
Unsupervised Adversarial Detection without Extra Model: Training Loss Should
Change

Chien Cheng Chyou 1 Hung-Ting Su 1 2 Winston H. Hsu 1 3

Abstract

Adversarial robustness poses a critical challenge
in the deployment of deep learning models for
real-world applications. Traditional approaches
to adversarial training and supervised detection
rely on prior knowledge of attack types and ac-
cess to labeled training data, which is often im-
practical. Existing unsupervised adversarial de-
tection methods identify whether the target model
works properly, but they suffer from bad accura-
cies owing to the use of common cross-entropy
training loss, which relies on unnecessary features
and strengthens adversarial attacks. We propose
new training losses to reduce useless features and
the corresponding detection method without prior
knowledge of adversarial attacks. The detection
rate (true positive rate) against all given white-box
attacks is above 93.9% except for attacks without
limits (DF(∞)), while the false positive rate is
barely 2.5%. The proposed method works well
in all tested attack types and the false positive
rates are even better than the methods good at
certain types. The source code is available on this
GitHub link.

1. Introduction
Adversarial robustness, a model’s ability to withstand adver-
sarial attacks, is a critical issue for deploying deep learning
models to real-world applications (Carlini et al., 2019). Ad-
versarial training can strengthen adversarial robustness by
using adversarial samples in training, but the side effects
are still unbearable, such as significantly increased training
time and the accuracy drop of the model (Goodfellow et al.,

1National Taiwan University 2Columbia University
3Mobile Drive Technology. Correspondence to: Chien
Cheng Chyou <eternity6545@gmail.com>, Hung-Ting
Su <htsu@cmlab.csie.ntu.edu.tw>, Winston H. Hsu
<whsu@ntu.edu.tw>.

2nd AdvML Frontiers workshop at 40 th International Conference
on Machine Learning, Honolulu, Hawaii, USA. PMLR 202, 2023.
Copyright 2023 by the author(s).

2014; Madry et al., 2017; Raghunathan et al., 2019; Zhang
et al., 2019). What’s more, adversarial training only works
well for known attack types, which is not practical.

Another work line is adversarial detection (AD), which
attempts to detect adversarial samples before the misled
results are adopted. AD methods can be roughly separated
into supervised and unsupervised methods (Aldahdooh et al.,
2022). In supervised methods, it’s possible to reach a satis-
fying accuracy for detecting adversarial samples. However,
they can only detect the attacks they have already known,
not to mention the extra training for classifying the given
attacked samples (Aldahdooh et al., 2022). The state-of-
the-art method now is LiBRe (2021), which reaches over-
whelming detection accuracy and conquers most defects of
other supervised methods. The critical problem is that what
kind of attacks will come is unpredictable, and including all
kinds of attacks is unrealistic.

We choose unsupervised AD as our research direction be-
cause of the unknown attack types in advance. However,
current unsupervised methods are still very restrictive. Most
unsupervised methods need extra models and rely on the
distribution of features in the target model or even tune pa-
rameters differently based on the datasets or the attack types.
Otherwise, they suffer from bad accuracy because the dis-
tribution of features changes with datasets and attack types
(Aldahdooh et al., 2022). These methods are unaware of the
redundant features learned from cross entropy. Therefore,
we directly adjust how the target model learns the original
classification task.

Different from the regular AD method, we make part of
the target model’s output unable to be attacked and detect
adversarial samples by the attackable outputs, shown in 1.
The key idea is that adversarial samples are a combination
of the feature learned from the training dataset (Ilyas et al.,
2019). The features for part of the model’s outputs, which
means these features can affect the corresponding outputs,
are useless and can be removed, and then the corresponding
outputs become unable to be affected by adversarial attacks.
The model’s raw outputs, the output before softmax, can
be separated into two parts, the true outputs and the false
outputs. The true outputs belong to the corresponding class
to the input’s class, and the false outputs do not. We find

https://github.com/CycleBooster/Unsupervised-adversarial-detection-without-extra-model
https://github.com/CycleBooster/Unsupervised-adversarial-detection-without-extra-model


Unsupervised Adversarial Detection without Extra Model: Training Loss Should Change

Figure 1. The effect of the proposed training loss and how to use it to detect adversarial samples. Because only the corresponding (dog in
this case) raw output can be attacked and other outputs keep the same, the corresponding output becomes a signal to detect adversarial
attacks. If no raw output is high, it means that the true output has been attacked.

that all model’s raw outputs can be attacked with only L1
loss, like figure 2. That is, there are features for false out-
puts. Considering cross-entropy loss presses down false
outputs, the feature for false output could be “why they are
not something”, but this is not a good way for humans to
classify objects’ categories. Human considers “why they
are something”, and add points to the corresponding class.
Therefore, the feature for false outputs should be unneces-
sary and just give adversarial attacks more clues to attack
the target model. This work wants to remove the features
for false outputs by changing training loss, so false outputs
become adversarially robust and only true outputs can be
attacked. The true outputs’ value is lower when attacks
happen, so they become a signal for adversarial attacks.

We assume that directly keeping all the false raw outputs
the same can remove the features for false outputs. The
objective is achieved by forcing all the false raw outputs in
a mini-batch to uniform distribution during training. The
details will be explained later in section 3.2. The assumption
works: the false raw output will be very hard to attack, and
only the true output can be attacked. What’s more, the
range of false raw outputs is very separated from true raw
outputs. Based on this property, we design a straightforward
method for AD. If the maximum raw output is lower than
the threshold or the minimum raw output is lower than the
other threshold, the input should have been attacked already.
There is no complicated algorithm, no extra model, and very
low training overhead. The following are our contributions:

• We confirm that the behavior of cross entropy loss gives
more features for adversarial attacks, and features for
false outputs are unnecessary.

• We proposed a new training loss set that can effectively
protect the false outputs from many kinds of white box
adversarial attacks.

Figure 2. The histogram comparison of attacking class 0’s false
raw output, the output before softmax. This figure shows that
even false raw output can be attacked easily and confirm that
there are features for false outputs. Features for false outputs are
unnecessary for humans and just give more clues for adversarial
attacks. Therefore, this work wants to remove features for false
output. PGD attack is applied to the false raw output of class 0
with negative L1 loss (pulling raw output up).

• We proposed a very simple but effective AD method
based on the proposed training loss. Only the target
model is used, and there is no extra model. The over-
head of supervised and unsupervised detection meth-
ods no longer exists, such as extra training, extra com-
puting, extra model weights, hyperparameter tuning,
or trade-off for accuracy.

• In addition, the true positive rates are above 93.9%
with a false positive rate of merely 2.5% against all
given white-box attacks except for the attack without



Unsupervised Adversarial Detection without Extra Model: Training Loss Should Change

constraint ϵ. All the attack types are unknown for the
target model.

2. Related Work
Adversarial attacks aim to mislead the target model and
force the target model gives the result they want. Depending
on what model knowledge is known in advance, adversar-
ial attacks can be categorized into three types, white box
attacks, gray box attacks, and black box attacks (Aldahdooh
et al., 2022). White box attacks mean everything about
the target model is known, including the target model’s
structure, the training data, the weights, its inputs, and out-
puts. These attacks can directly compute gradient descent
for some objective to get the input perturbations they want
(Goodfellow et al., 2014; Kurakin et al., 2018; Moosavi-
Dezfooli et al., 2016; Madry et al., 2017). Gray box (or
semi-white box) attacks and black box attacks are not dis-
cussed in this paper. The strength of attacks is evaluated
based on some hyperparameter: ϵ for the norm bound of
attacks, how many iterations to update attacks, and how
long a step goes.

AD counts on finding the special feature of adversarial sam-
ples. Supervised methods are a direct and effective direction.
Statistics and patterns of the features can be found in ad-
versarial samples, but they are not general to all kinds of
attacks. On the other hand, the uncertainty methods seem to
work better because they can deal with all kinds of attacks
at the same time, just like LiBRe (2021). In this work, a
lightweight bayesian neural network (BNN) is connected to
a pretrain model, a classification model or even an object
detection model, and refine the BNN model with given ad-
versarial data from many types of adversarial attacks. This
method solves the computing and training problem of BNN
and reaches a spectacular accuracy for detecting the given
kinds of adversarial attacks.

However, the type of adversarial attacks is unknown in the
wild. That’s why unsupervised methods should be applied
in the real scenario. Unsupervised methods need to detect
adversarial samples with only the original training data. Be-
cause the adversarial samples are unknown, the detection
threshold is chosen based on the given false positive rate
(FPR) for the clean testing data. There are too many differ-
ent methods, so we only introduce the comparison methods
in the experiments. Feature squeezing (FS) and MagNet are
based on the property that if the input is attacked, the change
in the input will change the output a lot (Xu et al., 2017;
Meng & Chen, 2017). Deep neural rejection (DNR), Se-
lective and feature based adversarial detection (SFAD) and
Neural-network invariant checking (NIC) use the features
in the target model to check whether the target model works
properly (Sotgiu et al., 2020; Aldahdooh et al., 2023; Ma
et al., 2019). In these unsupervised methods, the overhead

is big. The hyperparameters are hard to tune and most need
extra training and extra model, but their accuracies are still
infeasible (Aldahdooh et al., 2022).

3. The Proposed Training Loss and
Adversarial Detection

We find that there are features for false outputs shown in
figure 2, and the goal is to reduce false output’s features
by constraining false raw outputs around the same value.
In this way, only true outputs can be attacked and become
the signals for adversarial attacks. True raw outputs will be
high without attacks, and be low when attacks happen. The
following will introduce the preliminary in section 3.1, and
then explain how to reduce features for false outputs by the
loss for false outputs in section 3.2. The training method is
further improved by replacing the cross-entropy loss with
the loss for true outputs in section 3.3 and removing the
model’s trend of one-hot output in section 3.4. After apply-
ing the proposed training loss, only the true output can be
attacked. This property can be used to detect adversarial
attacks and the method is introduced in section 3.5.

3.1. Preliminary

Kullback–Leibler divergence (KL divergence) will be the
main subject of discussion. The objective of KL divergence
is to measure the distance from a source probability distribu-
tion, usually the softmax outputs of a deep learning model,
to a destination probability distribution. Cross entropy (CE)
gets a different meaning in information theory, but CE’s gra-
dient is the same as KL divergence’s. In most classification
tasks, only one class is true, also called one-hot target.

When computing gradients of a deep learning model, the
raw output vector Y from a sample after the last layer of
the model is always followed with the softmax function σ
to get the probability output vector Y ′:

Y ′ = σ(Y ) =
eY∑
y∈Y ey

(1)

Given the softmax output y′ of a class and the label value
l, the gradient of CE corresponding to the raw output y is
very simple.

∂CE

∂y
= y′ − l (2)

The gradient of raw output will be used to derive the pro-
posed training loss in section 3.3.

3.2. Reduce Features for False Outputs

Constraining the false output around a certain value is hard
because the suitable value is unknown. Applying KL di-
vergence to learn a uniform distribution can constrain false



Unsupervised Adversarial Detection without Extra Model: Training Loss Should Change

outputs to a suitable value automatically. We apply KL
divergence to false outputs f from set F , which contains
all false outputs from all samples in a mini-batch, and
constrain them to uniform distribution U of false outputs.

Lossfalse output = −
∑
f∈F

U(f) log
σf (YF )

U(f)
(3)

After applying Lossfalse output, the range of false raw out-
puts becomes very narrow decided by the model itself auto-
matically. The most important is that false raw outputs are
hard to attack with negative L1 loss now.

3.3. Replace the Cross-entropy Loss

We find that pulling true outputs for each class through a
mini-batch gets better results than the normal cross-entropy
loss. The reason is that when some classes are less accu-
rate, their true raw outputs prefer to be lower, and false
raw outputs prefer to be higher. When applying CE, the
softmax value of accurate classes and inaccurate classes are
similar, so the gradients are also similar. Therefore, CE
keeps training accurate classes while they are good enough,
and inaccurate classes still fail to get higher gradients. The
result is that true raw outputs from inaccurate classes are
much lower. If true and false output values are mixed with-
out attacks, we fail to identify the normal situation. The
comparison is shown in section 4.2.1.

When pulling true outputs in each class, there are several
true outputs and the number of them can be different in
a mini-batch. The idea to get equivalent loss with CE is
that given all false outputs are the same value, the true raw
outputs with the same value should get the same gradient.
Based on the equation 2, a raw output y should correspond
to the same softmax output y′ to get the same gradient y′− l.

At first, considering one true raw output with the value yt
and n number of false raw outputs with the same value yf ,
we want to get the relation between y and y′ for the true
output. The softmax equation 1 can change to:

y′t =
eyt∑
y∈Y ey

=
eyt

eyt +
∑

f∈F eyf
=

eyt

eyt + n · eyf

=
eyt−yf

eyt−yf + n
(4)

Then, given a different false output’s number n′ in a different
mini-batch, if we still want to get the same y′t with the same

yt and yf , we can just add a bias b to the true output:

∵ y′t =
e(yt+b)−yf

e(yt+b)−yf + n′ =
e(yt+b−logn′+logn)−yf

e(yt+b−logn′+logn)−yf + n′ · n
n′

=
eyt−yf

eyt−yf + n

∴ b = log n′ − log n

(5)

The relation between y and y′ for the false output is changed
but the gradient sum of false outputs is the same.∑

f

∂KL

∂yf
=

∑
f

y′f = 1− y′t (6)

In short, given one true output and n′ false outputs, to obtain
the equivalent loss to n false output, we just add a bias
b = log n′ − log n to the true output.

On the other hand, the number of true outputs for a class
in a mini-batch can change. The target now is to get the
same relation between y and y′ − l when the number of
true outputs is different. Considering that there are nt true
outputs with the same value yt and nf false outputs with the
same value yf , and we still get the relation between y and
y′. The label of multi-hot objective is 1/nt for true outputs:

y′t − 1/nt =
eyt∑

t∈T eyt +
∑

f∈F eyf
− 1/nt

=
eyt

nt · eyt + nf · eyf
− 1/nt

=
1

nt
(

eyt

eyt +
nf

nt
· eyf

− 1)

(7)

We can find the gradient is equivalent to one-hot objective
averaged by the number of true outputs nt, and nf

nt
is the

averaged number of false outputs for each true output. That
is, the gradient of multi-hot KL divergence with nt true
outputs and nf false outputs equals to the gradient of the
expected value of one-hot CE with 1 true output and nf

nt

false outputs.

In summary, we apply KL divergence to all outputs from all
samples xc of a class c, and average through each class with
the number of classes NC . The destination distribution is a
multi-hot distribution M . We temporarily add biases vector
Bc, which depends on the false-true ratio of class c and is
zero for false outputs, to the raw output vector Yc. That is:

Losstrue output = − 1

NC

∑
c

∑
x

Mc(x) log
σx(Yc +Bc)

Mc(x)

(8)
When using Losstrue output, the false outputs from less
accurate classes are compared with each other. They are
similar to each other, so the punishment becomes lower.



Unsupervised Adversarial Detection without Extra Model: Training Loss Should Change

Table 1. The true positive rate (TPR%) and false positive rate (FPR%) of different unsupervised AD methods against well-known white
box attacks on CIFAR-10.

FS MAGNET DNR SFAD NIC PROPOSED

ATTACK TYPE (ϵ) TPR↑ FPR↓ TPR↑ FPR↓ TPR↑ FPR↓ TPR↑ FPR↓ TPR↑ FPR↓ TPR↑ FPR↓
FGSM (8) 29.33 5.07 0.72 0.77 32.09 10.01 67.94 10.9 43.64 10.08 100 2.5
FGSM (16) 35.34 5.07 3.11 0.77 31.35 10.01 79.9 10.9 58.48 10.08 100 2.5
BIM (8) 8.74 5.07 0.56 0.77 4.27 10.01 18.12 10.9 99.95 10.08 93.9 2.5
BIM (16) 0.34 5.07 0.69 0.77 17.07 10.01 45.35 10.9 100 10.08 95.8 2.5
PGD (8) 8.2 5.07 0.57 0.77 11.34 10.01 29.49 10.9 100 10.08 95.1 2.5
PGD (16) 0.2 5.07 0.66 0.77 25.11 10.01 52.9 10.9 100 10.08 99 2.5
DF (∞) 39.18 5.07 57.33 0.77 30.2 10.01 89.57 10.9 84.91 10.08 78.8 2.5

Therefore, the raw outputs from less accurate classes are
much higher than applying CE and help to get a lower false
positive rate for the proposed AD method.

3.4. Remove the Trend of One-Hot Output

After applying the proposed two losses, we find that the
target model prefers to keep one raw output high. When
pressing down the maximum raw output with L1 loss by
adversarial attacks, another raw output raises. On the other
hand, pulling false raw outputs directly becomes much more
difficult now.

To remove this trend, the idea is to generate the condition
when every raw output should be low and penalize the output
with a high value. To achieve this goal, we apply adversarial
attacks to part of the training data in the mini-batch. The
objective of adversarial attacks is only to press down the true
raw output to generate the condition when one-hot output
should not exist. For these adversarial samples, only the loss
for false outputs is applied to penalize one-hot outputs. The
ratio of adversarial samples can be small, 10% is enough.
If the ratio is too high, the training time will become much
longer and the accuracy of the original classification task
will be lower.

3.5. The Proposed Adversarial Detection

After applying the proposed training loss, only the true out-
put can be attacked. When adversarial attacks happen, the
true raw output is pressed down with false outputs kept still.
However, we do not know which output is the true output in
the real scenario. Instead, we can only know the maximum
raw output is much higher than other raw outputs in normal
cases. When adversarial attacks happen, the maximum raw
output will be much lower or even no longer the maximum
one. In some cases, the original maximum raw output be-
comes the minimum one and is much lower than other raw
outputs. Therefore, two thresholds are applied to check the
maximum and the minimum raw output. An adversarial

sample is detected when the maximum raw output is lower
than the threshold or the minimum raw output is lower than
the other threshold. The figure 3 shows why the proposed
method works. Both thresholds are selected by the range of
false raw output.

Figure 3. The histogram comparison of raw output before and after
attacks. The target model is trained with the proposed loss. This
figure shows that false outputs are very hard to attack (the “atk ”
curve), so the range (the two thresholds) of false raw outputs can
be used to test whether the value of true output is normal.

4. Experiments
The experimental details are in the appendix, including
threshold choosing, training environment, training parame-
ter, and training tricks.

4.1. Compared with Other Unsupervised Methods

Although adversarial attacks are used during training, the
proposed method is not a supervised method. At first, the at-
tacks during training are not learned directly. Only true raw



Unsupervised Adversarial Detection without Extra Model: Training Loss Should Change

output is attacked in some data and only the false raw out-
puts of these data are included in the training loss. What’s
more, the applied attack type is unused in all regular attack
types. The strength of this attack is also weaker than com-
mon attacks. Given ϵ = 8 for infinite norm and 2 for an
updated step length of PGD attack, the iteration is only 5
rather than 10 in most paper settings. The most important is
that the proposed detection works well with every white-box
attack we’ve tried, and supervised detection methods can’t
work with unknown attacks. Therefore, we consider the
proposed method as an unsupervised method.

Following the results from the survey paper of aldahdooh
(2022), the setting of adversarial attacks is a little different:
the iteration of attack is 100, and there is no constraint ϵ of
deep fool (DF) attack (Moosavi-Dezfooli et al., 2016). We
choose infinite norm L∞ for constraint ϵ. The test data of
adversarial samples are generated by the Adversarial Ro-
bustness Toolbox (2018). The proposed method works ex-
tremely well against all types of the given white box attacks
(Goodfellow et al., 2014; Kurakin et al., 2018; Moosavi-
Dezfooli et al., 2016; Madry et al., 2017). Furthermore, the
iterations are 100 rather than the common setting of 10, so
the attack strength is much higher than the usual setting.
The proposed method works worst in DF (∞) because the
difference is too large (reaches 255 in some pixels) and even
humans can see the difference. Under other attacks, the
proposed method’s true positive rate (TPR) defeats all other
methods except NIC, but the false positive rate (FPR) is
much lower than NIC. The result is in table 1.

4.2. Ablation Study

In the ablation study, AutoAttack (Croce & Hein, 2020) is
also included because it can evaluate the ability of defense,
also called adversarial robustness, more fairly than other
attacks. The strength of attacks will follow the common
setting:ϵ = 8 with 10 iterations and ϵ = 16 with 20 itera-
tions. ϵ is based on an infinite norm, and the update rate is
2.

4.2.1. THE EFFECT OF MULTI-HOT KL DIVERGENCE
FOR INDEPENDENT-CLASS TRAINING VS CROSS
ENTROPY

The loss for true outputs can use the common CE loss, but
it makes the results worse because some true raw outputs
become lower. The table 2 shows that FPR is higher even
with lower TPR.

Table 2. The true positive rate (TPR%) and false positive rate
(FPR%) of the proposed method vs CE against well-known white
box attacks on CIFAR-10.

CE THE PROPOSED LOSS

ATTACK TYPE(ϵ) TPR FPR TPR FPR

PGD (8) 91.8 6.9 94.2 2.5
PGD (16) 85.1 6.9 95.8 2.5
DF (8) 99.5 6.9 99.9 2.5
DF (16) 93.5 6.9 99.9 2.5
AUTOATTACK (8) 79.2 6.9 100 2.5
AUTOATTACK (16) 79.4 6.9 100 2.5

4.2.2. THE EFFECT OF REMOVING THE ONE-HOT
OUTPUT TREND

When training without adversarial samples, the true raw
outputs are higher in the classes with worse accuracy in the
original classification task, and the accuracy of the origi-
nal classification task is also higher. However, the trend of
keeping one-hot outputs makes it vulnerable to any attack
that presses down the true output, just like table 3. The
TPR without adversarial samples is high against AutoAt-
tack because the true outputs are lower than the minimum
threshold.

Table 3. The true positive rate (TPR%) and false positive rate
(FPR%) of the proposed method vs training without adversarial
(adv.) samples against well-known white box attacks on CIFAR-
10.

WITHOUT ADV. DATA WITH ADV. DATA

ATTACK TYPE(ϵ) TPR FPR TPR FPR

PGD (8) 23.5 0 94.2 2.5
DF (8) 0.2 0 99.9 2.5
AUTOATTACK (8) 99 0 100 2.5

4.2.3. THE PERFORMANCE COMPARISON WITH AND
WITHOUT THE MINIMUM OUTPUT THRESHOLD

The minimum output threshold is an engineering method to
improve the accuracy of AD. The most noteworthy part is
the ability of false raw outputs to defend against adversarial
attacks, and it is still not perfect now. Here show the result
without minimum output threshold and the corresponding
AUROC to explain the ability of defense more briefly. At-
tackers may adjust true outputs carefully to avoid triggering
the minimum output threshold, so improving the resistance
ability of the false output is still the research key point.



Unsupervised Adversarial Detection without Extra Model: Training Loss Should Change

Table 4. The true positive rate (TPR%), false positive rate (FPR%),
and AUROC of the proposed method with and without the mini-
mum output threshold against well-known white box attacks on
CIFAR-10.

WITHOUT WITH

ATTACK TYPE(ϵ) AUROC TPR FPR TPR FPR

PGD (8) 97.8 92.1 2.5 94.2 2.5
PGD (16) 94.8 89.1 2.5 95.8 2.5
DF (8) 99.9 99.9 2.5 99.9 2.5
DF (16) 99.9 99.9 2.5 99.9 2.5
AUTOATTACK (8) 89.6 83.2 2.5 100 2.5
AUTOATTACK (16) 91.7 71 2.5 100 2.5

5. Conclusions and Future Works
We find that constraining false raw output to uniform dis-
tribution can reduce unnecessary feature learning for false
outputs and help false output defend against adversarial at-
tacks. Although keeping the model’s result correct is still
impossible, these adversarial samples can be easily detected
by checking the maximum and the minimum raw outputs of
the target model. Based on this property, We proposed an un-
supervised AD method with high accuracy and much lower
training time overhead than adversarial training. There is
no extra model, extra training, extra computing, or difficult
hyperparameter tuning. There is no accuracy trade-off for
the original classification task.

What’s more, the proposed training method may help in
other ways. CE keeps learning accurate classes but neglects
inaccurate classes, and the proposed loss for true outputs
can solve this problem. Therefore, the proposed loss for true
outputs may be useful when the dataset label is unbalanced
or when some classes are harder to train.

On the other hand, we still do not understand why training
with some adversarial samples will press down the true raw
outputs. If this problem is solved, the FPR can be even
lower and the detection method will finally be perfect.

Acknowledgements
This work was supported in part by the National Science
and Technology Council, under Grant NSTC 110-2221-E-
002-133-MY2, and Qualcomm through a Taiwan University
Research Collaboration Project.

References
Aldahdooh, A., Hamidouche, W., Fezza, S. A., and

Déforges, O. Adversarial example detection for dnn mod-
els: A review and experimental comparison. Artificial
Intelligence Review, 55(6):4403–4462, 2022.

Aldahdooh, A., Hamidouche, W., and Déforges, O. Revisit-
ing model’s uncertainty and confidences for adversarial
example detection. Applied Intelligence, 53(1):509–531,
2023.

Carlini, N., Athalye, A., Papernot, N., Brendel, W., Rauber,
J., Tsipras, D., Goodfellow, I., Madry, A., and Kurakin,
A. On evaluating adversarial robustness. arXiv preprint
arXiv:1902.06705, 2019.

Croce, F. and Hein, M. Reliable evaluation of adversarial
robustness with an ensemble of diverse parameter-free
attacks. In International conference on machine learning,
pp. 2206–2216. PMLR, 2020.

Deng, Z., Yang, X., Xu, S., Su, H., and Zhu, J. Libre: A
practical bayesian approach to adversarial detection. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 972–982, 2021.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B.,
and Madry, A. Adversarial examples are not bugs, they
are features. Advances in neural information processing
systems, 32, 2019.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Kurakin, A., Goodfellow, I. J., and Bengio, S. Adversarial
examples in the physical world. In Artificial intelligence
safety and security, pp. 99–112. Chapman and Hall/CRC,
2018.

Ma, S., Liu, Y., Tao, G., Lee, W.-C., and Zhang, X. Nic:
Detecting adversarial samples with neural network invari-
ant checking. In 26th Annual Network And Distributed
System Security Symposium (NDSS 2019). Internet Soc,
2019.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Meng, D. and Chen, H. Magnet: a two-pronged defense
against adversarial examples. In Proceedings of the 2017
ACM SIGSAC conference on computer and communica-
tions security, pp. 135–147, 2017.



Unsupervised Adversarial Detection without Extra Model: Training Loss Should Change

Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P. Deep-
fool: a simple and accurate method to fool deep neural
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2574–2582,
2016.

Nicolae, M.-I., Sinn, M., Tran, M. N., Buesser, B., Rawat,
A., Wistuba, M., Zantedeschi, V., Baracaldo, N., Chen,
B., Ludwig, H., et al. Adversarial robustness toolbox v1.
0.0. arXiv preprint arXiv:1807.01069, 2018.

Raghunathan, A., Xie, S. M., Yang, F., Duchi, J. C., and
Liang, P. Adversarial training can hurt generalization.
arXiv preprint arXiv:1906.06032, 2019.

Sotgiu, A., Demontis, A., Melis, M., Biggio, B., Fumera,
G., Feng, X., and Roli, F. Deep neural rejection against
adversarial examples. EURASIP Journal on Information
Security, 2020:1–10, 2020.

Xu, W., Evans, D., and Qi, Y. Feature squeezing: Detecting
adversarial examples in deep neural networks. arXiv
preprint arXiv:1704.01155, 2017.

Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., and
Jordan, M. Theoretically principled trade-off between
robustness and accuracy. In International conference on
machine learning, pp. 7472–7482. PMLR, 2019.



Unsupervised Adversarial Detection without Extra Model: Training Loss Should Change

A. Experimental Details
When some samples’ predictions are wrong, their maximum output without attack will be much lower even below the
threshold. Therefore, to ensure the target model’s accuracy not changing the accuracy of AD, we only adopt the test data
with the correct answer before attacks.

Both thresholds for the proposed AD method are chosen based on false raw output distribution on CIFAR-10 test data. The
maximum threshold is the 99th percentile, higher than 99% false raw outputs, and the minimum threshold is the lowest false
raw output.

The training process runs on the RTX 3090 based on Tensorflow. The training dataset is CIFAR-10 (Krizhevsky et al., 2009).
The model structure in the experiments is resnet18(He et al., 2016) customized for CIFAR-10. We translate the popular
PyTorch code of resnet for CIFAR-10 into Tensorflow. The training epoch is 60. The training optimizer is SGD with a
momentum of 0.9, and the learning rate is 0.1 for the first 50 epochs and 0.01 for the last 10 epochs. The proposed training
loss keeps the accuracy of the original classification task almost the same, around 86%. The ratio of attack samples in the
mini-batch is 10%. The attack samples used in training are generated by the PGD attack with ϵ = 8 for infinite norm, 2 for
an update step length, and 5 for update step iteration given the input value from 0 to 255.

Both the training losses are applied to raw outputs rather than softmax outputs. The training procedure needs to warm up
with lower weight for false output’s loss, 0.2 for the first 5 epochs and 1 for the last epochs. The weight for true output’s
loss keeps 1 during training. Notice that the kernel weight of the last layer of the model should be initialized with 0 to
avoid overflow and the dead gradient of the loss for false outputs. In this work, the bias b is log nf

nt
− log 9 because the

number of false outputs in CIFAR-10 is 9. This setting helps compare the proposed loss for true outputs and CE. It also has
to mention that the softmax in Lossfalse output is very easy to overflow. When some values overflow, they are clipped to
avoid infinite numbers or NaN values, and these outputs die because no gradient goes through them. A trick to deal with this
is to initialize the kernel of the last layer with all zero or some similar ways. Besides, Lossfalse output is fed with YF and
−YF and average both to penalize the false raw outputs with extremely high or low values at the same time.


