

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MOTIFSCREEN: GENERALIZING VIRTUAL SCREENING THROUGH LEARNING PROTEIN-LIGAND INTERACTION PRINCIPLES

Anonymous authors

Paper under double-blind review

ABSTRACT

Virtual screening methods continue to face a fundamental trade-off between accuracy and efficiency. Deep learning-based methods attempting to address this challenge suffer from overfitting due to sparse and biased training data and inadequate validation practices. We first show that the over-optimism in prevalent deep learning-based methods is due to incorrect validation setups, and their actual performance approaches that of random selection. We then present MotifScreen, a structure-based end-to-end virtual screening method that addresses these limitations through principle-guided multi-task learning. We ask our network to rationalize the prediction by understanding the principles of protein-ligand interactions in a step-by-step manner: 1) receptor pocket analyses, 2) ligand-pocket chemical compatibility, and 3) ligand binding probability given its compatibility. This multi-task framework, trained on a new dataset specifically curated for the task, significantly outperforms existing methods and classification-only baselines when evaluated on a stand-alone test set.

1 INTRODUCTION

Deep learning (DL) methods for structure-based virtual screening (SBVS) face a credibility crisis. Despite the increasing sophistication of model architectures, their reported performance on academic benchmarks has shown a counterintuitive pattern. While recent, advanced models often report an AUROC around 0.8 (Zhang et al., 2023; Moon et al., 2022; Cao et al., 2025), some preliminary methods published years prior claimed near-perfect scores exceeding 0.9 (Chen et al., 2019). This inconsistency raises serious questions about the validity of these metrics and the evaluation practices used in the field.

This validation problem comes at a pivotal moment. The convergence of accurate, large-scale protein structure prediction, exemplified by AlphaFold (Abramson et al., 2024), and the availability of massive make-on-demand chemical libraries like Enamine REAL Space (Grygorenko et al., 2020) has expanded the searchable chemical space by billions of compounds. This new landscape presents an unprecedented opportunity for discovering novel therapeutics. However, the sheer scale of these libraries makes traditional physics-based docking methods such as AutoDock (Eberhardt et al., 2021) prohibitively slow. For this reason, establishing reliable evaluation methods for newer, faster screening models is essential for setting a clear standard for future research and ensuring these tools are genuinely useful.

The crisis stems from the outdated benchmarks used for model validation. Popular datasets such as DUD-E(Mysinger et al., 2012), DEKOIS 2.0(Bauer et al., 2013) and CASF-2016(Su et al., 2018) were designed before the widespread adoption of deep learning models. These benchmarks represent a small and often-biased fraction of the vast and diverse chemical space now available for screening, and they lack robust safeguards against common DL failure modes like data memorization and shortcut learning. Numerous studies have now demonstrated that DL models can achieve top-tier performance on these benchmarks by exploiting subtle biases and memorizing ligand features, often without learning the fundamental principles of protein-ligand binding (Wallach & Heifets, 2018; Chen et al., 2019; Sieg et al., 2019). A model that cannot generalize beyond a flawed benchmark is of little use for real-world campaigns that require screening vast and diverse chemical spaces. Addressing

054 this limitation requires both identifying the sources of bias and developing evaluation-aware methods
 055 that resist these shortcuts.
 056

057 In this work, we address this challenge on two fronts. First, we introduce **ChEMBL-LR**, a new
 058 benchmark carefully curated to remove identified biases. Second, we propose **MotifScreen**, a new
 059 SBVS method designed to resist learning such shortcuts. MotifScreen is a structure-based, end-to-end
 060 framework designed for robust generalization. Unlike models that perform simple classification,
 061 MotifScreen is trained to reason about protein-ligand interactions through a principle-guided multi-
 062 task pipeline: 1) identifying pocket motifs, 2) assessing ligand compatibility with those motifs, and
 063 3) predicting the final binding probability. This approach is enabled by a carefully curated training
 064 dataset, discouraging ligand memorization and mitigating decoy bias. Validation of such approach
 065 was done using our leakage-resistant benchmark.
 066

- **Critical Analysis.** We provide evidence for the over-optimism of current methods by analyzing data leakage and its impact on the performance of existing deep learning VS models.
- **Leakage-Resistant Dataset.** We develop **ChEMBL-LR**, a novel benchmark dataset for more realistic and reliable model evaluation.
- **Robust Architecture.** We propose **MotifScreen**, a principle-based multi-task learning model that leverages multi-modal data to achieve generalization for virtual screening.
- **Evaluation.** We present a performance comparison demonstrating that MotifScreen is competitive with state-of-the-art models on traditional benchmarks while showing significantly better robustness and generalization on our new ChEMBL-LR dataset.

077 2 RELATED WORKS

079 2.1 DEEP LEARNING APPROACHES FOR STRUCTURE-BASED VIRTUAL SCREENING

081 Structure-based virtual screening (SBVS) uses 3D structural information to predict protein-ligand
 082 interactions, offering a powerful alternative to ligand-based methods. Traditional docking have been
 083 foundational to SBVS, but remain slow and moderately accurate, limiting their scalability to modern
 084 ultra-large libraries. Deep learning-based SBVS models offer a faster alternative, typically falling
 085 into two main categories.

086 **Scoring and Docking Models.** Models such as KarmaDock (Zhang et al., 2023), SurfDock
 087 (Cao et al., 2025), and TANKBind (Lu et al., 2022) predict both binding pose and affinity, often
 088 incorporating geometric inductive biases like triangle attention following works of Jumper et al.
 089 (2021). Scoring-focused models such as AK-Score2 (Hong et al., 2024) and PIGNet (Moon et al.,
 090 2022) take pre-docked complexes as input, but dependent on external docking tools, inheriting their
 091 inherent limitations.

092 **Protein Complex Structure Prediction Models.** Inspired by breakthroughs in protein structure
 093 prediction such as AlphaFold2 and 3 (Jumper et al., 2021; Abramson et al., 2024), models like
 094 (Passaro et al., 2025) aim to predict binding affinity as well as the entire complex structure *de*
 095 *novo*. Despite their accuracy in structure prediction, they remain too computationally intensive for
 096 large-scale virtual screening applications.

097 This leaves a critical gap in the field: the need for a method that is both efficient and can learn from a
 098 wider range of biochemical data beyond the limited pool of experimental structures. Our proposed
 099 method, **MotifScreen**, is a multi-task framework designed to address this gap by learning from both
 100 structural and non-structural activity data to achieve better generalization.
 101

102 2.2 THE CHALLENGE OF UNBIASED EVALUATION

104 Despite the promising reported scores, real-world utility of DL models is often questionable. Their
 105 success is frequently measured on flawed benchmarks that suffer from systemic biases, leading to over-
 106 optimistic and misleading results. This bias problem is pervasive across widely-used benchmarks,
 107 creating systematic evaluation flaws. Two problems are particularly damaging to the field: **data
 leakage** and **ligand bias**.

108 **Data Leakage.** Benchmarks such as DUD-E (Mysinger et al., 2012) and CASF-2016 (Su et al.,
 109 2018) share many of the same protein targets and active ligands found in the general training sets like
 110 PDBbind (Liu et al., 2017) (Section 4.1 and Appendix A.1). This overlap enables models to achieve
 111 inflated scores by memorizing ligands instead of learning interaction principles.

112 **Ligand Bias.** *Bias in actives* arises from selecting actives with much higher affinities than typical
 113 virtual screening hits, making benchmarking less transferable to real practice. *Bias in decoys* is also
 114 problematic. Most benchmarks generate decoys by selecting molecules with similar physicochemical
 115 properties (e.g., molecular weight, logP) but different topology from the known actives. While
 116 well-intentioned, this creates a subtle but powerful bias: the active compounds for a given target often
 117 share similar core scaffolds, while the decoys are, by design, topologically dissimilar.

118 This makes the classification task artificially easy. Instead of learning to recognize complex 3D
 119 complementarity between a ligand and a protein pocket, a model can learn a simple shortcut:
 120 distinguishing between the "active-like" and the "decoy-like" clusters in the chemical space. The
 121 model is rewarded for being a good ligand feature detector, not a good protein-ligand interaction
 122 predictor.

123 **Asymmetric Validation Embedding (AVE).** Introduced by Wallach & Heifets (2018), Asymmetric
 124 Validation Embedding (AVE) bias measures the statistical redundancy between training and test set
 125 ligands. **AVE bias considers similarity across both actives and inactives** ($A_T A_V - I_T A_V + I_T I_V - A_T I_V$). A large ($A_T A_V - I_T A_V$) term indicates strong active bias, while a large ($I_T I_V - A_T I_V$) term indicates strong decoy bias. A high overall AVE bias suggests a benchmark is rewarding ligand
 126 memorization, not generalization.

130 2.3 EFFORTS TO ADDRESS EVALUATION BIAS

132 In response to these challenges, researchers have developed more rigorous benchmarks. A notable
 133 example is LIT-PCBA, which was designed to be a less-biased dataset for machine learning models
 134 (Tran-Nguyen et al., 2020). It uses the AVE procedure to create unbiased internal training and
 135 validation splits.

136 However, LIT-PCBA has key limitations for evaluating true generalization to novel systems. First,
 137 its scope is narrow, covering only 15 protein targets. Second, its unbiased nature is compromised
 138 when models are trained on common external datasets like PDBbind. Using an external training
 139 set breaks the original AVE-optimized split and invalidates the benchmark's statistical assurances.
 140 This is particularly problematic because all 15 targets are also present in large pre-training datasets,
 141 creating a high risk of target-based data leakage.

142 Therefore, a need remains for a benchmark that not only controls for internal ligand bias but also
 143 prevents target-based leakage by enforcing a strict separation of protein targets from common training
 144 datasets. Our new leakage resistant dataset, ChEMBL-LR is designed and tested to meet such a
 145 need. ChEMBL-LR addresses both issues through strict target-wise separation and property-matched
 146 cross-decoys, providing a rigorous evaluation protocol for DL-based VS methods.

148 3 METHODS

151 Our work addresses evaluation bias through two complementary strategies: 1) a multi-task architecture
 152 **MotifScreen** that learns generalizable interaction principles rather than dataset-specific shortcuts,
 153 and 2) a rigorously curated benchmark **ChEMBL-LR** that prevents the biases identified in existing
 154 evaluations. This section details the design philosophy of our model and the construction of our
 155 dataset.

157 3.1 MOTIFSCREEN – MODEL ARCHITECTURE

159 The core design philosophy of MotifScreen is to move beyond simple binary classification and
 160 resist the evaluation biases. Rather than learning dataset-specific shortcuts, the model is forced to
 161 understand protein-ligand interactions through three complementary reasoning steps: identifying
 chemical interaction motifs in binding pockets, assessing structural compatibility between ligands

162 and pockets, and predicting binding probability based on this compatibility. This multi-task design
 163 prevents the model from relying on simple ligand memorization or topological clustering.
 164

165 MotifScreen (Figure 1) processes protein and ligand graphs through parallel geometric encoders
 166 that generate $SE(3)$ -equivariant representations. The protein binding pocket is represented using
 167 virtual grid points that capture the spatial organization of potential interaction sites. The multi-task
 168 framework then operates on these representations to learn meaningful protein-ligand interactions,
 169 with detailed architectures provided in Appendix C.

170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182 **Figure 1: Architecture of MotifScreen.** MotifScreen generates two key representations; a receptor
 183 embedding that captures motif positions and binding site chemistry, and an interaction embedding
 184 that encodes protein-ligand structure and affinity information. The representations are used to predict
 185 motifs, ligand coordinates and binding scores for screening. Detailed architecture of the interaction
 186 module is in Figure C1.

188 3.2 MULTI-TASK LEARNING FRAMEWORK

189
 190 The multi-task learning framework improves generalization through complementary learning objectives.
 191 Each task addresses a specific aspect of protein-ligand interaction: structure prediction learns
 192 physically plausible ligand and protein-ligand complex geometry, motif prediction identifies chemical
 193 interaction patterns in protein pockets, and binding affinity prediction integrates both chemical and
 194 spatial complementarity. This design makes it difficult for the model to exploit dataset shortcuts
 195 while encouraging physically meaningful representations that transfer across different targets and
 196 chemical spaces.

197 The total training loss is a weighted sum of objectives from three primary tasks, implemented through
 198 dedicated modules in an end-to-end fashion. Importantly, the structure and motif prediction tasks are
 199 only evaluated on training data with available bound structures, while the affinity module is trained
 200 on all data, including activity-only samples without structural information.

201 **Motif Classification – Motif Module.** This module predicts chemical interaction patterns (motifs)
 202 at binding surface grid points, and is responsible for interpretation of receptor pocket chemistry.
 203 The module outputs marginal probability of six binding motifs: H-bond donor, acceptor, donor-and-
 204 acceptor, aromatic, aliphatic and none.

205 This module is based on MotifGen (Anonymous, 2025) which predicts motif using protein-protein
 206 interaction data. In MotifScreen, probability is inferred across all grid points at once to enable end-to-
 207 end learning, as opposed to the prior network where inference was done per grid at a time. Motif
 208 probability is predicted from the grid embedding calculated by an $SE(3)$ equivariant transformer
 209 (Fuchs et al., 2020) which updates protein grid features from neighboring residue atoms. This
 210 task regularizes the model, compelling the receptor embedding to learn a meaningful, high-level
 211 representation of the binding pocket. The main training loss is a masked binary cross-entropy loss
 212 applied to the predicted motif representations of the protein surface.

213 **Key Atom Positioning – Structure Module.** This module (Algorithm 5) predicts the 3D position-
 214 ing of key ligand atoms representing molecular fragments, and is responsible for interpretation
 215 of chemical compatibility between the pocket and ligand. This fragment-level representation has
 two advantages. First, in contrast to structure-agnostic methods, the structural information can be

216 effectively incorporated into ligand binding evaluation. Second, it tolerates small structural variations
 217 (e.g., side-chain movements) that might cause sensitivity issues in all-atom docking methods. Details
 218 on key atom selection are in Appendix C.2.1.

219 The model is trained with losses that enforce physically plausible molecular geometry, including
 220 distance between predicted and ground-truth key atom positions and a pair-distance loss that penalizes
 221 incorrect intra-ligand distances.

222 **Binding Affinity Scoring – Affinity Module.** This module predicts a binding score, which is
 223 the ultimate goal of a virtual screening model. The module takes the pair embedding which is also
 224 used for structure module, and a global ligand embedding that captures properties like molecular
 225 size. Training uses three loss types: classification loss, ranking loss, and contrastive loss to optimize
 226 discrimination between active and inactive molecules.

227 Detailed explanations of each module are provided in Appendix C with loss functions in Appendix C.5,
 228 including description of the training scheme in Appendix C.6.

229

231 3.3 LEAKAGE RESISTANT DATASET CONSTRUCTION

232

233 To address the data leakage and decoy bias problems identified in Section 2.2, we developed
 234 **ChEMBL-LR** through a curation protocol that enforces strict separation between training and
 235 evaluation data while controlling for chemical bias.

236 Our curation addresses four key challenges: (1) **Target-wise separation** prevents protein family
 237 memorization by ensuring no homologous proteins appear in both training and test sets, (2) **Realistic**
 238 **active selection** ensures affinity distribution of actives mirror real-case VS scenarios, (3) **Unbiased**
 239 **decoy selection** uses cross-decoys (actives for other targets) while chemical space balance is verified
 240 through AVE bias analysis, and (4) **Removal of non-drug-like molecules** removes outliers like
 241 glycans that create unwanted chemical biases. These strategies are implemented through systematic
 242 data processing detailed in Appendix B.1.2. The resulting ChEMBL-LR benchmark contains 60
 243 targets, achieving a mean AVE bias of 0.033 compared to 0.17 for DUD-E, with no target leakage.

244

245 **Training Data Sources.** We combined structural and activity data from multiple sources: PDBbind
 246 (Liu et al., 2017) and BioLip (Zhang et al., 2024) for structural complex with activity data, and
 247 ChEMBL 34 (Gaulton et al., 2012) for additional activity data, adding over 40,000 protein-ligand pairs.
 248 We augmented the structural data using a "cross-docking" strategy where actives for homologous
 249 receptors (sequence identity > 0.95) serve as putative actives for each other, providing consistent
 chemical signals across highly similar proteins (Martin, 2010).

250

251 **ChEMBL-LR Benchmark.** The benchmark was curated from a completely separate partition of
 252 ChEMBL with no homologous proteins in the training data. This strict separation ensures unbiased
 253 evaluation of generalization to novel targets. A comprehensive description of all data processing,
 filtering, and splitting procedures is provided in Appendix B.1.

254

255

256 4 EXPERIMENTS

257

258 In this section, we first demonstrate the need for a leakage-resistant benchmark and present our
 259 solution. We then compare MotifScreen’s performance on this new benchmark against traditional
 260 methods, linking its design to its generalizability. Finally, we validate its core architectural philosophy
 261 through ablation studies.

262

263

264 4.1 BENCHMARK ANALYSIS AND CHEMBL-LR DEVELOPMENT

265

266 4.1.1 SYSTEMATIC BIASES IN EXISTING BENCHMARKS

267

268 Deep learning-based VS methods achieve inflated performance due to systematic biases in popular
 269 benchmarks. To create a fair evaluation standard, we first analyzed the systemic biases in popular
 benchmarks and then developed ChEMBL-LR, a new benchmark designed to overcome the two main
 flaws we identified.

270 **Target leakage.** DUD-E (94%), DEKOIS 2.0 (98%), and even the modern LIT-PCBA (100%)
 271 have similar proteins (sequence identity > 0.4) in PDBbind (Liu et al., 2017), the primary training
 272 source for most DL methods (Table A2). This allows models to succeed by recognizing familiar
 273 targets rather than by generalizing binding principles.

274 **Ligand bias.** Actives and decoys create easily separable clusters in chemical space that reward
 275 ligand memorization over protein-ligand interaction learning. We quantified ligand bias using the
 276 Asymmetric Validation Embedding (AVE) analysis. As shown in Table 1, older benchmarks like
 277 DUD-E show a high AVE bias of 0.17, indicating that models can distinguish actives from decoys
 278 based on simple ligand features alone. While LIT-PCBA shows low AVE bias, this was calculated
 279 with their internal training-validation split.

282 4.1.2 ChEMBL-LR: A LEAKAGE-RESISTANT BENCHMARK BY DESIGN

284 Our ChEMBL-LR benchmark was constructed to directly address these issues. By design, no
 285 protein target in ChEMBL-LR has a homologous protein in our training set (PDBbind, BioLip,
 286 non-benchmark ChEMBL targets) eliminating the possibility of target leakage. Furthermore, our
 287 curation protocol ensures that actives and decoys are homogeneously distributed. AVE analysis
 288 confirms this, showing a near-zero mean bias of 0.033 (Table 1), which indicates that simple ligand
 289 memorization is not a viable shortcut. To further validate that ChEMBL-LR is genuinely challenging,
 290 we conducted two key experiments.

291 **Ligand Bias Resistance.** To validate that ChEMBL-LR resists ligand memorization, we trained
 292 several ligand-only ML models (kNN, Random Forest, Logistic Regression) using ECFP4 fingerprints
 293 on our training set. On ChEMBL-LR, these models achieved a near-random mean AUROC of
 294 0.530 ± 0.156 , with Logistic Regression resulting in mean AUROC of 0.509. This confirms that
 295 ChEMBL-LR cannot be solved through simple ligand memorization, requiring genuine understanding
 296 of protein-ligand interactions.

297 **Data Leakage Resistance.** To validate that ChEMBL-LR resists protein, ligand, and protein-
 298 ligand data leakage, we trained a Random Forest model using both protein (ESM2 embeddings (Lin
 299 et al., 2023)) and ligand (ECFP4 fingerprints) features. To mirror the training setup of popular DL
 300 methods, the model was trained on PDBbind. We then evaluated this model across four benchmarks:
 301 DUD-E (Mysinger et al., 2012), DEKOIS 2.0 (Bauer et al., 2013), LIT-PCBA (Tran-Nguyen et al.,
 302 2020), and ChEMBL-LR(ours).

303 Table 1 reveals a clear trend. On DUD-E and DEKOIS 2.0, which suffer from both high ligand
 304 bias and target leakage, the protein-aware RF model achieves an inflated AUROC of 0.691 and
 305 0.657, respectively. On LIT-PCBA, which controls for ligand bias but still contains significant
 306 target leakage, the task becomes harder and the model’s performance drops to 0.542. Finally, on
 307 ChEMBL-LR, which controls for both bias types, the model’s performance collapses to 0.518 ± 0.131 ,
 308 a result statistically indistinguishable from random. This provides strong evidence that ChEMBL-LR
 309 successfully measures generalization to novel targets rather than rewarding dataset memorization.

310
 311 Table 1: AVE bias comparison across benchmarks. Lower absolute values indicate reduced ligand
 312 memorization and more rigorous evaluation.

314 Dataset	315 AVE bias (\downarrow)	316 RF AUROC (\downarrow)	317 # Targets
318 DUD-E (2012) ^a	319 0.17	320 0.691 ± 0.170	321 102
322 DEKOIS 2.0 (2013) ^a	323 0.11	324 0.657 ± 0.198	325 80
326 LIT-PCBA (2020) ^b	327 0.016	328 0.542 ± 0.065	329 15
330 ChEMBL-LR (Ours)	331 0.033 ± 0.192	332 0.518 ± 0.131	333 60

334 ^a Median AVE calculated following the evaluation protocol by Imrie et al. (2021) (per-target CV on
 335 dataset-specific “unbiased” properties). Adopted from the cited work.

336 ^b Mean AVE bias adopted from (Tran-Nguyen et al., 2020).

324 4.2 VIRTUAL SCREENING BENCHMARKS
325

326 We evaluate MotifScreen against existing methods on both **ChEMBL-LR** and DUD-E benchmarks.
 327 To ensure a truly fair evaluation, we removed all training data with high similarity to DUD-E targets
 328 (sequence identity > 0.4 and ligand Tanimoto similarity > 0.4 , [Table B2](#)). This prevents MotifScreen
 329 from benefiting from the target leakage that affects many existing models as we criticized. **In all the**
 330 **evaluations, the sigmoid-transformed value of the MotifScreen scalar output \hat{y} was used as binding**
 331 **score.** Training algorithm and details of MotifScreen used for this benchmark are in Appendix C.6.

332 Table 2: Performance Comparison on the ChEMBL-LR Benchmark.
333

335 Model	336 AUROC	337 BEDROC ($\alpha = 20$)	338 EF1%
336 AutoDock-Vina	337 0.541 ± 0.125	338 0.075 ± 0.075	339 2.189 ± 3.439
337 AK-Score2	338 0.527 ± 0.135	339 0.054 ± 0.069	340 0.803 ± 2.308
338 KarmaDock	339 0.527 ± 0.135	340 0.042 ± 0.047	341 1.317 ± 2.715
339 SurfDock	340 0.576 ± 0.151	341 0.090 ± 0.097	342 3.443 ± 6.076
340 RF (ESM+FP)	341 0.518 ± 0.131	342 0.093 ± 0.089	343 2.09 ± 3.20
341 MotifScreen	342 0.680 ± 0.165	343 0.146 ± 0.205	344 4.16 ± 5.65

344 Table 3: AUROC and normalized enrichment factor (NEF) across benchmarks.
345

346 Model	347 Ref. Set	348 AUROC		349 EF1% (Normalized)			350 Robustness
		351 Ref.	352 ChEMBL	353 Ref. Raw	354 NEF^a	355 ChEMBL NEF^b	
349 AutoDock-Vina	350 DUD-E	351 0.720	352 0.541	353 9.70	354 0.46	355 0.07	356 15.3%
350 AK-Score2	351 DUD-E	352 –	353 0.527	354 14.60	355 0.70	356 0.03	357 3.7%
351 KarmaDock	352 DUD-E	353 0.754	354 0.512	355 15.87	356 0.76	357 0.04	358 5.6%
352 SurfDock	353 DEKOIS	354 0.758	355 0.576	356 18.17	357 0.59	358 0.11	359 19.0%
353 RF (ESM+FP)	354 DUD-E	355 0.691	356 0.518	357 14.21	358 0.68	359 0.07	360 10.0%
354 MotifScreen	355 DUD-E	356 0.753	357 0.680	358 5.94	359 0.28	360 0.13	361 47.4%

362 **Note:** ChEMBL-LR results are from our experiments; Reference (Ref.) results are from cited publications,
 363 details in [Table D5](#).

364 ^a NEF = Raw EF/21.0 (for DUD-E) or /31.0 (for DEKOIS).

365 ^b NEF = Raw EF/31.0 (for ChEMBL-LR).

366 ^c NEF Retention = NEF_{ChEMBL}/NEF_{Ref} × 100.

367 4.2.1 PERFORMANCE ON CHEMBL-LR
368

369 Table 2 and 3 compares MotifScreen with physics-based docking (AutoDock-Vina (Eberhardt et al.,
 370 2021)), DL-based docking (KarmaDock (Zhang et al., 2023), SurfDock (Cao et al., 2025)), DL
 371 scoring models (AK-Score2 (Hong et al., 2024)), and an RF baseline (details in Appendix A.2).

372 MotifScreen achieves a mean AUROC of 0.680, an 18% relative improvement over the strongest
 373 baseline, SurfDock (0.576; Cohen’s $d = 0.53$). Most baselines perform near-random (AUROC
 374 $\sim 0.51\text{--}0.54$), making our gains substantial (AUROC effect sizes $d = 0.60\text{--}0.97$). Improvements
 375 are statistically significant for AUROC across all baselines (Wilcoxon signed-rank, BH-corrected
 376 $p < 10^{-4}$; Appendix Table D3) and for EF1% against most methods ($p < 0.05$ vs AutoDock-Vina,
 377 KarmaDock, AK-Score2, RF). **In terms of BEDROC ($\alpha = 20$), which evaluates early enrichment,**
 378 **MotifScreen (0.146) outperforms SurfDock (0.090) and AutoDock-Vina (0.075).**

379 While MotifScreen shows substantial improvements in overall discrimination (AUROC), the early
 380 enrichment results (EF1%) are more nuanced. The difference in EF1% versus SurfDock is not
 381 statistically significant ($p = 0.16$). However, MotifScreen demonstrates promising consistency across
 382 targets: ranking first on 21/60 targets (35%) for EF1% compared to SurfDock’s 11/60 (18%), and
 383 achieving the highest AUROC on 31/60 targets (52%) versus SurfDock’s 8/60 (13%) (Figure D1).

378 MotifScreen is also highly efficient: ~ 0.03 s per compound on four GPUs, versus ~ 10 s for SurfDock,
 379 making it practical for ultra-large library screening (Appendix E.1).
 380

381
 382
 383 **4.2.2 PERFORMANCE ON EXTERNAL BENCHMARKS**
 384
 385

386 On DUD-E, MotifScreen achieves AUROC 0.753 and retains 90% of this performance on ChEMBL-
 387 LR (0.680). While baselines like KarmaDock drop to near-random AUROC (≈ 0.5) on ChEMBL-LR,
 388 MotifScreen retains significant predictive power. (Table 3). **We also compared models' enrichment**
 389 **factors between the two benchmarks.** EF1% values across benchmarks are inherently biased due to dif-
 390 fering active-to-decoy ratios, which dictate the theoretical maximum EF ($EF_{max} = 1/\text{Active Ratio}$).
 391 Specifically, DUD-E (1:20 ratio) has an EF_{max} of 21.0, while ChEMBL-LR and DEKOIS 2.0 (1:30
 392 ratio) have an EF_{max} of 31.0. To address this, we converted raw scores to the Normalized Enrichment
 393 Factor (NEF), defined as $NEF = \text{Raw EF}/EF_{max}$ (Liu et al., 2018). Baseline methods exhibit a
 394 severe collapse in NEF when applied to ChEMBL-LR. For instance, KarmaDock achieves a high
 395 NEF of 0.76 on DUD-E but drops to 0.04 on ChEMBL-LR, retaining only 5.6% of its normalized
 396 performance. In contrast, MotifScreen demonstrates the highest robustness, retaining 47.4% of its
 397 NEF, **significantly outperforming all baselines in generalization capability.** The smaller degradation in
 398 performance for MotifScreen indicates stronger generalization to novel targets and chemical spaces,
 399 rather than reliance on dataset-specific shortcuts.

400 Detailed performance statistics for MotifScreen on both ChEMBL-LR and DUD-E benchmarks are
 401 provided in Appendix Tables D1 and D2. For a comprehensive comparison against other virtual
 402 screening methods, Table D5 presents the absolute AUROC and EF1% scores across the ChEMBL-
 403 LR, DUD-E, and DEKOIS 2.0 benchmarks.

404 **Note on Experimental Fairness.** While most baseline methods benefit from target overlap with
 405 DUD-E (as shown in Section 4.1), MotifScreen deliberately excludes such targets from training
 406 dataset. This conservative approach likely underestimates MotifScreen's relative advantage.

407 **Note on Training Data Modalities.** The disparity in training regimes between MotifScreen
 408 and the baselines stems from a fundamental architectural difference. Structure-based baselines
 409 (e.g., SurfDock, KarmaDock) strictly require ground-truth 3D complex structures, limiting their
 410 training to structural datasets like PDBbind where leakage is difficult to fully eliminate without
 411 harming model performance. In contrast, MotifScreen is designed to learn from bioactivity datasets
 412 (ChEMBL) lacking experimental structures in addition to structural datasets. This capability allows us
 413 to construct a strictly leakage-free training set with a larger amount of protein-ligand interaction data
 414 that structure-dependent baselines physically cannot utilize. Therefore, this comparison highlights
 415 MotifScreen's unique architectural advantage: the flexibility to leverage broader, unbiased chemical
 416 spaces for robust generalization.

417
 418
 419 **4.3 ABLATION STUDIES AND MODEL ANALYSIS**
 420

421 We conducted ablation studies to validate MotifScreen's core architectural design and understand how
 422 each component contributes to generalization. These experiments reveal hierarchical dependencies
 423 between modules and demonstrate how multi-task learning prevents dataset-specific overfitting.
 424

425 For computational efficiency, these experiments used a reduced training subset with evaluation on
 426 the corresponding validation set (PDBbind, BioLip, and ChEMBL targets – see Appendix D.3 for
 427 details.) As our goal was to assess the relative contribution and interdependency of the modules rather
 428 than to achieve maximum performance, this controlled environment is sufficient to reveal the core
 429 architectural dependencies, which we observed to emerge early in the training process.

430 Table 4 and Figure D2 show that MotifScreen's performance arises from synergy between modules
 431 rather than simple addition of components. The modules operate hierarchically: understanding
 432 physical geometry enables learning of abstract chemical patterns.

432 Table 4: AUROC performance (\pm std) on validation set across ablation configurations at epoch 31.
 433 MotifScreen combines three modules: Affinity (Aff), Structure (Str), and Motif.

Description	ChEMBL	PDBbind	BioLip	Params #
Aff + Str + Motif	0.61 \pm 0.14	0.63 \pm 0.36	0.81 \pm 0.31	2,472,702
Aff + Motif	0.54 \pm 0.15	<u>0.60 \pm 0.35</u>	0.81 \pm 0.31	2,472,637
Aff + Str	<u>0.59 \pm 0.12</u>	0.60 \pm 0.37	<u>0.79 \pm 0.33</u>	2,472,702
Aff	0.57 \pm 0.18	0.55 \pm 0.37	0.77 \pm 0.34	2,472,637

443 **Impact of Structure Module.** The structure module learns physically plausible ligand geometry
 444 within receptor binding pockets. Removing this module (Aff + Motif configuration) reveals its
 445 importance for generalization. Performance remains stable on structure-rich PDBbind and BioLip
 446 datasets but drops significantly on ChEMBL ($0.62 \rightarrow 0.54$ AUROC).

447 This drop is significant because structure-based losses are computed only on PDBbind and BioLip,
 448 not ChEMBL. It demonstrates that geometric understanding acquired on structural targets transfers to
 449 ChEMBL targets lacking structural data, confirming the structure module’s role as a generalizable
 450 feature extractor.

451 **Impact of Motif Module.** The motif module’s contribution acts as a general-purpose enhancer,
 452 with its removal (Aff + Str configuration) causing consistent performance decrease across all datasets
 453 (Figure D2). This confirms that learning shared chemical motifs broadly enhances binder identification
 454 for both structural and non-structural datasets.

455 **Hierarchical Dependencies between Modules.** The motif module’s effectiveness depends on the
 456 structure module. In the Aff + Motif configuration, motif learning helps when structure guidance is
 457 present but hurts ChEMBL performance when absent (drops below Aff baseline during training for
 458 ChEMBL targets, as shown in top right curve in Figure D2). This suggests that structure understanding
 459 enables meaningful motif learning while preventing spurious pattern recognition.

460 **Base Model Performance.** The base model (Aff only) provides a performance baseline, with
 461 consistently lower AUROC across all datasets and throughout training (Table 4, Figure D2, top left).
 462 This demonstrates that both structure module (physical validity and 3D geometry) and motif module
 463 (chemical interaction patterns) are essential, complementary components for robust virtual screening.

465 5 LIMITATIONS

468 While MotifScreen demonstrates promising results, several limitations should be acknowledged.
 469 First, our ablation experiments, though informative, were conducted on a reduced dataset subset with
 470 shorter training durations (31 epochs compared to full-scale training). This choice was made for
 471 computational tractability but inevitably limits the strength of conclusions regarding how different
 472 architectural components interact over longer training horizons. A more systematic, large-scale
 473 ablation study is therefore needed to disentangle the contributions of individual modules and auxiliary
 474 losses, and to assess whether similar synergies would emerge under full training conditions.

475 Second, a more granular analysis of the architecture could further optimize MotifScreen. Ex-
 476 ploring architectural simplifications—such as removing or approximating more complex attention
 477 blocks—would help clarify which design choices are essential and whether comparable performance
 478 can be achieved with lower computational cost. In preliminary experiments, replacing certain compo-
 479 nents (e.g., using an EGNN instead of the SE(3) featurizer) reduced performance, which motivated
 480 us to retain the original design; nevertheless, alternative lightweight architectures may still offer
 481 promising directions for reducing cost in future work. In parallel, MotifScreen employs multiple
 482 objectives across three tasks, each with several associated losses. Systematically ablating these losses
 483 would reveal which are most critical for generalization and which are redundant.

484 Finally, because our model benefits from carefully curated and augmented data (e.g., activity filtering,
 485 cross-decoy construction), controlled data ablations will be important for formally decoupling dataset
 contributions from architectural ones. Data-centric approach is particularly crucial in biological do-

486 mains, where training data is often aggregated from multiple, multi-modal sources, each with inherent
 487 biases. Formally decoupling contributions of our data-centric philosophy from the architecture itself
 488 could reveal generalizable principles for combining complex data, with implications beyond virtual
 489 screening.

490 A limitation in our comparative study arises from the fundamental incompatibility between structure-
 491 based baselines and our training data. Methods like SurfDock require ground-truth 3D complex
 492 structures for all training samples, making it methodologically infeasible to retrain them on our
 493 large-scale ChEMBL split. This highlights a key advantage of MotifScreen: the ability to leverage
 494 massive non-structural bioactivity data, which existing structural baselines cannot utilize.

496 6 DISCUSSION

497 In this work, we addressed the critical challenge of over-optimistic performance in deep learning-
 498 based virtual screening, a problem rooted in the inherent biases and target leakage of widely used
 500 benchmarks. Our two-fold contribution—the leakage-resistant ChEMBL-LR benchmark and the
 501 principle-guided MotifScreen model—provides a robust framework for developing and evaluating
 502 more generalizable virtual screening tools. Our experiments demonstrate that MotifScreen achieves
 503 more reliable and robust performance, particularly on ChEMBL-LR benchmark where existing VS
 504 models struggle.

505 We attribute this success to the synergy between our data curation strategy and architectural design.
 506 Multi-task learning may prevent overfitting by forcing the model to learn generalizable representations
 507 that satisfy multiple objectives simultaneously. Rather than optimizing solely for binding
 508 classification—which could lead to memorizing dataset-specific patterns—our framework requires
 509 the model to simultaneously understand physical geometry (structure module) and chemical inter-
 510 action patterns (motif module). This architectural constraint encourages learning of fundamental
 511 protein-ligand interaction principles where physical validity guides the learning of chemical patterns.
 512 Our ablation studies support this hypothesis, revealing hierarchical dependencies where the structure
 513 module enables more effective motif learning.

514 The field of virtual screening has reached a critical juncture where the risk of inflated metrics on
 515 flawed benchmarks can stifle genuine progress. By demonstrating the significant performance drop
 516 of existing models on ChEMBL-LR and the resilience of MotifScreen, we not only validate our
 517 approach but also highlight the urgent need for a paradigm shift in how these models are trained
 518 and evaluated. We believe that the principles embodied in MotifScreen and the standards set by
 519 ChEMBL-LR offer a path toward more reliable and impactful *in silico* drug discovery.

521 DATA AND MODEL AVAILABILITY (REPRODUCIBILITY STATEMENT)

523 To ensure full reproducibility, we have provided comprehensive details of our methodology: the
 524 model’s architecture and training algorithm are detailed in Appendix C (Section C), all hyperpa-
 525 rameters are listed in Appendix E (Section E.2), and the full dataset curation protocol is described
 526 in Appendix B (Section B.1). The computational setup and experimental details are provided in
 527 Appendix E (Section E). The final list of benchmark targets is available in Appendix F (Section F).
 528 The code for MotifScreen will be made publicly available on GitHub upon acceptance.

529 Furthermore, we will release the complete ChEMBL-LR benchmark, including the specific active and
 530 decoy assignments for each target, molecular structures, and evaluation splits. All baseline method
 531 implementations and evaluation protocols used in our comparisons will be documented and made
 532 available to facilitate fair future comparisons.

534 ETHICS STATEMENT

536 We explicitly recognize the ethical importance of ensuring fair and unbiased evaluation in deep
 537 learning. As highlighted in our paper, the widespread use of biased benchmarks has led to inflated
 538 and misleading performance claims in virtual screening. To address this, we have curated a novel,
 539 leakage-proofed dataset with strict principles to eliminate data leakage and chemical bias. We

540 believe this contribution is essential for promoting research integrity and establishing a more rigorous
 541 foundation for future work in the field.

542
 543 The authors have adhered to the ICLR Code of Ethics in all aspects of this research. A large language
 544 model was used to aid in refining the grammar of the manuscript; all scientific ideas, research
 545 questions, and experimental results are original to the authors.

546
 547 **REFERENCES**

548 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
 549 Ronneberger, Lindsay Willmore, Andrew J. Ballard, Joshua Bambrick, Sebastian W. Bodenstein,
 550 David A. Evans, Chia-Chun Hung, Michael O'Neill, David Reiman, Kathryn Tunyasuvunakool,
 551 Zachary Wu, Akvilė Žemgulytė, Eirini Arvaniti, Charles Beattie, Ottavia Bertolli, Alex Bridgland,
 552 Alexey Cherepanov, Miles Congreve, Alexander I. Cowen-Rivers, Andrew Cowie, Michael Fig-
 553 urnov, Fabian B. Fuchs, Hannah Gladman, Rishabh Jain, Yousuf A. Khan, Caroline M. R. Low,
 554 Kuba Perlin, Anna Potapenko, Pascal Savo, Sukhdeep Singh, Adrian Stecula, Ashok Thillaisun-
 555 daram, Catherine Tong, Sergei Yakneen, Ellen D. Zhong, Michal Zielinski, Augustin Žídek, Victor
 556 Bapst, Pushmeet Kohli, Max Jaderberg, Demis Hassabis, and John Jumper. Accurate structure
 557 prediction of biomolecular interactions with alphafold 3. *Nature*, 630:493–500, 2024.

558 Anonymous. Details omitted for double-blind review. *Journal name omitted for double-blind review*,
 559 2025.

560 Matthias R. Bauer, Tamer M. Ibrahim, Simon M. Vogel, and Frank M. Boeckler. Evaluation and
 561 optimization of virtual screening workflows with dekois 2.0 – a public library of challenging
 562 docking benchmark sets. *Journal of Chemical Information and Modeling*, 53(6):1447–1462, 2013.

563 Duanhua Cao, Mingan Chen, Runze Zhang, Zhaokun Wang, Manlin Huang, Jie Yu, Xinyu Jiang,
 564 Zhehuan Fan, Wei Zhang, Hao Zhou, Xutong Li, Zunyun Fu, Sulin Zhang, and Mingyue Zheng.
 565 Surfdock is a surface-informed diffusion generative model for reliable and accurate protein–ligand
 566 complex prediction. *Nature Methods*, 22:310–322, 2025.

567 Lin Chen, Alex Cruz, Stephen Ramsey, Carter J. Dickson, Jason S. Duca, Victor Hornak, and
 568 David Ryan Koes. Hidden bias in the dud-e dataset leads to misleading performance of deep
 569 learning in structure-based virtual screening. *PLoS ONE*, 14(8), 2019.

570 Jörg Degen, Christof Wegscheid-Gerlach, Andrea Zaliani, and Matthias Rarey. On the art of compiling
 571 and using 'drug-like' chemical fragment spaces. *ChemMedChem*, 3(9):1503–1507, 2008.

572 Jerome Eberhardt, Diogo Santos-Martins, Andreas F. Tillack, and Stefano Forli. Autodock vina
 573 1.2.0: New docking methods, expanded force field, and python bindings. *Journal of Chemical
 574 Information and Modeling*, 61, 2021.

575 Fabian B. Fuchs, Daniel E. Worrall, Volker Fischer, and Max Welling. Se(3)-transformers: 3d
 576 roto-translation equivariant attention networks. *arXiv preprint arXiv:2006.10503*, 2020.

577 Anna Gaulton, Louisa J. Bellis, A. Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne
 578 Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, and John P. Overington.
 579 Chemb3l: a large-scale bioactivity database for drug discovery. *Nucleic Acids Research*, 40(D1):
 580 D1100–D1107, 2012.

581 Oleksandr O. Grygorenko, Dmytro S. Radchenko, Igor Dziuba, Alexander Chuprina, Kateryna E.
 582 Gubina, and Yurii S. Moroz. Generating multibillion chemical space of readily accessible screening
 583 compounds. *iScience*, 23(12):101873, 2020.

584 Yiyu Hong, Junsu Ha, Jaemin Sim, Chae Jo Lim, Kwang-Seok Oh, Ramakrishnan Chandrasekaran,
 585 Bomin Kim, Jieun Choi, Junsu Ko, Woong-Hee Shin, and Juyong Lee. Accurate prediction of
 586 protein–ligand interactions by combining physical energy functions and graph-neural networks.
 587 *Journal of Cheminformatics*, 16:121, 2024.

588 Fergus Imrie, Anthony R. Bradley, and Charlotte M. Deane. Generating property-matched decoy
 589 molecules using deep learning. *Bioinformatics*, 37(9):1349–1355, 2021.

594 Yize Jiang, Xinze Li, Yuanyuan Zhang, Jin Han, Youjun Xu, Ayush Pandit, Zaixi Zhang, Mengdi
 595 Wang, Mengyang Wang, Chong Liu, Guang Yang, Yejin Choi, Wu-Jun Li, Tianfan Fu, Fang Wu,
 596 and Junhong Liu. Posex: Ai defeats physics-based methods on protein–ligand cross-docking.
 597 *arXiv preprint arXiv:2505.01700*, 2025.

598 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
 599 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland,
 600 Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
 601 Paredes, Stanislav Nikolov, Rishabh Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
 602 Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer,
 603 Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
 604 meet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with alphafold.
 605 *Nature*, 596:583–589, 2021.

606 Felix Kallenborn, Alejandro Chacon, Christian Hundt, Hassan Sirelkhatim, Kieran Didi, Sooyoung
 607 Cha, Christian Dallago, Milot Mirdita, Bertil Schmidt, and Martin Steinegger. Gpu-accelerated
 608 homology search with mmseqs2. *bioRxiv*, 2024. doi: 10.1101/2024.11.13.623350. Preprint.

609 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
 610 Robert Verkuil, Ori Kabeli, Yaniv Shmueli, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom
 611 Sercu, Salvatore Candido, and Alexander Rives. Evolutionary-scale prediction of atomic-level
 612 protein structure with a language model. *Science*, 379(6637):1123–1130, 2023.

613 Shengchao Liu, Moayad Alnammi, Spencer S. Erickson, Andrew F. Voter, Gene E. Ananiev, James L.
 614 Keck, F. Michael Hoffmann, Scott A. Wildman, and Anthony Gitter. Practical model selection for
 615 prospective virtual screening. *Journal of Chemical Information and Modeling*, 59:282–193, 2018.

616 Zhihai Liu, Minyi Su, Li Han, Jie Liu, Qifan Yang, Yan Li, and Renxiao Wang. Forging the basis for
 617 developing protein–ligand interaction scoring functions. *Accounts of Chemical Research*, 50(2):
 618 302–309, 2017.

619 Wei Lu, Qifeng Wu, Jixian Zhang, Jiahua Rao, Chengtao Li, and Shuangjia Zheng. Tankbind:
 620 Trigonometry-aware neural networks for drug–protein binding structure prediction. *bioRxiv*, 2022.
 621 doi: 10.1101/2022.06.06.495043. Preprint.

622 Juliette Martin. Beauty is in the eye of the beholder: Proteins can recognize binding sites of
 623 homologous proteins in more than one way. *PLoS Computational Biology*, 6(6):e1000821, 2010.

624 Seokhyun Moon, Wonho Zhung, Soojung Yang, Jaechang Lim, and Woo Youn Kim. Pignet: a
 625 physics-informed deep learning model toward generalized drug–target interaction predictions.
 626 *Chemical Science*, 13, 2022.

627 Michael M. Mysinger, Michael Carchia, John J. Irwin, and Brian K. Shoichet. Directory of useful
 628 decoys, enhanced (dud-e): Better ligands and decoys for better benchmarking. *Journal of Medicinal
 629 Chemistry*, 55(14):6582–6594, 2012.

630 Saro Passaro, Gabriele Corso, Jeremy Wohlwend, Mateo Reveiz, Stephan Thaler, Vignesh Ram
 631 Somnath, Noah Getz, Tally Portnoi, Julien Roy, Hannes Stark, David Kwabi-Addo, Dominique
 632 Beaini, Tommi Jaakkola, and Regina Barzilay. Boltz-2:towards accurate and efficient binding
 633 affinity prediction. *biorxiv*, 2025. doi: 10.1101/2025.06.14.659707. Preprint.

634 Sebastian G. Rohrer and Knut Baumann. Maximum unbiased validation (muv) data sets for virtual
 635 screening based on pubchem bioactivity data. *Journal of Chemical Information and Modeling*, 49
 636 (2):169–184, 2009.

637 Jinsong Shao, Qifeng Jia, Xing Chen, Yajie Hao, and Li Wang. Molecular fragmentation as a crucial
 638 step in the ai-based drug development pathway. *Communications Chemistry*, 7:20, 2024. doi:
 639 10.1038/s42004-024-01037-5.

640 Jochen Sieg, Florian Flachsenberg, and Matthias Rarey. In need of bias control: Evaluating chemical
 641 data for machine learning in structure-based virtual screening. *Journal of Chemical Information
 642 and Modeling*, 59(3):947–961, 2019.

648 Minyi Su, Qifan Yang, Yu Du, Guoqin Feng, Zhihai Liu, Yan Li, and Renxiao Wang. Comparative
649 assessment of scoring functions: The casf-2016 update. *Journal of Chemical Information and*
650 *Modeling*, 59(2):895–913, 2018.

651

652 Viet-Khoa Tran-Nguyen, Célien Jacquemard, and Didier Rognan. Lit-pcba: An unbiased data set for
653 machine learning and virtual screening. *Journal of Chemical Information and Modeling*, 60(9):
654 4263–4273, 2020.

655 Izhar Wallach and Abraham Heifets. Most ligand-based classification benchmarks reward memo-
656 rization rather than generalization. *Journal of Chemical Information and Modeling*, 58:916–932,
657 2018.

658

659 Chengxin Zhang, Xi Zhang, Peter L. Freddolino, and Yang Zhang. Biolip2: an updated structure
660 database for biologically relevant ligand–protein interactions. *Nucleic Acids Research*, 52(D1):
661 D404–D412, 2024.

662 Xujun Zhang, Odin Zhang, Chao Shen, Wanglin Qu, Shicheng Chen, Hanqun Cao, Yu Kang,
663 Zhe Wang, Ercheng Wang, Jintu Zhang, Yafeng Deng, Furui Liu, Tianyue Wang, Hongyan Du,
664 Langcheng Wang, Peichen Pan, Guangyong Chen, Chang-Yu Hsieh, and Tingjun Hou. Efficient
665 and accurate large library ligand docking with karmadock. *Nature Computational Science*, 3:
666 789–804, 2023.

667 Guangfeng Zhou, Domnita-Valeria Rusnac, Hahnbeom Park, Daniele Canzani, Hai Minh Nguyen,
668 Lance Stewart, Matthew F. Bush, Phuong Tran Nguyen, Heike Wulff, Vladimir Yarov-Yarovoy,
669 Ning Zheng, and Frank DiMaio. An artificial intelligence accelerated virtual screening platform
670 for drug discovery. *Nature Communications*, 15:7761, 2024.

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A ADDITIONAL RELATED WORKS 703

704 Here we provide a detailed overview of related works, with a specific focus on the conventional
705 benchmarks and models used in virtual screening. The following sections aim to elucidate the
706 characteristics and inherent weaknesses of these widely used datasets, providing context for the
707 development of our ChEMBL-LR benchmark.

709 A.1 CONVENTIONAL VIRTUAL SCREENING BENCHMARKS 710

711 Table A1 summarizes five commonly used benchmark datasets for virtual screening (VS).

- 713 • **MUV** (Rohrer & Baumann, 2009): The Maximum Unbiased Validation dataset was designed
714 to evaluate ligand-based VS (LBVS) methods while minimizing analogue bias and artificial
715 enrichment. Actives and decoys were drawn from PubChem BioAssay, filtered to remove
716 assay artifacts, and curated into 18 targets (30 actives and 15,000 decoys each). Its splitting
717 strategy focuses on separating actives in training and test, but does not account for all sources
718 of ligand bias (i.e. just AA-AI in AVE bias).
- 719 • **DUD-E** (Mysinger et al., 2012): An enhanced version of the Directory of Useful Decoys.
720 Actives are collected from ChEMBL (v09) and decoys from ZINC, chosen to be topologically
721 dissimilar from actives while matched on simple physicochemical properties (e.g., molecular
722 weight, logP, H-bond counts, net charge). Widely used for LBVS and SBVS evaluation, but
723 highly susceptible to ligand memorization bias in the deep learning era.
- 724 • **DEKOIS 2.0** (Bauer et al., 2013): Designed to reduce bias for both LBVS and SBVS
725 methods. Actives come from BindingDB, and decoys are chosen from ZINC using property-
726 based matching scores (DOE, LADS). Provides 81 targets with 40 actives and 1,200 decoys
727 each. Similar issues to DUD-E remain, as decoys are not context-dependent across receptors.
- 728 • **CASF-2016** (Su et al., 2018): A subset of PDBbind (v2016) designed for the Comparative
729 Assessment of Scoring Functions (CASF). Contains 57 protein-ligand complexes and is
730 used to benchmark docking, scoring, and ranking power. Unlike the datasets above, CASF
731 focuses more on protein-ligand complex modeling rather than active/decoy discrimination.
732 It uses PDBbind refined set as its only source without external database like ChEMBL or
733 ZINC, so number of actives are limited per target.
- 734 • **LIT-PCBA** (Tran-Nguyen et al., 2020): The most recent among the five, released in DL
735 era. Developed in direct response to biases in DUD-E and MUV. Actives and decoys are
736 sourced from PubChem BioAssay, with decoys curated to minimize Asymmetric Validation
737 Embedding (AVE) bias. Provides 15 protein targets with ~500 actives and 27,000 decoys
738 per target. Although effective for within-target splits, its limited number of targets and
739 reliance on strict split assumptions restricts its use when external datasets are added to
740 training.

741 **DUD-E** and **DEKOIS 2.0** decoys are selected to differ from actives primarily in global topology while
742 matching basic physicochemical properties. However, they are assigned uniformly as non-binders
743 across all receptors, regardless of biological context. In reality, a compound may act as an active
744 ligand for one receptor while serving as a decoy for another. The lack of such context-dependent
745 labeling makes the benchmark vulnerable to ligand memorization, since a model can exploit global
746 chemical features without truly learning protein-ligand interactions.

747 A.2 EXISTING MODELS: TRAINING AND TEST SETS 748

749 Here we rationalize our choice of baseline methods used for comparison.

750 **AutoDock Vina (ADV)** (Eberhardt et al., 2021) is a popular and accurate docking method that remain
751 widely used. Many DL models for protein-ligand interaction prediction (both docking and screening)
752 compare their performance against ADV.

753 **AK-Score2** (Hong et al., 2024) was selected as a representative scoring model. In their work, it
754 showed better performance compared to other scoring functions such as RTMScore, while relying
755 on docked protein-ligand structure as input. This reflects a common limitation of scoring models:

756
757
758
759 Table A1: Common benchmark datasets used for evaluation.
760
761
762
763
764
765
766

Dataset	Targets	#Actives / #Decoys (per-target mean)	Sources
MUV (2012)	18	30 / 15,000	PubChem BioAssay
DUD-E (2012)	102	654 / 13,926	ChEMBL, ZINC
DEKOIS 2.0 (2013)	81	40 / 1,200	BindingDB, ZINC
CASF-2016 (2018)	57	5 / 280	PDBbind
LIT-PCBA (2020)	15	523 / 27,092	PubChem BioAssay

767
768
769 their dependence on the docking tool used to generate complex structures, with ADV being the de
770 factio choice. Following their paper, we generated protein-ligand complex structure using ADV for
771 benchmarks.

772 **KarmaDock** (Zhang et al., 2023) represents a class of deep learning-based docking models designed
773 also for virtual screening. Requires protein 3D structure with its binding pocket information and
774 ligand smiles.

775 **SurfDock** (Cao et al., 2025) was chosen because it achieved a docking success rate of 78.4% in
776 the benchmarking study of (Jiang et al., 2025), where it outperformed several other deep learning
777 methods, including AlphaFold3 (Abramson et al., 2024) (60.3%). It also requires protein 3D structure
778 as input.

779 Table A2 summarizes the training and evaluation datasets used by these methods. AK-Score2
780 attempted to remove DUD-E-like targets from their training set but used weak similarity thresholds:
781 protein sequence identity >90% and ligand similarity >0.8, compared to our more stringent thresholds
782 of 0.4 for both.

783
784 Table A2: Training and benchmark datasets used by existing methods and ours.
785

Method	Training Set	Test Set	Redundancy
KarmaDock (Zhang et al., 2023)	PDBbind v2020	DEKOIS 2.0	None
SurfDock (Cao et al., 2025)	PDBbind v2020	DEKOIS 2.0	None
AK-Score2 (Hong et al., 2024)	PDBbind v2020	CASF-2016, DUD-E	Weak removal ^a
MotifScreen (Ours)	PDBbind, BioLip, ChEMBL	ChEMBL-LR, DUD-E	Strict control ^b

792 ^a Protein sequence identity >90%, ligand similarity >0.8

793 ^b Protein sequence identity >40%, ligand similarity >0.4, plus AVE bias control and target-level splitting

794
795 **Note on DUD-E benchmark.** Our comparative evaluation on DUD-E benchmark is deliberately
796 stringent, as we avoid the target leakage that likely benefits published baseline results; this limits
797 direct performance comparisons but provides a more honest measure of generalization.

798
799

B ADDITIONAL METHODS: DATASET

800
801

B.1 DATASET CONSTRUCTION

802 Our model’s robust performance relies on a new training and benchmark dataset curated to overcome
803 the biases prevalent in existing datasets. We constructed this dataset by combining publicly available
804 protein-ligand structural and activity data from **PDBbind**, **BioLip**, and **ChEMBL**. Our curation
805 process followed a series of strategies designed to ensure data quality and eliminate potential sources
806 of leakage. This approach allows our model to learn generalizable principles of molecular interaction
807 rather than memorizing biased features. As part of this work, we also propose a new benchmark
808 dataset, **ChEMBL-LR**, as a rigorous benchmark for evaluating deep learning-based virtual screening
809 models.

810 B.1.1 DATA SOURCES AND PROCESSING
811812 We utilized PDBbind, BioLip, and ChEMBL 34 to construct our training and validation sets, while
813 the new benchmark set was derived exclusively from ChEMBL 34. Here, we detail the processing
814 strategies for PDBbind and BioLip in detail.815 **PDBbind** (Liu et al., 2017) and **BioLip** (Zhang et al., 2024): We extracted protein-ligand complex
816 structures from these databases to train the structural components of our model. To maximize diversity,
817 we included both the refined and general sets from PDBbind. The following processing
818 strategies were applied:819

- **Removal of Non-Drug-Like Molecules.** To ensure chemical relevance and data quality,
820 we filtered the complexes to remove non-drug-like molecules. Ligands with more than 50
821 heavy atoms were excluded. Molecules that do not conform to drug-like characteristics,
822 such as glycans and cofactors (e.g., nucleotides) along with other outliers identified by
823 manual inspection, were removed. This step reduces chemical bias originating from non-
824 pharmacological molecules in the source databases.
- **Sample Weighting via Clustering.** To mitigate redundancy from over-represented protein
825 families, protein targets were clustered at a 50% sequence identity threshold. Each sample
826 was then assigned a weight during training according to the formula $w = 2.0/\sqrt{n}$, where n
827 is the number of members in its respective cluster.
- **Cross-Docking Set Curation.** Building on the principle that homologous receptors often
828 share active ligands due to comparable binding site chemistry, we designated ligands from
829 highly similar proteins as putative actives for one another (see Section 3.3). This is based
830 on the knowledge that homologous proteins commonly share binding site traits (Martin,
831 2010). A stringent sequence identity threshold of 95% was used to define receptor similarity,
832 minimizing the risk of introducing false positive interactions that could be detrimental to
833 model performance.
- **Decoy Selection.** Decoys were selected from molecules known to be active against other
834 receptors (i.e., cross-decoys). To prevent the inclusion of false negatives, only molecules
835 with Tanimoto similarity below 0.3 to the active were selected as decoys. Furthermore,
836 to create a challenging discrimination task, decoys were matched to actives based on key
837 physicochemical properties: molecular weight, LogP, topological polar surface area (TPSA),
838 hydrogen bond donor/acceptor counts, and aromatic ring counts.

839 **ChEMBL 34.** (Gaulton et al., 2012) We curated a large-scale activity dataset from ChEMBL
840 to train our model’s affinity prediction module. This dataset provided a vast and diverse set of
841 compounds, including many without corresponding structural data, allowing our model to learn from
842 a wider chemical space. To create our final benchmark, we partitioned the ChEMBL data. Targets
843 with no homologous proteins in PDBbind or BioLip were allocated to the ChEMBL-LR benchmark
844 set. The remaining ChEMBL targets were integrated into our main training set.845 **Validation Set Splitting Strategy** A robust validation set is crucial for monitoring training and
846 preventing overfitting. To ensure strict separation between training and validation data, we performed
847 two independent partitioning operations. First, all protein targets from PDBbind and BioLip were
848 combined and split into their own training and validation sets using a 40% sequence identity threshold.
849 Second, the same target-wise splitting procedure was separately applied to our ChEMBL training set.
850 The final training set is composed of the training splits from both partitions, and the final validation
851 set is composed of both validation splits. This strategy guarantees that no target in the validation set
852 has a homologous protein within its corresponding training data pool. MMseqs2 (Kallenborn et al.,
853 2024) was used to split targets.854 B.1.2 BENCHMARK CURATION STRATEGIES
855856 To create a robust and unbiased benchmark for virtual screening, we partitioned the ChEMBL database
857 into a dedicated training set and a novel test set, which we term ChEMBL-LR (Leakage-Resistant).
858 The curation of the ChEMBL-LR benchmark was guided by the following strategies, designed to
859 eliminate data leakage and bias and to ensure data quality:

864

- 865 • **Realistic Active Selection.** Active compounds were selected using an activity threshold
866 that reflects a realistic virtual screening scenario. Specifically, we filtered for compounds
867 with a K_i , K_d , EC_{50} or IC_{50} value below 10 μM . The resulting average affinity for our
868 benchmark actives is 1.02 μM , contrasting with older benchmarks like DUD-E (0.035 μM
869 average), which present an unrealistically simple task by using only highly potent binders
(Tran-Nguyen et al., 2020).

870

- 871 • **Target Selection.** Also reflecting a realistic virtual screening scenario where binding site
872 for target receptor is known (Zhou et al., 2024), we included only proteins with a single,
873 well-defined pocket. To verify this, we searched the Protein Data Bank for all available
874 ligand-bound crystal structures for each target (via its UniProt ID). Targets were retained
875 only if all biologically relevant ligands (e.g. not a solvent) were observed to bind to the
876 same pocket.

877

- 878 • **Prevention of Target-Based Leakage.** As previously described, targets with no homologous
879 proteins in PDBbind or BioLip were allocated to the ChEMBL-LR benchmark set.
880 The remaining ChEMBL targets were integrated into our main training set. This is an
881 improvement upon datasets by (Tran-Nguyen et al., 2020), which minimized bias only
882 through a within-target splitting procedure. Also because many DL methods use a subset of
883 our training set, this dataset stands as a rigorous evaluation benchmark for previous methods
884 as well.

885

- 886 • **Active Clustering to Reduce Scaffold Bias.** To mitigate sampling bias from over-
887 represented chemical scaffolds in the ChEMBL database, we clustered the active compounds
888 for each target. Using a Tanimoto distance threshold of 0.3, we selected only the compound
889 with the highest affinity from each cluster as its representative.

890

- 891 • **Decoy Selection.** The decoy selection process followed the same property-matching protocol
892 used for the PDBbind/BioLip sets. For the benchmark, decoys for a given target were drawn
893 from the pool of curated actives for all other targets in ChEMBL. A total of 30 decoys were
894 selected for each active.

895

- 896 • **Ligand-Based Bias Check.** We performed an Asymmetric Validation Embedding (AVE)
897 bias analysis on the final training and test sets. This ensured that the chemical space of
898 active and decoy molecules is homogeneously distributed, making it difficult for models to
899 rely on simple ligand features.

900 **B.1.3 FINAL DATASET COMPOSITION**

901 The final curated dataset consists of distinct sets for training, validation, and testing. PDBbind and
902 BioLip structures were used exclusively for training and validation. From ChEMBL, we created a
903 non-overlapping training set and our final test benchmark, **ChEMBL-LR**. For the final ChEMBL-LR
904 benchmark, an additional manual inspection was performed to ensure structural quality, resulting in a
905 selection of 60 high-quality targets. Final list of target UniProt IDs are at the end of this appendix
(Appendix F).

906 The strict separation of training and testing data ensures that our benchmark is a rigorous and reliable
907 measure of true model generalization. Table B1 provides a detailed summary of the number of active
908 protein-ligand pairs in each of these sets.

909 910 **Table B1:** Protein-ligand (active) pairs in each set and their split.

911 # P-L pairs	PDBbind	BioLip	ChEMBL
912 Training set	14,988	33,405	40,918
913 Validation set	3,874	9,221	8,179
914 Test set (ChEMBL-LR)	–	–	6,382

918
919
920
921
922
923
924
925
926 Table B2: Training set used for benchmark on DUD-E and ChEMBL-LR
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Dataset	Kept	Excluded	
		Similar Protein	Similar Protein-Ligand
PDBbind+BioLip (clustered)	31,429	7,289	3,526

C ADDITIONAL METHODS: MODEL DESIGN AND TRAINING

C.1 OVERALL ARCHITECTURE

The end-to-end forward pass of MotifScreen, which is identical during training and inference, is detailed in Algorithm 1. The model takes protein receptor and ligand graphs as input and is trained to jointly predict binding motifs \hat{M} , ligand key atom coordinates \hat{X}_{key} , ligand key atom distance maps \hat{D}_{key} , normalized protein-ligand pair feature maps \hat{Z}_{key} and binding scores \hat{y} along with score map $\hat{Aff}_{contrast}$.

Algorithm 1 Forward pass of MotifScreen

```

1: function MOTIFSCREEN( $G_{rec}, G_{lig}$ ) ▷ Input: receptor and ligand graphs
2:    $h_{grid}, \hat{M} \leftarrow \text{GridFeaturizer}(G_{rec})$ 
3:    $h_{lig} \leftarrow \text{LigandFeaturizer}(G_{lig})$ 
4:    $h_{lig}^{global} \leftarrow \text{LigandEmbedding}(G_{lig})$ 
5:    $D_{grid}, D_{lig} \leftarrow \text{Encode pairwise distances}$ 
6:    $Z \leftarrow \text{TrigonBlock}(h_{grid}, h_{lig}, D_{grid}, D_{lig})$  ▷ initialize pairwise features
7:    $h_{key} \leftarrow \text{Ligand-to-Key Mapping}(h_{lig})$ 
8:    $h_{key} \leftarrow \text{Ligand-to-Key Attention}(h_{key}, h_{lig})$ 
9:    $Z_{key} \leftarrow \text{Key-Restricted Projection}(Z)$ 
10:  for  $\ell = 1 \dots L$  do ▷ Interaction (CrossTrigon) Module
11:     $D_{key} \leftarrow \text{DistanceTransform}(h_{key})$ 
12:     $h_{key} \leftarrow \text{CrossAttention}(h_{key}, h_{grid}, Z_{key})$ 
13:     $h_{grid} \leftarrow \text{CrossAttention}(h_{grid}, h_{key}, Z_{key})$ 
14:     $Z_{key} \leftarrow \text{TrigonBlock}(h_{grid}, h_{key}, D_{grid}, D_{key})$ 
15:  end for
16:   $\hat{X}_{key}, \hat{D}_{key}, \hat{Z}_{key} \leftarrow \text{StructureModule}(Z_{key}, G_{rec})$ 
17:   $\hat{y}, \hat{Aff}_{contrast} \leftarrow \text{ScreeningModule}(Z_{key}, h_{grid}, h_{key}, h_{lig}^{global})$ 
18:  return  $\hat{M}, \hat{X}_{key}, \hat{D}_{key}, \hat{Z}_{key}, \hat{y}, \hat{Aff}_{contrast}$ 
19: end function

```

C.2 INPUT REPRESENTATION AND FEATURE ENGINEERING

To prepare the molecular data for our graph neural network, we convert both proteins and ligands into graph structures annotated with chemically relevant feature sets.

C.2.1 GRAPH CONSTRUCTION

Protein Graph. A protein’s binding pocket is represented by a graph whose nodes consist of the protein’s heavy atoms and a set of virtual grid points. These grid points are intelligently placed to represent the interaction surface by first generating a dense grid around the binding site, then filtering it to remove clashing or distant points and retaining only the largest connected component. Edges in this graph are constructed based on spatial proximity, connecting each node to its k-nearest neighbors.

Ligand Graph. Similarly, the ligand graph’s nodes consist of its atoms. To capture both covalent and non-covalent interactions, its edges are also constructed based on spatial proximity (k-nearest neighbors), not just the covalent bond topology.

972 **Ligand Key Atom Selection.** Key atoms are selected among the ligand heavy atoms prior to graph
 973 generation. Ligands are split into fragments following the rules for the breaking of retrosynthetically
 974 interesting chemical substructures (BRICS) Degen et al. (2008). BRICS fragments considers chemical
 975 environment of the cleavage bond and surrounding substructures Shao et al. (2024). A key atom is
 976 selected from each BRICS fragment to represent the substructure.
 977

978 **C.2.2 NODE AND EDGE FEATURES**
 979

980 **Protein Node Features:** Each protein atom node is described by a vector containing a one-hot
 981 encoding of its amino acid type, a detailed atom type classification (e.g., distinguishing between
 982 different carbon hybridization states), Solvent-Accessible Surface Area (SASA), and partial charge.
 983

984 **Grid Node Features.** In contrast to atoms with intrinsic properties, the virtual grid nodes act as
 985 spatial placeholders. They are initialized with only generic features, as it is the express purpose of the
 986 Motif Module (detailed in the following section) to predict and populate them with rich chemical
 987 information, effectively transforming the grid into an inferred map of the binding site’s interaction
 988 potential.

989 **Ligand Node Features.** Each heavy atom in the ligand is represented by a feature vector that
 990 includes a one-hot encoding of its element type, normalized counts of neighboring atoms by bond
 991 type, SASA, an occlusion score, and its partial charge.
 992

993 **Protein Edge Features.** Each edge in the protein graph (protein and grid node combined) is
 994 annotated with a vector describing the relationship between the two connected nodes, including a
 995 binary feature for covalent bonds, a binary feature for grid-grid connections, and a continuous feature
 996 derived from the Euclidean distance.

997 **Ligand Edge Features.** Each edge in the ligand’s spatial graph is described by a feature vector
 998 encoding both covalent information (bond type, if the edge represents a bond) and topological distance
 999 (shortest path through the covalent bond graph).
 1000

1001 **C.3 GENERATING PHYSICOCHEMICAL GUIDANCE FOR TRAINING**
 1002

1003 **C.3.1 FROM STRUCTURAL DATA: PDBBIND AND BIOLIP**

1004 **Motif Labels (M).** The ground truth for the Motif Module is derived from the physicochemical
 1005 properties of the crystal ligand. We first identify the chemical nature of the ligand fragments (e.g.,
 1006 H-bond donor, acceptor, aromatic). These properties are then projected onto the nearby virtual grid
 1007 points using a Gaussian decay function. This process creates a continuous field on the grid that
 1008 represents the ideal chemical environment of the binding pocket, which the model is trained to predict.

1009 **Structure Labels (X_{key}, D_{key}).** The ground truth for the Structure Module is taken directly from
 1010 the crystal structure. The 3D coordinates of the ligand’s pre-defined key atoms serve as the ground
 1011 truth for the positioning task. The ground truth intra-ligand distance map is also calculated from these
 1012 coordinates.

1013 **Affinity Labels (y).** For the Affinity Module, known binding ligands (actives) are assigned a
 1014 ground truth label of 1, while non-binding molecules (decoys) are assigned a label of 0.
 1015

1016 **C.3.2 FROM ACTIVITY DATA: ChEMBL**
 1017

1018 For data from ChEMBL, we have protein structures and ligand SMILES, but no experimental complex
 1019 structures. Therefore, ground truth is only available for the affinity task.
 1020

1021 **Input Generation for ChEMBL.** Ligand 3D structures are generated from their SMILES strings
 1022 using Open Babel. The corresponding protein structures are sourced from the PDB based on their
 1023 UniProt ID. Structure with highest resolution is used.

1024 **Affinity Labels (y).** The ground truth is determined by the reported bioactivity. Compounds
 1025 meeting the activity threshold are labeled as actives (1), and all others (decoys) are labeled as inactives
 (0).

1026 **Guidance for ChEMBL Training.** Crucially, for ChEMBL data, there is no ground truth available
 1027 for the Motif and Structure modules. During training, the loss functions for these two modules
 1028 are simply not computed for samples originating from ChEMBL. This allows the model to learn
 1029 from large-scale activity data to improve its affinity prediction, while still learning the principles of
 1030 geometry and chemical motifs from the high-quality structural data.

1031 **C.4 MODEL COMPONENTS**

1032 **C.4.1 SE(3)-EQUIVARIANT FEATURIZERS (GRIDFEATURIZER, LIGANDFEATURIZER)**

1033 The initial processing of protein and ligand graphs is handled by SE(3)-equivariant featurizers, which
 1034 generate rotationally and translationally equivariant representations—a crucial inductive bias for
 1035 molecular data.

1036 **GridFeaturizer.** The protein binding pocket, represented by both atomic and virtual grid nodes,
 1037 is processed by an SE(3)-Transformer. This featurizer leverages higher-order spherical harmonics
 1038 to capture complex geometric relationships, which our ablations (replacing SE(3)-Transformer to
 1039 simpler EGNNS) suggest is critical for learning meaningful motifs. The output is a scalar feature
 1040 vector for each node, h_{rec} , and a set of motif predictions \hat{M} for the grid points.

1041 **LigandFeaturizer.** The ligand graph is processed by a Graph Attention Network (GAT), which
 1042 updates each atom’s features based on its neighbors. This produces a scalar feature vector, h_{lig} .

1043 **C.4.2 INTERACTION MODULE**

1044 **Figure C1: Detailed Architecture of the Interaction Module.** This figure illustrates the iterative
 1045 refinement process within the Interaction Module. It transforms initial protein grid and ligand key
 1046 atom embeddings into a rich, geometrically-informed protein-ligand pair feature map. The module
 1047 consists of alternating Cross-Attention (for inter-molecular information exchange) and Triangle
 1048 Attention blocks (for intra- and inter-molecular geometric reasoning), leveraging distance maps (not
 1049 depicted) to enhance feature propagation.

1050 The core of MotifScreen is an Interaction Module (Figure C1) that iteratively refines the protein
 1051 and ligand representations over L layers. The information flow is designed as a sequential, iterative
 1052 process where node and pair features are updated in tandem. For any given layer l in the stack, the
 1053 operation proceeds as follows, as detailed in Algorithm 2:

1. **DistanceTransform.** Projects ligand key atom node embeddings, $h_{key}^{(l-1)}$, into a latent
 1054 space and computes a normalized outer-product. This produces a learned pairwise distance
 1055 D_{key} which allows the model to represent flexible intra-ligand relationships beyond static
 1056 Euclidean distances.
2. **CrossAttention.** Updates the node embeddings. As detailed in Algorithm 3, this step
 1057 uses the pairwise feature map from the previous layer, $Z_{key}^{(l-1)}$, to weight and guide the
 1058 information exchange between protein grid points and ligand key atoms. This produces
 1059 updated node embeddings for the current layer, $h_{grid}^{(l)}$ and $h_{key}^{(l)}$. CrossAttention allows the
 1060 protein representation to be updated based on the ligand’s features, and vice-versa.

1080
1081 3. **TrigonBlock.** Refines the pair feature map. As shown in Algorithm 4, this block takes the
1082 newly updated node embeddings, $h_{grid}^{(l)}$ and $h_{key}^{(l)}$, and their respective distance maps (\mathbf{D}_{grid}
1083 and the learned \mathbf{D}_{key}) to compute a new, more refined pairwise interaction tensor, $\mathbf{Z}_{key}^{(l)}$. This
1084 is achieved through a sequence of Triangle Multiplicative Updates and Triangle Attention
1085 layers following (Jumper et al., 2021), allowing the model to reason about higher-order
1086 geometric relationships.

1087 The outputs of this layer ($h^{(l)}$ and $\mathbf{Z}_{key}^{(l)}$) are passed as inputs to the next layer, $l + 1$, enabling a deep,
1088 iterative refinement of the protein-ligand complex representation.
1089

1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134

Algorithm 2 Interaction module (CrossTrigon)

```

1135 1: function CROSSTRIGON( $h_{grid}, h_{key}, Z_{key}, D_{grid}, L$ )
1136 2:   for  $\ell = 1 \dots L$  do
1137 3:      $D_{key} \leftarrow \text{DistanceTransform}(h_{key})$ 
1138 4:      $h_{key} \leftarrow \text{CrossAttention}(h_{key}, h_{grid}, Z_{key})$ 
1139 5:      $h_{grid} \leftarrow \text{CrossAttention}(h_{grid}, h_{key}, Z_{key})$ 
1140 6:      $Z_{key} \leftarrow \text{TrigonBlock}(h_{grid}, h_{key}, D_{grid}, D_{key})$ 
1141 7:   end for
1142 8:   return  $h_{grid}, h_{key}, Z_{key}$ 
1143 9: end function

```

1144

1145

Algorithm 3 CrossAttention

```

1146 1: function CROSSATTENTION( $V, Q, Z, Z_{mask}$ )
1147 2:    $\tilde{Z} \leftarrow \exp(Z) \odot Z_{mask}$                                  $\triangleright$  apply mask
1148 3:    $\tilde{Z} \leftarrow \tilde{Z} / \sum \tilde{Z}$                                  $\triangleright$  normalize across attended dim
1149 4:    $Q_a \leftarrow \text{Linear}_1(Q)$ 
1150 5:    $V_a \leftarrow \tilde{Z} \cdot Q_a$                                  $\triangleright$  aggregate queries into values
1151 6:    $V \leftarrow V + \text{Linear}_2(V_a)$                                  $\triangleright$  residual update
1152 7:   return  $V$ 
1153 8: end function

```

1154

1155

Algorithm 4 Trigon block

```

1156 1: function TRIGONBLOCK( $h_{grid}, h_{key}, D_{grid}, D_{key}$ )
1157 2:    $h'_{grid} \leftarrow \text{Linear}(h_{grid}), h'_{key} \leftarrow \text{Linear}(h_{key})$ 
1158 3:    $Z \leftarrow h'_{grid} \otimes h'_{key}$                                  $\triangleright$  initialize pair features
1159 4:   for  $t = 1 \dots n$  do
1160 5:      $Z \leftarrow Z + \text{TriangleMultiplicativeUpdate}(Z, D_{grid}, D_{key})$ 
1161 6:      $Z \leftarrow Z + \text{TriangleAttentionRowWise}(Z)$ 
1162 7:      $Z \leftarrow Z + \text{FeedForward}(Z)$ 
1163 8:   end for
1164 9:   return  $Z$ 
1165 10: end function

```

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188 C.4.3 PREDICTION HEADS
11891190 The final, refined embeddings are passed to separate modules for the multi-task predictions.
1191

- 1192 • **Structure Module.** This module takes the final pairwise features \mathbf{Z}_{key} and predicts the
1193 3D coordinates of the ligand key atoms (\mathbf{X}_{key}) and a predicted intra-ligand distance map
1194 (\mathbf{D}_{key}). It also returns the attention map (\mathbf{A}).
- 1195 • **Screening Module.** The final screening module (Algorithm 6) processes the refined pairwise
1196 and node embeddings to produce two outputs: a scalar binding score \hat{y} for binder classifi-
1197 cation and a per-key-atom affinity map $\mathbf{Aff}_{contrast}$ used for contrastive learning. The final
1198 score is a weighted average of a term derived from the protein-ligand interaction features
1199 and a term from the global ligand features.

1200
1201 **Algorithm 5** Structure Module for Key Atom Positioning

```

1: function STRUCTUREMODULE( $\mathbf{Z}_{key}$ ,  $G_{rec}$ )
2:    $\mathbf{X}_{grid} \leftarrow G_{rec}$                                  $\triangleright$  Get grid coordinates from receptor graph input.
3:    $\mathbf{A}_{logits} \leftarrow \text{Linear}(\mathbf{Z}_{key})$ 
4:    $\mathbf{A} \leftarrow \text{masked\_softmax}(\mathbf{A}_{logits}, \text{mask} = \mathbf{M}_z, \text{dim} = 1)$ 
5:    $\triangleright$  Compute attention weights over grid points for each key atom.
6:    $\hat{\mathbf{X}}_{key,j} \leftarrow \sum_{i=1}^{N_{grid}} \mathbf{A}_{i,j} \cdot \mathbf{X}_{grid,i}$    for each key atom  $j$ 
7:   return  $\hat{\mathbf{X}}_{key}$ ,  $\mathbf{A}$ 
8: end function

```

1211
1212 **Algorithm 6** Screening module

```

1: function SCREENINGMODULE( $\mathbf{Z}_{key}$ ,  $\mathbf{h}_{grid}$ ,  $\mathbf{h}_{key}$ ,  $\mathbf{h}_{lig}^{global}$ ,  $w_{mask}$ )
2:    $\mathbf{h}_{grid} \leftarrow \text{Softmax}(\mathbf{h}_{grid}, \text{channel})$ 
3:    $\mathbf{h}_{key} \leftarrow \text{Softmax}(\mathbf{h}_{key}, \text{channel})$ 
4:    $\mathbf{a} \leftarrow \text{normalize}(\mathbf{Affmap})$ 
5:    $\mathbf{Aff}_{contrast} \leftarrow \mathbf{h}_{key} \cdot \mathbf{a}$                                  $\triangleright$  per-key contrastive scores
6:    $\text{key\_P} \leftarrow \sum_d Z_{:,:,k,d} h_{:,k,d}^{key}$ 
7:    $\text{aff}_{key} \leftarrow \max_n \text{key\_P}_{n,k}$                                  $\triangleright$  max over grid
8:    $\text{aff}_{key} \leftarrow \text{Linear}(\text{aff}_{key})$                                  $\triangleright$  scale + offset
9:    $\text{aff}_{key} \leftarrow \text{MaskedAverage}(\text{aff}_{key}, w_{mask})$ 
10:   $\text{aff}_{lig} \leftarrow \text{Linear}(\mathbf{h}_{lig}^{global})$ 
11:   $\hat{y} \leftarrow \frac{\text{aff}_{key} + \Gamma \cdot \text{aff}_{lig}}{1 + \Gamma}$ 
12:  return  $\hat{y}$ ,  $\mathbf{Aff}_{contrast}$ 
13: end function

```

1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242 C.5 MULTI-TASK LOSS FUNCTIONS
1243

1244 MotifScreen is trained end-to-end with a composite objective function, which is a weighted sum
1245 of losses from our three primary tasks: 1) Motif classification losses, 2) Structural losses, and 3)
1246 Screening Losses. Each component is defined below. The full training loop, including loss calculation,
1247 is shown in Algorithm 7.

1248
1249 **Motif classification losses.**

1250
1251
1252
1253
1254

- **Masked BCE:** positive and negative binary cross-entropy terms applied to motif predictions
restricted by valid masks.
- **Contrastive attention loss:** auxiliary penalty encouraging attention overlap with correct
motif positions.

1255
1256 **Structural losses.**

1257
1258
1259
1260

- **Structure loss:** regression on key atom coordinates using MSE or Huber loss.
- **Pair distance loss:** hybrid cross-entropy + Huber objective matching predicted vs. true
pairwise distances.
- **Spread loss:** attention regularization between predicted grid-key interaction map $\hat{\mathbf{Z}}_{key}$
and ground-truth ligand coordinates. It consists of two terms: (a) a positive alignment
term encouraging overlap with Gaussian kernels at ligand positions ($\mathcal{L}_{spread-pos}$), and (b) a
deviation penalty discouraging attention far from ligand positions ($\mathcal{L}_{spread-neg}$). The final
contribution is $\mathcal{L}_{str-spread} = w_{spread}(\mathcal{L}_{spread-pos} + 0.2 \cdot \mathcal{L}_{spread-neg})$.

1266
1267 **Screening losses.**

1268
1269
1270
1271
1272
1273

- **Screening loss:** binary cross-entropy with logits on the scalar binding prediction \hat{y} .
- **Ranking loss:** KL divergence between predicted and label affinity distributions.
- **Screening contrast loss:** L_2 penalty aligning the per-key affinity map $\mathbf{Aff}_{contrast}$ with
global binding labels. Enforces that the per-key affinity map for actives approaches all-ones,
while for decoys it approaches all-zeros.

1274
1275 **Final objective.** The weighted objective is

$$\begin{aligned} \mathcal{L} = & w_{motif}(\mathcal{L}_{motif-pos} + \mathcal{L}_{motif-neg} + \mathcal{L}_{motif-contrast} + w_{motif-penalty} \cdot \mathcal{L}_{motif-penalty}) \\ & + w_{str}(\mathcal{L}_{str-dist} + \mathcal{L}_{str-pair} + \mathcal{L}_{str-attmap}) \\ & + w_{screen} \cdot \mathcal{L}_{screen} + w_{screen-rank} \cdot \mathcal{L}_{screen-rank} + w_{screen-contrast} \cdot \mathcal{L}_{screen-contrast} \quad (1) \end{aligned}$$

$$+ w_{penalty} \cdot \mathcal{L}_2. \quad (2)$$

1282 Parameter regularization and quadratic penalty on motif attention magnitude to prevent collapse is
1283 not shown in the equation but is a part of training loss. All weights w are hyperparameters set in
1284 the configuration (Table E2), and a per-target multiplier is applied to balance data imbalance across
1285 targets.

1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296 C.6 TRAINING OF MOTIFSCREEN
1297

1298 Training was done using the dataset in Appendix B.1.1, Table B1. During training, each batch
1299 includes single target with 1 active and 5 decoys (decoys are randomly sampled among pre-selected
1300 decoy list). Model parameters for main benchmark was selected using metrics calculated on validation
1301 set. Detailed computational set-up is at Appendix E.

1302 Algorithm 7 details the training loop executed in each epoch.
1303

Algorithm 7 Training loop for one epoch

```

1: for each batch  $(G_{rec}, G_{lig}, \text{labels})$  do
2:    $(\hat{\mathbf{X}}_{key}, \hat{\mathbf{D}}_{key}, \hat{\mathbf{Z}}_{key}, \hat{\mathbf{M}}, \hat{y}, \hat{\mathbf{Aff}}_{contrast}) \leftarrow \text{MotifScreen}(G_{rec}, G_{lig})$ 
3:   Initialize all loss terms to zero
                                          $\triangleright$  — Motif classification losses —
4:   if motif labels available then
5:      $\mathcal{L}_{\text{motif-pos}}, \mathcal{L}_{\text{motif-neg}} \leftarrow \text{MaskedBCE}(\hat{\mathbf{M}}, \mathbf{M})$ 
6:      $\mathcal{L}_{\text{motif-contrast}} \leftarrow \text{ContrastLoss}(\hat{\mathbf{M}})$ 
7:      $\mathcal{L}_{\text{motif-penalty}} \leftarrow \text{ReLU}(\|\hat{\mathbf{M}}\|^2 - 25.0)$ 
8:   end if
                                          $\triangleright$  — Structural losses —
9:   if structure labels available then
10:     $\mathcal{L}_{\text{str-dist}}, \text{MAE} \leftarrow \text{StructureLoss}(\hat{\mathbf{X}}_{key}, \mathbf{X}_{key})$ 
11:     $\mathcal{L}_{\text{str-pair}} \leftarrow \text{PairDistanceLoss}(\hat{\mathbf{D}}_{key}, \mathbf{X}_{key})$ 
12:     $\mathcal{L}_{\text{str-spread}} \leftarrow \text{SpreadLoss}(\mathbf{X}_{key}, \hat{\mathbf{Z}}_{key})$ 
13:  end if
                                          $\triangleright$  — Screening losses —
14:   $\mathcal{L}_{\text{screen}} \leftarrow \text{BCEWithLogits}(\hat{y}, y)$ 
15:   $\mathcal{L}_{\text{screen-rank}} \leftarrow \text{RankingLoss}(\sigma(\hat{y}), y)$ 
16:   $\mathcal{L}_{\text{screen-contrast}} \leftarrow \text{ScreeningContrastLoss}(\hat{\mathbf{Aff}}_{contrast}, y)$ 
                                          $\triangleright$  — Regularization —
17:   $\mathcal{L}_2 \leftarrow \sum_{\theta \in \text{params}} \|\theta\|_2$ 
                                          $\triangleright$  — Final objective —
18:   $\mathcal{L} \leftarrow w_{\text{motif}} \cdot (\mathcal{L}_{\text{motif-pos}} + \mathcal{L}_{\text{motif-neg}} + \mathcal{L}_{\text{motif-contrast}} + w_{\text{motif-penalty}} \cdot \mathcal{L}_{\text{motif-penalty}})$ 
19:     $+ w_{\text{str}} \cdot (\mathcal{L}_{\text{str-dist}} + \mathcal{L}_{\text{str-pair}} + \mathcal{L}_{\text{str-spread}})$ 
20:     $+ w_{\text{screen}} \cdot \mathcal{L}_{\text{screen}} + w_{\text{screen-rank}} \cdot \mathcal{L}_{\text{screen-rank}} + w_{\text{screen-contrast}} \cdot \mathcal{L}_{\text{screen-contrast}}$ 
21:     $+ w_{\text{penalty}} \cdot \mathcal{L}_2$ 
22:  Backpropagate and update parameters with optimizer
23: end for

```

1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1350
1351

C.7 KEY NOTATION

1352
1353

All mathematical symbols used in this work, as well as those appearing in algorithms and functions, are listed in Table C1.

1354
1355

Table C1: Notation used in the model and training algorithms.

1356

1357

Symbol	Description
Input Graphs and Embeddings	
G_{rec}, G_{lig}	Receptor and ligand input graphs
h_{rec}, h_{grid}	Receptor atom and grid point node embeddings
h_{lig}, h_{key}	Ligand and key atom node embeddings
h_{lig}^{global}	Global ligand embedding capturing holistic properties
Z, Z_{key}	Pairwise interaction features between protein-ligand nodes
D_{grid}, D_{key}	Pairwise distance map between grid points and key atoms
Model Predictions	
\hat{M}	Predicted motif probabilities on grid points
\hat{X}_{key}	Predicted 3D coordinates of ligand key atoms
\hat{D}_{key}	Predicted pairwise distance map between key atoms
\hat{Z}_{key}	Final normalized pairwise feature map
\hat{y}	Final scalar binding prediction (screening score)
$\hat{A}ff_{contrast}$	Per-key-atom affinity map for contrastive loss
Ground Truth and Hyperparameters	
X_{key}	Ground truth 3D coordinates of ligand key atoms
M	Ground truth motif label of grid points
y	Binary binding label (1: active, 0: decoy)
L	Number of layers in the Interaction Module
$w.$	Loss weights set in the configuration

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404
1405 D FURTHER MODEL ANALYSIS
1406
14071408 D.1 DETAILED MOTIFSCREEN PERFORMANCE
1409
14101411 This section provides a detailed statistical breakdown of MotifScreen’s performance on the two
1412 primary benchmarks evaluated: our proposed ChEMBL-LR and the external DUD-E benchmark.
14131414 Table D1 summarizes the performance on ChEMBL-LR. Beyond the mean AUROC and EF1%, it
1415 includes other metrics like BEDROC and an analysis of the predicted score distributions for active
1416 and decoy compounds. MotifScreen achieves a statistically significant separation between active and
1417 decoy scores ($p < 0.05$) for 72% of the targets on this benchmark.
14181419 Figure D1 further illustrates MotifScreen’s robustness on ChEMBL-LR. The threshold curves show
1420 that our model sustains higher performance across a greater number of targets compared to baselines,
1421 a nuance not fully captured by mean values alone.
14221423 Table D2 provides the corresponding performance summary on the DUD-E benchmark.
14241425 Table D1: MotifScreen Performance Summary on the ChEMBL-LR Benchmark
1426

Metric	Mean \pm Std	Median	Min	Max
AUROC	0.680 ± 0.165	0.663	0.180	0.961
EF1%	4.16 ± 5.65	1.82	0.00	23.08
BEDROC	0.146 ± 0.205	0.086	-0.077	0.811
Targets with significantly higher active vs. decoy scores ($p < 0.05$): 72%				

1444 Figure D1: **Comparative EF1% and AUROC threshold curves on ChEMBL-LR.** Threshold
1445 analysis of screening performance on ChEMBL-LR. Left: number of targets with EF1% above
1446 a given threshold. Right: number of targets with AUROC above a given threshold. MotifScreen
1447 sustains higher performance across more targets, reflecting its robust performance on ChEMBL-LR.
14481450 Table D2: MotifScreen Performance Summary on the DUD-E Benchmark
1451

Metric	Mean \pm Std	Median	Min	Max
AUROC	0.753 ± 0.137	0.771	0.365	0.989
EF1%	5.94 ± 5.47	4.34	0.00	26.98
BEDROC	0.344 ± 0.261	0.329	-0.121	0.920
Targets with significantly higher active vs. decoy scores ($p < 0.05$): 90%				

1458
1459

D.2 DETAILED COMPARISON WITH BASELINE METHODS

1460
1461

To provide full context for the results presented in the main text, this section includes detailed statistical tests and a comprehensive cross-benchmark comparison.

1462
1463
1464
1465
1466
1467
1468

Tables D3 and D4 report pairwise statistical significance tests (Wilcoxon signed-rank) comparing MotifScreen against all baseline methods on the ChEMBL-LR benchmark. For AUROC, MotifScreen is significantly better than all baselines (BH-corrected $p < 10^{-4}$). For EF1%, MotifScreen significantly outperforms AutoDock-Vina, KarmaDock, AK-Score2, and RF ($p < 0.05$). While the improvement over SurfDock is may not seem statistically significant just from this value, we have shown in Section 4.2.1 and Figure D1, that MotifScreen sustains better performance across more targets.

1469
1470
1471
1472

Finally, Table D5 presents the absolute AUROC and EF1% scores for all methods across the ChEMBL-LR, DUD-E, and DEKOIS 2.0 benchmarks. This table contains the full data used to calculate the performance drop (Δ) values reported in the main body of the paper.

1473
1474
1475

Table D3: Pairwise statistical significance tests (AUROC, Wilcoxon signed-rank) on ChEMBL-LR benchmark.

Comparison	N pairs	Mean Diff (MS-X)	p-value	BH-adj p
MS vs AutoDock-Vina	60	+0.139	8.4×10^{-9}	$7.6 \times 10^{-8}***$
MS vs AK-Score2	60	+0.152	1.5×10^{-6}	$2.7 \times 10^{-6}***$
MS vs KarmaDock	60	+0.166	8.9×10^{-14}	$1.6 \times 10^{-12}***$
MS vs SurfDock	60	+0.103	5.3×10^{-5}	$7.9 \times 10^{-5}***$
MS vs RF (ESM+FP)	60	+0.162	1.6×10^{-14}	$3.1 \times 10^{-13}***$

* MS denotes MotifScreen.

* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$ (BH corrected).

1485
1486
1487

Table D4: Pairwise statistical significance tests (EF1%, Wilcoxon signed-rank) on ChEMBL-LR benchmark.

Comparison	N pairs	Mean Diff (MS-X)	p-value	BH-adj p
MS vs AutoDock-Vina	60	+1.97	0.0250	0.0301*
MS vs AK-Score2	60	+3.36	4.1×10^{-5}	$2.5 \times 10^{-4}***$
MS vs KarmaDock	60	+2.84	4.6×10^{-4}	0.00139**
MS vs SurfDock	60	+0.72	0.161	0.161
MS vs RF (ESM+FP)	60	+2.04	0.0162	0.0243*

* MS denotes MotifScreen.

* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$ (BH corrected).

1498

D.3 ABLATION STUDY DETAILS

1499
1500
1501

D.3.1 DATASET AND TRAINING

1502
1503
1504
1505

Dataset. To ensure computational tractability, all ablation studies were conducted on a reduced subset of our main training data. This subset was curated from the original sources as follows, reducing the total number of protein-active pairs from 89,331 to 58,773 for training and from 21,274 to 15,457 for validation.

1506
1507
1508
1509
1510
1511

- **PDBbind & BioLip:** All unique targets from these sources in our full training set were included.
- **ChEMBL:** A representative subset of 233 targets was selected by: 1) clustering all ChEMBL training targets at a 40% sequence identity threshold; 2) filtering out clusters corresponding to targets with fewer than 30 active compounds; and 3) selecting one representative target from each remaining cluster using a fixed random seed for reproducibility.

1512 Table D5: AUROC and EF1% across ChEMBL-LR, DUD-E, and DEKOIS 2.0.
1513

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 Model	1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 ChEMBL-LR		1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 DUD-E		1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 DEKOIS 2.0 ^c	
	1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 AUROC	1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 EF1%	1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 AUROC	1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 EF1%	1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 AUROC	1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 EF1%
AutoDock-Vina (2021) ^a	0.541 ± 0.125	2.189 ± 3.439	0.72	9.70	0.633	4.513
AK-Score2 (2024) ^b	0.527 ± 0.135	0.803 ± 2.308	-	14.6	-	-
KarmaDock (2023)	0.512 ± 0.124	1.317 ± 2.715	0.754	15.873	0.782	15.83
SurfDock (2025)	0.576 ± 0.151	3.443 ± 6.076	-	-	0.758	18.17
RF (ESM+FP)	0.518 ± 0.131	2.09 ± 3.20	0.691	14.21	-	-
MotifScreen (Ours)	0.680 ± 0.165	4.16 ± 5.65	0.753	5.94	0.63	3.18

1524 ^a Reported in (Eberhardt et al., 2021).1525 ^b AK-Score2-DockC variant, results from (Hong et al., 2024).1526 ^c DEKOIS 2.0 results adopted from (Cao et al., 2025).

1527 Note: -" indicates the dataset was not evaluated by the original authors.

1528 All ablation models were trained for 31 epochs, whereas the final model was trained for 120 epochs.
1529 As mentioned in Experiments (Section 4.3), we observed the core architectural dependencies to
1530 emerge early in the training process. Except for the reduced training duration, the experimental setup
1531 (hyperparameters, loss functions, and batching strategy) was identical to the protocol used for the full
1532 MotifScreen model. All hyperparameters, including learning rate, optimizer settings, and batch size,
1533 were held constant across all four experiments to ensure a fair comparison.

1535 D.3.2 MODEL CONFIGURATIONS

1536 We evaluated four distinct model configurations to systematically assess the contribution of different
1537 components:1538

1. **Full Model:** The complete MotifScreen architecture with all modules and loss functions.
2. **No Structure Module:** The structure module and its associated losses were removed.
3. **No Motif Module:** The motif module and its associated losses removed.
4. **Base Model:** Both the structure and motif modules (and their associated losses) removed,
1539 leaving only the core affinity prediction components.

1540 Evaluation was performed on the validation set corresponding to our reduced training data (see
1541 Section B.1 for splitting details). This approach isolates the effects of the ablated components under
1542 identical, controlled conditions. These results are intended to demonstrate the relative contribution of
1543 each module, not to serve as a direct performance comparison with the fully-trained model on the
1544 ChEMBL-LR benchmark.1545
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1566

D.3.3 ADDITIONAL FIGURES

1567

1568 This section includes additional AUROC curves showing results for ablation studies (Figure D2)

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598 Figure D2: **Ablation study performance analysis.** Showing AUROC progression over epochs for

1599 training and validation sets. The complete MotifScreen (Aff+Str+Motif) achieves best performance.

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620 E EXPERIMENTAL DETAILS
16211622 E.1 COMPUTATIONAL SETUP
16231624 The MotifScreen model was implemented in PyTorch and used the Deep Graph Library (DGL) for
1625 graph operations. Training was conducted on a server with four NVIDIA A6000 GPUs using the
1626 Distributed Data Parallel (DDP) backend.1627 Inference is highly efficient. When running on a four NVIDIA A4000 GPUs with a batch size of 5,
1628 MotifScreen takes approximately 0.03 seconds per compound. SurfDock (Cao et al., 2025), which
1629 showed second to best performance on ChEMBL-LR, takes 10 to 11 seconds per compound. On a
1630 single CPU core, it takes approximately 1 second per compound.
16311632 E.2 HYPERPARAMETERS
16331634 Table E1 and E2 list the key hyperparameters used for the MotifScreen model architecture and training
1635 process.
1636

Table E1: Model Architecture Hyperparameters.

General	
Dropout Rate	0.2
Featurizers	
GridFeaturizer Layers	5
LigandFeaturizer Layers	4
Input Scalar Features (Grid/Ligand)	102 / 18
Output Features (Grid/Ligand)	64 / 64
Attention Heads	4
Hidden Channels	32
Global Embedding Dim (Input/Output)	19 / 4
Trigon / CrossTrigon Modules	
Embedding Channels (c)	64
Distance Channels (d)	64
Ligand–Grid Trigon Layers	2
Key-level Trigon Layers	3

1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687

1688
 1689

1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701

1702

1703
 1704
 1705
 1706
 1707
 1708

1709

1710
 1711
 1712
 1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

Table E2: Training and Data Hyperparameters.

Loss Weights	
w_{motif}	0.05
$w_{\text{motif-penalty}}$	1×10^{-10}
w_{str}	0.2
w_{screen}	0.5
$w_{\text{screen-contrast}}$	0.5
$w_{\text{screen-ranking}}$	5.0
w_{penalty}	1×10^{-5}
Structure Loss Type	MSE
Screening Loss Type	BCE
Optimization	
Learning Rate	1×10^{-4}
Optimizer Weight Decay	1×10^{-4}
Max Epochs	120
Batch Size	1
Gradient Accumulation Steps	1
Graph Preprocessing	
Edge Mode	top- k with $k=8$
Max Edges / Nodes	35,000 / 3,000
Randomization (Grid / Data)	0.5 / 0.2

1728 **F CHEMBL-LR TARGET LIST**
17291730 The 60 targets comprising the ChEMBL-LR benchmark are shown in Table E3 by their UniProt IDs
1731 with number of active compounds and assigned decoy compounds.
17321733 Table E3: Number of actives and decoys for the 60 ChEMBL-LR targets
1734

1735 Target (UniProt ID)	1736 Actives	1736 Decoys	1735 Target (UniProt ID)	1736 Actives	1736 Decoys
B2RXC2	17	510	Q07794	56	1680
O00429	16	480	Q10469	61	1830
O14920	369	11070	Q13418	84	2520
O15111	178	5340	Q14524	264	7920
O15244	26	780	Q15831	16	480
O15245	27	810	Q16820	21	630
O35956	11	330	Q5JUK3	19	570
O60603	27	810	Q5NUL3	139	4170
O75751	16	480	Q86UE8	10	300
O95822	125	3750	Q8NI60	11	330
P08686	22	660	Q8TDV5	354	10620
P09884	16	480	Q8TDX7	13	390
P13807	25	750	Q96RG2	20	600
P16473	12	360	Q96RJ0	438	13140
P22888	10	300	Q99808	34	1020
P25021	182	5460	Q9BRS2	17	510
P25929	149	4470	Q9GZN0	53	1590
P28222	445	13350	Q9H2X6	207	6210
P28566	38	1140	Q9H3N8	577	17310
P30939	56	1680	Q9HC97	191	5730
P31213	124	3720	Q9NXG6	33	990
P32245	139	4170	Q9RMS5	13	390
P32249	35	1050	Q9UHL4	202	6060
P34969	942	28260	Q9Y251	19	570
P35414	40	1200	Q9Y271	34	1020
P35869	169	5070	Q9Y5Y9	72	2160
P40763	231	6930	Q9Y616	31	930
P43088	31	930	Q9Y6L6	34	1020
P43116	152	4560	P47898	185	5550
P49019	59	1770	P56192	13	390

1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781