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Wild Animal Videos

Quadruped Locomotion Skills

Figure 1: RLWAV trains a video classifier on 8,791 wild animal videos in natural environments to
transfer the learned skills to a real quadruped robot with reinforcement learning, without relying
on reference trajectories nor hand-designed rewards for each skill. Here, we present the motions
resulting from the transfer of the keeping still, walking, and jumping skills to the Solo-12 robot.

ABSTRACT

We propose to learn legged robot locomotion skills by watching thousands of
wild animal videos from the internet, such as those featured in nature documen-
taries. Indeed, such videos offer a rich and diverse collection of plausible motion
examples, which could inform how robots should move. To achieve this, we in-
troduce Reinforcement Learning from Wild Animal Videos (RLWAV), a method
to ground these motions into physical robots. We first train a video classifier on a
large-scale animal video dataset to recognize actions from RGB clips of animals
in their natural habitats. We then train a multi-skill policy to control a robot in
a physics simulator, using the classification score of a third-person camera cap-
turing videos of the robot’s movements as a reward for reinforcement learning.
Finally, we directly transfer the learned policy to a real quadruped Solo. Remark-
ably, despite the extreme gap in both domain and embodiment between animals in
the wild and robots, our approach enables the policy to learn diverse skills such as
walking, jumping, and keeping still, without relying on reference trajectories nor
hand-designed rewards.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1 INTRODUCTION

Robot learning for control often involves a repetitive cycle: designing algorithms - such as refining
a reward function in reinforcement learning (RL) -, analyzing the resulting behavior through video,
and iterating until a satisfactory policy is achieved. Learning directly from videos could streamline
this process by directly optimizing for visually successful rollouts, thus aligning the training process
with the desired outcome. Internet videos offer a vast and diverse array of motion examples across a
wide range of scenarios. Similar to how foundation models in computer vision and natural language
processing have achieved impressive generalization by leveraging internet-scale data (Radford et al.,
2021; Rombach et al., 2022; Wang et al., 2022; Achiam et al., 2023; Touvron et al., 2023), allowing
robots to imitate these motions at scale could lead to new advancements in generalists robots. Just
as humans and animals often learn by observing others (Molenberghs et al., 2009), even those with
different body morphologies, robots could benefit from similar observational learning strategies.
Recent research has demonstrated the potential of leveraging large datasets of videos of humans
interacting with objects in everyday activites for robotic manipulation (Shao et al., 2021; Bahl et al.,
2023; Bharadhwaj et al., 2024). In this work, we instead ask the following question: Can robots
learn locomotion skills by watching thousands of wild animal videos ?

There exists a wealth of footage showcasing a wide range of animal species, from mammals and
reptiles to amphibians and birds Feng et al. (2021); Ng et al. (2022); Chen et al. (2023). However,
compared to learning manipulation tasks from human demonstrations, learning locomotion from
these videos presents additional challenges. First, the embodiment gap between animals and robots
is wider, as body dynamics play a lead role in defining locomotion and balance behavior. Prior
works on behavior transfer from animals to robots has aimed to reduce this gap by tracking key-
points or estimating poses from videos (Peng et al., 2020; Bohez et al., 2022; Han et al., 2024),
typically using recordings of animals with similar morphology to the target robot (e.g. transferring
motions from dogs to quadruped robots) in controlled lab environments. Yet, this approach limits
the range of available video resources and restricts robot designs to specific bio-inspired shapes for
which data acquisition is practically feasible. On the other hand, many natural skills, like walking
or jumping, emerge across species and can be easily identified by human observers despite these
morphological differences. We argue that the embodiment gap between robots and animal species
with similar forms is no greater than the gap between different classes in the animal kingdom, for
instance between birds and mammals. Cross-embodiment relationships can be learned, but doing
so would require large video datasets, encompassing diverse species in their natural habitats, where
they freely exhibit their behaviors, yet resulting in poor camera angles, occlusions, or multiple an-
imals in the same frame. Two main limitations prevent the direct application of this idea. First,
there is no obvious correspondence between the body mechanics of animals and robots. Second,
cross-embodiment visual imitation requires physical grounding - replicating locomotion skills cap-
tured from animal videos as faithfully as possible while adhering to the capabilities and limits of the
physical morphology of the robot.

To overcome these challenges, we introduce Reinforcement Learning from Wild Animal Videos (RL-
WAV), a method for grounding skill concepts from videos of animals in their natural environments
into the behaviors of legged robots. First, we train a video encoder network using the Animal King-
dom dataset (Ng et al., 2022), a large and diverse collection of labeled animal videos spanning
various species, sourced from the internet such as wildlife documentaries. This network learns to
recognize actions directly from video pixels, namely keeping still, walking, running and jumping.
By training on a wide range of scenarios and embodiments, we intend for the network to generalize
to robot behaviors in a zero-shot manner, i.e without having been trained on robot videos. Then, we
train a multi-skill policy in a physics simulator (Makoviychuk et al., 2021; Rudin et al., 2021) to
ground these learned action concepts in realistic robot behaviors. Using constrained RL (Schulman
et al., 2017; Kim et al., 2024; Chane-Sane et al., 2024b), we optimize the robot policy to maximize,
as a reward, the classification score of the corresponding skill label obtained on videos of the robot
movements captured from a third person view in simulation. We impose task-agnostic constraints
related to the robot embodiments, similarly for each transferred skill. The physics simulator, along
with the constraints, ensures that the robot behaviors remain physically plausible and transferable
to real-world scenarios. Despite the significant gap in domain and embodiment between animals
and robots, our approach successfully enables robots to acquire distinct skills corresponding to the
considered action classes in the animal video dataset, without the need for reference trajectories or
skill-specific reward functions.
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We validate our approach in simulation as well as on a real Solo-12 quadruped robot , demonstrating
the emergence and successful transfer of multiple skills which include keeping still, walking with
two different styles and jumping on the spot (see Figure 1). To the best of our knowledge, this is the
first demonstration of successful transfer from a large, diverse dataset of wild animal videos across
various species to physical robot locomotion.

2 RELATED WORK

Over the past few years, training locomotion policies in physics simulators Todorov et al. (2012);
Freeman et al. (2021); Makoviychuk et al. (2021) using reinforcement learning, then transferring
them to real robots (Peng et al., 2018b; Lee et al., 2020; Fu et al., 2021; Rudin et al., 2021; Li et al.,
2023d; Aractingi et al., 2023) has proven remarkably effective for acquiring diverse skills for legged
robots. These include high-speed running (Bellegarda et al., 2022; Margolis et al., 2024; He et al.,
2024; Yang & Hwangbo, 2024), jumping (Bellegarda et al., 2020; Margolis et al., 2021; Li et al.,
2023d; Smith et al., 2023; Zhang et al., 2024), and traversing challenging terrains Miki et al. (2022);
Hoeller et al. (2022); Agarwal et al. (2023); Yang et al. (2023c); Zhuang et al. (2023); Hoeller
et al. (2024); Caluwaerts et al. (2023); Zhuang et al. (2023); Hoeller et al. (2024); Chane-Sane
et al. (2024a); Luo et al. (2024). Recently, constrained reinforcement learning has further simplified
this process and enhanced its effectiveness (Kim et al., 2024; Lee et al., 2023; Chane-Sane et al.,
2024b;a). In this work, we follow this sim-to-real approach with constrained RL.

To obtain more natural movements, some works propose to imitate reference trajectories (Peng et al.,
2018a; Li et al., 2023a;b;c) or use them as style priors for downstream locomotion tasks (Peng et al.,
2021; Escontrela et al., 2022; Yang et al., 2023b). In the context of animal imitation, these reference
trajectories can be obtained from animal with close resemblance to the target robot, where typically
dogs are employed to generate the reference motion via motion capture or by pose estimation from
videos for quadruped robots (Peng et al., 2020; Bohez et al., 2022; Yao et al., 2022; Zhang et al.,
2023; Li et al., 2023a; Han et al., 2024). This approach requires careful alignment between animals
and target robots. We instead seek to scale the transfer across hundreds of species in the wild.

Learning cross-embodiment policies has been explored previously (Huang et al., 2020; Salhotra
et al., 2023; Feng et al., 2023; Devin et al., 2017; Padalkar et al., 2023; Yang et al., 2023a; Shah et al.,
2023; Shafiee et al., 2024; Yang et al., 2024) to learn policies across robot morphologies. Another
line of work seeks to imitate human videos, typcally by extracting poses Qin et al. (2022); Mandikal
& Grauman (2022); Shaw et al. (2023); Chen et al. (2024); Shaw et al. (2024) or keypoints(Peng
et al., 2018c; Xiong et al., 2021; Bahl et al., 2022; Heppert et al., 2024) from videos and tracking
the resulting reference motions. Explicitly extracting this intermediate representation often require
careful alignment between videos and robots(Smith et al., 2019; Xiong et al., 2021; Zakka et al.,
2021; Xu et al., 2023; Wang et al., 2023), which limits the use of a large portion of available video
resources, including footages of animals in the wild. Instead, we show that it is possible to avoid
this careful alignment and make use of videos captured in uncontrolled environments.

Leveraging large-scale human video datasets has been explored in robot learning to pretrain poli-
cies (Nair et al., 2022; Xiao et al., 2022; Ma et al., 2022; Majumdar et al., 2023; Bahl et al., 2023;
Seo et al., 2022; Radosavovic et al., 2023; Ma et al., 2023; Mendonca et al., 2023; Ze et al., 2024)
and augment RL (Schmeckpeper et al., 2020; Fan et al., 2022; Alakuijala et al., 2023). More closely
related to our work, Shao et al. (2021); Chen et al. (2021); Chane-Sane et al. (2023) propose to em-
ploy video classifiers from human manipulation videos as the sole task reward function for training
manipulation tasks. In this work, we adopt a similar approach based on learned video classifiers, but
extend it to demonstrate that cross-embodiment transfer can scale to learning locomotion skills from
wild animal videos across diverse species — a challenge that requires more visual generalization
and extensive physics grounding.

3 METHOD

3.1 PROBLEM FORMULATION

Our goal is to learn a multi-skill locomotion policy for controlling a quadruped robot in simulation
with RL, then transfer it to a real robot. To this end, we consider an infinite discounted constrained
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Step 1: Reward Learning From Wild Animal Videos Step 2: Reinforcement Learning in Physics Simulator
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Figure 2: (Left) We train a video classifier to recognize actions from the Animal Kingdom
dataset (Ng et al., 2022). (Right) With a third-person camera capturing videos of the robot’s move-
ment, we use the classification score for the desired skill as a reward to train the policy with RL.

Markov Decision Process
(
S,A,R, γ, T , {Ci}i∈I

)
with state space S, action space A, discount

factor γ, and stochastic reward R : S × A × R → R+, dynamic T : S × A × S → R+ and
constraints {Ci : S ×A×R → R+}i∈I . We defined T , R and Ci in a stochastic manner to account
for their partial observability. Constrained RL aims to find a policy π : S → A that maximizes the
discounted sum of future rewards:

max
π

Eat=π(st),rt∼R(.|st,at)
st+1∼T (.|st,at)

[ ∞∑
t=0

γtrt

]
, (1)

while satisfying the constraints under the discounted state-action policy visitation:

P(s,a)∼ρπ,T
γ ,ci∼Ci(.|s,a)

[
ci > 0

]
≤ ϵi ∀i ∈ I. (2)

Observations s = (sproprio, y) ∈ S consist in proprioceptive measurements of the robot sproprio and a
skill command y, such that by specifying different skill command to the policy, the user can control
the robot to perform different skills. Actions a ∈ A produced by the policy are target joint angles for
each joint of the robots that are converted to torques by a proportional-derivative controller operating
at a higher frequency than the policy before being applied to the joints of the robot.

In learning-based locomotion, rewards and constraints are typically manually designed for each skill
y. However, this process is often tedious and time-consuming, especially for legged locomotion,
where we must balance task success with safe, physically plausible movements. Instead, we propose
learning a multi-skill reward function R from animal videos to capture abstract locomotion concepts
and employ constraints {Ci}i∈I for physical grounding. These constraints are applied uniformly
across skills to facilitate policy learning and enable effective and safe sim-to-real transfer.

3.2 LEARNING A MULTI-SKILL REWARD FUNCTION FROM WILD ANIMAL VIDEOS

Action Recognition for RL We train a video classifier to recognize actions from a large dataset
of labeled videos of animals in the wild as our multi-skill reward function R. This approach is
grounded in two key observations: First, despite significant differences in morphology, humans can
reliably recognize locomotion skills across vastly different species based solely on observation. For
instance, even though spiders have more legs and are much smaller than humans, we can still iden-
tify when a spider is walking, jumping, or remaining idle. By leveraging recent advances in video
action recognition, we anticipate that modern video classifiers can similarly develop an understand-
ing of diverse animal behaviors, regardless of embodiment. Second, from a practical perspective,
designing a control system for locomotion often involves iterative cycles: designing or modifying
the algorithm, analyzing the resulting behaviors—typically through video generation in simulation
or real robot observation—and refining the approach until a satisfactory policy is achieved. Integrat-
ing a neural network capable of interpreting robot behavior directly from video could streamline this
process, aligning it more closely with the ultimate goal of achieving optimal locomotion.
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Animal Video Dataset We consider the Animal Kingdom dataset (Ng et al., 2022), a compre-
hensive collection of labeled videos capturing animals in their natural environments. The dataset
consists of approximately 30,000 videos representing 850 species, including mammals, reptiles,
birds, amphibians, fish, and insects (see Figure 1 and Appendix C). It features multi-label annota-
tions of animal behaviors across 140 classes. While some of these classes, such as ”Walking” and
”Keeping Still,” are directly relevant for transfer to our quadruped robot, others, such as ”Flying,”
”Spitting Venom,” or ”Carrying In Mouth,” are not applicable. In many cases, videos are annotated
with multiple labels, reflecting complex behaviors—an animal might be walking while carrying a
prey in its mouth, for example. We focus on four key classes of interest: ”Keeping Still,” ”Walking,”
”Running,” and ”Jumping”. We filter the dataset to include only videos containing one of these
labels, discarding the other labels when a video contains multiple labels. Furthermore, we remove
videos where more than one of the four selected behaviors occurred simultaneously. As a result,
we curate a single-label dataset Danimal = {(xanimal, y)j}j comprising 8, 791 videos, where a video
xanimal is a sequence of T images (xanimal

1 , xanimal
2 , .., xanimal

T ) with label y belonging to one of the four
classes.

Video Classifier We train a video classifier fθ(xanimal, y) on the animal video dataset using the
cross-entropy loss:

L(θ) = E(xanimal,y)∼Danimal

[
− log fθ(x

animal, y)
]

(3)
We parametrize fθ with a Uniformer (Li et al., 2022), an efficient and light-weight architecture for
video classification, to regress the probability distribution over the 4 classes from the animal video
inputs. We chose the Uniformer over practical considerations for compute efficiency, although any
architecture could work in principle. To improve out-of-distribution generalization, we also use
random convolution augmentations (Lee et al., 2019) and model soups (Wortsman et al., 2022;
Rame et al., 2022). Additional implementation details are given in Appendix B.1

3.3 REINFORCEMENT LEARNING FROM WILD ANIMAL VIDEOS

Reward Figure 2. illustrates our approach for training the policy using the learned video classifier
as a reward function. In the simulator, we position a third-person camera to observe the robot. This
camera tracks the robot’s movement in 3D space and around the yaw axis. The camera captures
128 × 128 RGB images of the robot every 5 time steps, storing the previous frames in memory.
These frames are then combined to form an 8-frame video sequence xrobot, which is fed into the
video classifier. The classification score corresponding to the skill command input y is used to
construct our video-based reward function:

R(st, at) =

{
fθ(x

robot, y) on image generation steps
0 otherwise . (4)

Rewards are assigned only at the time steps when the camera captures an image, while at all other
time steps, a reward of zero is given. This approach avoids generating images at every time step
for two reasons: (1) generating images is computationally expensive in the simulation, and (2) the
video classifier was trained on animal videos at a lower frame rate than the simulation. Note that
the robot does not observe the videos of itself that are used to compute the reward; these videos
are only utilized during the training phase within the simulation. Additionally, the policy does
not have access to a history of states, nor does it know the specific time steps when the camera
captures images. Despite these partial observabilities, we found that the policy was still able to learn
effectively.

Constraints To ensure the physical grounding of animal locomotion skills, facilitate policy learn-
ing and enable effective sim-to-real transfer, we incorporate a set of constraints as Ci

i∈I . These
constraints include limiting joint angles, velocity, acceleration, and torque, while also imposing a
minimum air time for the feet and restricting the roll orientation of the robot. Note that these con-
straints are independent of the skill command y.

Policy Learning We use PPO (Schulman et al., 2017) as our RL optimizer. We use CaT (Chane-
Sane et al., 2024b) to learn a policy that comply with the constraints. To facilitate policy learning,
we use an additional symmetry loss (Yu et al., 2018; Abdolhosseini et al., 2019). The differences
between the learned locomotion skills arise solely from the learned reward function. Additional
implementation details are given in Appendix B.2.
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Table 1: Influence of the learned video-based reward function on the policy

Method Keeping still Walking Running Jumping
|velxy| ↓ Style velx ↑ Style velx ↑ Style ∆z ↑ Style

RLWAV 12.3 (1.1) 1.0 23.0 (15.4) 0.88 35.1 (12.9) 1.0 18.5 (3.5) 0.88

no soup 14.2 (1.2) 1.0 21.8 (13.9) 0.62 26.0 (17.9) 0.75 10.6 (8.1) 0.38
no curating 8.9 (2.3) 1.0 -0.1 (1.4) 0.0 -0.9 (5.7) 0.12 19.1 (2.0) 0.75

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

The policies are trained in the IsaacGym simulator using massively parallel environments (Makoviy-
chuk et al., 2021; Rudin et al., 2021). A policy can be trained with RL on a single NVIDIA RTX
4090 GPU in less than 4 hours. While this corresponds to a similar simulation time compared
to (Rudin et al., 2021), it amounts to a much higher wall-clock time due to the frequent rendering
of images. After training in simulation, we directly deploy the policy on a real Solo-12 quadruped
robot. The policy runs at 50Hz on a Raspberry Pi 5. Target joint positions are sent to the onboard
proportional-derivative controller running at 10kHz. The user commands the desired skill to the
robot through a joystick.

Evaluation protocol To quantitatively evaluate our approach and compare different policies, we
propose separate evaluation metrics for each skill:

• Keeping still: we measure the average of the absolute velocity in any direction |velxy| in
cm/s (lower is better)

• Walking and Running: we measure the average velocity in the forward direction of the
robot velx in cm/s (higher is better)

• Jumping: we measure the average vertical displacement ∆z in cm (higher is better)

In addition, we qualitatively evaluate the style of each policy by rendering a video of a policy rollout
in simulation and manually rating the quality of the policy. We grade the videos according to the
following scale: we give 1.0 if the movement is perfectly identifiable as correct, 0.5 if the movement
is close but not entirely accurate (for example, walking on the spot without moving forward), and
0.0 if the movement is unrecognizable or ambiguous with respect to another skill.

Baselines and ablations To highlight the importance of our design choices, we compare our ap-
proach, RLWAV, to the following ablations:

• no curating: we train the video classifier on the full multi-label video dataset with binary
cross-entropy loss instead of our chosen single-label subset.

• no soup: we don’t use model soup to train the video classifier.
• no sym. loss: we remove the symmetry loss function during RL.
• update 8: we update the third-person video every 8 steps instead of 5 during RL.
• low pose: we set the base pose of the robot closer to the ground during RL.
• Camera {1,2,3,4}: we try four alternative positions for the third-person camera during RL.

For each experiment, we report the mean and standard deviation over 4 RL training seeds.

4.2 SIMULATION EXPERIMENTS

Skill transfer from wild animal videos to robots Table 1 presents the performance results of our
approach across four skills. Despite the absence of a skill-specific reward function or predefined
reference trajectory, we observe the emergence of distinct, recognizable behaviors for each skill (see
Figure 4). For the ”keeping still” task, the robot successfully learns to remain stationary, although
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Base camera Camera 1 Camera 2 Camera 3 Camera 4

Figure 3: (Top) Example of failure case for the ”walking” skill, where the robots performs walking
motions for only two legs without moving forward, fooling the video reward function.
(Bottom) Base camera in nominal setting, camera 1,2,3,4 in the ablation study.

it consistently exhibits minor leg movements. In the walking and running tasks, the Solo12 robot
adopts a trotting motion in the forward direction. Although the running task is slightly faster than the
movements generated for ”walking”, the policy does not generate proper flying phases (i.e. with the
robot having no ground contact during some movement phases) but mostly broader limb movements
and slight yaw rotations of the base. When issued a jumping command, the robot performs broad,
rhythmic pumping motions, either in place or with slight drift, often entering phases where none
of its feet are in contact with the ground. These results validate our approach ability to effectively
transfer motion skill concepts learned from wild animal videos to quadruped robot locomotion.

Effect of video classifier training on skill acquisition In Table 1, we also analyze how different
training protocols for the video classifier impact the downstream policy learning by comparing our
approach against no soup and no curating. Removing model soup (no soup) leads to a slight decrease
in performance across all locomotion skills, with the most pronounced effect observed in jumping.
We attribute this to the improvements in out-of-distribution generalization provided by model soup,
which aids in transferring the video classifier to the robot domain and delivering more relevant
reward signals for policy learning. Moreover, without our data curation strategy (no curating), the
robot is unable to learn walking and running. We attribute this to the fact that our data curation
process tailors the reward signals more specifically to the target skills.

Policy learning ablations In Table 2, we analyze the impact of various components in our policy
learning method through ablation studies. Removing the symmetry loss function (no sym.) signifi-
cantly reduces the robot’s performance in the running skill. This is likely due to the single camera
setup, which makes it difficult for the robot to learn the symmetric leg movements typically required
for achieving forward motions. Increasing the number of steps between camera renderings(update
8), and consequently delaying reward updates, results in performance drops across walking, running,
and jumping tasks. We attribute this decline to the sparser reward signals, which hinder effective
learning. The impact is particularly pronounced for jumping, likely because the dynamic nature
of the motion requires finer temporal resolution for better reward feedback. Additionally, altering
the base pose of the robot to be lower to the ground with more flexed legs (low pose) prevents the
effective learning of walking and running skills. In this setting, the robot performs jumping motions
instead of running whereas the robot’s score in the jumping task improves under this condition. This
may be because the lower pose facilitates jumping, making it easier for the robot to discover and
exploit jumping motions, which still yield positive rewards from the video classifier. This aligns
with the observation that certain walking and running behaviors in animals, for example cheetahs,
can resemble a forward-jumping motion. Moreover, effective walking movements are not learned;
instead, the robot often appears to walk in place without moving forward. Figure 3 (top) illustrates
one such failure case, where the robot fails to use all its legs properly.

Effect of the camera position In Table 2, we examine how the camera position used to capture
videos of the robot in simulation affects policy learning by comparing policies learned from four
different camera placements relative to the robot, as shown in Figure 3 (bottom). As the camera po-
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Table 2: Ablation of the policy learning and camera position

Method Keeping still Walking Running Jumping
|velxy| ↓ Style velx ↑ Style velx ↑ Style ∆z ↑ Style

RLWAV 12.3 (1.1) 1.0 23.0 (15.4) 0.88 35.1 (12.9) 1.0 18.5 (3.5) 0.88
no sym. loss 15.3 (1.1) 1.0 22.9 (20.7) 0.5 9.3 (25.7) 0.5 17.6 (2.3) 1.0

update 8 13.2 (0.6) 1.0 17.1 (10.1) 0.75 19.4 (3.2) 0.88 5.7 (2.8) 0.0
low pose 12.4 (0.7) 1.0 -3.2 (7.0) 0.38 2.3 (21.8) 0.12 22.6 (1.5) 1.0

Camera 1 12.8 (1.4) 1.0 46.4 (16.5) 1.0 36.8 (40.7) 0.75 19.6 (1.4) 1.0
Camera 2 15.1 (0.6) 1.0 11.0 (18.9) 0.62 40.1 (5.4) 0.75 17.6 (5.4) 1.0
Camera 3 13.7 (1.4) 1.0 42.7 (12.8) 0.88 6.8 (3.6) 0.5 7.0 (0.7) 0.0
Camera 4 11.9 (2.2) 1.0 -4.3 (3.7) 0.0 37.9 (4.0) 0.75 11.5 (3.4) 0.62

sitions progress from camera 1 to camera 4, the views become more extreme, making it increasingly
difficult for the video classifier to provide accurate reward feedback to the policy. Unsurprisingly,
policies learned from more optimal camera positions, where the robot’s full body is more visible
(cameras 1 and 2), perform better across most skills compared to policies learned from more extreme
camera angles (cameras 3 and 4). The exception is the ”keeping still” skill, which is successfully
learned from all camera positions. Interestingly, certain camera angles benefit specific skills while
impairing others. For example, cameras positioned more towards the back of the robot (cameras
1 and 3) result in better performance for walking, whereas cameras positioned towards the front
(cameras 3 and 4) lead to improved performance in running.

4.3 REAL-WORLD EXPERIMENTS

We deploy RLWAV directly onto our real Solo-12 platform (Grimminger et al., 2020). Figures 1
and 5 show policy rollouts for the keeping still, walking, running and jumping skills, where the
policy was tested in outdoor environments. The results on the real robot are best demonstrated in
the supplementary video accompanying this submission. The policy learned in simulation transfers
successfully to the real robot. The ”keeping still” skill functions as expected, and for the jumping
task, the robot consistently jumps in place. Additionally, when commanded to perform walking or
running, the robot trots forward. While the policy learned a walking gait with relatively straight
legs and a high body posture—less stable than traditional walking poses for this kind of quadruped
robots—the robot still manages to walk on uneven outdoor terrains. However, similar to the simu-
lation results, the walking and running skills appear alike on the real robot. The running skill shows
a slight increase in speed and slightly broader movements of the body with increased slippage in
particular for the rear foot. The running speed is limited by the feet sliding on the ground, which
is a sim-to-real artifact. Lastly, despite the policy not being explicitly trained for skill command
switching in simulation, it smoothly transitions between skills when commanded by the user in the
real-world deployment.

5 CONCLUSION

We introduced RLWAV, a method for grounding natural motions learned from thousands of wild
animal videos into physical robots. Through extensive experiments in simulation and successful
deployment on a real Solo-12 robot, we demonstrated the extreme cross-embodiment transfer of
behaviors from animal videos to a physical quadruped robot, enabling it to perform various skills
such as keeping still, jumping, walking, and, to a lesser extent, running. Our results showcase the
potential of large-scale datasets of internet videos for legged locomotion.

While promising, the behaviors we achieved still lag behind the state-of-the-art in learning-based
locomotion. In this work, we repurposed a video dataset originally designed for wildlife behavior
understanding, extracted motions using conventional video classification techniques, and applied a
standard on-policy RL algorithm. To scale to larger video datasets, broaden the range of locomo-
tion skills, and achieve more agile and precise behaviors, future work could explore curating video
datasets specifically aligned with control, using more advanced video understanding techniques, and
designing policy learning algorithms that better leverage the structure of video-based robot learning.
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Keeping still

Walking

Running

Jumping

Figure 4: Rollout examples in simulation for the 4 skills considered.

Keeping Still

Jumping

Running

Walking

Figure 5: Rollout examples for the 4 skills considered on the real Solo-12. The results on the real
robot are best demonstrated in the supplementary video accompanying this submission.
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and Hang Zhao. Robot parkour learning. In Conference on Robot Learning (CoRL), 2023.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A ADDITIONAL RESULTS

In Figure 6, we analyze the effect of varying the number of training videos on the emergence of
downstream locomotion skills. The video classifier is trained on random subsets of the dataset
described in Section 3.2. Keeping only 50% of the animal videos does not hinder the emergence of
the desired locomotion skills. However, further reducing the dataset to 25% or 12.5% impairs the
emergence of ”Keeping Still” and ”Running.” These results highlight the importance of training the
video-based reward on a sufficiently large and diverse dataset to enable effective generalization to
robot locomotion.

12.5% 25% 50% 100%
Dataset size (%)

12

14

16
|velxy|

Keeping Still

12.5% 25% 50% 100%
Dataset size (%)

0

20

40
velx

Walking

12.5% 25% 50% 100%
Dataset size (%)

0

20

40
velx

Running

12.5% 25% 50% 100%
Dataset size (%)

0

10

20
z

Jumping

0.0

0.5

1.0
Style

0.0

0.5

1.0
Style

0.0

0.5

1.0
Style

0.0

0.5

1.0
Style

Figure 6: Impact of animal video dataset size (% of total videos) on skill emergence.

In Table 3, we evaluate the effect of removing specific constraints during policy learning on the
development of locomotion skills. Eliminating the base orientation constraint around the roll axis
has minimal impact, except in ”Running,” where the robot sometimes exhibits exaggerated move-
ments that fail to effectively propel it forward. In contrast, removing the foot air-time constraint
severely impairs ”Walking” and ”Running.” The robot demonstrates leg motions, but these fail to
translate into forward movement, instead resulting in slipping, high-frequency ground contacts, and
insufficient foot lifting (see supplementary video). This observation aligns with prior research on
learning-based locomotion which also employ foot air-time constraints to avoid exploiting the limi-
tations of the physics simulator Rudin et al. (2021); Chane-Sane et al. (2024b).

Table 3: Ablation on policy learning without the base orientation constraint around the roll axis and
without the foot air-time constraint.

Method Keeping still Walking Running Jumping
|velxy| ↓ Style velx ↑ Style velx ↑ Style ∆z ↑ Style

RLWAV 12.3 (1.1) 1.0 23.0 (15.4) 0.88 35.1 (12.9) 1.0 18.5 (3.5) 0.88
w/o orientation 12.8 (1.2) 1.0 42.8 (6.2) 1.0 32.5 (19.0) 0.75 18.2 (5.1) 0.75

w/o air time 7.3 (0.3) 1.0 4.9 (3.7) 0.12 -3.5 (9.0) 0.25 19.0 (2.3) 1.0

B IMPLEMENTATION DETAILS

B.1 ANIMAL VIDEO CLASSIFICATION

We finetune a Uniformer-S (Li et al., 2022) video encoder pretrained on Kinetics 400 (K400) (Kay
et al., 2017). We adopt AdamW optimizer (Loshchilov et al., 2017), MixUp (Zhang, 2017) and
a linear warmup then cosine annealing learning rate scheduler. We use random convolutions (Lee
et al., 2019) 95% of the time, where the same random convolution kernel is applied to the whole
video sequence. We train the video encoder with a batch size of 64, a learning rate of 3e−5, 8 frames
per video and sampling stride of 4. We first train only a classifier head on top of the K400 pretrained
Uniformer-S backbone. Starting from these weights, we then fully finetune 12 different models by
varying the stochastic depth rate in {0.3, 0.4}, the weight decay in {0.05, 0.01, 0.1} and total epochs
in {30, 50} between the runs. Finally we uniformly average the weights of these models (Wortsman
et al., 2022; Rame et al., 2022).
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B.2 REINFORCEMENT LEANING

We train the policy in simulation using Proximal Policy Optimization (PPO) (Schulman et al., 2017).
We use a custom PPO implementation based on CleanRL (Huang et al., 2022). The policy is param-
eterized by a multilayer perceptron with hidden dimensions [512, 256, 128] and elu activations. We
use an additional symmetry term to the policy loss during RL (Yu et al., 2018):

Lsymmetry(ϕ) = ∥πϕ(s)− sym(πϕ(sym(s)))∥22 , (5)

where the sym operation applies a symmetry transformation to the state or action based on the left-
right symmetry of the quadruped robot.

We use 2048 parallel environments in the Isaac Gym simulator (Makoviychuk et al., 2021). Skill
commands are evenly sampled across the actors. During an episode, the skill command remain
fixed as we didn’t find any problem transitioning between skills during deployment, see Section 4.3.
We generate RGB images in simulation at 128 × 128 resolution every 5 RL steps, storing previous
frames. On rendering steps, we then compute the rewards from the 8-frames robot videos xrobot using
the learned video classifier. Because rewards for different skills may have different magnitudes, we
use the following reward formulation:

R(st, at) =

{
αyfθ(x

robot, y) + βy on image generation steps
0 otherwise, (6)

where αy and βy are adaptatively optimized for each skill based on the reward statistics across the
actors to normalize the rewards between 0 and 1 throughout training.

We use Constraints as Terminations (CaT) (Chane-Sane et al., 2024b) to enforce the constraints
{Ci}i∈I during RL. Table 4 lists all the constraints, where knee and base collision constraints and
foot contact force constraints are applied as hard constraints whereas the other constraints are applied
as soft constraints in the CaT framework. These constraints restrict the behavior search space of RL
to facilitate policy learning and enable effective and safe sim-to-real transfer. Importantly, these
constraints are applied independently regardless of the skill command y. Hence, different skills
emerge solely from the video-based reward R(st, at).

The policy receives proprioceptive measurements sproprio from the robot, including the positions
and velocities of all 12 joints, as well as the orientation and angular velocity of the robot’s base.
Additionally, the previous action at−1 is provided as input. The skill command y is input to the
policy using a one-hot encoding.

Table 4: List of constraints employed during RL.

Constraint Expression

Knee collision Cknee collision = 1knee collision
Base collision Cbase collision = 1base collision
Foot contact force Cfoot contactj = ∥f footj∥2 − f lim

Foot air time Cair timej = tdes
air time − tair timej

Joint limits (min) C jointmin
k = qmin

k − qk
Joint limits (max) C jointmax

k = qk − qmax
k

Joint velocity C joint velocityk = |q̇k| − q̇lim

Joint acceleration C joint accelerationk = |q̈k| − q̈lim

Torque C torquek = |τk| − τ lim

Action rate Caction ratek =
|at,k−at−1,k|

dt − ȧlim

Base orientation around roll-axis Coriroll = |oriroll| − orilimroll

C ADDITIONAL ILLUSTRATION OF THE ANIMAL KINGDOM DATASET

Figure 7 presents additional illustrations of videos selected from the Animal Kingdom dataset (Ng
et al., 2022). In total, we used 8, 791 videos as our training dataset for our video-based reward
function
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Keeping Still

Jumping

Running

Walking

Figure 7: Additional illustrations of videos from the Animal Kingdom dataset (Ng et al., 2022) used
to train the video-based reward function.
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