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ABSTRACT

Despite the remarkable success of large-scale pre-trained image representation
models (i.e., vision encoders) across various vision tasks, they often fail to learn
3D spatial relationships between objects and backgrounds in the real world, con-
straining their effectiveness in various downstream applications. We attribute this
to the limited availability of large-scale 3D training data, which makes it difficult
for current image representation learning approaches to learn spatial relationships.
This motivates the need for learning paradigms that rely on strong supervision
while requiring less data. To address this, we propose a novel learning framework
that enhances the spatial awareness of existing pre-trained vision encoders by in-
jecting dense 3D spatial knowledge expressed in linguistic forms. To be specific,
the core idea involves converting dense 3D spatial information from 2D images
into linguistic expressions, which is then used to inject such spatial knowledge
into vision encoders through a Large Language Model (LLM). To this end, we
adopt a multi-turn Chain-of-Thought (CoT) reasoning process that progressively
incorporates dense spatial knowledge and builds hierarchical spatial understand-
ing. To validate effectiveness, we adapt SpatialBoost to state-of-the-art vision
encoders such as DINOv3, and evaluate its performance gains on a wide range of
benchmarks requiring both 3D perception and general vision abilities.

1 INTRODUCTION

Pre-trained image representation models (He et al., 2020; Donahue & Simonyan, 2019; Chen et al.,
2020b; Dosovitskiy et al., 2021; Li et al., 2023b; Assran et al., 2023) have shown remarkable success
in various downstream tasks, such as image classification (Krizhevsky et al., 2009; Cui et al., 2018),
semantic segmentation (Lin et al., 2014; Zhou et al., 2019), monocular depth prediction (Silberman
et al., 2012; Geiger et al., 2012), and vision-language understanding (Antol et al., 2015; Hudson &
Manning, 2019). The core idea behind these successes is extracting transferrable representation from
large-scale image datasets such as ImageNet (Deng et al., 2009), enabling the model to understand
semantic information within images that is significantly useful for various downstream tasks.

Despite their success, these models are predominantly trained on 2D images and hence face a fun-
damental challenge in acquiring 3D spatial awareness capabilities. Consequently, large vision lan-
guage models struggle to discern 3D spatial relationships between objects in images (Liu et al.,
2023a; Fu et al., 2024b; Wang et al., 2025b; Cheng et al., 2024), and demonstrate sub-optimal
performance in vision-based robotic control tasks compared to approaches that directly utilize 3D
information (Ze et al., 2024; Ke et al., 2024; Zhen et al., 2024). To address these limitations, several
works train vision models on multi-view images that naturally encode spatial information (Zhang
et al., 2024; Wang et al., 2024; Charatan et al., 2024). While these approaches have shown promise
in robot control tasks (Seo et al., 2023; Sermanet et al., 2018), their broader applicability remains
constrained by the need to use carefully curated data (Yu et al., 2023) or obtain multi-view datasets
from simulation environments (Savva et al., 2019), creating significant limitations for scaling up
these approaches. These challenges highlight the need for a novel framework that enables effective
learning of 3D information with substantially less data.

However, we note that vision models specialized for individual tasks are able to infer object positions
and point depths from standard 2D images. These extracted cues make it possible to extend spatial
information by modeling geometric relationships between objects in a scene. We hypothesize that

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Single-view
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Figure 1: Overview of SpatialBoost. We enhance spatial and geometric understanding of pre-
trained vision encoders by leveraging language-guided spatial reasoning. SpatialBoost consists of
(a) converting spatial knowledge into multi-turn spatial reasoning from pixel to scene levels, and (b)
building a spatial-aware vision encoder with LLM using generated data in (a).

such spatial information can be systematically converted into explicit representations by leveraging
language. Moreover, since language naturally composes information in a sequential and structured
form, this property allows the construction of labels that capture dense spatial relationships within a
scene.

Based on these insights, we introduce SpatialBoost, a training framework that enhances the spatial
understanding of pre-trained vision encoders by leveraging language-guided reasoning (see Fig-
ure 1). We inject linguistically described spatial knowledge through decoder-based fine-tuning with
Large Language Models (LLM), where the model takes single or multi-view images as input and
generates descriptions. In particular, to leverage this knowledge without forgetting the existing
knowledge, we incorporate additional learnable parameters (i.e., dual-channel attention module)
into the vision encoder and train only them while freezing the existing parameters. Furthermore, to
incorporate dense spatial information in a structured manner, we present a multi-turn visual spatial
reasoning approach that builds hierarchical spatial understanding through pixel-level, object-level,
and scene-level sub-questions and answers.

To validate the effectiveness of our method, we apply SpatialBoost to state-of-the-art image en-
coders, including DINOv3 (Siméoni et al., 2025) and SigLIPv2 (Tschannen et al., 2025), and eval-
uate them across a diverse set of vision tasks: monocular depth estimation, semantic segmentation,
3D scene understanding, vision-based robotic control, image classification, image retrieval, spatial
reasoning, and general VQA.1 Our experiment first shows that SpatialBoost consistently improves
performance on tasks requiring 3D spatial knowledge. For example, on the 3D scene understanding
task, SpatialBoost improves DINOv3 by 3.5% (51.4% → 54.9%) on the SQA3D task from Lexi-
con3D Benchmark (Man et al., 2024). In addition, on depth estimation tasks, SpatialBoost improves
SigLIPv2 from an RMSE score of 0.51 to 0.39 on NYUd linear probing. Moreover, we show that
SpatialBoost even improves the performance of the vision encoders across all benchmarks, notably
in image classification: SpatialBoost improves ImageNet linear probing performance of DINOv3
from 88.4% to 90.2%.

2 RELATED WORK

Self-supervised Learning for Image Representation. In earlier years, most approaches relied on
supervised learning with large-scale labeled datasets to train models (Deng et al., 2009; Simonyan
& Zisserman, 2014; Szegedy et al., 2014; He et al., 2016). However, the dependence on annotated
data introduced scalability challenges due to label expense. To address this, self-supervised learning
(SSL) has emerged as a dominant paradigm, leveraging unlabeled data to learn image representa-
tions. Contrastive learning methods, including SimCLRv2 (Chen et al., 2020c), MoCov3 (Chen
et al., 2021), DINOv2 (Oquab et al., 2023), and iBOT (Zhou et al., 2021), are trained to distinguish
between representations of augmented views of the same image and those of different images. Con-

1Due to space constraints, results on spatial reasoning and general VQA tasks are provided in the appendix.
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currently, mask prediction approaches such as BEiT (Bao et al., 2021) and MAE (He et al., 2022),
learn representations by reconstructing masked portions of input images. While these methods excel
at capturing rich semantic features within 2D images, they lack mechanisms to effectively encode
3D spatial knowledge. On the other hand, we overcome this limitation by enhancing image repre-
sentations through a novel method that injects 3D spatial knowledge by utilizing language decoding.

Multi-modal Learning for Image Representation. The increasing prominence of multi-modal
tasks has catalyzed the development of vision-language models that jointly represent visual and
textual information. These models typically employ weakly supervised learning by leveraging text
caption. Contrastive learning schemes, e.g., CLIP (Radford et al., 2021), SigLIP (Zhai et al., 2023)
and OpenCLIP (Cherti et al., 2023), consist of vision and text encoders and are trained to align their
representations in a shared embedding space. Alternative methodologies like M3AE (Geng et al.,
2022), jointly encode image patches and text tokens, employing masked prediction objectives to
reconstruct both modalities. More recently, autoregressive formulations such as iGPT (Chen et al.,
2020b), have emerged, treating image patches and text tokens as sequential elements for predictive
modeling. These approaches successfully enrich visial representations with semantic context de-
rived from natural language descriptions. However, existing models necessitate joint pre-training of
both modalities from scratch, imposing significant computational demands and preventing efficient
adaptation of existing pre-trained models. Our method eliminates the need for joint text-image rep-
resentation learning by using LLM, thereby enhancing pre-trained models with relevant linguistic
information efficiently.

Multi-View Learning for Image Representation. Recent advances in vision tasks that require 3D
spatial understanding and generation have increased the demand for effective 3D spatial represen-
tations (Chen et al., 2024b; Wu et al., 2024; Goyal et al., 2023; Shridhar et al., 2023). Multi-view
images from different camera viewpoints or video sequences serve as input for these tasks. Our
focus is specifically on augmenting image representations with useful 3D information. Typically,
following approaches similar to single-view image representation learning, multi-view data has been
processed by converting images into patches for masked prediction such as MV-MWM (Seo et al.,
2023) or through contrastive learning methods (Sermanet et al., 2018). Additionally, to learn 3D-
related information more explicitly, approaches that predict 3D features from image representation
(Ke et al., 2024; Gervet et al., 2023; Ze et al., 2024) have been proposed. These approaches have led
to significant performance improvements in vision-based robot control. However, such methods are
limited by multi-view data, making it difficult to develop them into pre-trained models for general
3D understanding. Our approach proposes a method to learn 3D spatial representations from both
single-view and multi-view images, avoiding these limitations.

3 METHOD

In this section, we introduce SpatialBoost, a visual representation learning framework designed to
improve vision encoders by injecting 3D spatial information expressed in natural language. We first
present a multi-modal architecture that incorporates linguistically expressed visual information into
the vision encoder through a dual-channel attention layer, ensuring that original visual features are
preserved while 3D spatial information is fully exploited (see Section 3.1). On top of this archi-
tecture, we design a Visual-Question-Answering (VQA) dataset that hierarchically disentangles 3D
spatial relations from both single/multi-view images, enabling the vision encoder to learn spatial
information more effectively (see Figure 1).

3.1 TRAINING PIPELINE

To train a vision encoder from rich spatial information encoded in large-scale linguistic expressions,
our key idea is to utilize Large-Language Models (LLM) by constructing a multi-modal architecture
composed of a vision encoder fV , a trainable projection module gP , and the LLM fL. However,
without proper alignment between visual and textual representations, the training signals from the
LLM cannot effectively propagate back to the vision encoder, making the learning process ineffec-
tive. To fully exploit language supervision, we begin by aligning the visual encoder with the textual
embedding space of the LLM. Specifically, we adopt LLaVA (Liu et al., 2023b), a two-stage train-
ing for the alignment: feature alignment (Stage 1) and visual instruction tuning (Stage 2). After
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Which point is close to a viewer? Point 1 : (0.49, 0.60) Point 2 : (0.23, 0.85)

Point 2 is closer than Point 1.

The man wearing glasses is located [0.47, 0.25, 0.59, 0.55, 0.38, 0.77] in the image.
The man wearing orange vest is located [0.54, 0.42, 0.64, 0.61, 0.53, 0.91] in the image.

Comparing their 3D positions, ‘the man wearing glasses is on the left side.’ → Yes

Is the man wearing glasses on the left side 
of the man wearing orange vest?

How far is the man wearing glasses 
from the man wearing orange vest?

The man wearing glasses is located [0.47, 0.25, 0.59, 0.55, 0.38, 0.77] in the image.
The man wearing orange vest is located [0.54, 0.42, 0.64, 0.61, 0.53, 0.91] in the image.

Comparing their 3D positions, The man wearing glasses is 
on the left side of the man wearing orange vest. It’s 50 centimeters.

Workers wearing vests gather in a warehouse as a manager 
demonstrates a metal component from a crate.

Explain this scene.

Point 2

Point 1

Scene Caption

Object-level QA

Scene-level QA

Pixel-level QA

Spatial
Knowledge

General 
Knowledge

Figure 2: Illustration of multi-turn visual spatial reasoning dataset, exhibiting pixel-level,
object-level, and scene-level reasoning QAs. At the pixel-level, the QA task queries the 3D po-
sitions of points (e.g., via depth estimation). At the object-level, it extracts spatial properties of
objects (e.g., by predicting bounding cubes or relative positions). At the scene-level, it determines
the exact distances between multiple objects that require the rationales of the previous steps. At last,
we add 2-turn for general scene caption. These are listed in order and constitute 12 multi-turn visual
spatial reasoning conservation.

the alignment, we introduce a training framework that uses a language-guided reasoning dataset to
fine-tune the vision encoder (Stage 3). Notably, direct full fine-tuning in this final stage would lead
to catastrophic forgetting of the pre-trained knowledge embedded in the vision encoder. To address
this challenge, we introduce dual-channel attention layers that enable the model to acquire spatial
understanding while preserving its original representational capabilities.

Formally, given an input image x and multi-turn conversation data (x1
q,x

1
a, · · · ,xT

q ,x
T
a ) from

question-answering (QA) pairs (Qx, Ax), we first encode x to obtain visual features zv = fV (x),
which are mapped into the token embedding space via gP (zv). These visual tokens are then con-
catenated with text tokens and fed into the LLM. Given the multi-turn conversation data and input
image, we optimize the model through autoregressive loss. Our training pipeline consists of three
stages and all stages are trained with supervised fine-tuning (SFT) loss. We describe each stage in
the following paragraphs.

Attention
Channel

Plus Attention
Channel

Layer Norm

Layer Norm

1

Figure 3: Illustration of the dual-
channel attention layer (Hong et al.,
2023a), where an additional attention
block is introduced alongside the orig-
inal attention block and merged via a
learnable mixture factor α.

Stage 1: Feature alignment. In this stage, we train a
projector gP that maps image features into the textual
embedding space of the LLM. This projector pre-training
contributes to the stable vision-language alignment. Fol-
lowing the training setup in multi-modal large language
models (Liu et al., 2023a; 2024), we freeze the parame-
ters of both the visual encoder fV and the language model
fL, and optimize only the projector gP .

Stage 2: Visual instruction tuning. Following the pro-
jector alignment in Stage 1, this stage extends the align-
ment to the LLM. We freeze the visual encoder fV and
fine-tune the projector gP and the language model fL us-
ing our multi-view VQA data, combined with the single-
view visual instruction data from LLaVA (Liu et al.,
2023a). This step enables fL and gP to handle multi-
view visual questions. We provide details of proposed
multi-view VQA data in Section 3.2.

Stage 3: Vision encoder fine-tuning with dual-channel attention. Finally, we fine-tune the vision
encoder fV to have the capability of spatial understanding. To effectively inject dense spatial knowl-
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Table 1: Results on monocular depth estima-
tion from NYUd (Silberman et al., 2012) and
KITTI (Geiger et al., 2013) benchmarks. We re-
port the RMSE score between ground truth and
predicted depth values. Lower is better. For all
results, we freeze the encoder backbone and train
a linear head (lin.) or DPT head (Ranftl et al.,
2021) on top of the image features of the last
layer.

NYUd KITTI

Method lin. DPT lin. DPT

OpenCLIP 0.53 0.41 3.54 2.70
+SpatialBoost (Ours) 0.40 0.38 2.79 2.54
SigLIPv2 0.51 0.40 3.32 2.64
+SpatialBoost (Ours) 0.39 0.34 2.71 2.50

DINOv2 0.37 0.29 2.60 2.11
+SpatialBoost (Ours) 0.30 0.25 2.53 2.07
DINOv3 0.31 0.25 2.33 2.02
+SpatialBoost (Ours) 0.25 0.21 2.20 1.84

Table 2: Results on semantic segmentation
from ADE20K (Zhou et al., 2017) and Pascal
VOC (Everingham et al., 2010) benchmarks. We
report mIoU score. Higher is better. For all re-
sults, we freeze the encoder backbone and re-
port results of linear probing (lin.) or multi-
scale evaluation (+ms), where the multi-scale ap-
proach uses features from the last four layers of
the visual encoder to perform segmentation.

ADE20K Pascal VOC

Method lin. +ms lin. +ms

OpenCLIP 39.5 46.0 71.7 79.3
+SpatialBoost (Ours) 40.5 47.3 75.1 80.9
SigLIPv2 42.8 48.7 72.6 79.1
+SpatialBoost (Ours) 45.1 50.8 79.0 82.2

DINOv2 49.3 53.0 83.0 86.2
+SpatialBoost (Ours) 52.0 54.9 84.5 87.6
DINOv3 55.9 60.3 86.6 89.8
+SpatialBoost (Ours) 59.7 63.1 88.5 90.9

edge into the vision encoder, we use multi-turn visual spatial reasoning dataset (see Section 3.2),
which is carefully designed for hierarchical spatial reasoning. We train the vision encoder fV and
the projection module gP while keeping the parameters of the LLM fL frozen, allowing only the vi-
sion encoder to benefit from language-driven spatial information. We employ SFT loss, and through
this training process, the vision encoder learns to extract meaningful representations necessary for
producing answers. However, direct full fine-tuning risks forgetting of the pre-trained knowledge
embedded in the vision encoder. To address this challenge, we introduce a dual-channel attention
mechanism (see Figure 3). Specifically, for each attention layer Attn(·) in the visual encoder fV ,
we introduce an additional attention layer Attn+(·), whose weight parameters are initialized to the
same values as those of Attn(·). Given an input x to each attention layer, we merge the outputs of
Attn(·) and Attn+(·) by introducing a trainable mixture factor α = sigmoid(a) ∈ (0, 1)d with
zero-initialized parameter a ∈ Rd, where d is the hidden dimension of x, as follows:

Attnfinal(x) = α · Attn(x) + (1−α) · Attn+(x). (1)

During fine-tuning, we only update the parameters of Attn+ and α while keeping all other pa-
rameters frozen. This approach allows the vision encoder to initially rely on pre-trained attention
weights and gradually incorporate new attention weights, smoothly enhancing spatial awareness
without discarding existing knowledge (see classification result in Figure 6).

3.2 ENHANCING VISION ENCODER WITH SPATIAL COT

To effectively inject dense spatial information into vision encoders, we address the fundamental lim-
itations of existing spatial datasets. Current spatial VQA data consist of simple single-turn QA pairs
with limited information content, insufficient for transferring comprehensive 3D understanding. To
overcome this limitation, We introduce Multi-view VQA, which helps align the vision encoder with
the LLM to effectively handle multi-view data and a multi-turn Chain-of-Thought (CoT) frame-
work (Wei et al., 2022) for both single-view and multi-view images that enables the injection of
substantially richer spatial information in a single training instance.

Multi-view VQA Dataset. To enhance multi-view VQA capabilities during the visual instruction
tuning (Stage 2), we construct multi-view VQA dataset. We first apply LPIPS (Zhang et al., 2018)
metric to the 3D or video dataset to obtain a pair of images. Given the pair of images, we employ
GPT-4o (Achiam et al., 2023) to generate visual questions targeting general multi-view knowledge.
We provide more details in Section C.

Multi-Turn Visual Spatial Reasoning Dataset. To enhance spatial reasoning capabilities of the
vision encoder (Stage 3), we construct multi-turn visual spatial reasoning dataset for single-view
and multi-view. Additionally, to enhance general knowledge of the vision encoder, we append
GPT-generated scene captions after spatial reasoning turn. For single-view image, we first extract
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Table 3: Results on 3D-centric tasks. We evaluate unified probing on diverse 3D-related tasks
from ScanNet (Dai et al., 2017) scenes. We report BLEU-1 score for Vision-Language Reasoning
(VLR) on ScanQA (Azuma et al., 2022) and SQA3D (Ma et al., 2023). For Visual Grounding (VG),
we report accuracy on overall category of ScanRefer (Chen et al., 2020a) dataset. For Geometric
Understanding (GU), we report Registration Recall (RR) at 0.05m RMSE threshold and Relative
Translation Error (RTE). For 3D Semantic Understanding (3D SU), we report accuracy and mIoU.
Lower is better for RTE and higher is better for all other metrics.

VLR VG GU 3D SU

Method ScanQA ↑ SQA3D ↑ ScanRefer-Overall ↑ RR@0.05m (%) ↑ RTE (m) ↓ Acc ↑ mIoU ↑
OpenCLIP 36.9 48.0 50.1 22.6 0.40 39.8 6.9
+SpatialBoost (Ours) 39.2 49.9 56.6 78.8 0.17 76.9 54.9
SigLIPv2 38.1 48.5 51.4 47.8 0.28 47.7 9.2
+SpatialBoost (Ours) 40.8 50.1 56.8 86.4 0.15 81.0 55.5

DINOv2 39.5 49.8 52.7 82.4 0.15 83.0 64.1
+SpatialBoost (Ours) 40.3 50.4 57.0 92.4 0.13 89.8 68.3
DINOv3 40.6 51.4 56.2 86.9 0.10 91.1 69.1
+SpatialBoost (Ours) 43.3 54.9 61.1 97.5 0.06 91.9 70.6

a 3D point cloud from given an image x by applying diverse vision models (e.g., depth estimation
model (Bochkovskii et al., 2024) and image segmentation model (Ravi et al., 2024)). For multi-
view images {x1, · · · ,xN}, we use 3D reconstruction model (Wang et al., 2025a) to extract a 3D
point cloud from given images. Using the point cloud, we synthesize QA pairs specialized in spatial
reasoning about x or {x1, · · · ,xN}.

We then design spatial reasoning QA pairs at three hierarchical levels: pixel, object, and scene,
enabling LLM to perform CoT reasoning from narrow to broad view. Specifically, at the pixel-
level, the QA task is designed to capture the overall geometry in the image by querying the absolute
or relative 3D position of a point, e.g., “What is the depth value at coordinate (x, y)?”. At the
object-level, the QA task tackles the semantic spatial information of objects inside the image using
a bounding cube of the object in 3D space, e.g., “Is [A] on the left side of [B]?”, where [A] and
[B] is the descriptions about the object in image. We note that this level uses the pixel-level spatial
information as a rationale, enabling LLM to reason about the geometry of objects in 3D space.
Lastly, at the scene-level, the QA task is designed to predict the exact distance between multiple
objects that requires coherent 3D spatial understanding, e.g., “How far is [A] from [B]?”.

4 EXPERIMENTS

Through extensive experiments, we validate the performance of SpatialBoost and ablate its key
components, focusing on following questions:

• Can SpatialBoost improve spatial knowledge of the vision encoder? (Tables 1 to 4)
• Isn’t SpatialBoost overfitted to spatial knowledge? (Table 5)
• Which components contribute to SpatialBoost performance? (Table 6 and Figure 6)

4.1 EXPERIMENTAL SETUP

VQA Dataset Construction. For single-view image, we use randomly sampled 100K images from
the SA1B dataset (Kirillov et al., 2023) to construct the single-view VQA dataset specialized in
chain-of-thought spatial reasoning. For multi-view images, we use filtered 200K samples from the
ego-centric video dataset (Grauman et al., 2022) and 3D dataset (Jensen et al., 2014; Dai et al.,
2017; Mildenhall et al., 2021; Barron et al., 2022) to construct multi-view VQA dataset niche in
multi-view reasoning or alignment. More details in Section D.

Baselines. For all experiments, we compare our methods with the recent widely-used pre-trained
image representation models. To be specific, we first consider OpenCLIP (Cherti et al., 2023) ViT-
G/14 and SigLIPv2 (Tschannen et al., 2025) ViT-g/16, known for language-aligned vision encoder.
We also consider DINOv2 (Oquab et al., 2023) ViT-g/14 and DINOv3 (Siméoni et al., 2025) ViT-
7B/16, which is a recent state-of-the-art vision encoder.

6
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Table 4: Results on vision-based robot learning. We report the
performance of imitation learning agents on 4 domains from Cor-
texBench (Majumdar et al., 2023), which are trained upon the im-
age representations. In particular, we report the normalized score
for DMControl and success rates (%) for other tasks.

Method Adroit MetaWorld DMControl Trifinger Avg.

OpenCLIP 52.6 ± 4.9 83.0 ± 2.7 58.5 ± 1.9 67.7 ± 0.5 65.5
+SpatialBoost (Ours) 61.1 ± 3.4 87.0 ± 3.3 61.0 ± 1.6 72.9 ± 0.3 70.5

SigLIPv2 56.5 ± 3.0 84.7 ± 2.9 69.4 ± 2.1 68.3 ± 0.8 69.7
+SpatialBoost (Ours) 66.5 ± 1.9 89.1 ± 0.9 73.5 ± 1.8 73.9 ± 0.7 75.8

DINOv2 55.4 ± 2.7 82.4 ± 4.0 67.9 ± 1.0 66.8 ± 0.2 68.1
+SpatialBoost (Ours) 68.1 ± 2.9 88.5 ± 3.1 75.0 ± 1.1 71.4 ± 0.8 75.8

DINOv3 63.9 ± 1.5 83.8 ± 1.6 70.8 ± 1.8 72.8 ± 0.5 72.8
+SpatialBoost (Ours) 71.8 ± 3.4 92.0 ± 1.9 80.4 ± 2.4 79.0 ± 0.6 80.8

Figure 4: Examples of vi-
sual observations from Cor-
texBench. We train imitation
learning agents to learn a map-
ping from these visual observa-
tions to expert actions.

Implementation Details. We choose Qwen-2.0-7B (Yang et al., 2024) as the LLM backbone and
2-layer MLP as the projector, following the architecture of LLaVA-1.5 (Liu et al., 2024). Further
details are provided in Section A.

4.2 DENSE PREDICTION TASKS

Setup. We evaluate SpatialBoost on dense prediction tasks requiring geometric and semantic spatial
understanding. For geometric understanding, we perform monocular depth estimation on NYUd
(Silberman et al., 2012) and KITTI (Geiger et al., 2013) using linear or DPT (Ranftl et al., 2021)
heads. For semantic understanding, we evaluate on ADE20K (Zhou et al., 2017) and Pascal VOC
(Everingham et al., 2010) segmentation benchmarks using linear or multi-scale heads. All experi-
ments freeze the visual backbone during training (see Section A for details).

Results. As shown in Table 1 and 2, SpatialBoost consistently improves both geometric and se-
mantic spatial understanding across various encoders. For instance, OpenCLIP’s RMSE on NYUd
decreases from 0.53 to 0.40 with a linear head, while DINOv3’s mIoU on ADE20K increases from
55.9% to 59.7%. These consistent gains demonstrate that language-based spatial knowledge transfer
effectively enhances visual encoders’ spatial understanding capabilities.

4.3 COMPLEX 3D-CENTRIC TASKS

Setup. We evaluate SpatialBoost on Lexicon3D (Man et al., 2024), a unified benchmark for 3D
scene understanding covering vision-language reasoning, visual grounding, semantic understanding,
and geometric understanding. Following Lexicon3D protocols, we freeze visual backbones and train
task-specific heads (see Section A for details).

Results. As shown in Table 3, SpatialBoost shows comprehensive improvements across diverse 3D
tasks. OpenCLIP’s BLEU-1 improves from 36.9 to 39.2 on ScanQA (Azuma et al., 2022), while
DINOv3 increases from 51.4 to 54.9 on SQA3D (Ma et al., 2023), demonstrating that SpatialBoost
improves spatial understanding without compromising language capabilities. Notably, SigLIPv2’s
3D semantic segmentation dramatically improves from 6.9 to 54.9 mIoU, highlighting SpatialBoost
can inject robust spatial knowledge into encoders with initially limited spatial awareness.

4.4 VISION-BASED ROBOT LEARNING

Setup. We evaluate SpatialBoost on vision-based robot control using 4 domains from CortexBench
(Majumdar et al., 2023) spanning locomotion and manipulation tasks (Rajeswaran et al., 2017; Yu
et al., 2020; Tassa et al., 2018; Wüthrich et al., 2020). Following CortexBench protocols, we train
behavior cloning agents using [CLS] representations to predict expert actions from visual observa-
tions. We report the mean of best performance across 5 evaluation runs (see Section A for details).
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Table 5: Results on image classification and retrieval tasks. We report Top-1 accuracy of kNN
performance and linear probing (lin.) for image classification on validation set of ImageNet-1K
(Russakovsky et al., 2015). For image retrieval, we report global average precision (GAP) on Met
(Ypsilantis et al., 2021) and mean average precision (mAP) on Oxford-Hard (Oxford-H) (Radenović
et al., 2018), Paris-Hard (Paris-H) (Radenović et al., 2018), and AmsterTime dataset (Yildiz et al.,
2022). For all results, we freeze the encoder backbone.

Image classification Image retrieval

Method ImageNet (kNN) ImageNet (lin.) Oxford-H Paris-H Met (GAP) AmsterTime

OpenCLIP 84.0 86.8 23.4 59.7 7.4 24.4
+SpatialBoost (Ours) 86.1 87.9 32.8 69.4 19.7 30.3
SigLIPv2 86.3 89.1 25.1 60.9 13.9 15.5
+SpatialBoost (Ours) 87.6 90.0 36.0 69.1 24.0 27.2

DINOv2 84.5 87.3 58.2 84.6 44.6 48.9
+SpatialBoost (Ours) 86.4 88.6 61.3 85.2 45.1 50.8
DINOv3 85.8 88.4 60.7 87.1 55.4 56.5
+SpatialBoost (Ours) 87.7 90.2 64.1 88.6 57.0 56.9
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(a) SigLIPv2 depth estimation

50K 100K 300K
Dataset Size

0.085

0.090

0.095

Ab
sR

el

AbsRel
RMSE

0.24

0.28

0.32

RM
SE

(b) DINOv3 depth estimation
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Figure 5: Effect of dataset scalability. We investigate the effect of the size of analysis of data scal-
ability effects on (a) depth estimation results (AbsRel, RMSE) on NYUd benchmark for SigLIPv2,
(b) depth estimation results (AbsRel, RMSE) on NYUd benchmark for DINOv3, and (c) semantic
segmentation results (mIoU) on ADE20K benchmark for SigLIPv2 and DINOv3. The results show
scalable performance improvements with increased data size.

Results. As shown in Table 4, SpatialBoost significantly improves robot task performance across all
vision encoders. For example, DINOv2 + SpatialBoost achieves 68.1% on Adroit versus 55.4% for
DINOv2 alone, demonstrating that enhanced spatial representations directly benefit robot control.

4.5 IMAGE CLASSIFICATION AND RETRIEVAL TASKS

Setup. We evaluate SpatialBoost’s impact on instance recognition using ImageNet-1K (Rus-
sakovsky et al., 2015) classification and retrieval benchmarks (Oxford, Paris (Radenović et al.,
2018), Met (Ypsilantis et al., 2021), AmsterTime (Yildiz et al., 2022)). Following DINOv3 proto-
cols, we use linear probing on [CLS] representations for classification and similarity-based ranking
for retrieval (see Section A for details).

Results. As shown in Table 5, SpatialBoost improves both classification and retrieval despite these
tasks not explicitly requiring spatial understanding. DINOv3’s ImageNet accuracy increases from
88.4% to 90.2%, while Oxford-Hard mAP improves from 60.7 to 64.1. These results demonstrate
that SpatialBoost enhances general vision capabilities without overfitting to spatial features, likely
due to our dual-channel attention preserving pre-trained knowledge and the inclusion of general
scene captions alongside spatial reasoning.

4.6 ABLATION STUDY AND ANALYSIS

Effect of LLM-Based Fine-Tuning. In Table 6, we investigate whether LLM-based decoders pro-
vide superior supervision compared to pixel-level alternatives. We fine-tune the vision encoder with
linear layer, SAM (Kirillov et al., 2023) decoder, VGGT (Wang et al., 2025a) decoder, and LLM
(Yang et al., 2024). We then evaluate encoders on ImageNet-1K classification, ADE20K segmenta-
tion, and NYUd depth estimation. The result shows that LLM consistently outperform pixel-level
supervision methods, validating that language provides superior dense information transfer for vi-
sion encoders (see Section E for details).
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Table 6: Effect of LLM-based fine-tuning. We fine-tune
the vision encoder with different headers. We report accu-
racy (%) for classification (Cls) on ImageNet-1K, mIoU
for segmentation (Seg) on ADE20K, and RMSE for depth
estimation on NYUd. We use ViT-L/14 as the backbone
architecture of the encoder.

Method Cls ↑ Seg ↑ Depth ↓
DINOv2 86.3 47.7 0.38

+Linear (depth) 85.7 (-0.6) 47.7 (+0.0) 0.36 (-0.02)
+Linear (seg.) 86.5 (+0.2) 48.2 (+0.5) 0.42 (+0.04)
+SAM decoder 86.4 (+0.1) 49.5 (+1.8) 0.40 (+0.02)
+VGGT decoder 85.4 (-0.9) 46.9 (-0.8) 0.35 (-0.03)
+LLM (Ours) 87.6 (+1.3) 48.9 (+1.2) 0.34 (-0.04)

Figure 6: Effect of dual-channel atten-
tion layer. We report the linear evalua-
tion performance of DINOv2-ViT-L/14
across different fine-tuning strategies.

Table 7: Component-wise analysis. We investigate the effect of multi-turn spatial reasoning data
and the effect of single-view and multi-view data. Multi-turn order means the order of three levels
(i.e., pixel, object, and scene) in our visual spatial reasoning data.

Method Multi-turn order Single-view data Multi-view data Cls ↑ Seg ↑ Depth ↓
DINOv2 ✗ - - 86.3 47.7 0.38

+SpatialBoost Reverse +100K - 87.4 48.4 0.35
Random +100K - 87.4 48.5 0.36
Forward +100K - 87.6 48.9 0.34

Forward - +100K 87.6 48.2 0.36
Forward +50K +50K 87.6 49.2 0.32

Effect of Multi-turn Visual Reasoning. In Table 7, we investigate how the hierarchical structure of
reasoning affects representation learning. We compare dataset construction strategies: (a) shuffled
multi-turn, (b) reversed order (scene→object→pixel), and (c) forward order (pixel→object→scene).
The forward hierarchical ordering shows optimal performance, demonstrating that reasoning order
significantly impacts the quality of representation.

Effect of Single-View and Multi-View Data. In Table 7, we investigate the effect of single-view
and multi-view reasoning data. With fixed total samples, we compare single-view only, multi-view
only, and combined training. While both data types independently improve performance, the com-
bination achieves the highest results, confirming their complementary nature.

Effect of Dual-channel Attention Layer. In Figure 6, we investigate whether our dual-channel
attention mechanism preserves pre-trained knowledge during fine-tuning. We evaluate several ap-
proaches for fine-tuning the vision encoder including full fine-tuning, LoRA (Hu et al., 2021), and
dual-channel (Hong et al., 2023a) on ImageNet and ADE20K. Dual-channel attention uniquely pre-
serves and even enhances pre-trained knowledge, while other approaches cause degradation.

Dataset Scalability. We analyze the impact of dataset sizes on depth estimation results from NYUd
(Silberman et al., 2012) benchmark and semantic segmentation results from ADE20K (Zhou et al.,
2017) benchmark. With matched training iterations (i.e., one epoch for 300K data), larger datasets
yield consistent improvements, indicating robust scalability potential.

5 CONCLUSION

In this paper, we have presented SpatialBoost, a framework to enhance the vision encoders by lever-
aging linguistic expressions of geometric and semantic information within images. SpatialBoost
uses LLM and dual-channel attention layers to exploit linguistic information into image represen-
tations, generates a multi-turn visual spatial reasoning dataset, and leverages them to improve the
image representations. Our experiments show that SpatialBoost consistently enhances the vision
encoders on various downstream tasks that require a spatial understanding of images. We hope that
our work further facilitates future research on designing and enhancing vision encoders.
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René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction.
In ICCV, 2021.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
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A IMPLEMENTATION DETAILS

A.1 TRAINING DETAILS OF STAGE 1 & 2

We train our multi-modal architecture with 4x NVIDIA Tesla A100s. In multi-modal architecture,
we choose Qwen-2.0-7B (Yang et al., 2024) as the LLM backbone and 2-layer MLP as the projector.
In feature alignment pre-training (Stage 1), we train the projector on a BLIP-558K data (Liu et al.,
2024) for one epoch with a learning rate of 2e-3 and a batch size of 256. In visual instruction tuning
(Stage 2), we fine-tune both the projector and the LLM backbone on the LLaVA-Instruct-158K
dataset (Liu et al., 2024) and our multi-view VQA dataset (described in Section 3.2) for one epoch
with a batch size of 128.

A.2 TRAINING DETAILS OF STAGE 3

In this stage, we adapt dual-channel attention layers in training vision encoders by introducing addi-
tional attention channels described in Section 3.1. By applying dual-channel attention, the number
of model parameters increased by 30% in OpenCLIP and SigLIPv2 and by 25% in DINOv2 and DI-
NOv3, respectively. We freeze the LLM decoder and fine-tune the vision encoder and projector on
a multi-turn visual spatial reasoning dataset (described in Section 3.2) for one epoch with a learning
rate of 2e-5 and a batch size of 128. We conduct hyperparameter search for the learning rate from
1e-6 to 1e-2.

A.3 DENSE PREDICTION TASKS

From the vision encoder obtained through SpatialBoost, we performed depth estimation and se-
mantic segmentation. We follow the same protocol as in DINOv2 (Oquab et al., 2023), defining
three primary hyperparameters for our linear probing setup: the learning rate, the number of output
layers, and whether we concatenate the average-pooled patch token features with the class token.
Concretely, we perform a grid search over learning rates in 1e-4 to 1e-1, choose the output layers
from {1, 4}, and optionally concatenate average-pooled representations. We train each linear layer
with SGD for 12500 iterations using random-resized-crop data augmentation. We then select the
best hyperparameter combination on validation accuracy.

A.4 3D SCENE UNDERSTANDING

We evaluate whether SpatialBoost enables complex 3D-centric reasoning using the Lexicon3D (Man
et al., 2024) benchmark. Lexicon3D provides a unified probing framework that freezes visual back-
bones and attaches task-specific heads to evaluate vision-language reasoning, visual grounding, 3D
semantic segmentation, and geometric correspondence. Following the Lexicon3D protocol, we ex-
tract features from 2D vision encoders and evaluate them on various 3D understanding tasks.

Vision-Language Reasoning. To evaluate vision-language reasoning, we target the 3D visual
question-answering (3D-VQA) on ScanQA (Azuma et al., 2022) and SQA3D (Ma et al., 2023)
datasets. We follow the 3D-LLM (Hong et al., 2023b) architecture as our task head. Specifically, we
use a Q-Former module (Li et al., 2023a) to project multi-view visual features into the input space
of the language model. These projected features are then fed to the LLM (e.g., FlanT5 (Chung et al.,
2024)) for generating answers. We pre-train only the Q-Former projection module for 10 epochs us-
ing 3D-Language dataset (Hong et al., 2023b) and fine-tune the module for 35 epochs using training
split of ScanQA and SQA3D. We keep both the vision encoder and LLM frozen during training.

Visual Grounding. To evaluate visual grounding with vision encoder, we target the object local-
ization task based on text descriptions on the ScanRefer (Chen et al., 2020a) dataset. We use an
attention-based fusion head following Multi3DRefer (Zhang et al., 2023). The task head consists of
a multi-layer attention module with 4 transformer layers that fuses visual and text embeddings. After
projecting multi-view features to 3D space and extracting object features via average pooling within
ground-truth bounding boxes, we apply cross-attention between object features and CLIP-encoded
text descriptions. The fusion module outputs confidence scores for each object. We train the header
for 30 epochs with cross-entropy loss.
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Geometric Understanding. To evaluate geometric understanding, we target the geometric corre-
spondence task. We adopt a REGTR-style (Yew & Lee, 2022) transformer cross-encoder as the task
head. The head process features from two partial point clouds to establish correspondences. After
obtaining point correspondences through the transformer, we apply the Kabsch-Umeyama (Kabsch,
1976; Umeyama, 2002) algorithm for closed-form estimation of rotation and translation parameters.
We train the transformer head using partial scene registration benchmark (Man et al., 2024) for 30
epochs using a combination of correspondence loss and transformation loss.

3D Semantic Understanding. To evaluate 3D semantic understanding, we target the point-wise
semantic classification task on ScanNet (Dai et al., 2017). We employ a linear probing head consist-
ing of a single fully-connected layer followed by sigmoid activation: y = Sigmoid(FC(x)), where
x ∈ RN×d represents projected point features from multi-view images, y ∈ RN×C represents class
probabilities for C = 20 semantic classes and N is the number of points in each point cloud. The
linear layer maps from feature dimension d to the number of classes. We train the linear layer using
ScanNet segmentation dataset with cross-entropy loss at learning rate 1e-4 for 20 epochs.

A.5 VISION-BASED ROBOT LEARNING

We train the robot agents using 100 demos for each task. For training, we use keypoint augmen-
tation (James & Davison, 2022) for each demonstration, and use the end-effector controller with
path planning as an action mode. We use the front camera of 224×224 resolution without depth
measurements. We evaluate the model 5 times by training with a pre-defined interval and report the
mean of the best performance.

A.6 IMAGE CLASSIFICATION TASK

We train a linear classifier on top of the [CLS] token from the last feature of the vision encoder using
the training split of ImageNet-1K (Deng et al., 2009) dataset. Following the evaluation protocol
of DINOv3 (Siméoni et al., 2025), we employ SGD optimizer with momentum 0.9 and random-
resized-crop data augmentation. We train the linear layer for 10 epochs with a batch size of 1024.
We perform a grid search for the optimal learning rate, ranging from 1e-4 to 1e-1, selecting the best
performing configuration.

A.7 IMAGE RETRIEVAL TASK

We evaluate the image retrieval performance of vision encoders using a non-parametric retrieval
approach. Specifically, we compute cosine similarity between the output [CLS] tokens of query
and target images to establish ranking. For Oxford (Radenović et al., 2018), Paris (Radenović et al.,
2018), and AmsterTime (Yildiz et al., 2022) datasets, we resize images to 224 × 224 resolution,
while for the Met (Ypsilantis et al., 2021) dataset, we resize to the nearest multiple of the patch size.
All other setups follow evaluation protocols of each benchmark.
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B ADDITIONAL EXPERIMENTAL RESULTS

B.1 VISUAL QUESTION-ANSWERING (VQA) TASKS

Table 8: Effect of the vision encoder on spatial reasoning and general VQA benchmarks.

Spatial Reasoning General VQA

Model Vision encoder SpatialRGPT BLINK-D VQAv2 GQA SQA-I MME

GPT-4o - 39.7 72.6 - - - -
Gemini-2.5-Flash - 42.5 77.4 - - - -

Vicuna-1.5-7B OpenCLIP 13.3 51.6 78.5 62.0 66.8 1510.7
+SpatialBoost 52.0 84.9 79.0 65.6 67.1 1516.3

SigLIPv2 21.1 52.3 79.4 62.5 66.8 1519.4
+SpatialBoost 61.3 87.5 80.0 69.1 69.5 1527.6

DINOv2 18.8 55.2 75.2 61.5 66.0 1509.2
+SpatialBoost 54.2 87.2 76.8 62.5 66.8 1514.2

DINOv3 17.6 53.9 78.7 61.9 65.8 1514.7
+SpatialBoost 58.7 87.9 80.0 65.5 67.1 1520.6

Setup. To investigate whether SpatialBoost can enhance visual representations by capturing ge-
ometric and semantic information within images, we evaluate our framework on VQA tasks that
require (1) 3D geometric spatial reasoning and (2) general knowledge.

For spatial reasoning, we consider the VQA tasks from SpatialRGPT-bench (Cheng et al., 2024)
and BLINK’s Relative Depth Benchmark (i.e., BLINK-D) (Fu et al., 2024b), where the goal is to
predict the relative or absolute positional relations between objects. For general VQA, we consider
widely-used benchmarks such as VQAv2 (Goyal et al., 2017), GQA (Hudson & Manning, 2019),
SQA-I (Lu et al., 2022), and MME (Fu et al., 2024a). Given our SpatialBoost vision encoders,
we follow the setup in LLaVA-1.5 (Liu et al., 2024) that trains the LLM backbone (Vicuna-1.5-7B
(Zheng et al., 2023)) and the 2-layer MLP projector in two stages while freezing our vision encoder.

Details for Spatial Reasoning. The SpatialRGPT-Benchmark is designed to assess 3D spatial un-
derstanding across a diverse range of scenes, incorporating both quantitative and qualitative QAs.
We evaluate BLINK’s Relative Depth Benchmark for depth comparison between the coordinates of
two objects. Given that these benchmarks allow for multiple correct answers, leveraging an LLM-
based evaluation provides a reasonable and consistent approach to judging model responses. For
this, we utilize GPT-4 (Achiam et al., 2023) to determine the accuracy of the responses. For quali-
tative questions, responses are assessed on 0 to 1 scoring scale. For quantitative questions, the LLM
extracts numerical values from answers and model responses and standardizes them to a same unit
for comparison. We use judging prompts following SpatialRGPT (Cheng et al., 2024).

In Table 8, we use the closed-source large vision language models (LVLMs), although they are not
directly compared to our approach. We provide the versions of the closed-source LVLMs as follows:

• openai/gpt-4o-2024-11-20

• Google/gemini-2.5-flash-preview-04-17

Results. As shown in Table 8, we observe that SpatialBoost consistently and significantly enhances
both the spatial reasoning capabilities and general knowledge of existing vision-language models,
even though only the frozen vision encoder was changed. For instance, Vicuna-1.5-7B with Spatial-
Boost DINOv3 raises the score 17.6 to 58.7 on SpatialRGPT benchmark, surpassing frontier models
like GPT-4o (39.7) and Gemini-2.5-Flash (42.5). This demonstrates that our framework can indeed
induce representations that are useful for solving complex QA tasks that require spatial understand-
ing while preserving or even improving its general knowledge.
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C MULTI-VIEW VQA DATASET

We utilize multi-view data to inject rich 3D information into vision encoders. We found that proper
instruction tuning is crucial for LLMs to stably transfer the 3D information to vision encoders.
However, existing datasets are limited to enhance multi-view understanding, as most VQA datasets
focus exclusively on single-view scenarios. We thereby construct a multi-view VQA dataset.

We consider both 3D datasets and ego-centric video data for our multi-view VQA construction.
Specifically, we utilize ScanNet (Dai et al., 2017), Mip-NeRF360 (Barron et al., 2022), and
MVImgNet (Yu et al., 2023) for 3D data, and Ego4D (Grauman et al., 2022) for ego-centric video
data. From these datasets, we extract pairs of images that satisfy the following LPIPS (Zhang et al.,
2018) constraint:

0.35 ≤ LPIPS(xi,xj) ≤ 0.65,where xi,xj ∈ {x1 · · ·xN}. (2)

This constraint effectively filters out outlier samples for meaningful multi-view learning. Given
the selected image pairs, we utilize GPT-4o (Achiam et al., 2023) to generate three types of visual
questions: (1) common VQA, (2) adversarial VQA, and (3) multi-choice VQA. These question
types are designed to probe general knowledge understanding from multi-view visual inputs, thereby
guiding the model to accurately process and answer multi-view visual questions. We provide specific
prompts used for generating multi-view VQA data in Table 9.

Table 9: Prompt examples for generating multi-view VQA data.
system prompt =[

“You are a helpful multimodal assistant.
Generate question-answer pairs for given two images.
Both images are came from same scene.
When referring to the image, please call it the first image or the second image.”

]
general vqa prompt =[

“Please give me an exact question and answer by referring to the images.
This is a common VQA.
Create relevant question about these 2 images,
referencing details that may only be visible if we consider both views.
Then provide a concise, correct answer.
The answer should be in length between 10 and 80 words.”

]
multi choice vqa prompt =[

“Please give me an exact question and answer by referring to the images.
This is a multi-choice VQA.
Create relevant question about these 2 images,
referencing details that may only be visible if we consider both views.
Then also generate 4 answer candidates,
where only one candidate is correct and the others are very wrong.
List candidates A to D or 1 to 4.
The answer is the index of correct question.
Each candidates should be in length between 5 and 20 words.

]
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D MULTI-TURN VISUAL SPATIAL REASONING DATASET

We here provide a detailed implementation of the data generation pipeline and examples of multi-
turn visual spatial reasoning.

We construct a multi-turn visual spatial reasoning dataset by associating each single-view image x
or multi-view images {x1 · · ·xN} with 12 sequential QA turns. The first 5 turns focus on pixel-level
view, prompting questions about point-wise depth or depth comparisons. The next 4 turns shift to
object-level queries, referring to approximate bounding cubes (i.e., 3D bounding boxes) for each
object. The next one turn addresses scene-level understanding, requiring holistic 3D interpretation.
The last 2 turns are GPT-generated scene captions for given image input. For instance, the entire
sequence of question-answer pairs for image x is described by

Pixel-level :
(
Q(1)

x , A(1)
x

)
→ · · · →

(
Q(5)

x , A(5)
x

)
→,

Object-level :
(
Q(6)

x , A(6)
x

)
→ · · · →

(
Q(9)

x , A(9)
x

)
→,

Scene-level :
(
Q(10)

x , A(10)
x

)
→,

Scene Caption :
(
Q(11)

x , A(11)
x

)
→

(
Q(12)

x , A(12)
x

)
.

Each turn builds on the previous answers, allowing the LLM to engage in CoT reasoning. To extract
3D information for each image, we use the specialized vision models (e.g., depth and segmenta-
tion networks) and synthesize QA pairs that reflect the relevant 3D information, ensuring that the
final scene-level query can integrate pixel-level and object-level details into a coherent spatial un-
derstanding.

Filtering for Single-view Image. Generating visual spatial reasoning data requires multiple ob-
jects in an image. Therefore, selecting the appropriate images is necessary. Following SpatialVLM
(Chen et al., 2024a) and SpatialRGPT (Cheng et al., 2024), we adopt a CLIP-based open-vocabulary
classification model (Sun et al., 2023) to identify appropriate images with 100K samples from 314K
samples of SA1B (Kirillov et al., 2023). We provide the labels to get filtered images in Table 10.

Table 10: CLIP labels for filtering images.
Label type Labels

Positive labels

“an iPhone photo of an indoor scene”
“an iphone photo of an outdoor scene”
“a DSLR photo of an indoor scene”
“a DSLR of an outdoor scene”

Negative labels

“a close up shot of a single object”
“a product displayed in front of a white background”
“an artwork”
“a painting”
“a screenshot of a graphical user interface”
“a piece of text”
“a sketch”

Filtering for Multi-view Images. We apply LPIPS (Zhang et al., 2018) metric to 3D data (e.g.,
ScanNet (Dai et al., 2017) trainset) and ego-centric video data (e.g., Ego4D (Grauman et al., 2022))
to obtain pairs of images that satisfy Equation (2). This constraint prevents sampling of image pairs
that are either too dissimilar or overly redundant from the datasets.

Point Cloud Processing. We process two types of input: (1) single-view and (2) multi-view. For
a single-view image, we use the results of the segmentation and depth estimation to generate a
3D point cloud for objects in images. In particular, we use Depth-pro (Bochkovskii et al., 2024)
to perform metric depth estimation. For multi-view images, we obtain a 3D point cloud through
VGGT (Wang et al., 2025a), which is a state-of-the-art 3D reconstruction model. For each image
input {x1 · · ·xN}, we first select an image xi, where xi ∈ {x1 · · ·xN}, among the image input
and generate pixel-level data by randomly selecting the 2D coordinates of bounding boxes in xi

and then extract the depth information. We also generate object and scene-level data by randomly
selecting the bounding cubes obtained by using 3D point cloud. We represent the bounding cubes in
the canonical space, which is proposed by SpatialVLM (Chen et al., 2024a).
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Table 11: Template examples for pixel-level VQA.
single point questions =[

“What is the depth value at pixel point [A]?”
“How far away is point [A]?”
“Tell me the depth of point [A].”

]
single point answers = [

“[X] away.”
“It is [X].”
“Depth value of point [A] is [X].”

]
close predicate questions =[

“Which point is close to a viewer? Point: [A], Point: [B].”
“Is point [A] closer than [B]?”
“Which point has a smaller depth value? Point [A] or Point [B]?”
“Compare the depth of point [A] and point [B].”

]
close true responses =[

“Yes, point [A] is closer to the viewer than point [B].”
“Indeed, point [A] has a smaller depth value than point [B].”
“Correct, point [A] is closer than point [B].”

]
close false responses =[

“No, point [A] is not closer than point [B].”
“In fact, point [B] is closer to the viewer than point [A].”
“Incorrect, point [B] has a smaller depth value than point [A].”

]

Pixel-level VQA Data. Pixel-level dataset has two types of QAs: (1) single point and (2) multi
point QA. Single-point QA consists of questions that query depth values at specific coordinates on
the image, and multi point QA involves comparing depth values between two different coordinates.
To avoid generating excessively noisy data, all depth values are rounded to the third decimal place.
We use a centimeter scale for depth values less than 0.5 meters while maintaining the template. We
provide examples of templates for each type of QA of this level in Table 11.

Table 12: Template examples for object-level VQA.
bounding cube questions =[

“Identify [A] and [B]”
“What is the center of the 3d bounding box coordinate for [A]?”

]
bounding cube answers =[

“[X]”
“Center: [X]”
“[A] in [X] and [B] in [Y]”

]
left predicate questions =[

“Is the [A] to the left of the [B] from the viewer’s perspective?”
“Does the [A] appear on the left side of the [B]?”
“Can you confirm if the [A] is positioned to the left of the [B]?”

]
left true responses =[

“Yes, the [A] is to the left of the [B].”
“Indeed, the [A] is positioned on the left side of the [B].”
“Correct, you’ll find the [A] to the left of the [B].”

]
left false responses =[

“No, the [A] is not to the left of the [B].”
“In fact, the [A] is either to the right of or directly aligned with the [B].”
“Incorrect, the [A] is not on the left side of the [B].”

]

Object-level VQA Data. Object-level dataset has two types of QAs: (1) predicting a bounding
cube of an object from the bounding box of the object, and (2) predicting the relative positional
relationship between two objects. We provide examples of templates for each type of QA of this
level in Table 12.

Scene-level VQA Data. Scene-level dataset has single type of QA: predicting the 3D relative dis-
tance between two objects. We provide examples of templates for each type of QA of this level in
Table 13.
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Table 13: Template examples for scene-level VQA.

distance questions =[
“What is the distance between the [A] and the [B]?”
“How far is the [A] from the [B]?”
“How distant is the [A] from the [B]?”
“Measure the distance from the [A] to the [B].”

]
distance answers =[

“[X]”
“the [A] and the [B] are [X] apart.”
“They are [X] apart.”
“The distance of the [A] from the [B] is [X].”

]

Expand Viewpoints in Multi-view data. Through the aforementioned process, we obtain multi-
view reasoning data for 2-view images. We denote these obtained views as anchor views. To extend
beyond 2-view configurations, we additionally sample interpolated frames between the anchor views
and validate whether the VQA pairs generated for the anchor views remain valid for these new
viewpoints using GPT-4o. Specifically, if the existing VQA pairs are verified as correct for more
than half of the interpolated views, we incorporate these interpolated views as additional viewpoints.
This approach enables us to extend the 2-view input to arbitrary multi-view configurations. Among
our 200K multi-view samples, we have 160K 2-view samples, 30K 4-view samples, and 10K 8-view
samples.

E DETAILS OF ABLATION STUDY AND ANALYSIS

We here provide a detailed implementation of ablation study and analysis.

E.1 COMPARISON ON DIFFERENT HEADERS

Our key hypothesis is that language supervision, particularly through LLM-based supervised fine-
tuning, can effectively distill rich 3D information into vision encoders. To validate this, we investi-
gate whether LLM provides superior supervision compared to pixel-level alternatives. We align var-
ious headers with vision encoders following the SpatialBoost framework, then fine-tune the vision
encoder with dual-channel attention. We evaluate each enhanced vision encoder on ImageNet-1K
(Deng et al., 2009) image classification, ADE20K (Zhou et al., 2017) semantic segmentation, and
NYUd (Silberman et al., 2012) monocular depth estimation. As shown in Table 6, pixel-level super-
vision leads to catastrophic forgetting, while language supervision preserves pre-trained knowledge.
This validates our hypothesis that language serves as an effective modality for transferring dense
and hierarchical spatial information. For all experiments, we choose DINOv2-ViT-L/14 as a vi-
sion encoder architecture, with following evaluation protocols for each downstream task detailed in
Section A. The specific implementation for each header-based fine-tuning approach is provided in
following paragraphs:

SAM Decoder. We adopt the SAM decoder as a header and introduce an MLP layer to match
dimensions with the vision encoder. Following the SpatialBoost training strategy, we first align
only the MLP layer using SA1B (Kirillov et al., 2023) dataset. Subsequently, we apply dual-channel
attention to the vision encoder and fine-tune it using 100K segmentation samples from our multi-turn
visual reasoning dataset, which is also sampled from SA1B dataset.

VGGT Decoder. VGGT (Wang et al., 2025a) is a state-of-the-art 3D reconstruction model that
employs DINOv2-ViT-L/14-reg (Darcet et al., 2023) as a feature extractor. Building upon this off-
the-shelf pipeline, we apply dual-channel attention to the vision encoder and perform fine-tuning.
We utilize 100K 3D data samples from Co3D (Reizenstein et al., 2021) for training.

Linear Layers. We consider two different pixel-level modalities as input for linear layers: (1) depth
and (2) segmentation. As linear layers are randomly initialized, we first train the linear layer while
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freezing the vision encoder. We then apply dual-channel attention to the vision encoder and fine-tune
the vision encoder. For depth data, we use depth maps obtained through Depth-Pro (Bochkovskii
et al., 2024) on a subset of our reasoning dataset, while segmentation data follows the same config-
uration as the SAM decoder experiment.

LLM (Ours). We use Qwen-2.0-7B (Yang et al., 2024) as the LLM backbone and follow all other
training setup described in Section A.

F ADDITIONAL ANALYSIS

F.1 DETAILED ANALYSIS ON REASONING HIERARCHY

In this section, we investigate which components of the multi-turn visual reasoning data contribute
most significantly to the performance of SpatialBoost. We provide a detailed analysis.

Table 14: Effect of reasoning hierarchy on NYUd and ADE20K.

NYUd ↓ ADE20K ↑

Method OpenCLIP DINOv2 OpenCLIP DINOv2
lin. DPT lin. DPT lin. +ms lin. +ms

Pre-trained 0.56 0.41 0.38 0.29 39.1 45.7 47.7 53.1

Pix 0.52 0.40 0.34 0.29 39.6 46.3 48.2 53.4
Obj 0.53 0.41 0.37 0.30 39.4 46.3 48.0 53.3
Scene 0.53 0.41 0.38 0.32 39.2 45.9 47.7 53.3

Pix + Obj 0.44 0.39 0.35 0.28 39.8 46.6 48.8 53.5
Pix + Scene 0.46 0.40 0.36 0.28 39.5 46.5 48.5 53.4
Obj + Scene 0.51 0.42 0.39 0.31 39.5 46.5 47.6 53.3

Pix + Obj + Scene 0.42 0.39 0.32 0.27 40.0 46.9 49.2 54.2

Setup. We explore which levels of the reasoning hierarchy have an impact on the performance of
SpatialBoost by measuring the performance across different combinations of reasoning levels. For
all experiments, we fix the sample size at 100K and evaluate monocular depth estimation on NYUd
(RMSE) and semantic segmentation on ADE20K (mIoU). We use ViT-L/14 as a vision encoder
architecture in all experiments. All other setups are the same as described in Section A.

Results. As shown in Table 14, we find that pixel-level QA in one or two combinations remark
superior performance compared to other combinations, showing that pixel-level QA aids in higher-
level understanding.

F.2 DETAILED ANALYSIS ON DUAL-CHANNEL ATTENTION

We provide quantitative and qualitative results for dual-channel attention (see Table 15 and Figure 7).

Table 15: Quantitative results of dual-channel attention.

Method Classification ↑ Segmentation ↑ Depth estimation ↓
DINOv2 (Pre-trained) 86.3 47.7 0.38

Full Fine-tuning 79.5 49.4 0.31
LoRA 81.7 49.0 0.32
Dual-Channel Attn. 87.6 49.2 0.32

Setup. We evaluate different fine-tuning methodologies while fixing the reasoning data sample size
at 100K. Performance is measured on ImageNet-1K classification (accuracy), ADE20K segmenta-
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tion (mIoU), and NYUd depth estimation (RMSE). All experiments utilize DINOv2 with ViT-L/14
architecture.

Results. As shown in Table 15, we find that full fine-tuning and LoRA similarly exhibits per-
formance drops in classification. In contrast, dual-channel attention shows consistent performance
improvements across all tasks. This indicates that dual-channel attention effectively enhances spatial
capabilities while preventing overfitting to spatial-specific features, maintaining the generalization
ability. Partial results of Table 15 are visualized in Figure 6.

DINOv3 DINOv3 w/ 
SpatialBoost

(a) (b)

Figure 7: Qualitative results for dual-channel attention. We visualize attention heatmap from (a)
DINOv3 and (b) SpatialBoost DINOv3. We rollout attention layers for cosine similarity between
patches. Red cross denotes a query patch.

F.3 DETAILED RESULTS ON DATA SCALABILITY

We provide more detailed results for data scalability. In Table 16, SpatialBoost improves SigLIPv2
and DINOv3 in all tasks.

Table 16: Data scalability on classification, segmentation, and depth estimation.

Model Sample size Classification ↑ Segmentation ↑ Depth estimation ↓
SigLIPv2 Pre-trained 89.1 42.8 0.51

+SpatialBoost 50K 89.5 43.2 0.44
100K 89.7 44.5 0.42
300K 90.0 45.1 0.39

DINOv3 Pre-trained 88.4 55.9 0.31

+SpatialBoost 50K 88.6 56.8 0.29
100K 90.0 58.3 0.28
300K 90.2 59.7 0.25

G USE OF AI TOOLS

We acknowledge that a large language model (LLM) was used to refine the phrasing and grammar
of the manuscript.
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