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Abstract

Representation learning has enabled classical exploration strategies to be extended1

to deep Reinforcement Learning (RL), but often makes algorithms more complex2

and theoretical guarantees harder to establish. We introduce Random Feature3

Information Gain (RFIG), grounded in Bayesian kernel methods theory, which uses4

random Fourier features to scalably approximate information gain and compute5

exploration bonuses in non-countable spaces. We provide error bounds on informa-6

tion gain approximation and avoid the black-box aspects of deep-based uncertainty7

estimation, for optimism-based exploration. We present practical details that make8

RFIG scalable to deep RL scenarios, enabling smooth integration with classical9

deep RL algorithms. Experimental evaluation across control and navigation tasks10

demonstrates that RFIG achieves competitive performance with well-established11

deep exploration methods while offering superior theoretical interpretation.12

1 Introduction13

In Reinforcement Learning (RL), agents learn optimal decision-making strategies through trial-and-14

error interactions with an environment, receiving rewards or penalties that guide their learning process15

[Sutton et al., 1998]. A fundamental challenge is the exploration-exploitation tradeoff, where agents16

must balance between exploiting current knowledge to maximize immediate rewards and exploring17

new actions to potentially discover better long-term strategies. This dilemma becomes particularly18

important in environments with sparse rewards or large state spaces, where undirected exploration19

strategies, like ϵ-greedy and entropy maximization, can lead to suboptimal policies [Thrun, 1992].20

The exploration problem can be formalized as an active learning problem where there is a pursuit of21

information gain, to actively seek states and actions that reduce uncertainty about the environment22

[Settles, 2009]. A simple but effective strategy is optimism in the face of uncertainty [Auer et al.,23

2002], which operates on the principle that when an agent lacks sufficient information about certain24

states or actions, it should assume they may yield high rewards, thereby encouraging exploration of25

these uncertain regions. This strategy is often implemented in the count-based exploration setting,26

where an intrinsic reward is given to the agent, generally based on 1/
√

N(s), where N(s) is the27

number of times the learner has visited the state Strehl and Littman [2008]. This bonus can be28

seen as a proxy for information gain: poorly visited states are very uncertain and could lead to high29

information gain, making them attractive targets for exploration while naturally diminishing the30

bonus as states become well-explored and their uncertainty decreases Kolter and Ng [2009].31

Research problem. In continuous or high-dimensional spaces, where counting is not meaningful,32

as the probability of visiting the same state twice can be zero, count-based exploration becomes tricky.33

This fundamental challenge has led to the development of deep learning-based exploration strategies,34

where neural networks (NNs) that learn feature representations are used to approximate a proxy35

of uncertainty or pseudo-counts. Traditional representation learning approaches, while empirically36

successful, have a black-box aspect that complicates theoretical analysis and leads to hyperparameter37
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brittleness and domain-specific tuning requirements. Successful work like Bellemare et al. [2016],38

Pathak et al. [2017] and Badia et al. [2020] raises an interesting research question:39

Is it possible to design exploration strategies for deep RL that are simultaneously theoretically40

grounded, computationally efficient, and free from the complexities of representation learning?41

Among these methods, Random Network Distillation (RND) introduced by Burda et al. [2018]42

stands out for its simplicity and computational efficiency and was the first to achieve success on the43

difficult Montezuma’s Revenge problem. RND works by training a NN to predict the outputs of44

a fixed, randomly initialized target network, where the prediction error serves as a novelty signal45

for exploration. By exploiting random feature spaces rather than carefully learned representations,46

RND demonstrates that feature learning is not a prerequisite for effective exploration. Despite its47

empirical success, RND lacks clear theoretical connections to established methods for uncertainty48

estimation, and is sensitive to hyperparameters related to NNs initialization and distillation procedure,49

making it difficult to understand the fundamental principles behind its effectiveness and how it relates50

to information-theoretic approaches to exploration. A promising direction seems to be Bayesian51

kernel methods that offer a compelling alternative to NN-based exploration, providing theoretically52

grounded uncertainty quantification without the need for parameter optimization, extensive training53

procedures, or complex hyperparameter tuning [Srinivas et al., 2009]. However, traditional kernel54

methods suffer from cubic scaling with data size, a limitation that can be addressed through random55

features [Rahimi and Recht, 2007], and is suitable for deep RL, where dozens of samples are often56

required to find good strategies.57

Contributions and outline. In this paper, we tackle the problem of optimism-based exploration in58

uncountable spaces by introducing Random Feature Information Gain (RFIG), a novel exploration59

bonus for RL, that is directly derived from information gain quantification in Bayesian kernel methods60

alongside with random features [Rahimi and Recht, 2007] capable of capturing complex nonlinear61

spatial patterns in high-dimensional data and approximating kernels. RFIG scales efficiently with62

the number of dimensions in the feature space and eliminates the need for NN training, complex63

hyperparameter tuning, or storage requirements. We first establish theoretical foundations by deriving64

RFIG from Bayesian kernel methods and random features (Section 4.1) and providing approximation65

error bounds (Section 4.2), which we apply to random Fourier features (Section 4.3). We then present66

a scheme for seamless integration in classical deep RL (Section 5.1) and demonstrate effectiveness67

across diverse exploration tasks (Section 5.2).68

2 Related Work69

Exploration remains one of the fundamental challenges in RL, particularly in environments with sparse70

rewards or large state spaces. This section reviews existing approaches to exploration, progressing71

from general methods to those most directly related to our information-based exploration approach72

using random features.73

Exploration foundations. The exploration-exploitation trade-off was first formalized in multi-74

armed bandit and discrete RL. Upper Confidence Bounds (UCB) algorithms provide theoretical75

guarantees by maintaining confidence intervals and selecting optimistic actions [Auer et al., 2002],76

while Thompson Sampling offers a Bayesian alternative sampling from posterior distributions77

[Thompson, 1933, Chapelle and Li, 2011]. These approaches minimize the uncertainty in their78

objective and implicitly maximize information gain, but more recent approaches like Information79

Directed Sampling [Russo and Van Roy, 2014] and Minimum Empirical Divergence [Honda and80

Takemura, 2010] directly formalize the information gain in their objectives.81

Representation learning. Modern deep RL predominantly couples exploration with representation82

learning, where NN learn features for uncertainty estimation. Curiosity-driven approaches like the83

Intrinsic Curiosity Module learn forward and inverse dynamics models, generating intrinsic rewards84

from prediction errors Pathak et al. [2017]. Never Give Up combines episodic and life-long novelty85

signals using learned embeddings Badia et al. [2020], while count-based methods learn density86

models for visitation estimation where information gain can be approximated through prediction gain.87

Information-theoretic approaches include Variational Information Maximizing Exploration , which88

learns probabilistic dynamics models to maximize information gain Houthooft et al. [2016], and89
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ensemble methods that use disagreement between multiple networks or random sampling strategies90

as uncertainty signals Osband et al. [2016], Azizzadenesheli et al. [2018], Pathak et al. [2019]. A91

smaller but growing line of work separates exploration from representation learning. Hash-based92

methods use locality-sensitive hashing for efficient state counting Tang et al. [2017]. RND uses93

prediction errors on fixed random targets as exploration bonuses Burda et al. [2018], demonstrating94

that feature learning is not always necessary for effective exploration.95

Kernel methods. The closest related works employ kernel methods that provide theoretically96

principled exploration frameworks by measuring uncertainty in fixed feature spaces. In multi-armed97

bandits, GP-UCB maintains Gaussian Process models over reward functions, selecting actions that98

maximize upper confidence bounds with provable regret guarantees [Srinivas et al., 2009, Valko et al.,99

2013, Zenati et al., 2022]. In deep RL, several kernel-based exploration methods share similarities with100

our approach but have important limitations that we address. Domingues et al. exploits representation101

learning to learn a kernel function that is used to approximate a kernel density estimator. Ma et al.102

[2024] leverage random Fourier features with kernel density estimation to model Beta distributions103

on state, to approximate their rate to be in a successful trajectory, providing exploration bonuses104

in sparse reward environments. In contrast, we don’t maximize the same objective; our method is105

directly grounded by active learning and information theory, and doesn’t need density estimation nor106

storage, which scale linearly with the number of samples, as successful and failed trajectories are107

stored in replay buffers and normalization is needed. Morere and Ramos [2018] propose EMU-Q,108

an end-to-end Bayesian kernel RL approach where posterior variance of the value function drives109

exploration. While they use random Fourier features for scalability, they operate in a full Bayesian110

kernel setting, whereas our method provides a flexible information-based exploration bonus that111

can be integrated with any RL algorithm. Finally, Blau et al. [2019] proposes a Bayesian curiosity112

module, also based on the posterior variance of kernels learned through representation learning. They113

suggest using random features as future work, a contribution we realize here with a scalable online114

update procedure accompanied by concrete error bounds.115

3 Background on Information Gain, RL and Scalable Kernels116

This section establishes the theoretical foundations: information gain for exploration, Bayesian kernel117

methods for uncertainty quantification, and random Fourier features for computational scalability118

Information gain. Consider learning an unknown function f : X → R from noisy observations.119

Given data Dn = {(xi, yi)}ni=1 where yi = f(xi) + ηi, we maintain a Bayesian posterior p(f | Dn)120

encoding uncertainty about f . The expected information gain from querying x∗ is121

IG(x∗ | Dn) = H(f | Dn)− EY∗ [H(f | Dn ∪ {(x∗, Y∗)})] (1)

where H(f | D) = −
∫
p(f | D) log p(f | D) df is the differential entropy [Cover, 1999]. This122

criterion, central to active learning [Settles, 2009], provides a foundation for exploration in RL.123

Reinforcement learning and exploration. We consider online RL where an agent interacts with an124

MDP M = (S,A, r,p, γ) to learn a policy π : S → Pr(A) maximizing expected cumulative reward125

J(π) = Eπ,p [
∑∞

t=0 γ
tr(st, at)] [Sutton et al., 1998]. A standard exploration approach augments the126

extrinsic reward with an exploration bonus [Strehl and Littman, 2008]127

rtotal(s, a) = r(s, a) + βr+(s, a), (2)

where β > 0 controls exploration strength. The widely-used bonus 1/
√

n(s), where n(s) is the128

visit count for state s, implicitly maximizes information gain: states with fewer visits have higher129

uncertainty and greater potential information gain [Bellemare et al., 2016].130

Bayesian kernel methods. Kernel methods address nonlinearity by implicitly mapping inputs to131

reproducing kernel Hilbert spaces Hk [Aronszajn, 1950, Schölkopf et al., 2001]. A positive semi-132

definite kernel k : X ×X → R enables computations in high-dimensional spaces using only pairwise133

similarities. In Bayesian kernel ridge regression [Saunders et al., 1998, Jaakkola and Haussler, 1999],134

given observations Dn and regularization parameter λ > 0 that prevents overfitting and ensures135

numerical stability, the posterior mean and variance are136

µn(x) = kn(x)
T (Kn + λIn)

−1yn σ2
n(x) = k(x, x)− kn(x)

T (Kn + λIn)
−1kn(x) (3)
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where Kn ∈ Rn×n with [Kn]ij = k(xi, xj) and kn(x) = [k(x1, x), . . . , k(xn, x)]
T . This137

formulation is equivalent to a Gaussian process view [Williams and Rasmussen, 1995] where138

f ∼ GP(0, k(x, x′)) with observation noise σ2 = λ. However, inverting (Kn + λIn) requires139

O(n3) operations, becoming prohibitive for large datasets.140

Random features. Random Fourier Features (RFFs) resolve this computational bottleneck by141

approximating kernels with explicit finite-dimensional mappings [Rahimi and Recht, 2007]. For142

shift-invariant kernels k(x, x′) = k(x− x′), Bochner’s theorem [Bochner et al., 1959] enables the143

approximation k(x, x′) ≈ ϕ(x)Tϕ(x′) where144

ϕ(x) =

√
2

D

 cos(ωT
1 x+ b1)
...

cos(ωT
Dx+ bD)

 (4)

with ωi ∼ p(ω) from the kernel’s spectral density and bi ∼ Uniform[0, 2π]. For the widely-used145

RBF kernel k(x, x′) = exp(−∥x − x′∥2/2ℓ2), the lengthscale ℓ controls function smoothness146

and determines the spectral density p(ω) = N (0, ℓ−2I), with smaller ℓ yielding higher-frequency147

components. Using the Woodbury matrix identity [Woodbury, 1950] with feature matrix Φn ∈ Rn×D,148

the posterior becomes149

µn(x) = ϕ(x)T (ΦT
nΦn + λID)−1ΦT

nyn (5)

σ2
n(x) = ϕ(x)Tϕ(x)− ϕ(x)T (ΦT

nΦn + λID)−1ϕ(x) (6)

This transforms the computational complexity from O(n3) to O(D2), enabling efficient uncertainty150

quantification that scales with feature dimension D rather than dataset size n.151

4 Random Feature Information Gain152

Before looking at how information gain is implemented in a RL loop to promote exploration, let’s153

derive our Random Feature Information Gain (RFIG). The derivation proceeds in three steps: (1)154

express GP information gain in terms of posterior variance, (2) approximate the kernel matrix using155

random features, (3) apply matrix identities to obtain the final O(D2) form. All detailed proofs of156

this section can be found in Appendix A.157

4.1 Derivation158

We start by recalling the information gain in the Gaussian process framework using the en-159

tropy reduction formulation, as described in (1). Consider a Gaussian process, that we defined160

in Section 3, f ∼ GP(0, k(·, ·)) with observation noise η ∼ N (0, σ2). Given current data161

Dn = {(xi, yi)}ni=1, the posterior entropy can be expressed using the kernel matrix Kn with162

H(f | Dn) = 1
2 log det(2πe(Kn + σ2In)

−1). When we add a new observation (x∗, y∗) to our163

dataset, obtaining Dn+1 = Dn ∪ {(x∗, y∗)}, the posterior distribution changes.164

Definition 4.1 (Information gain in GP [Lawrence et al., 2002]1). Information gain in GP is165

IG(x∗ | Dn) = H(f | Dn)− EY∗ [H(f | Dn+1)]

=
1

2
log det(2πe(Kn + σ2In)

−1)− EY∗

[
1

2
log det(2πe(Kn+1 + σ2In+1)

−1)

]
=

1

2
log det(Kn+1 + σ2In+1)−

1

2
log det(Kn + σ2In) =

1

2
log

(
1 +

σ2
n(x∗)

σ2

)
,

where the last equality follows from the matrix determinant lemma applied to the block structure of166

Kn+1, yielding the correction term σ2
n(x∗) + σ2 that simplifies to the final logarithmic form.167

Remark 4.2 (Posterior variance). This derivation establishes that information gain in Gaussian168

processes is directly determined by the posterior variance. For small u, log(1 + u) ≈ u, that explain169

why many work, directly use the posterior variance as criterion, as maximizing information gain is170

equivalent to querying points with maximum posterior variance. However in our work, we consider171

the full information gain: the logarithm provides diminishing returns for very uncertain regions.172

When σ2
n(x)≫ σ2, the log saturates while variance grows unboundedly.173

1This formulation is equivalent to what they term the "differential entropy score".
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Limitations. However, computing σ2
n(x∗) requires inverting the n×n matrix (Kn+σ2In), which174

scales as O(n3) and becomes prohibitive for huge datasets. To address this computational bottleneck,175

we next develop a random feature approximation that reduces complexity from O(n3) to O(D2).176

Proposition 4.3 (Information Gain via Random Features). Consider a random Fourier feature177

transformation ϕ : X → RD that approximates a shift-invariant kernel k(x, x′) ≈ ϕ(x)Tϕ(x′)178

[Rahimi and Recht, 2007]. The information gain defined in Definition 4.1 can be approximated as179

ˆIG(x∗ | Dn) =
1

2
log

(
1 + ϕ(x∗)

T (ΦT
nΦn + λID)−1ϕ(x∗)

)
(7)

where Φn ∈ Rn×D is the feature matrix with rows ϕ(xi)
T for i = 1, . . . , n, and λ > 0 is the180

regularization parameter.181

Proof sketch. The result follows by substituting the approximation Kn ≈ ΦnΦ
T
n into the GP182

posterior variance formula, applying the Woodbury identity to transform the n× n matrix inversion183

into the desired D ×D form, and reinterpreting the noise σ2 as regularization parameter λ.184

Remark 4.4 (Neural network interpretation). Our approach connects to the deep learning literature185

through a fundamental equivalence: training with RFFs is equivalent to optimizing a single hidden186

layer neural network with frozen random first-layer parameters and cosine activations. The RFF187

mapping ϕ(x) =
√
2/D[cos(ωT

1 x+ b1), . . . , cos(ω
T
Dx+ bD)]T corresponds exactly to this archi-188

tecture, where only the output layer weights are learned via regression. This perspective shows that189

our method provides principled uncertainty quantification without requiring backpropagation.190

4.2 Error Bounds191

In order to provide theoretical guarantees for our approach, we establish error bounds for RFIG under192

uniform kernel convergence assumptions. Our analysis serves two key purposes: (1) quantifying193

how errors in kernel approximation propagate to information gain estimates, and (2) determining194

the number of random features D required to achieve a desired approximation accuracy ε with high195

probability. We proceed by first bounding the error in posterior variance estimation, then using this196

result to establish guarantees for information gain approximation, and finally applying our general197

framework to the specific case of RFFs.198

Assumptions. Our analysis relies on three standard assumptions commonly employed in the random199

features literature [Rahimi and Recht, 2007, Sutherland and Schneider, 2015].200

Assumption 4.5 (Uniform kernel approximation). The random feature map ϕ(x) : X → RD201

provides a uniform approximation to the kernel k(x, x′) over the domain:202

P
[

sup
x,x′∈X

|ϕ(x)⊤ϕ(x′)− k(x, x′)| ≥ ϵ
]
≤ δ(ϵ; d,D). (8)

Assumption 4.6 (Regularization scaling). The regularization parameter scales linearly with sample203

size: λ = nλ0 for some λ0 > 0.204

Assumption 4.7 (Bounded kernel). The kernel is bounded: |k(x, x′)| ≤ κ for all x, x′ ∈ X .205

Assumption 4.5 is the core requirement for random feature methods and holds for RFFs under206

mild conditions on the input domain [Rahimi and Recht, 2007]. Assumption 4.6 ensures that the207

regularization term remain properly balanced as sample size grows, preventing regularization from208

either dominating or vanishing asymptotically, which is useful for deriving clean convergence rates209

and consistency results. Assumption 4.7 is satisfied by most practical kernels including RBF and210

Matérn kernels.211

Posterior variance error. Since information gain is fundamentally determined by posterior variance212

(Equation 1), we first establish how kernel approximation errors propagate to variance estimates.213

Proposition 4.8 (Posterior variance error bound). Under Assumptions 4.5, 4.6, and 4.7, the error in214

posterior variance estimation when using random features is bounded by:215

|σ̂2
n(x)− σ2

n(x)| ≤ ϵ

(
1 +

κ2

λ2
0

+
2κ

λ0
+

ϵ

λ0

)
, (9)

where ϵ = supx,x′∈X |ϕ(x)⊤ϕ(x′)− k(x, x′)|.216
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This result shows that variance estimation error scales linearly with kernel approximation quality ϵ217

and exhibits the expected dependence on regularization strength.218

Information gain error. The connection between posterior variance and information gain enables219

us to translate variance errors into information gain guarantees (Lemma A.1). We now establish our220

main theoretical result.221

Proposition 4.9 (RFIG error bound). Under Assumptions 4.5, 4.6, and 4.7, the error in RFIG222

approximation is bounded by:223

| IG(x|Dn)− ˆIG(x|Dn)| ≤
ϵ(λ0 + κ)2 + ϵ2λ0

2nλ3
0

, (10)

where ϵ = supx,x′∈X |ϕ(x)⊤ϕ(x′)− k(x, x′)|.224

Our bound exhibits desirable theoretical properties: the error decreases with sample size n (con-225

sistency), scales with kernel approximation quality ϵ (approximation dependence), and reveals a226

regularization trade-off where stronger λ0 tightens the bound but may over-smooth posteriors.227

4.3 Application to Random Fourier Features228

We apply our general bound to RFFs by using existing uniform convergence results.229

Proposition 4.10 (RFF uniform convergence Rahimi and Recht [2007]). Let X ⊂ Rd be compact230

with diameter diam(X ) and k a shift-invariant kernel with unit maximum and Fourier transform231

P (ω). Let σ2
p = EP [∥ω∥2]. For RFF mapping ϕ and any ϵ > 0:232

Pr
[
∥ϕ⊤ϕ− k∥∞ ≥ ϵ

]
≤ c

(
σp diam(X )

ϵ

)2

exp

(
− Dϵ2

8(d+ 2)

)
, (11)

where originally c = 256 in Rahimi and Recht [2007], and then refined to 66 in Sutherland and233

Schneider [2015].234

Combining our information gain bound with RFF convergence rates yields our main practical result:235

Corollary 4.11 (Feature dimension requirement). To achieve information gain approximation error236

| IG(x|Dn)− ˆIG(x|Dn)| ≤ ε with probability at least 1− δ, it suffices to choose:237

D = O
(

d

ϵ2k
log

σp diam(X )
ϵkδ

)
, (12)

where ϵk =
2nλ3

0ε

(λ0 + κ)2
when ε is sufficiently small.238

This result provides practical guidance for hyperparameter selection: the required feature dimension239

D scales linearly with problem dimension d and logarithmically with desired accuracy. Importantly,240

D decreases with sample size n through ϵk, reflecting that larger datasets permit coarser kernel241

approximations while maintaining the same information gain accuracy. This theoretical foundation242

justifies our approach and enables confident deployment in practical exploration scenarios.243

5 RFIG for Efficient Exploration in RL244

This paper aims to apply RFIG for improving optimism-based exploration in deep RL. This section245

outlines the key algorithmic components and implementation considerations that enable efficient and246

scalable integration with existing deep RL agents.247

5.1 The Details that Matter248

Algorithm 1 outlines the core RFIG integration with deep RL, successful implementation requires249

careful attention to numerous practical details. This subsection presents the key considerations and250

hyperparameter choices that determine RFIG’s effectiveness in practice.251
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Algorithm 1: RFIG for exploration

Input: RFF Feature map ϕℓ : X → RD with lengthscale ℓ > 0, regularization λ > 0, subsample
ratio ρ ∈ (0, 1], environment M, policy π, exploration scale β > 0.

Initialize RFIG matrices Σ0 ← λID and Λ0 ← λ−1ID;
Initialize state normalization parameters (µs, σ

2
s) ;

for t← 1, 2, · · · do
Collect N transitions D = {(si, ai, ri, s′i)}Ni=1 with policy π in environment M;
Update state normalization parameters with {si}Ni=1, obtain normalized states {s̄i}Ni=1;

Compute information gain bonusesR+ =
{
r+i = 1

2 log
(
1 + ϕℓ(s̄i)

⊤Λt−1ϕℓ(s̄i)
)}N

i=1
;

Subsample ⌊Nρ⌋ states uniformly from {s̄i}Ni=1 to form matrix Φt with rows ϕℓ(s̄j)
⊤;

Update Σt ← Σt−1 +Φ⊤
t Φt, then Λt ← Σ−1

t via Newton-Schulz iteration (13);
Update policy π using RL algorithm (PPO, DQN, SAC, etc.) with augmented rewards
ri + βr+i from D andR+;

end

State normalization2. We maintain running statistics µs and σ2
s to normalize states as s̄ = (s−252

µs)/σs. This prevents scale differences across dimensions from dominating kernel computations and253

is critical for RFF effectiveness.254

Lengthscale selection. The lengthscale ℓ controls the smoothness of the uncertainty estimates and255

should account for the curse of dimensionality. In high-dimensional spaces, typical distances between256

points scale as
√
d where d is the input dimension [Hvarfner et al., 2024]. Therefore, we recommend257

initializing ℓ ∝
√
d.258

Newton-Schulz matrix inversion. A key computational challenge in RFIG is efficiently main-259

taining the matrix (ΦT
nΦn + λID)−1 as new observations arrive. We employ the Newton-Schulz260

iteration introduced in Schulz [1933], which iteratively computes matrix inverses using261

Xk+1 = Xk(2I−AXk). (13)

This method converges quadratically to A−1 when ∥I−AX0∥2 < 1 and crucially allows using the262

previous iteration’s result as a warm start for X0. Compared to Sherman-Morrison or Woodbury263

updates, more commonly considered, Newton-Schulz offers superior numerical stability by avoiding264

explicit small-number divisions and provides dramatic computational savings, for D = 512 features265

and batch size B = 128, Newton-Schulz requires only≈ 786K operations, if we consider 5 iterations,266

versus ≈ 33.6M for repeated Sherman-Morrison updates. Combined with its embarrassingly parallel267

structure that maps naturally to GPU architectures, Newton-Schulz is ideally suited for the frequent268

matrix updates required in online deep RL applications. Further details are in Appendix B.1.269

Subsampling Strategy2. The subsample ratio ρ serves multiple purposes. The primary goal is to270

prevent information gain from shrinking too rapidly to zero as the number of samples grows, which271

would lead to premature exploration termination. Additionally, subsampling helps Newton-Schulz272

iterations converge faster since the covariance matrix Σt changes more slowly between updates,273

making warm starts more effective. This approach mirrors techniques in sparse Gaussian processes,274

where a subset of inducing points can represent the uncertainty structure of the entire dataset.275

5.2 Numerical Experiments276

We evaluate RFIG by integrating it with Proximal Policy Optimization (PPO) [Schulman et al., 2017],277

following the non-episodic exploration framework described in Burda et al. [2018] for Random Net-278

work Distillation (RND). This allows for direct comparison while leveraging proven implementation279

practices for intrinsic motivation in deep RL. Following the PPO+RND architecture, we augment the280

standard PPO objective with RFIG-based intrinsic rewards, as described in Algorithm 1. We maintain281

separate value networks for extrinsic and intrinsic rewards, enabling independent learning dynamics282

and reward normalization.283

2These details have shown beneficial for many deep exploration strategies in Yuan et al. [2024].
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Setup. We adopt global hyperparameter settings proven effective in PPO (detailed in Appendix284

B.2). For RFIG-specific parameters, we use D = 1000 random features, regularization λ = 10−3,285

subsample ratio ρ = 3.13%, and lengthscale ℓ =
√
d. The exploration coefficient β is set to 0.5,286

without conducting any hyperparameter optimization. The most sensitive parameters are lengthscale287

ℓ and exploration scale β. Regularization λ and feature dimension D are less critical once set in288

reasonable ranges. We evaluate RFIG across three domains designed to test exploration capabilities.289

Classic control tasks (Acrobot, MountainCar) provide baseline comparisons in low-dimensional290

settings [Lange, 2022]. For more challenging continuous control, we use sparse reward variants291

of locomotion tasks in Brax environments [Freeman et al., 2021], where agents receive milestone292

rewards only upon reaching specific distance thresholds, creating challenging exploration scenarios293

(Appendix B.3). Additionally, we test on the PointMaze environments suite [Park et al., 2024],294

which are navigation tasks. All experiments are evaluated using 32 random seeds and 32 parallel295

environments, with an unroll length of 128 steps.296
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Figure 1: Comparing PPO, PPO+RND, and PPO+RFIG. Solid lines represent the interquartile mean,
with shaded areas indicating the 25th-75th percentiles across 32 random seeds.

Discussion. Our experimental evaluation (Figure 1) demonstrates that PPO+RFIG achieves com-297

petitive performance with PPO+RND across diverse exploration challenges while offering superior298

theoretical foundations. In classic control tasks (Acrobot, MountainCar), both exploration methods299

significantly outperform vanilla PPO with simple entropy coefficient, confirming that RFIG provides300

effective exploration bonuses in low-dimensional settings. The advantages of RFIG become more301

pronounced in complex navigation tasks, particularly in PointMaze-giant, where RFIG demonstrates302

superior sample efficiency compared to RND. In sparse Brax environments, RFIG exhibits modest303

improvements over RND. These results highlight RFIG’s key advantage: delivering exploration304

performance comparable to state-of-the-art methods while providing rigorous theoretical guarantees305
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rooted in information theory, unlike RND, which relies on a more heuristic approach. However, our306

evaluation has limitations, we focus primarily on navigation and locomotion tasks. Future work307

should explore RFIG’s applicability in manipulation tasks, partial observability settings, as well308

as image-domain environments, and investigate how hyperparameters, like lengthscale, improve309

performance. Notably, RFIG introduces only approximately 10% computational overhead over vanilla310

PPO due to matrix inversion and bonus computation, making it viable for large-scale applications.311

6 Conclusion312

We introduced Random Feature Information Gain (RFIG), a theoretically grounded exploration313

method that achieves competitive performance without complex representation learning. By leverag-314

ing Bayesian kernel methods and random Fourier features, RFIG provides a theoretically grounded315

alternative that maintains computational efficiency while avoiding the black-box aspects of neural316

network-based uncertainty estimation.317

Key contributions. Our work demonstrates that rigorous kernel methods can achieve competitive318

empirical performance with state-of-the-art exploration algorithms while providing superior theoreti-319

cal interpretability. RFIG’s success across classic control, navigation, and sparse locomotion tasks,320

combined with reasonable computational overhead, suggests that the field’s trend toward increasingly321

complex representation learning may not be necessary for effective exploration. The method’s theo-322

retical foundations offer mathematical rigor often lacking in modern deep RL exploration strategies.323

Broader impact. The information gain estimation framework developed for RFIG extends beyond324

EL applications. The same principled approach to uncertainty quantification and information-theoretic325

bonuses can be applied to active learning, Bayesian optimization, and other sequential decision-326

making problems where exploration-exploitation trade-offs are crucial.327

Future directions. Several promising research directions emerge from this work. First, see how328

RFIG extend to high-dimensional observation spaces, particularly image-based environments like329

Atari games (e.g., Montezuma’s Revenge), would test whether our approach can achieve state-330

of-the-art results in challenging visual domains. Second, developing adaptive kernel selection331

mechanisms that learn optimal lengthscales during training could further improve performance and332

avoid hyperparameter search. Finally, the same information-theoretic framework could be adapted333

for offline RL, where conservative "anti-exploration" strategies that avoid out-of-distribution states334

are preferred over optimistic exploration.335
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A Full Proofs431

A.1 Information Gain via Random Features432

Poof of Proposition 4.3. Using the random feature approximation Kn ≈ ΦnΦ
T
n , the posterior vari-

ance becomes

σ2
n(x∗) = ϕ(x∗)

Tϕ(x∗)− ϕ(x∗)
T (ΦnΦ

T
n + σ2In)

−1ϕ(x∗)

Applying the Woodbury identity:

(ΦnΦ
T
n + σ2In)

−1 =
1

σ2
In −

1

(σ2)2
Φn(Φ

T
nΦn + σ2ID)−1ΦT

n
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Substituting and simplifying:433

σ2
n(x∗) = ϕ(x∗)

Tϕ(x∗)−
1

σ2
ϕ(x∗)

Tϕ(x∗) +
1

σ2
ϕ(x∗)

T (ΦT
nΦn + σ2ID)−1ϕ(x∗) (14)

= σ2ϕ(x∗)
T (ΦT

nΦn + σ2ID)−1ϕ(x∗) (15)

σ2
n(x∗)

σ2
= ϕ(x∗)

T (ΦT
nΦn + σ2ID)−1ϕ(x∗) (16)

Substituting back into the information gain formula of Gaussian Processes yields434

1

2
log

(
1 + ϕ(x∗)

T (ΦT
nΦn + σ2ID)−1ϕ(x∗)

)
. We can finally reinterpret the observation435

noise variance σ2 as a regularization parameter λ, giving the desired result.436

A.2 Posterior Variance Error Bound437

Proof of Proposition 4.8. Let consider the true posterior variance, σ2
n(x) = k(x, x) − k⊤K−1k,438

with k = kn(x) and K = Kn + λIn, considering the approximation k(x, x′) ≈ ϕ(x)Tϕ(x′), we439

can consider our approximated posterior variance σ̂2
n(x) as a perturbation of the true one and define440

k̂ = k+∆k and K̂ = K+∆K. Let’s expand the following difference441

k̂⊤K̂−1k̂− k⊤K−1k = (k+∆k)
⊤(K+∆K)−1(k+∆k)− k⊤K−1k (17)

= k⊤K̂−1k+ k⊤K̂−1∆k +∆⊤
k K̂

−1k+∆⊤
k K̂

−1∆k − k⊤K−1k (18)

= k⊤(K̂−1 −K−1)k+ 2k⊤K̂−1∆k +∆⊤
k K̂

−1∆k (19)

≤ |k⊤(K̂−1 −K−1)k︸ ︷︷ ︸
Matrix perturbation t1

|+ | 2k⊤K̂−1∆k︸ ︷︷ ︸
Cross term t2

|+ |∆⊤
k K̂

−1∆k︸ ︷︷ ︸
Vector term t3

|. (20)

where we used the symmetry property k⊤K̂−1∆k = ∆⊤
k K̂

−1k and triangle inequality.442

Bounding t1: Since the smallest eigenvalue of K−1 K̂−1 is λ, ∥k∥2 ≤
√
nκ, and using the inverse443

matrix perurbation bound for Â = A+E, ∥Â−1 −A−1∥2 ≤ ∥A−1∥2 · ∥Â−1∥2 · ∥E∥2, we have444

|k⊤(K̂−1 −K−1)k| ≤ ∥K̂−1∥2 · ∥∆K∥2 · ∥K−1∥2 · ∥k∥22 ≤
ϵκ2n2

λ2
. (21)

Bounding t2 and t3: Similarly to t1, we can bound the two other terms with445

|2k⊤K̂−1∆k| ≤
2ϵnκ

λ
, |∆⊤

k K̂
−1∆k| ≤

ϵ2n

λ
. (22)

Finally, |σ̂2
n(x)−σ2

n(x)| ≤ ϵ+
ϵκ2n2

λ2
+

2ϵnκ

λ
+

ϵ2n

λ
= ϵ+

ϵκ2

λ2
0

+
2ϵκ

λ0
+

ϵ2

λ0
, using Assumption 4.6.446

447

A.3 RFIG Error Bound448

To bound RFIG, we can directly use the established bound for posterior variance, by using the449

following lemma:450

Lemma A.1 (Shifted Logarithmic Difference bound). For any a, b > 0, we have451

| log(1 + a)− log(1 + b)| ≤ |a− b| (23)

Proof. On the interval between a and b, there exists c between a and b such that log(1 + a) −452

log(1 + b) = f ′(c)(a− b) = a−b
1+c . Since min(a, b) ≤ c ≤ max(a, b), we have 1

1+max(a,b) ≤
1

1+c ≤453

1
1+min(a,b) . Therefore,

∣∣∣a−b
1+c

∣∣∣ ≤ |a−b|
1+min(a,b) , we have a, b > 0, which completes the proof.454

Now, we have all the elements to obtain deterministic upper bound bound on RFIG.455
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Proof of Proposition 4.9. By applying the Lemma X, we have456

| ˆIG(x|Dn)− IG(x|Dn)| ≤
∆σ2

n

2λ
=

ϵ+ ϵκ2

λ2
0
+ 2ϵκ

λ0
+ ϵ2

λ0

2λ
(24)

=

ϵ

[(
1 + κ

λ0

)2

+ ϵ
λ0

]
2λ

(25)

=
ϵ
[
(λ0+κ)2+ϵλ0

λ2
0

]
2λ

(26)

=
ϵ(λ0 + κ)2 + ϵ2λ0

2nλ3
0

(27)

That ends the proof.457

A.4 High Probability RFIG Bound458

Proof of Proposition 4.11. We aim to find when the information gain error is at least ε:459

ϵ(λ0 + κ)2 + ϵ2λ0

2nλ3
0

≥ ε (28)

ϵ(λ0 + κ)2 + ϵ2λ0 ≥ ε2nλ3
0 (29)

ϵ(λ0 + κ)2 + ϵ2λ0 − ε2nλ3
0 ≥ 0 (30)

This is a quadratic inequality in ϵ. The quadratic f(ϵ) = λ0ϵ
2 + (λ0 + κ)2ϵ− 2nλ3

0ε has for root:460

ϵ ≥ −(λ0 + κ)2 +
√

(λ0 + κ)4 + 8nλ4
0ε

2λ0
, (31)

since λ0 > 0, the parabola opens upward. Setting κ = 1 (Proposition 4.10), ends the proof.461

B Numerical Experiments462

B.1 Newton-Schulz iterations463

The Newton-Schulz method provides an iterative approach to matrix inversion that is particularly464

well-suited for our kernel matrix updates. Due to JAX’s compilation and parallelization constraints,

Algorithm 2: Newton-Schulz Matrix Inversion Update
Input: Previous inverse Xold, matrix update Φt, regularization λ
A← ΦT

t Φt + λI;
X0 ← Xold (warm start);
for k = 1, 2, . . . ,K do

Xk ← Xk−1(2I−AXk−1);
end
return XK

465
we implement a fixed number of Newton-Schulz iterations (K = 20) rather than iterating until466

convergence. In practice, we observe that 20 iterations provide sufficient accuracy for information467

gain estimation while maintaining computational efficiency across all experimental environments.468

B.2 Hyperparameter Configuration469

Table 1 presents the complete hyperparameter configuration used for PPO experiments across all470

environments. For RND baseline comparisons, we use an embedding size of 256, hidden layer471

sizes of (256, 256), a bonus learning rate of 1e-4, with ReLU activations, following standard RND472

implementation practices.473
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Table 1: PPO hyperparameters used in all experiments.
Parameter Value
Training Configuration
Total timesteps 1,000,000
Number of environments 32
Steps per environment 128
Evaluation frequency 24,576
Anneal learning rate True

PPO Algorithm
Learning rate 0.0003
Number of epochs 4
Number of minibatches 32
Clip ratio (ϵ) 0.2
Value function coefficient 0.5
Entropy coefficient 0.01
Maximum gradient norm 0.5

GAE & Discounting
Discount factor (γ) 0.99
GAE lambda (λ) 0.95

Normalization
Normalize observations True
Normalize intrinsic rewards True

Network Architecture
Activation function Swish
Hidden layer sizes (64, 64)

B.3 Milestone Reward Wrapper474

To create sparse reward variants of Brax locomotion environments, we implement a475

MilestoneRewardWrapper that transforms dense reward signals into sparse, milestone-based re-476

wards. This wrapper provides rewards only when the agent reaches specific distance milestones477

during locomotion, creating challenging exploration scenarios where traditional dense rewards are478

unavailable. The wrapper operates by tracking the agent’s forward displacement from its initial479

position and providing rewards at fixed distance intervals. Specifically, it:480

1. Records the agent’s initial position at environment reset481

2. Monitors the agent’s current position throughout the episode482

3. Calculates the total distance traveled as the difference between current and initial positions483

4. Awards rewards when the agent crosses predefined distance milestones484

The milestone reward rt at timestep t is computed as:485

rt =

{
α · (mt −mt−1) if mt > mt−1

0 otherwise
(32)

where mt = ⌊dt/δ⌋ represents the current milestone, dt is the distance traveled, δ is the milestone486

distance interval, and α is the reward scale factor. The wrapper accepts three key parameters:487

• milestone_distance (δ = 1.0): Distance interval between consecutive milestones488

• reward_scale (α = 1.0): Scale factor applied to milestone rewards489

• position_fn: Function extracting agent position from environment state (defaults to x-490

coordinate of the first body)491

This design creates environments where agents receive no immediate feedback for small movements492

but are rewarded for achieving meaningful locomotion progress, making these tasks particularly493

14



challenging for exploration strategies. For reproducibility, we provide the complete implementation494

of the MilestoneRewardWrapper:495

496
1 from typing import Callable , Optional497

2 from brax.envs import PipelineEnv , State , Wrapper498

3 import jax499

4 from jax import numpy as jp500

5501

6 class MilestoneRewardWrapper(Wrapper):502

7 """ Wrapper that adds milestone -based rewards to any Brax503

environment.504

8 This wrapper gives a reward whenever the agent reaches specified505

distance506

9 milestones (e.g., every 1.0 unit of forward movement).507

10 """508

11 def __init__(509

12 self ,510

13 env: PipelineEnv ,511

14 milestone_distance: float = 1.0,512

15 reward_scale: float = 1.0,513

16 position_fn: Optional[Callable [[ State], jp.ndarray ]] =514

lambda state: state.pipeline_state.x.pos[0, 0],515

17 ):516

18 """ Initializes the milestone reward wrapper.517

19 Args:518

20 env: The environment to wrap.519

21 milestone_distance: Distance between reward milestones.520

22 reward_scale: Scale factor for milestone rewards.521

23 position_fn: Function that extracts position from state.522

24 Default extracts x position from first body.523

25 """524

26 super().__init__(env)525

27 self._milestone_distance = milestone_distance526

28 self._reward_scale = reward_scale527

29 self._position_fn = position_fn528

30529

31 def reset(self , rng: jax.Array) -> State:530

32 """ Resets the environment and initializes milestone reward531

tracking."""532

33 state = self.env.reset(rng)533

34 # Get initial position534

35 initial_position = self._position_fn(state)535

36 # Add milestone reward tracking info536

37 info = state.info.copy()537

38 info.update ({538

39 ’initial_position ’: initial_position ,539

40 ’last_milestone ’: 0.0,540

41 ’total_milestones ’: 0,541

42 ’distance_traveled ’: 0.0,542

43 ’current_milestone ’: 0.0,543

44 })544

45 return state.replace(info=info)545

46546

47 def step(self , state: State , action: jax.Array) -> State:547

48 """ Steps the environment and adds milestone rewards."""548

49 # Get tracking info549

50 initial_position = state.info.get(’initial_position ’)550

51 last_milestone = state.info.get(’last_milestone ’, 0.0)551

52 total_milestones = state.info.get(’total_milestones ’, 0)552

53553

54 # Step the environment554

55 next_state = self.env.step(state , action)555

56556

57 # Get current position and calculate distance traveled557

58 current_position = self._position_fn(next_state)558
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59 distance_traveled = current_position - initial_position559

60560

61 # Calculate the current milestone561

62 current_milestone = jp.floor(distance_traveled / self.562

_milestone_distance)563

63564

64 # Check if we’ve reached a new milestone565

65 new_milestone_reached = current_milestone > last_milestone566

66567

67 # Calculate milestone reward568

68 reward = jp.where(569

69 new_milestone_reached ,570

70 self._reward_scale * (current_milestone - last_milestone),571

71 0.0572

72 )573

73574

74 # Update the total milestones count575

75 total_milestones = jp.where(576

76 new_milestone_reached ,577

77 total_milestones + jp.int32(current_milestone -578

last_milestone),579

78 total_milestones580

79 )581

80582

81 # Update the last milestone583

82 last_milestone = jp.where(new_milestone_reached ,584

current_milestone , last_milestone)585

83586

84 # Update info587

85 info = next_state.info.copy()588

86 info.update ({589

87 ’initial_position ’: initial_position ,590

88 ’last_milestone ’: last_milestone ,591

89 ’total_milestones ’: total_milestones ,592

90 ’distance_traveled ’: distance_traveled ,593

91 ’current_milestone ’: current_milestone ,594

92 })595

93596

94 return next_state.replace(reward=reward , info=info)597598

Listing 1: MilestoneRewardWrapper Implementation
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