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ABSTRACT

In this work, we propose Branch-to-Trunk network (BTNet), a novel representa-
tion learning method for multi-resolution face recognition. It consists of a trunk
network (TNet), namely a unified encoder, and multiple branch networks (BNets),
namely resolution adapters. As per the input, a resolution-specific BNet is used
and the output are implanted as feature maps in the feature pyramid of TNet,
at a layer with the same resolution. The discriminability of tiny faces is signif-
icantly improved, as the interpolation error introduced by rescaling, especially
up-sampling, is mitigated on the inputs. With branch distillation and backward-
compatible training, BTNet transfers discriminative high-resolution information
to multiple branches while guaranteeing representation compatibility. Our exper-
iments demonstrate strong performance on face recognition benchmarks, both for
multi-resolution face verification and face identification, with much less compu-
tation amount and parameter storage. We establish new state-of-the-art on the
challenging QMUL-SurvFace 1: N face identification task.

1 INTRODUCTION

Machine learning has advanced tremendously driven by deep learning methods, but is still severely
challenged by various data specifications, such as data type, structure, scale and size, etc. For
instance, face recognition (FR) is a well-established deep learning task, while the performance de-
grades dramatically in the testing domain that differs from the training one, influenced by factors of
variance like resolution, illumination, occlusion, etc.

Most face recognition methods map each image to a point embedding in the common metric space
by deep neural networks (DNNs). The dissimilarity of images can be then calculated using various
distance metrics (e.g., cosine similarity, Euclidean distance, etc.) for face recognition tasks.

Recent advancements in margin-based loss (e.g., ArcFace Deng et al. (2019a), MV-Arc-Softmax
Wang et al. (2020c), CurricularFace Huang et al. (2020), etc) enhanced discriminability of the metric
space, with small intra-identity distance and large inter-identity distance. However, lack of variation
in training data still leads to poor generalizability. Various useful methods are utilized to mitigate this
issue. The model adapts to factors of variance by augmenting datasets, whereas the large discrepancy
in data distribution could potentially weaken the model’s ability to extract discriminative features
with the same data scale and model structure (see Section 4.3). Fine-tuning is widely used to transfer
large pretrained models to new domains with different data specifications. However, this strategy
requires one to store and deploy a separate copy of the backbone parameters for every single new
domain, which is expensive and often infeasible.

As known, the resolutions of face images in reality may be far beyond the scope covered by the
model. As the small feature maps with a fixed spatial extent (e.g., 7 × 7) are mapped to an em-
bedding with a predefined dimension (e.g., 128 − d, 512 − d, etc.) by a fully connected (fc) layer,
input images need to be rescaled to a canonical spatial size (e.g., 112 × 112) before fed into the
network. However, up-sampling low-resolution (LR) images introduces the interpolation error (see
Section 3.1), deteriorating the recognizable ones which contain enough clues to identify the subject.
Even though super-resolution methods (Zhu et al. (2016); Grm et al. (2020); Wang et al. (2016);
Cheng et al. (2018a); Yin et al. (2020); Singh et al. (2019); Rai et al. (2020)) are widely used to
build faces with good visualization, they inevitably introduce feature information of other identi-
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Table 1: Correspondence between our goals and methods

Compatibility Discriminability

Input preprocessing - w/o rescaling to a canonical size

Network structure TNet (unified encoder) BNets (resolution adapters)

Training strategy Back compatible training (influence loss) Branch distillation

ties when reconstructing high-resolution (HR) faces. This may lead to erroneous identity-specific
features, which are detrimental to risk-controlled face recognition.

Empirically, we can divide inputs by resolution distribution and learn to operate on them via multiple
models to achieve high accuracy and efficiency. However, multi-model fashion cannot be applied
directly for cross-resolution recognition as representation compatibility among models need to be
guaranteed (Shen et al. (2020); Budnik & Avrithis (2021); Wang et al. (2020a); Meng et al. (2021);
Duggal et al. (2021)).

To improve discriminability while ensure the compatibility of the metric space for multi-resolution
face representation, we learn the “unified” representation by a partially-coupled Branch-to-Trunk
Network (BTNet). It is composed of multiple independent branch networks (BNets) and a shared
trunk network (TNet). A resolution-specific BNet is used for a given image, and the output are
implanted as feature maps in the feature pyramid of TNet, at a layer with the same resolution.

Furthermore, we find that multi-resolution training can be beneficial to building a strong and robust
TNet, and backward-compatible training (BCT) Shen et al. (2020) can improve the representation
compatibility during the training process of BTNet. To ameliorate the discriminability of tiny faces,
we propose branch distillation in intermediate layers, utilizing information extracted from HR im-
ages to help the extraction of discriminative features for resolution-specific branches.

Our method is simple and efficient, which can serve as a general framework easily applied to ex-
isting networks to improve their robustness against image resolutions. Since multi-resolution face
recognition is dominated by super-resolution and projection methods, to the best of our knowledge,
our method is the first attempt to decouple the information flow conditioned on the input resolution,
which breaks the convention of up-sampling the inputs. Meanwhile, BTNet is able to reduce the
number of FLOPS by operating the inputs without up-sampling, and per-resolution storage cost by
only storing the learned branches and resolution-aware BNs Zhu et al. (2021), while re-using the
copy of the trunk model.

We demonstrate that our method performs comparably in various open-set face recognition tasks
(1:1 face verification and 1: N face identification), while meaningfully reduces the redundant com-
putation cost and parameter storage. In the challenging QMUL-SurvFace 1: N face identification
task Cheng et al. (2018b), we establish new state-of-the-art by outperforming prior models.

In brief, our work can be summarized as follows: (1) What is our goal? Matching images with
arbitrary resolutions (i.e., high-resolution, cross-resolution and low-resolution) effectively and effi-
ciently, which is quite different from the traditional face recognition task. (2) What is the core idea
of our method? Building unified (i.e.,compatible and discriminative) representations for multi-
resolution images without introducing erroneous information. (3) How to achieve our goal via our
method? Table 1 shows that we ensure the compatibility and discriminability from three aspects:
input preprocessing, network structure, and training strategy.

2 RELATED WORK

Compatible Representation Learning: The task of compatible representation learning aims at
encoding features that are interoperable with the features extracted from other models. Shen et.
al. Shen et al. (2020) first formulated the problem of backward-compatible learning (BCT) and
proposed to utilize the old classifier for compatible feature learning. Since the multi-model fashion
benefits representation learning with lower computation, our idea of cross-resolution representation
learning can be modeled similar to cross-model compatibility Shen et al. (2020); Budnik & Avrithis
(2021); Wang et al. (2020a); Meng et al. (2021); Duggal et al. (2021), as metric space alignment
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for different resolutions. Our goal is achieved by both compatibility-aware network architecture and
training strategy.

Knowledge Distillation and Transfer: The concept of knowledge distillation (KD) was first pro-
posed by Hinton et. al. in Hinton et al. (2015), which can be summarized as employing a large
parameter model (teacher) to supervise the learning of a small parameter model (student). Distil-
lation from intermediate features Heo et al. (2019a); Huang & Wang (2017); Park et al. (2019);
Romero et al. (2015); Tung & Mori (2019); Zagoruyko & Komodakis (2016); Yim et al. (2017);
Tian et al. (2019); Peng et al. (2019); Kim et al. (2018); Heo et al. (2019b) is widely adopted to
enhance the effectiveness of knowledge transfer. However, due to the “dark knowledge” hidden in
the intermediate layers, additional subtle design is often required to match and rescale intermedi-
ate features. Instead, our approach can easily locate the distillation features without rescaling and
effectively transfer knowledge from the HR domain to LR branches.

Low Resolution Face Recognition: Its task includes low resolution-to-low resolution (LR-to-LR)
matching and low resolution-to-high resolution (LR-to-HR) matching Martı́nez-Dı́az et al. (2020).
The work can be divided into two categories Luevano et al. (2021): (1) Super-resolution (SR) based
methods aim to upscale LR images to construct HR images and use them for feature extraction Zhu
et al. (2016); Grm et al. (2020); Wang et al. (2016); Cheng et al. (2018a); Yin et al. (2020); Singh
et al. (2019); Rai et al. (2020). (2) Projection-based methods aim to extract adequate representations
in different domains and project them into a common feature space Lu et al. (2018); Mudunuri
et al. (2018); Zha & Chao (2019). SR approaches are able to build faces with good visualization,
but inevitably introduce feature information of other identities when reconstructing corresponding
HR faces, thus introducing noise for identity-specific features. Compared to previous projection
methods, our approach directly learns discriminative representations in a common feature space for
HR and LR inputs, without additional projection heads for feature transformation.

3 LEARNING SPECIFIC-SHARED FEATURE TRANSFER

Instead of rescaling the inputs to a canonical size, we build multiple resolution-specific branches
(BNets) that are used to map inputs to intermediate features with the same resolution and a
resolution-shared trunk (TNet) to map feature maps with different resolutions to a high-dimension
embedding. We gain several important properties by doing so: (1) Processing inputs on its origi-
nal resolution can diminish the inevitably introduced error via up-sampling or information loss via
down-sampling, thus preserving the discriminability of visual information with different resolutions.
(2) Information streams of different resolutions are encoded uniformly, thus enabling the represen-
tation compatibility, which is particularly beneficial to open-set face recognition considering that a
compatible metric space is the prerequisite for computing similarity. (3) This also effectively re-
duce the computation for LR images by supplying computational resources conditioned on the input
resolution.

3.1 UP-SAMPLING ERROR ANALYSIS

Figure 1 illustrates the experimental estimation of interpolation error, whose upper bound increases
with the decline of the image resolution (see detailed theoretical derivation in Appendix A.1). Note
that the error soars up when the resolution drops below 32 approximately which can be viewed as
LR face images, consistent with the tiny-object criterion Torralba et al. (2008).

The results show that: (1) inputs with a resolution higher than around 32 can be considered in the
same HR domain, since the error information introduced by up-sampling via interpolation can be
ignored to a certain extent; (2) inputs with a resolution lower than around 32 should be treated as in
various LR domains due to the high sensitivity of the resolution to errors.

3.2 BRANCH-TO-TRUNK NETWORK

Let X be an input RGB image with a space shape: X ∈ RH×W×3 where H×W corresponds to the
spatial dimension of the input. For efficient batch training and inference, we predefine a canonical
size S × S (e.g., 112× 112 for typical face recognition models like ArcFace Deng et al. (2019a)).
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Figure 1: Estimated Error Upperbound.
(bilinear interpolation, average value for
over 100 images) with the change of image
resolution relative to resolution 112.

Figure 2: Basic ideas of the proposed BTNet.
Images of a certain identity are first projected to the
feature maps with the same resolution respectively
(Adapt) and then projected to a unified feature rep-
resentation (Encode). In this figure, feature maps
with the same resolution are indicated by outlines in
the same color.

We build a trunk network T : RH×W×3 → RCemb capable of extracting discriminative infor-
mation with different resolutions, where Cemb is the number of embedding channels. For ev-
ery resolution r in the candidate set, we formulate a resolution-specific branch, zr = Br(Xr),
which maps the input image Xr to feature maps with the same resolution and expanded channels
zr : Rr×r×3 → Rr×r×Cr . The idea is to learn our branches B to focus on resolution-specific
feature transfer independently. Feature maps will then be coupled to the trunk network T in the
feature pyramid with the same spatial resolution r × r, allowing for further mapping to the unified
presentation space by Tr : Rr×r×Cr → RCemb .

Here, we follow the idea of “avoiding redundant up-sampling”. Our branches B are implemented
with same-resolution mapping: i.e., the model preserves the network architecture of T from input to
the layer with resolution r and abandons down-sampling operations (e.g., replacing the convolution
of stride 2 with stride 1, abandoning the pooling layers, etc.) to keep the same-resolution flow.

We specifically name our specific-shared feature transfer network as Branch-to-Trunk Network,
abbreviated as ”BTNet”. Figure 2 visually summarizes the main ideas of BTNet.

3.3 TRAINING OBJECTIVES

We now describe the training objectives. The training of BTNet includes training the trunk net-
work T such that it can produce discriminative and compatible representations for multi-resolution
information, and fine-tuning the branch networks B to encourage them to learn resolution-specific
feature transfer, so as to improve accuracy without compromising compatibility.

Figure 3: Visual comparison of face image-
feature map pairs with different resolutions
(resized to a common size here for illustra-
tion).

Influence Loss. It is a compatibility-aware classi-
fication loss which is implemented by feeding the
embeddings of the new model to the classifier of
the old model Shen et al. (2020).Any classification-
based loss (e.g., NormFace Wang et al. (2017),
SphereFace Liu et al. (2017), CosFace Wang et al.
(2018), ArcFace Deng et al. (2019a), etc.) can be
refined as our influence loss, in the form of:

Linfluence = Lcls(φbt, κ
∗) (1)

where φbt is BTNet backbone (both Br and Tr), and
κ∗ is the classifier of the pretrained trunk T .

Branch Distillation Loss. Due to the continuity of
the scale change of both the image pyramid and the
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feature pyramid Lindeberg (1994), we can get a qualitative sense of the similarity between images
and feature maps with the same resolution (see Figure 3). Furthermore, features extracted from HR
images have richer and clearer information than those from LR images Lui et al. (2009). Motivated
by these analyses, we utilize an MSE loss to encourage the branch output zr to be similar to the
corresponding feature maps of the pretrained trunk network zs:

Lbranch =
1

V

V∑
v=1

(zrv − zsv )
2 (2)

where V denotes the batch size.

The whole training objective is a combination of the above objectives:

L = Linfluence + λbranchLbranch (3)

where λbranch is a hyper-parameter to weigh the losses and we set λbranch = 0.5 in all our experi-
ments.

Figure 4: Comparison of # Params (M) be-
tween fully finetuning and φbt.

Figure 5: Comparison of FLOPs (G) be-
tween baselines and φbt.

3.4 STORING BRANCH NETWORKS

An obvious adaptation strategy is fully finetuning of the model on each resolution. However, this
strategy requires one to store and deploy a separate copy of the backbone parameters for every
resolution, which is an expensive proposition and difficult to expand into more segmented resolu-
tion branches. Our BTNet is beneficial in the scenario of multi-resolution face recognition which
achieves better parameter/accuracy trade-offs. Since activation statistics including means and vari-
ances under different resolutions are incompatible Touvron et al. (2019), we update and store Batch
Normalization (BN) Ioffe & Szegedy (2015) parameters in all layers of Br and Tr for each resolu-
tion, whose amount is negligible. Apart from this, we only need to store the learned branches and
re-use the original copy of the pretrained trunk model, significantly reducing the storage cost. Figure
4 shows that BTNet requires only 1.1% ∼ 48.9% of all the parameters compared to fully updating
all the parameters of TNet.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Datasets. We use MS1Mv3 Deng et al. (2019b) for training face embedding models. The
MS1Mv3 dataset contains 5,179,510 images of 93,431 celebrities. We try on six widely adopted
face verification benchmarks: LFW Huang et al. (2008), CFP-FF Sengupta et al. (2016), CFP-FP
Sengupta et al. (2016), AgeDB-30 Moschoglou et al. (2017), CALFW Zheng et al. (2017), and
CPLFW Zheng & Deng (2018), while the large-scale surveillance face dataset QMUL-SurvFace
Cheng et al. (2018b) is used for 1:N face identification, which contains native LR surveillance faces
across wide space and time. The spatial resolution for QMUL-SurvFace ranges from 6/5 to 124/106
in height/width with an average of 24/20.
Baselines. In our experiment, several baselines are used to validate BTNet in learning discrimina-
tive and compatible representations for multi-resolution face recognition.
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·High-Resolution Trained φhr. Naive baseline trained with HR data.
·Independently Trained φmm. Multi-model fashion: is it possible to achieve better results if we
train a specific model for each resolution independently? Specifically, we train φr for data with
resolution r and denote the multi-model collections as φmm.
·Multi-Resolution Trained φmr. Trained with multi-resolution data which adapts to resolution-
variance. For a comprehensive evaluation, we implemented three baselines, denoted as φmr,
φmr(v2), φmr(v3) respectively. Each image is down-sampled to a certain size and then up-sampled
to 112 × 112. The differences are as follows: (i)φmr: down-sampled to a size in the candidate set
{ 112

2i × 112
2i |i = 0, 1, 2, 3, 4} with equal probability of being chosen. (ii)φmr(v2): down-sampled

to a size in the candidate set with unequal probability of being chosen [0.3, 0.25, 0.2, 0.15, 0.1].
(iii)φmr(v3): down-sampled to a size in the candidate interval [4, 112].
Instantiation of Network Architecture. The BTNet and baselines are implemented with
ResNet50 He et al. (2016), and they could be extended easily with other implementations. Dubbed
as φbt, the detailed instantiation of BTNet based on ResNet50 is illustrated in Appendix A.2.
Training. The training details can be found in Appendix A.3.

4.2 EVALUATION METRICS

On the benchmarks for face verification, we use 1:1 verification accuracy as the basic metrics.
The rank-20 true positive identification rates (TPIR20) at varying false positive identification rates
(FPIR) and AUC are used to report the identification results on QMUL-SurvFace.

For better evaluation, we define another two metrics to assess the relative performance gain similar
to Shen et al. (2020); Meng et al. (2021).
Cross-Resolution Gain. With the purpose towards the cross-resolution compatible representa-
tions, we define the performance gain as follows:

Gainr1&r2(φ) =
Mr1&r2(φ)−Mr1&r2(φhr)

|Mr1&r2(φmr)−Mr1&r2(φhr)|
(4)

Here Mr1&r2(·) are metrics when the resolutions of the image/template pair are r1 × r1 and r2 × r2
(r1 ̸= r2), respectively. φmr shares the same architecture with φhr while is trained on multi-
resolution images and thus serves as the baseline of cross-resolution gain.
Same-Resolution Gain. For the scenario of multi-resolution face recognition, the performance
of same-resolution verification/identification is also vital besides cross-resolution one. Therefore,
we report the relative performance improvement from base model φhr in the scenario of same-
resolution.

Gainr&r(φ) =
Mr&r(φ)−Mr&r(φhr)

|Mr&r(φr)−Mr&r(φhr)|
(5)

Here Mr&r (·) are metrics when the resolutions of the image/template pair are both r × r. φr is a
model of the set {φmm = φr|r = 7, 14, 28} trained on images with resolution r×r without consid-
ering cross-resolution representation compatibility, which serves as the baseline of same-resolution
gain on resolution r. Note that for both metrics we add the absolute symbol to the denominator as
they can be negative in some test settings (detailed in Section 4.3).

4.3 RESULTS

4.3.1 MULTI-RESOLUTION FACE VERIFICATION

We now conduct experiments on the proposed BTNet framework for multi-resolution identity match-
ing. Two different settings are included : (1) same-resolution matching, and (2) cross-resolution
matching. Table 2 compares the average performance on popular benchmarks for φhr, φmm, φmr,
φbt.

When directly applied to test data with the resolution lower than training data, φhr suffers a severe
performance degradation. Up-sampling images via interpolation can increase the amount of data
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Table 2: Comparison of different methods on six face verification benchmarks.

(a) Cross-resolution identity matching.

112&7 112&14 112&28

Acc. Gain Acc. Gain Acc. Gain

φhr 57.75 - 81.02 - 95.90 -

φmm 50.58 -0.89 49.90 -4.82 50.03 -305.80

φmr 65.85 +1.00 87.47 +1.00 96.05 +1.00

φmr(v2) 65.68 +0.98 87.13 +0.95 95.70 -1.33

φmr(v3) 68.80 +1.36 88.13 +1.10 96.62 +4.80

φbt(Ours) 86.10 +3.50 94.08 +2.02 96.65 +5.00

(b) Same-resolution identity matching.

7&7 14&14 28&28 112&112

Acc. Gain Acc. Gain Acc. Gain Acc. Gain

60.70 - 73.88 - 93.58 - 97.68 -

62.57 +1.00 78.00 +1.00 94.68 +1.00 97.68 -

61.02 +0.17 80.32 +1.56 95.12 +1.40 97.25 -

60.82 +0.06 80.22 +1.54 95.63 +1.86 96.82 -

61.62 +0.49 80.55 +1.62 94.78 +1.09 97.52 -

77.78 +9.13 90.90 +4.13 96.27 +2.45 97.25 -

but not the amount of information, only to improve the detailed part of the image and the spatial
resolution (size) Liu & Liu (2003). Moreover, it also brings various noise and artificial processing
traces Siu & Hung (2012). Up-sampling images via interpolation-typically bilinear interpolation or
bicubic interpolation of 4x4 pixel neighborhoods, essentially a function approximation method, is
bound to introduce error information (detailed in Appendix A.1), thus potentially confusing identity
information, which is especially crucial for LR images with limited details. We are able to observe
improvement of φmm in same-resolution matching but its cross-resolution gain is negative with
approximately 50% accuracy. Unsurprisingly, independently trained φr is unaware of representation
compatibility, and thus does not naturally suitable for cross-resolution recognition. The results show
that φmr improved both cross-resolution and same-resolution accuracy by a large margin, as it learns
to adapt to resolution variance and maintain discriminability of multi-resolution inputs. Note that
the model size and training data scale stay the same, while only the resolution distribution of the data
changes for φmr, and thus there is a marginal accuracy drop in the setting of 112&112 matching.
Comparably, φbt substantially outperforms all baselines with 2.02 ˜5.00 cross-resolution gain and
2.45˜9.13 same-resolution gain. Importantly, due to the multi-resolution branches, our approach has
a cost same with φmm, significantly lower than φhr and φmr (see Figure 5).

Figure 6: Detailed cross-resolution
face verification comparison of dif-
ferent methods on six benchmarks
for different image resolutions.
The clockwise sequence indicates
112&7,112&14,112&28 matching
per-benchmark.

Moreover, we investigate the deviation in the accuracy change
between different datasets, and assess the robustness of the
face recognition systems to image resolutions.We can find that
our proposed approach is much more robust than baselines
against image resolution, and can also remain effective with
more factors of variance (e.g., large pose variations, large age
gap, etc.) included.

4.3.2 MULTI-RESOLUTION FACE IDENTIFICATION

In the native scenario, it is common to inference on inputs with
resolutions not strictly matched to the branch. Since the low-
quality image may possess an underlying optical resolution
significantly lower than its size due to degraded quality caused
by noise, blur, occlusion, etc Wong et al. (2010). , there exists
dislocation between the underlying optical resolution of native
face images and that of a branch. To avoid introducing extra
large-scale parameters for predicting the image quality, three
heuristic selection strategies based on different resolution in-
dicators are validated (see Figure 8). Table 3 compares BTNet
against the state-of-the-arts models on QMUL-SurvFace 1:N
identification benchmark. We are able to observe that our pro-
posed approach extends the state-of-the-arts while being more
computationally efficient. We believe the performance of BT-
Net (max + ceil) is the highest that have been reported so far,
and we believe it is meaningful with the increased focus on unconstrained surveillance applications.

5 ABLATION STUDY
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Table 4: Comparison of different training methods for
our BTNet. “Acc.” denotes average 1:1 verification ac-
curacy. “# Params.” indicates the amount of parameter
storage for the branch network B14.

Training method Acc. (%) # Params. (M)112&14 14&14

Scratch 49.90 78.00 43.59

Pretraining 78.05 76.87 43.59

Pretraining + BCT 85.90 78.04 43.59

Pretraining + BCT + Fix Trunk 85.07 77.22 2.29

Pretraining + BCT + Fix Trunk
+ Branch Distillation 94.08 90.90 2.29

Table 5: Ablation study of different loss
functions.

Implementation
of influence loss 112&14 Acc.(%) 14&14 Acc.(%)

CosFace 94.10 90.78

ArcFace 94.17 90.88

CurricularFace 94.08 90.90

Table 3: Performance of face identification
on QMUL-SurvFace. Most compared results
are cited from Cheng et al. (2018b); Fang
et al. (2020); Low & Teoh (2022), except
AdaFace and BTNet.

TPIR20(%)@FPIR

AUC 0.3 0.2 0.1

VGG-Face Parkhi et al. (2015) 14.0 5.1 2.6 0.8

DeepID2 Sun et al. (2014) 20.8 12.8 8.1 3.4

FaceNet Schroff et al. (2015a) 19.8 12.7 8.1 4.3

SphereFace Liu et al. (2017) 28.1 21.3 15.7 8.3

SRCNN Dong et al. (2014) 27.0 20.0 14.9 6.2

FSRCNN Dong et al. (2016) 27.3 20.0 14.4 6.1

VDSR Kim et al. (2016) 27.3 20.1 14.5 6.1

DRRN Tai et al. (2017) 27.5 20.3 14.9 6.3

LapSRN Lai et al. (2017) 27.4 20.2 14.7 6.3

ArcFace Deng et al. (2019a) 25.3 18.7 15.1 10.1

RAN Fang et al. (2020) 32.3 26.5 21.6 14.9

SST Du et al. (2020) - 12.4 - 9.7

MASST Shi et al. (2021) - 12.2 - 9.2

MIND-Net Low et al. (2021) 31.9 25.5 - 20.4

AdaFace Kim et al. (2022) 32.6 28.3 23.6 16.5

BTNet (avg.+floor) 32.6 27.9 23.4 16.5

BTNet (avg.+near) 34.6 30.3 25.7 18.9

BTNet (avg.+ceil) 35.4 31.1 26.8 20.3

BTNet (min+floor) 32.3 27.6 23.2 16.1

BTNet (min+near) 34.0 29.6 25.0 18.0

BTNet (min+ceil) 35.3 31.0 26.6 19.9

BTNet (max+floor) 33.6 29.1 24.5 17.6

BTNet (max+near) 35.2 31.0 26.4 19.6

BTNet (max+ceil) 35.4 31.2 26.9 20.6

In all these experiments, we report the average ver-
ification results on six benchmarks in 112&14 and
14&14 matching, representing cross-resolution and
same-resolution performance respectively.
Training Method Alternatives. Here, we exper-
imentally compare different training methods: (1)
Scratch: train without pretrained trunk parameters.
(2) Pretraining: initialize the backbone and classifier
with the pretrained trunk network. (3) Backward-
compatible training (BCT, Shen et al. (2020)): fix
parameters of the old classifier. (4) Fix-trunk: fix
parameters of the trunk subnet Tr. (5) Branch dis-
tillation: use L2-distance to obtain the loss between
the intermediate feature maps at the coupling layer
of the pretrained trunk T and the branch Br.

We compare different training method combinations
in Table 4 and find that both pretraining and BCT
succeeded in ensuring representation compatibility.
Among these two, BCT performs better since it im-
poses a stricter constraint during training. Further-
more, we are able to observe that branch distillation
is crucial for improving the discriminative power
by transferring high-resolution information to low-
resolution branches.
Loss Functions. Since the difficulties of samples
vary due to image resolution, we compute Curricu-
larFace Huang et al. (2020) as our classification loss
in the original architecture, which distinguishes both
the difficultness of different samples in each stage
and relative importance of easy and hard samples
during different training stages.

To prove the main technical contribution of BTNet
(rather than other components), we use different loss
functions to replace the CurricularFace loss as influ-
ence loss in the original architecture. The compar-
ison results(in Table 5) demonstrate that there is no
significant difference among different implementations of influence loss. It means that the main
performance gain is attributed to our novel design.
Where should we have resolution-specific layers? We conducted an ablation to see the effects
of different specific-shared layer allocation strategies. The experiment was done with different trunk
layers (i.e., the parameters of these layers are inherited from the pretrained trunk without updating).
Figure 7 shows the results. We find that increasing the number of branch layers (i.e., specific layers
for different resolutions) will lead to better performance due to increased flexibility. Our specific-
shared layer allocation of BTNet can achieve better parameter/accuracy tradeoffs. Since further
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increasing the number of trunk layers based on BTNet cannot lead to significantly better perfor-
mance but increases parameter storage cost by a large margin, we use resolution-specific layers as
shown in Figure 9.

6 DISCUSSION AND CONCLUSION

Figure 7: Comparison of verification accuracy and the
amount of stored parameters for different specific-shared
layer allocation strategies. Note that “Stage x+” indicates
that layers deeper than “Stage x, Unit 1” are inherited from
the pretrained trunk without updating.

This paper works on the problem of
multi-resolution face recognition, and
provides a new scheme to operate im-
ages conditioned on its input resolution
without large span rescaling. The error
introduced by up-sampling via interpo-
lation is investigated and analyzed. De-
coupled as branches for discriminative
representation learning and coupled as
the trunk for compatible representation
learning, our Branch-to-Trunk Network
(BTNet) achieves significant improve-
ments on multi-resolution face verifica-
tion and identification tasks. Besides,
the superiority of BTNet in reducing
computational cost and parameter stor-
age cost is also demonstrated. It is
worth noting that our approach is easy
to expand to recognition tasks for other
classes of objects and has the potential
to serve as a general network architec-
ture for multi-resolution visual recogni-
tion.
Limitations and Future Work. The dislocation between the underlying optical resolution of na-
tive face images and that of a certain branch may limit the power of the model, which may be
improved by selecting the optimal processing branch for the input in combination with the image
quality, rather than by image size alone. The optimal branch selection strategy is not fully inves-
tigated though we have provided an intuitive way to select the branch for inputs (see Figure 8).
Importantly, based on the unified multi-resolution metric space, the underlying resolution of the
inputs (integrated spatial resolution with quality assessment) can be utilized to provide the reliabil-
ity of the representation and contribute to risk-controlled face recognition. They will be our future
research directions.

Figure 8: Branch selection process. Max/min/average is used on (W, H) to obtain a resolution
indicator for further allocation (floor/near/ceil) to a certain branch.
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A APPENDIX

A.1 THEORETICAL DERIVATION OF UP-SAMPLING ERROR

Here, we take bilinear interpolation, a typical image interpolation method, as an example to analyze
the relationship between the interpolation error and the resolution of a face image. Bilinear interpo-
lation can be considered as a bivariate Lagrange interpolation problem containing two interpolation
nodes in each of the two dimensions.

Let D be a unit-bounded closed region in a two-dimensional image space, and
Q1 (x0, y0) , Q2 (x1, y0) , Q3 (x0, y1) , Q4(x1, y1) ∈ D be four adjacent pixel points in this
region. We use an interpolation polynomial P (x, y) for the interpolation approximation of the
bivariate continuous function f(x, y) defined on D , and the interpolation error E(x, y) can be
expressed as

E(x, y) = f(x, y)− P (x, y) (6)

which indicates the potential error information introduced to the recognition of different identities.
According to the the Rolle’s theorem, we can obtain

E(x, y) =

∂4f(ξ,η)
∂x2∂y2

4
ω2(x)µ2(y) (7)

where ξ, η is an interior point of D and

ω2(x) = (x− x0)(x− x1) (8)
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µ2(y) = (y − y0)(y − y1) (9)

As x1 − x0 = y1 − y0 = 1 for adjacent pixel points, we can get the upper bound of |ω2(x)| and
|µ2 (y) |

|ω2(x)| <
1

4
, |µ2(y)| <

1

4
(10)

Thus, the error estimation can be expressed as

E(x, y) ≤
|∂

4f(ξ,η)
∂x2∂y2 |
64

(11)

where ∂4f(ξ,η)
∂x2∂y2 can be approximated using the difference operator

[
1 −2 1
−2 4 −2
1 −2 1

]
(12)

Based on the above theoretical analysis, we can experimentally study the relationship between the
estimated up-sampling error and the image resolution.

A.2 INSTANTIATION OF BTNET-RES50

We provide the detailed architecture of BTNet-res50 (φbt), an instantiation of BTNet framework
based on ResNet50 He et al. (2016). Our method can be easily implemented by refining a network
with the top-down hierarchical representation structure.

Figure 9: Detailed architecture of BTNet-res50 (φbt). Note that ‘S’ and ‘U’ represent stage and unit
respectively, and ‘/2’ means down-sampling by convolution with stride 2.

A.3 TRAINING DETAILS

Training. All the models are trained on four RTX 2080 Tis with batch size 128 by stochastic
gradient descent. For TNet, we train for 25 epochs, with learning rate initialized at 0.2 with 2
warm-up epochs and decaying as a quadratic polynomial. We augment training samples by random
horizonal flipping and multi-resolution training. For BNets, we initialize the learning rate by 0.02
without warm-up epochs. The training all stops at the 10th epoch for a fair comparison. The
recommended hyper-parameters are used for classification loss from the original paper (e.g., m =
0.5, s = 64 for ArcFace Deng et al. (2019a), and α = 0.99, t0 = 0 for CurricularFace Huang et al.
(2020)). Only horizonal flipping is used as augmentation when training BNets.
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Figure 10: Visualization of intermediate feature maps for inputs with different resolutions. We show
the feature maps located at output layers of BNets, denoted as stage1/2/3/4 respectively. We see our
method can transfer multi-resolution visual inputs to intermediate feature maps at corresponding
layers (indicated by bounding boxes of the same color) of TNet.

A.4 VISUALIZATION

To interpret the behavior of learning compatible and discriminative representations, we visualize the
intermediate feature maps in Figure 10. We find that φhr introduces the noise information while
φmm has more discriminative but resolution-variant feature maps. The feature maps of φmr tend
to be smoother, diminishing the error information, but the discriminability could be limited as high-
frequency details benefit recognition Wang et al. (2020b).

We also show that through the resolution-specific feature transfer of multiple branches, φbt can
encourage the transferred features to be aligned before fed into the trunk network in corresponding
layers. For instance, at stage 2, the feature maps of φbt with input resolution 112 and 28 are more
similar than those of φhr, φmm, φmr. Furthermore, more detailed information can be found in
the feature maps of φbt with input resolution 28 compared to φmr. This inspiring phenomenon
suggests that BTNet can learn compatible representations while improving the discriminability in
low-resolution domain through the knowledge transferred from high-resolution visual signals.

A.5 MORE EXPERIMENTS

Multi-resolution feature aggregation is common in set-based recognition tasks where the model
needs to determine the similarity of sets (templates), instead of images. Each set could contain
images of the same identity with different resolutions. In our experiment, we rescale the original and
flipped images in each set to different resolutions and aggregate their features into a representation
of the template.
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Table 6: 1:1 verification TAR at different FAR on the IJB-C dataset for cross-resolution feature
aggregation.

112&7 112&14 112&28
FAR 10−6 10−5 10−3 10−2 10−1 10−6 10−5 10−3 10−2 10−1 10−6 10−5 10−3 10−2 10−1

φhr 67.99 81.65 93.18 96.38 98.65 78.83 87.44 95.86 97.79 99.05 88.87 92.56 97.19 98.33 99.06
φmm 53.57 64.34 84.01 91.96 97.12 83.22 89.56 96.10 97.71 98.82 86.84 92.33 97.16 98.10 99.01
φmr 37.83 49.12 76.80 88.32 95.79 77.97 85.46 95.64 97.79 99.21 85.55 91.86 97.25 98.46 99.19
φbt (Ours) 66.84 78.40 94.27 97.63 99.16 81.92 88.38 96.64 98.34 99.28 86.61 92.48 97.38 98.47 99.20

Table 7: 1:1 verification TAR at different FAR on the IJB-C dataset for same-resolution feature
aggregation.

7&7 14&14 28&28 112&112
FAR 10−6 10−5 10−3 10−2 10−1 10−6 10−5 10−3 10−2 10−1 10−6 10−5 10−3 10−2 10−1 10−6 10−5 10−3 10−2 10−1

φhr 0.69 1.73 12.58 27.63 56.81 9.82 20.38 52.57 72.61 90.30 75.67 83.24 94.21 97.15 98.74 89.58 94.51 97.57 98.40 99.06
φmm 0.68 1.73 11.93 27.48 56.84 7.59 15.61 48.28 71.13 91.04 73.68 85.14 95.82 97.65 98.89 89.58 94.51 97.57 98.40 99.06
φmr 0.74 1.76 11.11 25.98 54.26 14.21 24.72 60.39 79.84 94.35 78.91 86.42 96.04 98.07 99.09 88.48 93.37 97.50 98.51 99.23
φbt (Ours) 12.09 20.70 57.17 79.02 93.90 57.75 70.63 90.85 96.06 98.68 82.85 90.32 96.94 98.31 99.15 88.48 93.37 97.50 98.51 99.23

(a) 112&7 (b) 112&14

(c) 112&28

Figure 11: 1:1 verification ROC Curve on the IJB-C dataset for cross-resolution feature aggregation.

19



Under review as a conference paper at ICLR 2023

(a) 7&7 (b) 14&14

(c) 28&28 (d) 112&112

Figure 12: 1:1 verification ROC Curve on the IJB-C dataset for same-resolution feature aggregation.

Table 8: 1: N identification TPIR(%@FPIR=0.01), Top-1, Top-5, Top-10 accuracy on the IJB-C
dataset for cross-resolution feature aggregation.

112&7 112&14 112&28

TPIR Top-1 Top-5 Top-10 TPIR Top-1 Top-5 Top-10 TPIR Top-1 Top-5 Top-10

φhr 75.35 92.76 95.14 95.92 81.98 93.89 96.25 96.98 90.42 96.05 97.47 97.80

φmm 59.07 88.89 92.33 93.35 86.39 95.15 96.86 97.31 90.04 96.00 97.31 97.72

φmr 43.89 82.29 87.74 89.42 82.18 93.87 96.20 96.89 88.90 95.93 97.36 97.84

φbt(Ours) 73.40 91.30 94.86 95.88 84.78 94.78 96.84 97.41 89.84 96.16 97.46 97.90

Table 9: 1: N identification TPIR(%@FPIR=0.01), Top-1, Top-5, Top-10 accuracy on the IJB-C
dataset for same-resolution feature aggregation.

7&7 14&14 28&28 112&112

TPIR Top-1 Top-5 Top-10 TPIR Top-1 Top-5 Top-10 TPIR Top-1 Top-5 Top-10 TPIR Top-1 Top-5 Top-10

φhr 1.20 11.77 19.95 24.28 15.16 50.96 63.62 68.68 77.52 91.62 94.95 95.99 92.66 96.58 97.71 97.94

φmm 1.24 20.38 30.23 34.83 11.62 62.08 72.33 76.33 79.31 93.87 96.09 96.81 92.66 96.58 97.71 97.94

φmr 1.36 17.41 26.53 31.03 23.72 68.64 78.38 81.99 83.82 94.53 96.67 97.33 90.89 96.44 97.65 98.00

φbt(Ours) 15.55 55.49 67.98 73.05 63.69 86.35 92.14 94.01 86.87 95.42 97.06 97.62 90.89 96.44 97.65 98.00
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Table 10: Comparison of different methods on the IJB-C dataset 1:1 face verification task.
“TAR” denotes TAR (%@FAR=1e-4).

(a) Cross-resolution feature aggregation.

112&7 112&14 112&28

TAR Gain TAR Gain TAR Gain

φhr 88.89 - 92.40 - 95.62 -

φmm 74.54 -0.56 93.52 +1.33 95.42 -0.69

φmr 63.11 -1.00 91.56 -1.00 95.33 -1.00

φbt(Ours) 88.17 -0.03 93.97 +1.87 95.62 +0.00

(b) Same-resolution feature aggregation.

7&7 14&14 28&28 112&112

TAR Gain TAR Gain TAR Gain TAR Gain

4.83 - 33.74 - 89.65 - 96.40 -

4.83 + 0.00 29.26 -1.00 92.58 +1.00 96.40 -

4.48 - 40.51 +1.51 92.81 +1.08 96.06 -

35.47 - 82.08 +10.79 94.50 +1.66 96.06 -

Table 11: Comparison of different methods on the IJB-C dataset 1: N face identification task.
“TPIR” denotes TPIR (%@FPIR=0.1).

(a) Cross-resolution feature aggregation.

112&7 112&14 112&28

TPIR Gain TPIR Gain TPIR Gain

φhr 85.60 - 90.11 - 94.27 -

φmm 69.70 -0.55 91.73 +1.53 94.13 -0.33

φmr 56.64 -1.00 89.05 -1.00 93.84 -1.00

φbt(Ours) 83.93 -0.06 91.87 +1.66 94.33 +0.14

(b) Same-resolution feature aggregation.

7&7 14&14 28&28 112&112

TPIR Gain TPIR Gain TPIR Gain TPIR Gain

3.12 - 26.37 - 86.06 - 95.57 -

3.24 +1.00 21.84 -1.00 89.76 +1.00 95.57 -

3.25 +1.08 37.58 +2.47 91.02 +1.34 94.85 -

27.70 +204.83 76.65 +11.10 92.89 +1.85 94.85 -

Table 10 (a) compares the cross-resolution results of TAR@FAR=10−4 for 1:1 verification. The
cross-resolution features are ensured to be mapped to the same vector space where the aggregation
is conducted for φhr and φmr, but we can observe that φhr performs much better than φmr. One
possible reason is that φhr has outstanding discriminability to extract HR features, while LR features
may not overly deteriorate the HR information. This phenomenon also suggests that φmr sacrifices
its discriminability in exchange for the adaptability for resolution-variance. We can see φbt is com-
parable with φhr, demonstrating the discriminative power of BTNet for aggregating multi-resolution
features.

Table 10 (b) compares the same-resolution results of TAR@FAR=10−4 for 1:1 verification. When
HR information is removed from the template representation (i.e., test settings 7&7, 14&14, 28&28),
φhr suffers from performance degradation as well, as the informative embedding cannot catch the
lost details of the LR images Fang et al. (2020). Both φmm and φmr improve with a limited same-
resolution gain, while φbt surpasses the baselines by a large margin while also reducing the compute.

In Table 11 we show the results of TPIR@FPIR=10−1 for 1:N identification protocol. Similar to our
results for 1:1 verification, we are able to observe that φbt is comparable or even better than φhr with
HR information involved and can preserve superior discriminability with limited LR information,
while also being more computationally efficient.

We report the detailed results on the IJB-C dataset, including TAR at different FAR (see Table ??, 6),
ROC Curve (see Figure 11, 12) for 1:1 verification, and TPIR at FPIR=0.01, Top-1, Top-5, Top-10
accuracy (see Table 8, 9) for 1:N identification. We are able to observe that φbt can be comparable
to or serve as the paradigm model (i.e., model with the best performance) in each resolution setting,
both for identity matching and feature aggregation.
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