute go_to (red_door)
Execute toggle
Execute go_to(goal)

Plan main:
Execute go_to(grey_door)
Execute toggle
Execute go_to (red_key)
Execute pickup
Execute go_to (red_door)
Execute toggle
Execute go_to(goal)
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Table 4: Advice from the user study translated to RLang (continued).

Language Advice | RLang Translation

“Pick up the red key after opening the grey | Plan main:
door. Then walk to the red door, open it, and Execute go_to(grey_door)
Execute toggle

gOtOthe goal-’7 Execute go_to (red_key)
Execute pickup

Execute go_to (red_door)
Execute toggle

Execute go_to(goal)

“You cannot open the red door without ared | Effect main:

kev?” if at (red_door) and not carrying(red_key):
Y- s’ -> '8

Reward -1

“Walking towards the red door is not very | Effect main:
useful if it is closed.” if at (red_door) and not (red_door.is_open) and
A == forward:

s’ -> s

Reward -1

“Go down until the second door on the left | Plan main:

and pick up the key. Then exit the room and Execute go_to (second_left_door)
Execute pickup

go down until the next door on the left and Execute go_to (exit)
use it to open the door and get to the green Execute go_to (next_left_door)
box.” Execute toggle

Execute go_to (green_box)

“Go to the room that has the red key, pick | Plan main:

it up, and then go to the room with a red Execute go_to(red_key)
Execute pickup

door. Enter the room, and go to the green Execute go_to(red door)

goal object.” Execute toggle

Execute go_to(goal)
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A.5 MIDMAZELAVA - TRANSLATED ADVICE

Walking into walls will do nothing.”

Plan main:

Execute go_to(blue_ball)
Execute pickup

Execute right

Execute drop

Execute go_to (green_key)
Execute pickup

Execute go_to(green_door)
Execute toggle

Execute right

Execute drop

Policy main:
if carrying(green_key) and not green_door.is_open:
if at (green_door):
Execute toggle
elif reachable (green_door) :
Execute go_to (green_door)

elif carrying(grey_key) and not grey_door.is_open:
if at (grey_door):
Execute toggle
elif reachable(grey_door):
Execute go_to (grey_door)

elif reachable(goal):
Execute go_to(goal)

elif carrying(green_key) and not reachable (green_door) :
Execute drop

elif carrying(grey_key) and not reachable (grey_door):
Execute drop

Effect main:

if at(Lava) and A == forward:
S’ —> S%0
Reward -1

if not at (Door) and A == toggle:
s’ -> 8
Reward 0

if carrying_something() and A == pickup:
s’ -> 8
Reward 0

if at (Wall) and A == forward:
s’ -> 8§
Reward 0

Advice: “Pick up the blue ball and drop it to your right. Then pick up the green key and
unlock the green door. Then drop the key to your right. Some general advice: If you are
carrying a key and its corresponding door is closed, open the door if you are at it, otherwise
go to the door if you can reach it. Otherwise, drop any keys for doors you can’t reach. If you
can reach the goal, go to it. Walking into lava will kill you. If you’re not at a door, toggling
will do nothing. Trying to pick something up while you’re carrying something is pointless.
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A.6 HARDMAZELIGHT - TRANSLATED ADVICE

Advice: “Go and pick up the green ball, and drop it on your left, and then go pick up the blue
key, and go to the blue door and open it up and drop the key on your left, and then go pick up
the green key, and go to the green door to open it and drop the key on your left, and then go
pick up the purple ball and drop it on your right. Nothing will happen if you walk towards the
wall, or try to open a purple door without the purple key if it is locked. The applies for the
yellow door and key as well as the red door and key. If you can reach the grey door and it is
closed but you have the key, open it if you are at it or otherwise go to it. The same applies to
the purple door, yellow door, and red door. Lastly, if you find the goal is reachable just go to
the goal directly.”

Plan main:
Execute go_to(green_ball)
Execute pickup
Execute left
Execute drop
Execute go_to (blue_key)
Execute pickup
Execute go_to (blue_door)
Execute toggle
Execute left
Execute drop
Execute go_to (green_key)
Execute pickup
Execute go_to (green_door)
Execute toggle
Execute right
Execute drop
Execute go_to (purple_ball)
Execute pickup
Execute right
Execute drop

Effect main:
if at (Wall) and A == forward:
Reward 0
s’ -> 8
elif at (purple_door) and purple_door.is_locked and A == toggle and not carrying(
purple_key) :
Reward 0
s’ -> 8
elif at(yellow_door) and yellow_door.is_locked and A == toggle and not carrying(
yellow_key) :
Reward 0
s’ -> 8
elif at (red_door) and red_door.is_locked and A == toggle and not carrying(red_key):
Reward 0
s’ -> 8§
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Policy main:
if reachable(grey_door) and carrying(grey_key) and grey_door.is_locked:
if at (grey_door):
Execute toggle
else:
Execute go_to (grey_door)

elif reachable (purple_door) and carrying(purple_key) and purple_door.is_locked:
if at (purple_door):
Execute toggle
else:
Execute go_to (purple_door)

elif reachable(yellow_door) and carrying(yellow_key) and yellow_door.is_locked:
if at (yellow_door) :
Execute toggle
else:
Execute go_to(yellow_door)

elif reachable(red_door) and carrying(red_key) and red_door.is_locked:
if at (red_door):
Execute toggle
else:
Execute go_to(red_door)

elif reachable(goal):
Execute go_to(goal)

A.7 FOODSAFETY - TRANSLATED ADVICE

episode.”

Plan main:
Execute walk_to(fridge_305)
Execute open (fridge_305)
Execute walk_to(pie_319
Execute grab (pie_319)
Execute walk_to(fridge_305)
Execute putin(fridge_305)
Execute close (fridge_305)

Policy main:

Execute close (microwave_313)
elif holding(salmon_327):

if at (microwave_313) and is_closed (microwave_313):
Execute open (microwave_313)

elif at (microwave_313) and is_open (microwave_313):
Execute putin (microwave_313)

else:
Execute walk_to (microwave_313)

Effect main:
if inside(pie_319, fridge_305) and inside(salmon_327, microwave_313):

if is_closed(fridge_305) and at (microwave_313) and A == close (microwave_313):
Reward 5
s’ -> 8

elif is_closed(microwave_313) and at (fridge_305) and A == close (fridge_305):
Reward 5
s’ -> 8

Advice: “Go to fridge and open it, and then go find the pie and pick it up, walk back to the
fridge and put the pie in the fridge. You have to close the fridge too”, “If the salmon is in the
microwave, and you are at the microwave and it’s open, close it. Otherwise if you are holding
salmon, do the following: open the microwave if you are near it but it’s closed, put the salmon
into the microwave if it’s open and you’re near it, else walk to the microwave.”, “If the pie is
in the fridge, and the salmon is in the microwave, then closing the fridge if the microwave
is closed or closing the microwave if the fridge is closed will give you reward and end the

if inside(salmon_327, microwave_313) and at (microwave_313) and is_open (microwave_313):
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A.8 COUCHPOTATO - TRANSLATED ADVICE

Advice: “If you’re holding the toothpaste and can drop it, drop it.”, “Go grab the remote
control and put it on the sofa.”, “If you’re holding the toothpaste and not trying to drop it, you
will be penalized. Also, nothing will happen if you try to walk to the remote control, cereal,
toothpaste, or salmon, if you try to walk to them and they are contained inside anything.”
Effect main:

if holding (toothpaste_62) and not is_drop(A):
Reward -1

if inside_something (remotecontrol_452) and A == walk_to(remotecontrol_452):
s’ -> s
if inside_something(cereal_334) and A == walk_to(cereal_334):
s’ -> 8§
if inside_something (toothpaste_62) and A == walk_to(toothpaste_62):
s’ -> 8
if inside_something(salmon_327) and A == walk_to(salmon_327):
s’ -> 8

Policy main:
if holding (toothpaste_62) and can_drop (toothpaste_62):
Execute drop (toothpaste_62)

Plan main:
Execute walk_to(remotecontrol_452)
Execute grab (remotecontrol_452)
Execute walk_to(sofa_368)
Execute puton (remotecontrol_ 452, sofa_368)
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A.9 GROUNDING SEMANTICALLY-AMBIGUOUS ADVICE

7

Advice: Put the baked good into the white box.

’the baked good’ refers to Pie, and "the white box’ refers to Microwave.

Advice: Put the baked dessert in the red food-box.

’the baked dessert’ refers to Pie, and "the red food-box’ refers to Fridge.

Advice: Store the pastry in the tall red box.

’the pastry’ refers to Pie, and ’the tall red box’ refers to Fridge.

Advice: Open the appliance for heating.

’the appliance for heating’ refers to Microwave.

Advice: Open the cooking device.

“the cooking device’ refers to Microwave.

Advice: Grab the blue box and put it on the wooden white surface.

In this context, ’the blue box’ refers to Cereal, and 'the wooden white surface’ refers to
Kitchentable.

Adpvice: Place the seafood on the dining surface.

"the seafood’ refers to Salmon and ’the dining surface’ refers to Kitchentable.
Advice: Store the breakfast grains on the black shelving.

’the breakfast grains’ refers to Cereal, and "the black shelving’ refers to Bookshelf.
Advice: Set the channel changer on the seating furniture.

’the channel changer’ refers to Remotecontrol, and ’the seating furniture’ refers to Sofa.
Adpvice: Open the cooling appliance and grab the seafood.

’the cooling appliance’ refers to Fridge, and ’the seafood’ refers to Salmon.

Advice: Put the small tube on the wooden box.

’the small tube’ refers to Toothpaste, and "the wooden box’ likely refers to Cabinet.
Advice: Put the food with the white packaging into the big red box

’the food with the white packaging’ refers to Cereal, and "the big red box’ refers to Fridge.
Adpvice: Place the baked dessert on the white hard surface.

’the baked dessert’ refers to Pie, and ’the white hard surface’ refers to Kitchentable.
Advice: Place the seafood on the white wooden surface.

’the seafood’ refers to Salmon, and ’the white wooden surface’ refers to Kitchentable.
Advice: Put the orange food in the red box.

’the orange food’ refers to Salmon, and ’the red box’ refers to Fridge.

Adpvice: Open the red food-box.

’the red food-box’ refers to Fridge.

Advice: Open the white box you might put food in.

’the white box you might put food in’ refers to Microwave.

B ADDITIONAL EXPERIMENT: GROUNDING COMMANDS TO RLANG PLANS -
COMPARISON TO SAYCAN

We compare our method to SayCan (Ahn et al., 2022), which uses the commonsense reasoning
capacity of LLMs to satisfy a natural language request by generating a simple plan consisting of a
series of pre-engineered high-level robot skills. Adopting the same

In this experiment we demonstrate that, in a simulated 3-dimensional physical environment, RLang
can express the full range of natural language instructions necessary for a robot to complete various
tasks. By grounding natural language instructions to RLang policies over this environment, we
achieve performance on par with the results from the open-source tasks that the original SayCan paper
evaluated on, showing that RLang can be easily substituted for the formal language that the SayCan
authors developed for this specific task, allowing for generalization without sacrificing performance.

Similar to the SayCan work, we assume that we are given a grounding tuple (II, S, A, ), and a set
of skills IT, where each skill m € II performs an action with the robot arm to manipulate a block or
a bowl. We evaluate on the 8 unique tasks made available in the open-source version of SayCan,
running each task across 10 different randomly selected initial states, using both the native SayCan
language and RLang as the DSL for grounding natural language instructions to robot behavior.
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Figure 10: Top: One configuration of the initial and completed states in the SayCan environment.
Bottom: the action sequence to execute on the instruction: “put all the blocks in the green bowl.”,
from the robot arm’s perspective

Table 5: Success rates of SayCan and RLang-based instruction grounding rate on each task, out of 10
random initial states.

Instruction SayCan NL2RLang

put all the blocks in different corners. 10 10
move the block to the bowl.

put any blocks on their matched colored bowls.
put all the blocks in the green bowl.

stack all the blocks.

make the highest block stack.

put the block in all the corners.

clockwise, move the block through all the corners.

SOOI I
SOOI I

[E—
—

Each task configuration that the original SayCan agent completes, is also completed by the RLang
agent. While their behavior on failure cases occasionally varied, these were generally caused by
errors in the vision model’s processing of shadows in the simulated environment. These generally
caused the textual scene description fed into GPT-3 to include a block where a bowl should be, and
occasionally incorrect color labels, which often provided the text-only planner with a nonsensical task
that was impossible to complete. Similarly, in cases where multiple action orders could satisfy the
request, the RLang and SayCan pipelines occasionally diverged in the order of actions. Nonetheless,
neither language grounding pipeline completed a task configuration that the other one did not.
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C EXPERIMENT PARAMETERS

In all experiments, for both Dyna-Q and RLang-Dyna-Q, we set the learning rate « to 0.1, the discount
factor v t0 0.99, €; = €2 = 0.1, except when there is policy or plan advice, uniform exploration, and
16 hallucinatory updates with the learned dynamics model.

For the translation step, we use the gpt-3.5-turbo-instruct model with a temperature of 0.

34



	Introduction
	Background
	Leveraging Formal Specification Languages for Decision-Making
	Leveraging Natural Language for Decision-Making
	Large Language Models for Machine Translation

	Grounding Natural Language Advice to RLang Programs
	RLang-Dyna-Q: A Single Agent for Leveraging All of RLang

	Experiments
	Leveraging Expert Advice in Minigrid
	Leveraging Expert Advice in VirtualHome
	Grounding Symbols with a Vision-Language Model
	Evaluating Translation and RLang Efficacy

	Discussion and Conclusion
	Appendix
	User Study
	Prompts Used for Translation Pipeline for Minigrid Experiments
	[Minigrid] Prompt used for Stage 1 of the translation pipeline. Given a new piece of advice, we prompt the LLM to classify it as an Effect, Plan, or Policy.
	[Minigrid] Prompt used for Stage 2 of the pipeline to translate a piece of advice into an RLang plan.
	[Minigrid] Prompt used for Stage 2 of the pipeline to translate a piece of advice into an RLang policy.
	[Minigrid] Prompt used for Stage 2 of the pipeline to translate a piece of advice into an RLang effect.

	Prompts Used for Translation Pipeline for VirtualHome Experiments
	[VirtualHome] Prompt used for Stage 1 of the translation pipeline. Given a new piece of advice, we prompt the LLM to classify it as an Effect, Plan, or Policy.
	[VirtualHome] Prompt used for Stage 2 of the pipeline to translate a piece of advice into an RLang plan.
	[VirtualHome] Prompt used for Stage 2 of the pipeline to translate a piece of advice into an RLang policy.
	[VirtualHome] Prompt used for Stage 2 of the pipeline to translate a piece of advice into an RLang effect.

	User Study - Translated Advice for Minigrid Experiments
	MidMazeLava - Translated Advice
	HardMazeLight - Translated Advice
	FoodSafety - Translated Advice
	CouchPotato - Translated Advice
	Grounding Semantically-Ambiguous Advice

	Additional Experiment: Grounding Commands to RLang Plans - Comparison to SayCan
	Experiment Parameters

