
Under review as submission to TMLR

Loss- and Reward-Weighting for Efficient Distributed Rein-
forcement Learning

Anonymous authors
Paper under double-blind review

Abstract

This paper introduces two novel learning schemes for distributed agents in continuous
action-based Reinforcement Learning (RL) environments: Reward-Weighted (R-Weighted)
and Loss-Weighted (L-Weighted) gradient merger. Traditional methods aggregate gradi-
ents through simple summation or averaging, which may not effectively capture the diverse
learning strategies of agents operating in different environments. This aggregation can lead
to suboptimal updates by diluting the influence of more informative gradients. To address
this, our proposed methods adjust the gradients of each agent based on its episodic perfor-
mance, scaling by episodic reward (R-Weighted) or episodic loss (L-Weighted). By giving
more weight to gradients from more successful or informative episodes, these methods aim
to prioritize the most relevant learning signals, enhancing overall training efficiency. Each
agent operates with identical Neural Network parameters but within differently initialized
versions of the same environment, resulting in distinct gradients from each actor.
By weighting the gradients according to their rewards or losses, we enable agents to share
their learning potential, focusing on environments with richer or more critical information.
We empirically demonstrate that the L-Weighted method outperforms state-of-the-art ap-
proaches in various RL environments, including CartPole, LunarLander, HumanoidStandup,
and Half-Cheetah, with an average of 13.84% higher cumulative reward. The R-Weighted
approach performs similarly to state-of-the-art methods, with a minor improvement of 2.33%
higher cumulative reward.

1 Introduction

The rapid advancement of Neural Networks (NN) has transformed various domains, including image recogni-
tion, natural language processing, and game playing. However, the training of these sophisticated models is
computationally intensive and time-consuming. Distributed Machine Learning (DML) emerges as a pivotal
solution to this challenge, enabling the parallel training of NNs across multiple machines. This parallelism
can significantly speed up training by leveraging synchronous or asynchronous updates across distributed
systems Hall et al. (2000).

Traditional DML techniques primarily focus on summing or averaging NN parameters after local updates,
facilitating learning from numerous interactions within diverse environments using a unified NN setup Hall
et al. (2000). Despite its advantages, this approach often fails to capture the nuanced learning potential of
agents operating under varying conditions, leading to suboptimal model performance.

Within the DML framework, Federated Machine Learning (FML) has garnered attention for its ability to
handle heterogeneous data, enhance data privacy, accelerate training, and bolster model robustness McMahan
et al. (2017). Federated Averaging (FedAvg) is a cornerstone method in FML, employing a client/server
architecture that updates local agents multiple times before aggregating their parameters based on the
volume of data processed McMahan et al. (2017). While FedAvg has shown promise, it does not fully
address the intricacies of gradient aggregation in diverse Reinforcement Learning (RL) environments.

One significant application of DML is the acceleration of training in complex RL scenarios, such as au-
tonomous driving and cooperative multi-agent systems in games like Gran Turismo and Dota2 Wurman

1



Under review as submission to TMLR

et al. (2022); OpenAI et al. (2019). These RL environments present unique challenges related to scalability,
computational efficiency, and convergence speed. Addressing these challenges is crucial for advancing the
state-of-the-art in reinforcement learning Hall et al. (2000).

Training in complex RL environments can be approached through Single-Agent (SA) or Multi-Agent (MA)
implementations. Single-agent Reinforcement Learning (SARL) techniques, such as Proximal Policy Opti-
mization (PPO) and Deep-Q Networks (DQN), have been effectively applied to a variety of tasks, including
advanced video games like DOTA2, Atari, Stratego, and StarCraft as well as autonomous driving OpenAI
et al. (2019); Mnih et al. (2013); Vinyals et al. (2019); Ma et al. (2024); Schwarzer et al. (2023); Perolat
et al. (2022). Despite their success, these methods require significant computational resources, particularly
in complex RL environments characterized by high-dimensional and continuous state-action spaces. Further-
more, SARL methods often experience slow convergence rates in these settings, posing significant challenges
to achieving optimal performance efficiently.

Multi-Agent Reinforcement Learning (MARL) implementations, such as QMix and Value Decomposition
Networks (VDN), have been developed to address cooperative and competitive tasks in environments like
Multi Particle Environments (MPE), Starcraft 2’s marines, stalkers and zealots, Switch, Fetch, and Checkers
Terry et al. (2021); Rashid et al. (2018); Sunehag DeepMind et al. (2018). While these methods have
shown promising results, they also face challenges related to coordinating multiple agents, mitigating non-
stationarity, and handling the exponential growth of state and action spaces.

Innovative approaches in DML and FML can help tackle these challenges by leveraging the collective expe-
riences of multiple agents and efficiently aggregating their gradients. This can lead to improved scalability,
faster convergence, and more robust learning in both SARL and MARL settings.

In this context, our work introduces two novel gradient aggregation schemes tailored for SARL Distributed
RL environments: Reward-Weighted (R-Weighted) and Loss-Weighted (L-Weighted) gradient merger. Unlike
traditional methods that aggregate gradients through simple summation or averaging, our approach scales
gradients based on episodic rewards or losses, thereby prioritizing the most informative learning signals. This
innovative method aims to enhance training efficiency and model performance in continuous action space
environments by leveraging the unique learning experiences of individual agents.

Through extensive empirical evaluation of SARL environments, we demonstrate that our L-Weighted method
significantly outperforms state-of-the-art approaches in various RL environments, achieving an average of
13.84% higher cumulative reward. The R-Weighted method also shows a minor improvement over existing
methods, with a 2.33% increase in cumulative reward. These findings underscore the potential of our weighted
gradient aggregation techniques to advance the field of distributed RL.

2 Background

The evolution of Reinforcement Learnign (RL) techniques, such as Deep Q-Networks (DQN), Proximal
Policy Optimization (PPO), and QMIX, has marked significant advancements in Single-Agent (SA) and
Multi-Agent (MA) systems, enabling exceptional applications in diverse fields Mnih et al. (2013); Schulman
et al. (2017); Vinyals et al. (2019); OpenAI et al. (2019); Rashid et al. (2018). These methods have addressed
critical challenges in RL, enhancing system efficiency and intelligence. However, they also present notable
drawbacks, including the high computational resources required for training and limitations in handling con-
tinuous action spaces, particularly in Distributed RL (DistRL) environments OpenAI et al. (2019); Vinyals
et al. (2019). While DQN, PPO, and similar algorithms have significantly advanced the field, their appli-
cability in complex, real-world scenarios is often constrained by these computational and methodological
limitations. This background chapter explores the cutting-edge in RL, highlighting both the achievements
and the inherent challenges of current approaches, especially the underexplored areas of gradient aggrega-
tion methods for continuous actions, setting a comprehensive backdrop for further discussion on the future
trajectory of RL research.

Recent advancements in RL have played a pivotal role in driving progress in both SA and MA systems. These
advancements have expanded the scope of possibilities in various applications, from gaming to robotics, and
have contributed to the development of more efficient, robust, and intelligent systems. Technologies such

2



Under review as submission to TMLR

as DQN, PPO, Deep Deterministic Policy Gradient (DDPG), Value Decomposition Networks (VDN), and
QMIX have significantly propelled the field forward Mnih et al. (2013); Schulman et al. (2017); Lillicrap
et al. (2016); Sunehag DeepMind et al. (2018); Rashid et al. (2018). DQN, by merging deep learning
with Q-learning, mastered Atari games, setting a precedent for future developments Mnih et al. (2013).
PPO and DDPG have refined RL for improved efficiency and adaptability to continuous action spaces
Schulman et al. (2017); Lillicrap et al. (2016). In the realm of MA systems, VDN and QMIX have introduced
sophisticated methods for value decomposition and inter-agent coordination, addressing challenges such as
credit assignment and enhancing cooperative behavior Sunehag DeepMind et al. (2018); Rashid et al. (2018).
Together, these innovations have overcome key obstacles in RL, broadening its application spectrum and
deepening our theoretical understanding.

Alongside advancements in RL, novel RL tasks have emerged, such as autonomous driving, necessitating
extensive computational resources for training. A prevalent method for addressing highly complex envi-
ronments is through DistRL Liang et al. (2018). DistRL facilitates training across numerous computers,
enabling each agent to glean insights from their interactions with the environment, which can be applied
to both Single-Agent Reinforcement Learning (SARL) and Multi-Agent Reinforcement Learning (MARL)
using multiple agents.

In reference to MARL tasks, QMIX and its variants represent significant advancements in the field, aiming
at facilitating the training and coordination among multiple agents in complex environments. QMIX is
particularly noted for its innovative approach to value decomposition, allowing for more efficient learning
processes by combining individual agents’ Q-values into a global action-value function in a way that maintains
coherence with the overall team’s objectives Rashid et al. (2018); Terry et al. (2021). This is crucial in
scenarios where agents must work together towards a common goal, and the algorithm’s structure facilitates
this by ensuring that the joint action values are monotonically increasing with respect to each agent’s action-
value function. This property helps in overcoming challenges associated with the credit assignment problem,
where it becomes difficult to ascertain the contribution of each agent towards the collective outcome.

Variants of QMIX, such as QTRAN and Weighted QMIX, further refine this approach by addressing some
of the limitations found in the original QMIX formulation, such as handling varying degrees of importance
among the agents’ contributions and providing a more flexible framework for value decomposition that can
adapt to a broader range of scenarios Son et al. (2019); Rashid et al. (2020).

For SARL tasks, the PPO algorithm is among the leading methods designed to enhance the speed of con-
vergence Schulman et al. (2017). PPO stands out due to its simplicity and effectiveness, employing a policy
gradient method that seeks to improve the policy while ensuring the updates do not deviate too drastically
from the previous policy. This is achieved through the optimization of a surrogate objective function, which
discourages taking steps when the new policy deviates from the old one. PPO has a lot of the benefits of
the Trust Region Policy Optimization algorithm, empirically showing better performance while being signif-
icantly simpler to implement Schulman et al. (2017). These benefits have made it widely popular in both
academic and practical applications of RL.

Both QMIX (and its variants) and PPO highlight the diversity in approaches and objectives between MARL
and SARL tasks. While MARL focuses on the dynamics of multiple agents and their interactions within a
shared environment, SARL concentrates on optimizing the decisions of a single agent. The development and
continuous refinement of these algorithms are indicative of the rapid progress in the field of reinforcement
learning, offering promising tools for tackling a wide array of problems, from game playing and robotics to
complex system optimization Schulman et al. (2017); Rashid et al. (2018); Zhang et al. (2019).

The development of DistRL algorithms has predominantly focused on discrete action spaces, owing to the
relative simplicity of handling a finite set of actions. This focus has resulted in a variety of robust algorithms
tailored for discrete actions, such as variations of Q-learning and DQN adapted for distributed settings.
However, the arena of continuous action spaces in DistRL remains less explored, largely due to the inherent
complexities associated with designing algorithms capable of efficiently navigating an infinite set of possible
actions. Despite these challenges, some progress has been made with algorithms like Distributed Proximal
Policy Optimization (DPPO) and Distributed Soft Actor-Critic (DSAC), which extend SA continuous action
space algorithms to distributed environments Schulman et al. (2017); Duan et al. (2022). Nonetheless, the

3



Under review as submission to TMLR

field still requires significant advancements to fully address the complexities of continuous action spaces,
highlighting a key area for future research and development in reinforcement learning.

In the realm of Distributed SARL, innovations like the Importance Weighted Actor-Learner Architecture
(IMPALA), Asynchronous Advantage Actor-Critic (A3C), Retrace, and Ape-X represent significant ad-
vancements. Among these, IMPALA stands out for its unique approach to addressing the staleness of policy
gradients—a common challenge in DistRL where experiences collected by actors may no longer align with
the current policy due to delays in policy updates Espeholt et al. (2018); Deepmind et al. (2018); Mnih et al.
(2016); Munos et al. (2016).

Retrace is an algorithm used to estimate the value function, especially in off-policy scenarios where the behav-
ior and the target policy differ. For off-policy scenarios, they used equation 1, where cs = λmin

(
1, π(as|xs)

µ(as|xs)

)
Munos et al. (2016).

RQ(x, a) := Q(x, a) + E

∑
t≥0

γt
(
Πt

s=1cs

)
(rt + γEπQ(xt+1, ·)−Q(xt, at))

 (1)

IMPALA employs the V-trace off-policy correction algorithm to mitigate this issue. V-trace is designed to
adjust policy gradient estimates, allowing for the use of experiences generated under old policies to improve
the current policy. The V-trace target (vs) for value approximator V (xs) at state xs is defined according to
equation 2. The V-trace target (vs) for value approximator V (xs) at state xs defined according to equation
2 δtV is the temporal difference of value function V , according to equation 3, in which rt refers to reward
at point t, and pt is an importance sampling weight, defined by equation 4, in which at refers to the action
at time t. It accomplishes this by introducing importance sampling weights, including pt for the action at
time t and ci for controlling the influence of the temporal difference error on the value function update.
These weights would help in correcting the updates to the value function V (xs) by computing a target
value (vs) that reflects the expected return under the current policy, even if the experiences were generated
under a past policy. The V-trace method updates the value parameters using gradient descent, targeting the
minimization of the squared difference (l2 loss) between the current value estimates and the V-trace target
values Espeholt et al. (2018).

This sophisticated handling of experiences via V-trace enables IMPALA to efficiently learn from distributed
experiences, leveraging the data collected across multiple actors to hasten learning while ensuring the rele-
vancy and effectiveness of the updates. This approach not only enhances the stability and speed of learning
in distributed settings but also sets a foundation for future innovations in tackling the inherent challenges
of distributed reinforcement learning with discrete action spaces.

Another significant sampling weight is ci defined by Equation 4, where c is analogous to the trace cutting
coefficients from Retrace. The product of ci quantifies the impact of the temporal difference on the value
function at the previous time step. Both pt and ci serve as importance sampling weights.

vs
def= V (xs) +

s+n−1∑
t=s

γt−s(Πt−1
i=sci)δtV (2)

δtV
def= pt(rt + γV (xt+1)− V (xt)) (3)

pt
def= min(p̂,

π(at|xt)
µ(at|xt)

), ci
def= (min(ĉ,

π(at|xt)
µ(at|xt)

)) (4)

Ape-X is a distributed prioritized experience replay with actors and learners Deepmind et al. (2018). The
actors gather data, and when reaching a sufficient batch of data, they calculate the absolute temporal
difference (TD) error of each sample of the data, and send it to the learner. The learner then takes the
data and updates its model parameters based on the replay gathered by the actors, after which it sends the

4



Under review as submission to TMLR

new network parameters to each actor for them to gather data. Once a replay has been used to update
the model parameters, the new TD error is calculated and used for the next round of updates. Replays
added to the learner’s replay memory are periodically removed, such that the updates are not all based on
the same data Deepmind et al. (2018). Asynchronous Advantage Actor-Critic (A3C) is an asynchronous
version of Advantage Actor-Critic (A3C) which allows each agent to calculate the loss they received training
in the environment and update the global network, and the global network is then used to update the policy.
A3C updates its network in accordance with Equation 5, where H refers to the entropy, and β refers to a
hyperparameter which controls the strength of the entropy regularization Mnih et al. (2016).

θ = ∇θ′ logπ(at|st; θ′)(Rt − V (st; θv)) + β∇θ′H(π(st; θ′)) (5)

PPO is a set of policy gradient methods that repeatedly sample data (action at, reward rt and state st)
from the environment and then optimizes a surrogate objective function Schulman et al. (2017). PPO
calculates a probability ratio (rt(θ)), which is derived from rt(θ) = πθ(at|st)

πθold
(at|st) , multiplying it by an estimated

advantage function (Â), then taking the minimum of their product and a clipped ratio times the advantage
function, as shown in Equation 6. The PPO algorithm is similar to Trust Region Policy Optimization
(TRPO), minimizing large updates, which can cause the algorithm to make a destructively large policy
update Schulman et al. (2017; 2015).

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt, 1− ϵ, 1 + ϵ)Ât)] (6)

Beyond our task of SARL algorithms, MARL algorithms can be employed to optimize all agents in the
environment with the objective of maximizing the collective reward. QMIX is a MARL algorithm that
conducts training centrally and executes in a decentralized manner. It operates by having individual agents
perform actions and update their networks, with each agent’s predicted Q-value serving as an input to a
mixing network. This mixing network then predicts the global Q-value, Qtot. QMIX ensures that the argmax
of Qtot aligns with the argmax Qi for each agent i. Any agent is only aware of its immediate surroundings
and does not receive information from other agents, instead using such information to update the network
Rashid et al. (2018).

Federated learning is an advanced machine learning framework designed to train models across decentralized
nodes while addressing challenges such as data heterogeneity, communication efficiency, security, and privacy.
Unlike traditional distributed learning, which primarily focuses on computational distribution, federated
learning emphasizes the selection of diverse data sources to improve model generalizability and minimizes
communication costs by selectively training subsets of agents. It employs a parameter server for aggregating
updates, ensuring data transmission security to protect sensitive information. This approach not only en-
hances model performance across varied data distributions but also conservatively manages bandwidth and
ensures participant privacy, setting federated learning apart in the realm of distributed algorithms.

One of the standard algorithms takes the gradients and sums them ∇gsum =
∑k

i=0∇gi, which we will refer
to as Baseline Sum. A modification of Baseline Sum is to average the gradients ∇gavg = ∇gsum/k. Which
takes the gradients, sums the gradients of the agents, and divides the sum by the number of agents (k).

2.1 Fed-Avg

The state-of-the-art Fed-Avg algorithm involves averaging the parameters mt. This process begins by uti-
lizing the same model across all agents, allowing each to update their weights based on their respective
datasets multiple times. After a predetermined number of updates, the parameters of each agent’s model
are aggregated. This aggregation involves summing the parameters, with each agent’s contribution being
scaled according to their proportion of data McMahan et al. (2017).

In the Federated Averaging (FedAvg) algorithm, each agent independently trains on their data several times
before transmitting their parameters (mt) to a central agent for averaging. The weighting of parameters
is determined by the proportion of data ( nk

n ) on which an individual agent has trained, as illustrated in
Equation 7 McMahan et al. (2017).

5



Under review as submission to TMLR

mt ←
∑

k

nk, wt+1 ←
nk

mt
wk

t+1 (7)

FedProx is an improvement on FedAvg, allowing for semi-finished updates on some agents and still updating
in the central location. Semi-finished updates are essential as some agents may only be able to perform n-k
passes on the data. At the same time, another may be able to finish all n passes on the data due to different
hardware Li et al. (2018).

Gradient aggregation focuses on two main objectives: enhancing training efficiency and reducing commu-
nication among distributed entities. Communication load is not part of our work, we assume there will be
no byzantine attacks and perfect communication. MixTailor Ramezani-Kebrya et al. (2023) introduces a
method based on random aggregation strategies, which renders Byzantine attacks ineffective by making the
gradient merging strategies unpredictable. Model Doctor proposes a fully autonomous system for diagnosing
and treating models, demonstrating that each category correlates with only a specific set of convolution
kernels. Moreover, the authors found that while adversarial samples are isolated, normal samples cluster
closely in the feature space Feng et al. (2022). This observation led to the development of a simple aggregate
gradient constraint, thereby facilitating the effective diagnosis and optimization of CNN classifiers Ji et al.
(2019).

Ji et al. utilized a recurrent neural network (RNN) as a parameter server to refine the aggregation of worker
gradients. Prakash and Reisizadeh et al. devised two algorithms, Aligned Repetition Coding (ARC) and
Aligned Minimum Distance Separable Coding (AMC), to enhance resilience against delays in "client-to-
helpers" links. ARC achieves a communication load of O(nh) between the master and helpers by replicating
gradient information across helper links. In contrast, AMC utilizes Minimum Distance Separable (MDS)
coding on the gradients to achieve a communication load of O(ne) between the master and helpers, and an
optimal load of O(1) between helpers and clients, considering a given resiliency threshold. Prakash et al.
(2020)

Distilled Gradient Aggregation Jeon et al. (2022) introduces a new method for input attribution in deep
neural networks by combining the strengths of both local and global attributions. It employs a novel technique
to distill input features using masks that identify weak and strongly positive contributors, aggregating
intermediate local attributions from the distillation sequence for reliable attribution.

Lazily Aggregated Gradient (LAG) Chen et al. (2018) adapts to skip gradient calculations for slowly-varying
components by reusing outdated gradients. This approach reduces communication and maintains training
speed, achieving a similar performance to batch gradient descent with decreased communication overhead.

3 Methods

This section discusses the different implementations and how they work in detail. The variations include
weighting based on either the reward or the loss and taking the average and summed gradients. Each
implementation uses a parameter server and synchronous worker setup, where the gradient weighting is done
on the parameter server. Which updates the model and sends the parameters back to each agent. After each
agent is done performing in their environment, they will update their gradients based on their experience
and send them back to the parameter server. The parameter server then does the gradient aggregation,
including weighting based on reward or loss for those respective algorithms, updates the network, and before
the agents perform their next set of actions, they receive the updated network, which they can use further.
The system starts by initializing the NN parameters in the parameter server, which are then sent to each
of the agents. When the agents have received their new parameters, each agent performs two episodes in
their environment. After each agent has sampled replay experience from their environment, they calculate
the gradient based on the agent’s sampled replay experience. Once all the agents have their gradients, the
gradients as well as any relevant information is sent to the parameter server. Based on the individual gradient
aggregation method, the parameter server aggregates the gradients and updates the NN parameters. The
updated parameters are then sent back to the agents for them to sample the environment again, this process
is repeated until the stop criteria is reached. For a flowchart of the full system overview, refer to Figure 1.

6



Under review as submission to TMLR

 

 

......

Figure 1: Systems Flowchart for Baseline-Sum, Baseline-Avg, R-Weighted and L-Weighted

The gradient aggregation methods include four major methods: Baseline-avg, Baseline-sum, R-Weighted and
L-Weighted. Baseline-avg takes the gradients sent by each agent, sums the gradients together, and divides
the gradient values on the number of agents and updates the NN. As for Baseline-sum, given the gradients
of each agent, it sums the gradients together to update the NN. R-Weighted works quite differently, taking
in the gradients and the rewards each agent received, and creating a weight to scale the gradient by based
on the reward and a minimum weight 1/h, as shown in Algorithm 2. L-Weighted is a similar method to the
R-Weighted method, taking in the gradients and the respective loss, creating a weight with which it scales
the gradient based on the loss and a minimum weight 1/h, as shown in Algorithm 3. A flowchart of the
aggregation methods is shown in Figure 2.

With a pseudocode algorithm of the parameter server shown in Algorithm:1.

3.1 Proposed methods

Next we will go into more detail of the motivation and principle of the two introduced algorithms: L-Weighted
and R-Weighted.

7



Under review as submission to TMLR

 

 

 

 
 

 

 

Figure 2: Shows the gradient aggregation activity for Baseline-Sum, Baseline-Avg, R-Weighted and L-
Weighted

Algorithm 1 Parameter worker algorithm Step
1: procedure R-Weighted
2: weights = parameter_server.get_weights()
3: for worker in workers:
4: rewards = worker.gather_replay(weights)
5: for k in k_epochs():
6: output = [worker.get_loss(weights) for worker in workers]
7: grads, loss = [], []
8: for o in output:
9: grads.append(o[0])

10: loss.append(o[1])
11:
12: weights = parameter_server.gradient_aggregation_activity(grads, rewards, loss)

8



Under review as submission to TMLR

3.2 R-Weighted Algorithm

3.2.1 Motivation

The R-Weighted algorithm aims to enhance agents’ learning efficiency by prioritizing scenarios that yield
higher rewards. This emphasis on high-reward scenarios is predicated on the hypothesis that they contain
valuable information crucial for optimizing agents’ decision-making processes.

3.2.2 Principle

The algorithm is centered on the optimization of learning processes through a systematic procedure of reward
adjustment. It begins by identifying the minimum reward value rmin from the entire reward set {r}, using
this minimum value as an offset to adjust each agent’s reward ri, shown in Algorithm:2.

Algorithm 2 R-Weighted gradient aggregation
1: procedure R-Weighted
2: weights = parameter_server.reward_weighted(grads, rewards)
3: min_reward = get_min(rewards)
4: adjusted_rewards = offsett_rewards(rewards, min_reward)
5: total_reward = get_total_reward(adjusted_rewards)
6: for i in range(len(grads)):
7: weight = (rewardi/total_reward) + 1

h
8: gradsi = gradsi ∗ weight

Note that quantitatively precise methodology is employed in the computation of the weight wi for each agent
within the framework. This process involves normalizing the individual agent’s reward by the aggregate total
reward rtot. Mathematically, this is represented as the ratio of the agent’s specific reward to the total reward.
To this ratio, a minimal weighting factor 1

h is added, where h is an adjusted hyperparameter, aligned with
the total number of agents in the system.

The inclusion of 1
h serves a dual purpose: firstly, it establishes a lower bound on the weight assigned to

each agent, ensuring that every agent’s gradient retains a baseline level of influence in the overall learning
process. Secondly, it mitigates the potential for disproportionately high weights by providing a controlled
scaling mechanism.

3.3 L-Weighted Algorithm

3.3.1 Motivation

The L-Weighted algorithm is driven by the objective of prioritizing learning from scenarios resulting in higher
episodic losses, premised on the idea that these scenarios offer crucial insights for strategy improvement.

3.3.2 Principle

This algorithm focuses on scenarios with higher episodic losses, involving an analysis of loss distribution.
Weighting an agents gradient on its loss lossi and seeing how much it contributed to the total loss amongst
all agents total_loss, shown in the Algorithm:3.

Algorithm 3 L-Weighted gradient aggregation
1: procedure R-Weighted
2: weights = parameter_server.loss_weighted(grads, loss)
3: total_loss = get_total_loss(loss)
4: for i in range(len(grads)):
5: weight = (lossi/total_loss) + 1

h
6: gradsi = gradsi ∗ weight

9



Under review as submission to TMLR

3.3.3 Methodology

Note that the weighting is very similar in the L-Weighted approach, but without the need to scale the loss.
Adding 1

h , with h being the number of agents used for training. L-Weighted weights the gradients on their
loss, or how well their predictions were on the replay experience, instead of weighting based on the reward
or the agent’s performance in the environment.

3.4 Neural Network Architecture

Different-sized neural networks are employed to investigate the impact of network complexity on agent
learning and performance.

Small Neural Network
Configuration: Consists of an input layer X, a hidden layer with 64 units, and an output layer Y .
Parameters: - Input to hidden layer: N × 64 × 2 (where N is the size of X). - Hidden to output layer:
M × 64× 2 (where M is the size of Y ).

Medium Neural Network
Configuration: Includes an input layer, four hidden layers, and an output layer.
Complexity: Offers greater representational capability than the small network.

Large Neural Network
Configuration: Comprises an input layer, six hidden layers, and an output layer.
Capacity: Allows for the highest complexity in modeling and learning processes.

Parameter Scaling
Variability: Parameter count varies by environment, with approximations of 9,000 for the small network,
45,000 for the medium network, and 750,000 for the large network.

3.5 Experimental Setup

Testing the different algorithms required a few different systems. To distribute the training, we used the
python library Ray, which used a parameter server and worker agents. We used the Pytorch library to
train the algorithms for the NN and Gym for the RL environments. For the gym environments, we selected
environments similar to Fan et al. (2021), adding BipedalWalker and HumanoidStandup, as they are easy to
install and distributable. Each worker gathered experiences for two episodes or 2000 timesteps, whichever
happens last, then backpropagating on the experiences, averaging the rewards and losses over these episodes
before sending them back. This is to fill the experience replay buffer before training and include more
variety of memories. The experiments were run with the NN models at least ten times for each model before
averaging them for the graphs. This led to a significant decrease in the randomness, which could affect the
performance of the algorithms. The anonymized code is available at 1.

4 Results and discussion

Given the methods introduced, we tested the efficacy of each algorithm by averaging the rewards over ten
runs for each of the three neural networks of different sizes, reducing the randomness due to the initial neural
network state. The experiments ran on a DGX2, with 16 Nvidia Tesla V100s, Two Intel Xeon Platinum
8168, 2.7 GHz, 24-cores, 1.5TB memory, and was tested on an AMD Threadripper 3960x 24-core with 64GB
memory.

4.1 Experiments and discussion

To show the performance of each algorithm we created plots, which shows the average reward received at
any step for each algorithm; Next are the tables which show the average reward (R̄) and its corresponding %
compared to the Baseline-Sum algorithm, as well as the average end reward (R̄end) and its % compared to

1https://anonymous.4open.science/r/Federated-learning-5CEC/README.md

10

https://anonymous.4open.science/r/Federated-learning-5CEC/README.md


Under review as submission to TMLR

Table 1: A table showing the summed reward R̄ and the summed end reward R̄end in CartPole. Values lower
than the baseline, with negative rewards given a highly positive baseline, are set to 0.0 in the table.

Algorithm R̄ (%) R̄end (%)
R-Weighted 264.75 (98.29%) 445.53 (99.37%)
L-Weighted 269.35 (99.92%) 448.74 (100.10%)
Baseline-sum 269.55 (100.0%) 448.33 (100.0%)
Baseline-avg 262.62 (97.43%) 444.93 (99.24%)
FedAvg 244.70 (90.30%) 423.02 (94.05%)
ActorSum -289.98 (0.0%) -285.84 (0.0%)
ActorAvg -346.20 (0.0%) -346.70 (0.0%)

the Baseline-Sum algorithm. When plotting the performances, we plotted the performance of each algorithm
for each environment, but we also included an environment using differently sized NN and using a softmaxed
weight, comparing it to weights that summed to 2. For the tables, when most algorithms have a negative
reward, we shift all algorithms by the most negative value. However, if one or two algorithms get a negative
reward, their percent is written as 0%.

4.1.1 CartPole

Among the environments tested, the simplest was the CartPole environment, where the task was to balance
a pole placed in a cart. Among the L-Weighted, R-Weighted, Baseline-Sum and Baseline-Avg there was little
difference between each algorithm, as shown in Figure 3. The L-Weighted algorithm performed very similarly
to the Baseline-Sum, performing better than the R-Weighted algorithm until the end. R-Weighted algorithm
receives a higher reward at the end when looking at Figure 3. A3C performs very well on average, with 7 of
its 10 runs beating out the other algorithms, as shown in Figure 4. However, A3C does show significantly
more variance, resulting in a graph with two tops: the first top shows where the best 7 runs solved the
environment, and the last top shows where the last 3 solved the environment. Impala is significantly slower
than the other algorithm; it is, however, very stable. Moving over to the Table 1, we find that R-Weighted
slightly underperforms the Baseline-Sum by 1.71% and 0.63% for its R̄ and R̄end. Moving over to the L-
Weighted algorithm, we find that it performs almost identically to the Baseline-Sum receiving 99.92% and
100.1% for its R̄ and R̄end.

400

300

200

100

0
0

Step

R
ew
ar
d

50 100 150 200

Figure 3: Shows the average rewards for PPO while training the Cartpole environment.

11



Under review as submission to TMLR

R
ew
ar
d

Step

300

200

200

100

400

400 600 800 1k 1.2k 1.4k

0

0

Figure 4: Shows the average rewards for PPO while training the Cartpole environment, the A3C and
IMPALA Algorithm got normalized based on the amount of time it used to run, compared to the Baseline-
sum. 200 update steps for each of them shows the amount of time it took for the baseline, while either
algorithm could spend many more updates for the steps.

4.1.2 LunarLander

Moving to the LunarLander environment, the task is to land a moon lander. In the LunarLander environment,
we find a significant difference in performance between L-Weighted, R-Weighted, and Baseline-Sum. Looking
at the plot in Figure 5, where L-Weighted outperformed R-Weighted and Baseline-Sum, both of which
performed very similarly. From the Table 2, we find that L-Weighted scored 160% and 137.79% for R̄ and
R̄end respectively, which is a significant performance boost. The R-Weighted did outperform Baseline-Sum
here, scoring 101.59% and 107.85% for R̄ and R̄end respectively, though this is a minor performance boost
when compared to the L-Weighted algorithms performance increase.

100

0

-100

-200

-300

0 20 40 60 80 100 120

Step

R
ew
ar
d

140

Figure 5: Shows the average rewards for each algorithm using PPO during training in the LunarLander
environment

12



Under review as submission to TMLR

Table 2: A table showing the summed reward R̄ and the summed end reward R̄end in LunarLander. Values
lower than the baseline, with negative rewards given a highly positive baseline, are set to 0.0 in the table.

Algorithm R̄ (%) R̄end (%)
R-Weighted -52.69 (101.59%) 84.55 (107.85%)
L-Weighted -6.41 (160.24%) 108.01 (137.79%)
Baseline-sum -53.94 (100.0%) 78.39 (100.0%)
Baseline-avg -132.84 (0.0%) -36.45 (0.0%)
FedAvg -121.93 (13.82%) -30.28 (0.0%)

Table 3: A table showing the summed reward R̄ and the summed end reward R̄end in BipedalWalker. Values
lower than the baseline, with negative rewards given a highly positive baseline, are set to 0.0 in the table.

Algorithm R̄ (%) R̄end (%)
R-Weighted 156.95 (106.32%) 219.49 (105.65%)
L-Weighted 138.64 (93.92%) 190.78 (91.83%)
Baseline-sum 147.62 (100.0%) 207.75 (100.0%)
Baseline-avg 121.67 (82.47%) 180.70 (86.97%)
FedAvg -104.71 (0.0%) -113.42 (0.0%)

4.1.3 BipedalWalker

The BipedalWalker environment is a 2D Bipedal robot, with the task being to control it. Looking at the
Figure 6, we find the L-Weighted algorithm underperforming, with R-Weighted outperforming the Baseline-
Sum algorithm. Moving to the Table 3, we find the L-Weighted algorithm scoring 93.92% and 91.83% for R̄
and R̄end respectively. The R-Weighted algorithm scored 106.32% and 105.65% for R̄ and R̄end respectively,
beating out the other algorithms. For the BipedalWalker environment, R-Weighted performs best, followed
by the Baseline-Sum, L-Weighted and the Baseline-Avg.

150

200

250

100

50

0

-50

0 200 400 600 800 1k 1.2k

Step

R
ew
ar
d

Figure 6: Shows the average rewards for PPO during training the BipedalWalker environment

4.1.4 HalfCheetah

The HalfCheetah environment is a robotics environment in which the algorithm controls a 2D cheetah with
one front and one rear leg. Looking at our Figure 7, we found that Impala very quickly reached an average

13



Under review as submission to TMLR

Table 4: A table showing the summed reward R̄ and the summed end reward R̄end in HalfCheetah. Values
lower than the baseline, with negative rewards given a highly positive baseline, are set to 0.0 in the table.

Algorithm R̄ (%) R̄end (%)
R-Weighted 2079.15 (99.67%) 2556.03 (100.72%)
L-Weighted 2291.36 (109.84%) 2673.56 (105.36%)
Baseline-sum 2085.92 (100.0%) 2537.62 (100.0%)
Baseline-avg 2158.96 (103.5%) 2582.03 (101.75%)

reward of 1000, but after letting it train for longer it became clear this was a local optima, after which it
went slowly down to -500 before going improving again. As for A3C it is unable to train in this environment.
L-Weighted significantly beat out the Baseline-sum, while R-weighted underperformed in this environment.
To be more specific, the Table 4, L-Weighted scored 109.84% and 105.36% for R̄ and R̄end respectively; with
R-Weighted scoring 99.67% and 100.72%. Meaning that the L-Weighted algorithm performed best, with the
R-Weighted and Baseline-Sum performing almost identically.

3000

2000

1000

0

0 2k 4k 8k6k 10k 12k

Step

R
ew
ar
d

Figure 7: Shows the average rewards for each algorithm using PPO during training in the HalfCheetah
environment

4.1.5 Humanoid Standup

The most complex environment is the Humanoid Standup environment; it is a 3D environment with the
task of controlling a humanoid body. The actions add torque to the torso, arms, legs, and head to make the
humanoid stand up. Figure 8 we find both the R-Weighted and L-Weighted algorithms outperformed the
Baseline-Sum, reaching a score of approximately 152,000, while the Baseline-sum only reached approximately
140,000. Looking at Table 5, we find L-Weighted scoring 105.29% and 106.31% for R̄ and R̄end respectively,
while R-Weighted score 105.76% and 106.97% Though the percentages do not look very large, looking at
the Figure and R̄end, we can see that Baseline-Sum does not reach a reward of 130,000. However, the
figure clearly shows that there is a point at which the Baseline-Sum scores highest, but the L-Weighted and
R-Weighted algorithms catch up.

14



Under review as submission to TMLR

Re
w
ar
d

Step

1.4e+5

1.2e+5

1e+5

80000

40000

60000

20000

0

1k 2k 3k 4k 5k 6k 7k

Figure 8: Shows the average rewards for each algorithm using PPO during training in the HumanoidStandup
environment

Table 5: A table showing the summed reward R̄ and the summed end reward R̄end in HumanoidStandup.
Values lower than the baseline, with negative rewards given a highly positive baseline, are set to 0.0 in the
table.

Algorithm R̄ (%) R̄end (%)
R-Weighted 135467.86 (105.76%) 145709.72 (106.97%)
L-Weighted 134872.10 (105.29%) 144815.07 (106.31%)
Baseline-sum 128088.64 (100.0%) 136210.13 (100.0%)

4.1.6 Network size and hyperparameter choice

The next issue is that of network size and its resulting performance, to test the effect of a medium sized
network or a larger sized network we tested a 45 000 parameter and a 750 000 parameter network respectively.
Looking at the Figures 9, 10, we find that the L-Weighted algorithm outperforms the Baseline-Sum, while
the R-Weighted algorithm performs very similarly.

The choice of h in the weighting of gradients for R/L-Weighted algorithms was chosen based on testing,
where if we used an h value of the number of agents, with final weight being divided by 2, resulting in a
softmax set of weights, the algorithm performed worse in most environments, regularly being less stable and
performing worse. The comparative performance is shown in Figure 11.

4.2 Results discussion

During testing, we found that we had two effective implementations: R-Weighted and L-Weighted. Both
algorithms seemed to perform similarly or better than the Baseline-Sum algorithm, receiving a higher re-
ward, with one exception for each algorithm. The R-Weighted algorithm underperformed in the CartPole
environment, giving it a lower R̄ of 98.29% and R̄end of 99.37%. L-Weighted algorithm underperformed in
the BipedalWalker environment, where it got a R̄ of 93.92% and R̄end of 91.83%. We tested against A3C
and IMPALA for the CartPole environment, where we found that IMPALA was significantly slower, while
A3C was quite unstable. The instability meant that there were some environments in which it beat out
the R-Weighted, L-Weighted algorithm, but its instability makes it slower on average. As the CartPole
environment was a discrete environment, this gave A3C and IMPALA their best scenario. Testing IMPALA
in continuous action environments such as the Half-Cheetah environment, we find that it can get an initial

15



Under review as submission to TMLR

Step

R
ew
ar
d

100

0

-100

-200

-300

0 20 40 60 120 14080 100

Figure 9: Shows the average rewards for each algorithm using PPO during training in the LunarLander
environment with the medium Neural Network

Step

R
ew
ar
d

100

0

-100

-200

-300

0 20 40 60 120 14080 100

Figure 10: Shows the average rewards for each algorithm using PPO during training in the LunarLander
environment with the large Neural Network

high reward, but when it reaches a point at which it crashes and gets stuck in local optima. The same is
true for A3C, which gets stuck in local optima when training in continuous action environments. IMPALA
and A3C could perform better when tested with different network structures and hyperparameters, but our
testing did not find a combination that made them comparable to the PPO implementations when discussing
continuous action environments.

We theorize that the R-Weighted algorithm may overfit in some scenarios; an example is a self-driving
environment in which one agent turns left and receives a high reward, which may lead to the other agents
trying something similar.

To show the performance in a different light, we created one Table showing at which time each algorithm
reached the listed reward threshold Table 6, and a table showing the variance between the different runs

16



Under review as submission to TMLR

LunarLander softmax
R-Weighted-softmax R-Weighted

0 50 100 150 200

Step

-200

-100

0

100

Re
w

ar
d

Figure 11: Shows the average rewards in the LunarLander environment using PPO for training for the
R-Weighted implementation and comparing it with a softmax version

Table 6: Shows the episode number at which the running score reached the reward threshold; this threshold
is shown in the parenthesis. LL refers to LunarLander; CaP refers to CartPole, HC refers to HalfCheetah,
HS refers to HumanoidStandup and BW to BipedalWalker 150+ or 1500+ means they did not reach the
threshold for solving the environment, the percentage refers to when the algorithm reached compared to the
Baseline-Sum.

Algorithm LL CaP BW HC HS
(R-Threshold) (80) (400) (200) (2500) (1.3 ∗ 105)
R-Weighted 117 104 690 1953 1519
% 104.28% 97.1% 120.14% 78.96% 132.26%
L-Weighted 98 100 950 1512 1541
% 124.49% 101.00% 87.26% 101.98% 130.37%
Baseline-sum 122 101 829 1542 2009
% 100.0% 100.0% 100.0% 100.0% 100.0%
Baseline-avg 150+ 103 1137 1980
% 0.0% 98.0% 72.9% 128.72%

in Table 7. These thresholds are taken from the graphs, where the increasing rewards start slowing down.
These thresholds are shown in Table 6 in parenthesis for each environment. The numbers in Table 6 shows
at which step each algorithm reached the threshold. In Table 6, we have some values, which are the length
of the training with a + at the end; this is because they did not reach the threshold in time. When listing
the point at which the algorithm reached the threshold, we use the running score with a value of 0.9 here.
Upon analyzing Table 7, it is evident that the baseline method has the lowest average variance. However,
its mean reward is slightly lower than or within 2% of the R-Weighted algorithm’s mean reward in all of the
environments.

The environments have different complexities; While the LunarLander environment spends approximately
150 backpropagations for each algorithm to start converging, the BipedalWalker environment takes approx-
imately 1200. Both LunarLander and BipedalWalker have a significant difference compared Half-Cheetah,
which takes 12000 backpropagations.

4.2.1 Average reward and end reward

Calculating the average R̄% for all of the environment, we find that R-Weighted achieves 102.33%, while
L-Weighted achieves 113.84%. Moving over to the average R̄end% for all environments, R-Weighted gets
104.11%, and L-Weighted 108.28%.

17



Under review as submission to TMLR

Table 7: The variance of each algorithm in each of the different environments

Algorithm CartPole LunarLander BipedalWalker HalfCheetah HumanoidStandup
R-Weighted 25.71 33.37 33.57 256.32 10652.59
L-Weighted 28.21 57.37 40.26 515.75 5353.33
Baseline-sum 28.60 26.92 28.77 115.75 7511.90
Baseline-avg 30.86 50.87 40.66 229.85
IMPALA 13.25
A3C 118.81

LunarLander BipedalWalker CartPole HalfCheetah HumanoidStandup0

20

40

60

80

100

120

140

160

Re
wa

rd
 %

101.59

106.32

98.29 99.67

105.76

160.24

93.92

99.92

109.84
105.29

100 100 100 100 100

0

97.43

82.47

103.5

13.82

0

90.3

Bar Plot of Algorithmic Performance Across Different environments
R-Weighted L-Weighted Baseline-sum Baseline-avg FedAvg

Figure 12: A barplot showing the performance of each algorithm for each environment

Looking at Figure 12, we find the L-Weighted algorithm has more extremes in its performance with its
best R̄ performance being 160.24% of the Baseline-sum algorithm, while its worst R̄ performance is 93.92%
compared to Baseline-sum. This is compared to the R-Weighted algorithm which achieved a 106.32% best R̄
performance and a 98.29% worst R̄ performance over all the environments when compared to Baseline-sum.
Though there is only one environment in which L-Weighted underperformed, its performance in the worst
instance could lead to it not being the best algorithm in every environment. This is in stark contrast to
R-Weighted, which didn’t receive a significant boost to the performance, only receiving a 2.326% increase
to R̄, a 4.112% increase to R̄end, with a 98.29% performance in the worst environment when looking at
R̄, and a 99.37% when looking at the worst R̄end. Looking at the 4.2.1 section, we find that R-Weighted
scores a R̄% of 102.326% and R̄end% of 104.112%, the 2.32% and 4.11% performance boost is not too much,
though it can be significant in some scenarios. The L-Weighted algorithm achieves a R̄% of 113.842% and
R̄end% of 108.278%, giving it a performance boost of 13.84% and 8.28%. We find R-Weighted to be more
stable, though with a lower potential boost to performance; Meaning R-Weighted is better for stability, while
L-Weighted has a greater potential for improvement.

As the hyperparameters used for each environment were chosen for the Baseline-sum algorithm, it could also
be that the L-Weighted/R-Weighted algorithm would do better if we optimized the hyperparameters for its
performance.

18



Under review as submission to TMLR

4.3 Future Work

Future work includes expanding the environments to test these algorithms and trying more complex environ-
ments such as the CarRacing Environment. Testing it for discrete action space algorithms and comparing
it to discrete methods. Testing how the method is affected by training in a very complex environment
with differently sized NN. Checking out memory-based models, such as having shared memory amongst the
agents, while the agents start with different weights and update on the shared memory themselves. Lastly,
we would like to combine the different methods to create algorithms that benefit each of the algorithms.

5 Conclusion

This work introduced new distributed algorithms for backpropagation, weighting the agents gradients based
on either loss or reward. The weights of each agent’s gradient indicated how high the reward or loss was
compared to the summed reward or loss of all agents. The new algorithms were computationally simplistic
requiring minor changes to the backpropagation method. Looking at L-Weighted and R-Weighted, their
average rewards are 113.842% and 102.326% when compared to the Baseline-sum method. With the average
end reward, being 108.278% and 104.112% higher compared to the Baseline-sum method. Lastly R-Weighted
and L-Weighted reached the threshold reward 6.54% and 9.02% faster than Baseline-Sum, when using a
running score of 0.9.

The R-Weighted method allows for the utilization of higher rewards to start converging faster. The R-
Weighted method performs similarly to the Baseline-Sum over all the environments but gets an average end
reward, which is 4.11% higher.

We conclude that L-Weighted works better than the baseline algorithm in all but one environment. This
improved performance requires almost no changes to the code, only for the parameter server to weight the
gradients based on their loss or reward compared to the sum of all agents loss/reward.

References
Tianyi Chen, B Georgios, Giannakis, Tao Sun, and Wotao Yin. LAG: Lazily Aggregated Gradient for

Communication-Efficient Distributed Learning. NeurIPS, 32, 2018.

Dan Horgan Deepmind, John Quan Deepmind, David Budden Deepmind, Gabriel Barth, Maron Deepmind,
Matteo Hessel Deepmind, Hado Van, Hasselt Deepmind, and David Silver Deepmind. DISTRIBUTED
PRIORITIZED EXPERIENCE REPLAY. ICLR, 2018.

Jingliang Duan, Yang Guan, Shengbo Eben Li, Yangang Ren, Qi Sun, and Bo Cheng. Distributional
Soft Actor-Critic: Off-Policy Reinforcement Learning for Addressing Value Estimation Errors. IEEE
Transactions on Neural Networks and Learning Systems, 33(11):6584–6598, 11 2022. ISSN 21622388. doi:
10.1109/TNNLS.2021.3082568.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam Doron,
Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA: Scalable Dis-
tributed Deep-RL with Importance Weighted Actor-Learner Architectures. ICML, 35, 2018.

Flint Xiaofeng Fan, Yining Ma, Zhongxiang Dai, Wei Jing, Cheston Tan, Bryan Kian, and Hsiang
Low. Fault-Tolerant Federated Reinforcement Learning with Theoretical Guarantee. Advances in Neu-
ral Information Processing Systems, 34:1007–1021, 2021. URL https://github.com/flint-xf-fan/
Byzantine-Federeated-RL.

Zunlei Feng, Jiacong Hu, Sai Wu, Xiaotian Yu, Jie Song, and Mingli Song. Model Doctor: A Simple Gradient
Aggregation Strategy for Diagnosing and Treating CNN Classifiers. AAAI, 2022. URL www.aaai.org.

Lawrence O Hall, Kevin W Bowyer, W Philip Kegelmeyer, Thomas E Moore, and Chi-Ming Chao. Dis-
tributed Learning on Very Large Data Sets. Proceedings of the Sixth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining., 2000.

19

https://github.com/flint-xf-fan/Byzantine-Federeated-RL.
https://github.com/flint-xf-fan/Byzantine-Federeated-RL.
www.aaai.org


Under review as submission to TMLR

Giyoung Jeon, Haedong Jeong, and Jaesik Choi. Distilled Gradient Aggregation: Purify Features for Input
Attribution in the Deep Neural Network. NeurIPS, 36, 2022.

Jinlong Ji, Xuhui Chen, Qianlong Wang, Lixing Yu, and Pan Li. Learning to Learn Gradient Aggregation
by Gradient Descent. IJCAI, 2019.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated
Optimization in Heterogeneous Networks. Proceedings of the Adaptive & Multitask Learning Workshop, 1,
12 2018. doi: 10.48550/arxiv.1812.06127. URL https://arxiv.org/abs/1812.06127v5.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph Gonzalez,
Michael Jordan, and Ion Stoica. RLlib: Abstractions for Distributed Reinforcement Learning, 7 2018.
ISSN 2640-3498. URL https://proceedings.mlr.press/v80/liang18b.html.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING.
ICLR, 2016. URL https://goo.gl/J4PIAz.

Zhenyu Ma, Xinyi Liu, and Yanjun Huang. Unsupervised Reinforcement Learning for Multi-Task Au-
tonomous Driving: Expanding Skills and Cultivating Curiosity. IEEE Transactions on Intelligent
Transportation Systems, pp. 1–11, 2024. ISSN 1524-9050. doi: 10.1109/TITS.2024.3400224. URL
https://ieeexplore.ieee.org/document/10538221/.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. Proceedings of Machine
Learning Research, 54:1273–1282, 4 2017. ISSN 2640-3498. URL https://proceedings.mlr.press/v54/
mcmahan17a.html.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing Atari with Deep Reinforcement Learning. NIPS Deep Learning Workshop,
2013.

Volodymyr Mnih, Adria Puigdomenech Badia, Lehdi Mirza, Alex Graves, Tim Harley, Timothy P. Lillicrap,
David Silver, and Koray Kavukcuoglu. Asynchronous Methods for Deep Reinforcement Learning. 33rd
International Conference on Machine Learning, ICML 2016, 4:2850–2869, 2 2016. URL https://arxiv.
org/abs/1602.01783v2.

Rémi Munos, Google Deepmind, Thomas Stepleton, Anna Harutyunyan, and Marc G Bellemare. Safe and
efficient off-policy reinforcement learning. In 30th Conference on Neural Information Processing Systems,
Barcelona, Spain, 2016.

OpenAI, :, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dȩbiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Józefowicz, Scott Gray, Cather-
ine Olsson, Jakub Pachocki, Michael Petrov, Henrique P. d. O. Pinto, Jonathan Raiman, Tim Salimans,
Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang.
Dota 2 with Large Scale Deep Reinforcement Learning. 12 2019. doi: 10.48550/arxiv.1912.06680. URL
https://arxiv.org/abs/1912.06680v1.

Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent De Boer, Paul
Muller, Jerome T Connor, Neil Burch, Thomas Anthony, Stephen Mcaleer, Romuald Elie, Sarah H Cen,
Zhe Wang, Audrunas Gruslys, Aleksandra Malysheva, Mina Khan, Sherjil Ozair, Finbarr Timbers, Toby
Pohlen, Tom Eccles, Mark Rowland, Marc Lanctot, Jean-Baptiste Lespiau, Bilal Piot, Shayegan Omid-
shafiei, Edward Lockhart, Laurent Sifre, Nathalie Beauguerlange, Remi Munos, David Silver, Satinder
Singh, Demis Hassabis, and Karl Tuyls. Mastering the Game of Stratego with Model-Free Multiagent
Reinforcement Learning. 2022.

Saurav Prakash, Amirhossein Reisizadeh, Ramtin Pedarsani, and Amir Salman Avestimehr. Hierarchical
Coded Gradient Aggregation for Learning at the Edge. IEEE International Symposium on Informa-
tion Theory - Proceedings, 2020-June:2616–2621, 6 2020. ISSN 21578095. doi: 10.1109/ISIT44484.2020.
9174077.

20

https://arxiv.org/abs/1812.06127v5
https://proceedings.mlr.press/v80/liang18b.html
https://goo.gl/J4PIAz
https://ieeexplore.ieee.org/document/10538221/
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://arxiv.org/abs/1602.01783v2
https://arxiv.org/abs/1602.01783v2
https://arxiv.org/abs/1912.06680v1


Under review as submission to TMLR

Ali Ramezani-Kebrya, Iman Tabrizian, Fartash Faghri, and Petar Popovski. MixTailor: Mixed Gradient
Aggregation for Robust Learning Against Tailored Attacks. TMLR, 2023.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement
Learning. Proceedings of the 35th International Conference on Machine Learning, PMLR, 80:4295–4304,
2018. ISSN 2640-3498.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted QMIX: Expanding Monotonic
Value Function Factorisation for Deep Multi-Agent Reinforcement Learning. 34th Conference on Neural
Information Processing Systems, 34, 2020.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust Region Policy
Optimization, 6 2015. ISSN 1938-7228. URL https://proceedings.mlr.press/v37/schulman15.html.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov Openai. Proximal Policy
Optimization Algorithms. 7 2017. doi: 10.48550/arxiv.1707.06347. URL https://arxiv.org/abs/1707.
06347v2.

Max Schwarzer, Johan Obando-Ceron, Aaron Courville, Marc G Bellemare, Rishabh Agarwal, and
Pablo Samuel Castro. Bigger, Better, Faster: Human-level Atari with human-level efficiency. Proceedings
of the 40th International Conference on Machine Learning, 202, 2023.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Hostallero, and Yung Yi. QTRAN: Learning to
Factorize with Transformation for Cooperative Multi-Agent Reinforcement learning. Proceedings of the
36 th International Conference on Machine Learning, 36, 2019.

Peter Sunehag DeepMind, Guy Lever DeepMind, Audrunas Gruslys DeepMind, Wojciech Marian Czar-
necki DeepMind, Vinicius Zambaldi DeepMind, Max Jaderberg DeepMind, Marc Lanctot DeepMind,
Nicolas Sonnerat DeepMind, Joel Z Leibo DeepMind, Karl Tuyls, and Thore Graepel DeepMind. (Value
Decomposition) Value-Decomposition Networks For Cooperative Multi-Agent Learning. AAMAS, 2018.

J K Black Terry, Benjamin Grammel, Nathaniel Jayakumar, Mario Hari, Ananth Sullivan, Ryan San-
tos, Luis Perez, Rodrigo Horsch, Caroline Dieffendahl, Clemens Williams, and Praveen Niall L Lokesh,
Yashas Ravi. PettingZoo: Gym for Multi-Agent Reinforcement Learning. Advances in Neural Information
Processing Systems, 34:15032–15043, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
7ed2d3454c5eea71148b11d0c25104ff-Abstract.html.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss,
Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander S.
Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Molloy,
Tom L. Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama,
Dario Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu,
Demis Hassabis, Chris Apps, and David Silver. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature 2019 575:7782, 575(7782):350–354, 10 2019. ISSN 1476-4687. doi: 10.
1038/s41586-019-1724-z. URL https://www.nature.com/articles/s41586-019-1724-z.

Peter R. Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian, Thomas J.
Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, Leilani Gilpin, Piyush Khan-
delwal, Varun Kompella, Hao Chih Lin, Patrick MacAlpine, Declan Oller, Takuma Seno, Craig Sherstan,
Michael D. Thomure, Houmehr Aghabozorgi, Leon Barrett, Rory Douglas, Dion Whitehead, Peter Dürr,
Peter Stone, Michael Spranger, and Hiroaki Kitano. Outracing champion Gran Turismo drivers with
deep reinforcement learning. Nature 2022 602:7896, 602(7896):223–228, 2 2022. ISSN 1476-4687. doi:
10.1038/s41586-021-04357-7. URL https://www.nature.com/articles/s41586-021-04357-7.

Zhenyu Zhang, Xiangfeng Luo, Tong Liu, Shaorong Xie, Jianshu Wang, Wei Wang, Yang Li, and Yan
Peng. Proximal Policy Optimization with Mixed Distributed Training. ICTAI, 31:1452–1456, 2019. URL
https://github.com/BlueFisher/RL-PPO-with-Unity.

21

https://proceedings.mlr.press/v37/schulman15.html
https://arxiv.org/abs/1707.06347v2
https://arxiv.org/abs/1707.06347v2
https://proceedings.neurips.cc/paper/2021/hash/7ed2d3454c5eea71148b11d0c25104ff-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/7ed2d3454c5eea71148b11d0c25104ff-Abstract.html
https://www.nature.com/articles/s41586-019-1724-z
https://www.nature.com/articles/s41586-021-04357-7
https://github.com/BlueFisher/RL-PPO-with-Unity.

	Introduction
	Background
	Fed-Avg

	Methods
	Proposed methods
	R-Weighted Algorithm
	Motivation
	Principle

	L-Weighted Algorithm
	Motivation
	Principle
	Methodology

	Neural Network Architecture
	Experimental Setup

	Results and discussion
	Experiments and discussion
	CartPole
	LunarLander
	BipedalWalker
	HalfCheetah
	Humanoid Standup
	Network size and hyperparameter choice

	Results discussion
	Average reward and end reward

	Future Work

	Conclusion

