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Abstract

Multi-agent environments with large numbers of agents are difficult to solve due
to the complexity associated with drawing sufficient samples for learning. While
recent work has addressed the possibility of using transfer learning to improve
sample complexities of reinforcement learning algorithms, methods for transfer-
ring knowledge in multi-agent domains across differing numbers of agents have
rarely been considered. To address the bottleneck with sampling from large scale
environments, we propose a joint critic structure motivated from graph convo-
lutional networks and coordination graphs that allows for the direct transfer of
parameters into environments with varying amounts of agents. We further consider
fine-tuning the transferred policy and critic networks on the target domain and pro-
vide the motivation for doing so in cooperative environments where agent behavior
is determined by a subset of the total population. Finally, we provide empirical
results validating our claims on such environments, including popular multi-agent
benchmark environments.

1 Introduction

Data collection for a wide variety of multi-agent environments relies on computationally expensive
simulations, or in scenarios such as autonomous driving, health informatics, and robotics coordination,
potentially hazardous experiments. As such, the sample complexity of reinforcement learning
algorithms remains a prominent bottleneck against their applications in these systems. Since the
state-action space must grow exponentially with the number of agents, popular algorithms can suffer
from a curse of dimensionality termed the curse of many agents [10] reflected by diminishing sample
efficiency as the number of agents increases. Mean-field approximation methods [24, 41, 45] as
well as factorized policy [12] and value representations [35] have been proposed to counteract the
exponential growth of the state-action space; however, the high computational cost of sampling from
an environment with many agents and the possible consequences of iterating on real-world scenarios
are still significant barriers against the use of many algorithms.

We seek to utilize transfer learning, a well-studied field in the domain of supervised learning [29], to
reduce the need for samples in cooperative large scale environments using related environments of
smaller scale. In the realm of reinforcement learning, transfer learning can take the form of reward
shaping [2, 8, 40], where external knowledge of the reward function for the target environment is
used to guide policy learning, or learning from demonstrations [14, 19], where expert demonstrations
are used to facilitate exploration. Here, we propose a method that is most akin to few shot learning,
where a model must learn to adapt to a target task T while training on a dataset with only a limited
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number of examples for T [42]. In particular, the external knowledge being transferred in this work
takes the form of pre-trained policy networks and value function approximators.

Contributions: The contributions in this paper are threefold. First, we propose a joint critic
structure that allows for the direct transfer of pre-trained parameters (Subsection 3.1). Commonly, the
input of these critics is either the joint state or joint state-action pair, and this scales with the number
of agents, preventing model parameters from being transferred between environments with varying
number of agents. Secondly, we consider the possibility of fine-tuning (Subsection 3.2), such as in
the few shot learning paradigm, across domains with differing numbers of agents using decentralized
execution, a method that has not been addressed for multi-agent reinforcement learning to the best of
our knowledge. Finally, we demonstrate empirically (Section 4) that this type of parameter transfer
can produce the best performance on environments where individual agent behaviour is dependent
on a subset of the global population. While general environments may not follow this structure, we
validate our results on popular multi-agent benchmark environments.

1.1 Related Work

Single-Agent Methods: For single-agent environments, policy transfer refers to the use of pre-
trained teacher policies from a set of source domains Es that provide knowledge about some target
domainEτ . Policy distillation then utilizes these teacher policies, in the case of [33, 46] pre-trained on
multi-task domains such as Atari 2600 games, to learn a student policy by minimizing the divergence
of its action distribution with respect to the teachers’. The transfer of feature representations, termed
representation transfer, is used in works such as [34], where progressive neural networks use
representations from previous tasks to assist in learning a new task.

Multi-Agent Methods: Intra-agent transfer techniques reuse knowledge generated by an agent for
new domains without requiring an explicit communication channel [6]. The authors of [5] propose
a method to calculate a task mapping in an object-oriented manner, transferring value functions
between tasks using this description. For environments with sparse interactions, where other agents
effect a local agent only in certain portions of the environment, works such as [15, 51] treat the
majority of the state space as a single-agent problem, reusing value functions trained on similar tasks.
Similarly, the authors of [49] naturally reuse policy networks on similar road networks by using
zero-shot transfer performance of learned policies as a metric to evaluate robustness for the traffic
signal optimization problem.

Unlike this paper, none of the previously mentioned works consider the possibility of fine-tuning
pre-trained model parameters after transferring to environments with differing amounts of agents.
As the experiments performed in Section 4 reflect, oftentimes environment dynamics do not differ
greatly with respect to the number of agents and thus can be treated analogously to the multi-task
scenario, with each environment being a different “task”. A similar work, [18], uses policies with
graph neural network structures comparable to our proposed critic for zero-shot transfer in robotics
control. However, their method assumes that an underlying communication channel is present during
execution in order to aggregate features within the swarm. We focus instead on the centralized
learning with decentralized execution paradigm, where agent policies must run independently at
execution time.

2 Background

We formalize the problem as a Dec-POMDP (decentralized partially-observable Markov decision
process) [28], defined by the tuple E = (S, {U i}ni=1, P, r, Z,O, n, γ) where U i is the action space
for the ith agent, n is the number of agents, and r(st,ut) is the shared reward function. Here, S is
the global state space, P (st+1|st,ut) : S ×

∏
i U

i × S → [0, 1] is the transition function, and each
agent receives a local observation zat ∈ Z drawn from its observation function O : S ×

∏
i U

i → Z.
Agents follow stochastic policies πi conditioned on observations or an observation-action trajectory
τ ∈ (Z × U i) inducing a discounted return of Gt =

∑∞
l=0 γ

lrt+l. Our goal is to find an optimal
joint policy π∗ such that the joint action value function Qπ

∗
(st,ut) = E[Gt|st,ut] ≥ Qπ(st,ut) for

all π.
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We follow transfer learning literature and define the source domains, where we pre-train poli-
cies and critics, as Es = (Ss, {U is}ni=1, Ps, rs, Zs, Os, ns, γs). Similarly, target domains,
which will be used to evaluate zero or few-shot performance, will be defined as Eτ =
(Sτ , {U iτ}ni=1, Pτ , rτ , Zτ , Oτ , nτ , γτ ).

2.1 Multi-Agent Reinforcement Learning

In Section 4, we will base the proposed method off of the well-known counterfactual multi-agent
policy gradients (COMA) [9] algorithm. We also use the individual actor-critic (IAC) [21] algorithm
as a sanity check to demonstrate that the multi-agent methods are learning as expected. We describe
the algorithms below:

IAC: Although it is a single-agent method, independent actor-critic has demonstrated suprising
effectiveness in multi-agent systems [32, 37, 38]. For a single agent a, IAC applies the policy gradient
[36] to train an independent actor-critic, resulting in a

(
πa(ua|sa), Qπa(sa, ua)

)
pair. While able to

maximize individual performance, the lack of a coordination mechanism means that IAC will most
likely struggle to find optimal solutions in complex multi-agent scenarios.

COMA: COMA uses a joint critic that marginalises out a single agent’s action with a counterfactual
baseline to address the problem of multi-agent credit assignment. The advantage function used
evaluates the contribution of agent a by computing the average of all counterfactuals ûa while
keeping the actions of other agents fixed.

2.2 Graph Convolutional Networks

A graph convolution network (GCN) [20] takes a feature matrix summarizing the attributes of nodes
vi ∈ V of a graph G = (E, V ) as input. In a manner similar to the standard convolutional neural
network (CNN), the GCN then extracts locally connected features and outputs a encoded node-level
feature matrix by aggregating a node’s features with its neighbors’. [20] defines a graph convolution
layer as:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W (l)) (1)

where H(l) is the feature matrix of the previous layer, l, Ã = A + I is the adjacency matrix with
added self-connections, D̃ii =

∑
j Ãij , and W (l) is the trainable weight matrix. D̃−

1
2 ÃD̃ composes

the normalized graph Laplacian, which is theorized to result in a special form of Laplacian smoothing
[22] and is possibly a key reason why GCNs work.

2.3 Self-Attention

The self-attention mechanism models the dependencies between different parts of a sequence and
has been used successfully in machine reading, abstractive summarization, and machine translation
[47, 4, 30, 31, 25, 39]. More recently, it has been adopted for multi-agent reinforcement learning and
used for communication [17] and modeling relations between groups of agents [16, 43].

Following the terminology in literature [39], we let Q,K,V be the query, key, and value matrices
respectively. Then, the attention weights are generated with respect to the input features Fin as
follows:

Q,K,V = Fin · (Wq,Wk,Wv) (2)

A = softmax(
QK>√
dk

) (3)

where
√
dk is the scaling factor and Wq,Wk,Wv are learnable weight matrices.

3 Large Scale Coordination Transfer

A coordination graph (CG) [11] is an undirected graph that models inter-agent behaviour by repre-
senting the locality of interactions within an environment. Agents are represented as nodes in the
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graph, and an edge between two agents represents some dependence between their behaviours. Joint
actions are then encoded by the graph structure and thus can capture complex interactions between
agents. In this paper, we focus on the types of environments coordination graphs have typically been
used for, where an agent’s action depends only on a subset of other agents. We acknowledge that
this may be a limiting condition of our method; however, recent work has shown that CGs can be
effective in more general environments [1].

Definition 1 (Decomposable graph). Let S ⊂ V be some cut of graph G = (E, V ), where |S| > 2.
Call graph G decomposable if there exists some S such that all v ∈ V can exist in cuts isomorphic to
S.

Figure 1: Decomposable graphs with cut
S outlined in black. Notice that in each
case, the graph is only decomposable if
a portion of cut S overlaps with another
cut isomorphic to S.

Above, we define decomposable graphs, a structure we
exploit to underline the motivation behind our method. De-
composable coordination graphs can represent scenarios
such as robotics swarm control, traffic grid optimization,
and city block planning.

We consider the coordination graphs, Gs = (Vs, Es) and
Gτ = (Vτ , Eτ ), for a source and target environment re-
spectively, where |Vτ | > |Vs|. If the two environments
model similar dynamics, e.g. are both traffic grid networks,
but differ in the number of agents, we expect some portion
of the larger coordination graph to be nearly isomorphic
to a portion of the smaller one. If the larger graph is then
decomposable, we can find its corresponding cut S and
choose the source environment with a coordination graph
most similar to S.

Given a decomposable coordination graph for the target environment, the motivation for transferring
parameters between the source and target environments is clear; the optimal policy π∗s that maximizes
the value function in the source environment Qs also maximizes the contribution of its corresponding
group of agents to the global reward. Then, under the condition that agent behaviour in the target
environment only depends on neighboring agents (with structure isomorphic to S), the mapping of
π∗s from S to cuts of Gτ will also maximize reward in the target environment.

For target environments in which a static coordination graph is not known, we instead rely on dynamic
coordination graphs [23], where a learned graph structure is conditioned on current state. Under the
assumption that an agent’s actions are only influenced by its neighborhood, we expect that a source
environment that envelopes this neighborhood size is sufficient to capture knowledge about these
localities of interaction. Then, the arguments for transfer learning in the multi-task domain apply as
the method falls under the paradigms of policy distillation and representation transfer.

Parameter sharing between agent-level policies is vital to the intuition behind either case. In areas of
a decomposable CG where the cuts isomorphic to S overlap, an agent may otherwise be expected
to have two different behaviours. For dynamic coordination graphs, no static mapping to facilitate
transfer of policy networks is defined, and thus, it would be unclear which policy network should
transfer onto a specific agent in the target environment.

3.1 Critic Structure

We propose a joint critic structure that facilitates coordination between agents and captures locality of
agent interactions within an environment. Naturally, due to their ability to aggregate information over
a defined graph structure, a graph convolutional network is the clear choice to model coordination
graphs.

The default implementation considers the adjacency matrix for the GCN, A, to be a coordination
graph with binary edge weights. This is generally a heuristic choice, but given that we only use
static adjacency matrix representations for known decomposable coordination graphs, there will
be an obvious graph structure to follow. Figure 2 depicts the general structure for this joint critic
representation; however, instead of using the self-attention block in the Learned Adjacency Matrix
module, we pass an adjacency matrix in directly.
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Figure 2: The proposed critic structure. Dimensions listed refer to the output shape of the correspond-
ing layer. N is the number of agents, O +A is the shape of an individual agent’s observation-action
pair, and H is the hidden size. The summation and repeat depicted act over the agent dimension.

Soft Edge Weights: For cases in which the coordination graph is dynamic, we must use a learned
adjacency matrix representation, such as the Learned Adjacency Matrix module in Figure 2. Following
the procedure outlined in [23], agent observations are first passed through a self-attention block, and
the resultant attention weights are then used as a soft adjacency matrix. As maintaining differentiability
would be difficult if edge weights were strictly binary, this allows the module to be trained end-to-end
with the rest of the critic. The self-attention block also outputs its input features Fin, used to calculate
the query Q and key K matrices, which corresponds to the agent action-observations encoded by a
linear layer. Fin is then used as the input to the first graph convolutional layer.

We note that general joint critic structures receive the joint state-action pair as input and thus have
variable input shape across differing numbers of agents. The proposed structure instead computes the
features for agents in a single parallel batch, reducing computational cost. Since the input shape is
constant, critics for environments with varying number of agents have the same number of parameters,
allowing for the direct transfer of parameters from the source to the target environment.

The summation that appears towards the end of Figure 2 aggregates observation-action encoding
across agents to produce a joint value Q(s,a) that is then used in training. This type of design has
been shown to be effective for multi-agent domains in the form of value decompostion networks
(VDN) [35] and on set-based data in the form of deep sets [48].

While this section has focused largely on the implementation of a single joint critic, the structure can
easily be extended to algorithms with numerous joint critics, such as MADDPG [27]. Since agent-
level policies must share parameters, it follows that these joint critics must also share parameters.

3.2 Fine-tuning

In the supervised learning domain, fine-tuning refers to the initialization of a new model on pre-trained
parameters and the subsequent training on a new domain. If the initialized model is used on the new
domain without additional training, it is called zero-shot learning; however, if the model learns on a
limited number of examples from the new domain, it becomes few-shot learning.

Our intuition is that there may be some differences in the larger environment which will require
agents to adjust their behaviour, as specified in Section 4. However, due to the knowledge distilled by
training on the source environment, we are able to show empirically that much fewer training samples
are needed to achieve similar results. As a result, we claim that the fine-tuning method can be viewed
as few-shot learning. We note that the base procedure without fine-tuning may be preferable in cases
where environment dynamics do not change when more agents are introduced or when the target
environment is extremely expensive to sample from. We give the pseudo-code for both proposed
methods in Appendix C.
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4 Results

We present experiments on three environments: park lights, traffic junction [44], and cooperative
navigation [27]. All environments require inter-agent coordination to receive high rewards as
evidenced by the performance of the baseline methods. For each case, we choose the source
environment to be the smallest non-trivial subset of agents in the target environment where key
environment dynamics are captured. For example, cooperative navigation requires n = 3 due to the
fact that we observe 2 other agents in the observation space, and traffic junction must have 4 agents
(2× 2) so that each possible configuration for vehicle turns exist. Environment hyper parameters and
minor implementation details can be found in Appendix A.

Cooperative navigation follows a particular paradigm possible for multi-agent settings: the nearest
neighbor observation space, where agents receive the observations of their closest neighbors as
well as their own. The related problem of constructing a k-NN graph has been shown to be naively
quadratic in the number of agents [3] and even with state-of-the-art optimizations, subquadratic
in the worst case [13]. Thus, we claim that zero-shot performance is especially important in this
environment; limiting the number of samples needed from the target environment will drastically
reduce computational costs. A list of simulation times can be found in Table 1 in Appendix A.

For each environment, we compare the same implementation of COMA on two different critics: our
proposed architecture, labeled with (GCN), and a standard multi-layer perceptron. The fine-tuning
procedure outlined in Algorithm 2 is labed with (Fine Tune). We establish IAC and IAC (Fine
Tune) as the baseline methods for comparison, given that there is no central coordination scheme for
these methods. IAC (Fine Tune) initializes its parameters with a model pre-trained on the source
environment and is fine-tuned on the target environment, like COMA (Fine Tune); this is possible
since its independent critics keep a constant input shape with respect to the number of agents. To
ensure fair comparison, we keep the number of learnable parameters across all algorithms the same.
Further information can be found in Appendix B.

4.1 Park Lights

Figure 3: Training reward on the
source environment. Refer to Fig-
ure 4 for the rest of the experiments.

We create the park lights environment as a model of outdoor
public lighting and as a way to isolate the benefits of our transfer
learning approach. Here, agents are situated on a N ×M grid
and model individual park lights. At each timestep, an agent
receives information about its 8 adjacent neighbors, containing
only knowledge about whether that agent’s light is on or off, the
state of its own light, and the number of timesteps its light has
been in that state. Agents must then choose to either toggle their
light or do nothing, with each illuminated light also giving light
to its 8 adjacent cells. The global reward is then the function
T − 0.1

∑N×M
i=0 ti, where T is the total number of cells lit,

either by its corresponding agent or by the 8 agents adjacent to
it, and ti is the number of timesteps agent i’s light has been on.

(a) Zero-shot (b) Zero-shot (c) Zero-shot

Figure 4: Park Lights Environment (3 target environments). GCN uses an adjacency matrix with
edges between agents in adjacent cells.
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Figure 3 shows the average performance of the algorithms on episodes of length 100 during training.
Notice that the optimal policy requires that two adjacent agents not have their lights on at the same
time and that agents alternate illuminating adjacent squares. As a result of this essential coordination,
IAC is unable to converge; each individual agent can only observe whether its neighbors has their
lights on or off at a given timestep, so it is unable to predict whether it or its adjacent agents should
toggle their light.

We see that the zero-shot performance (Figure 4) of the policy trained on the proposed GCN
architecture is the best. This follows logically from the fact that park lights has a decomposable
coordination graph since increasing the size of the grid does not change environment dynamics.
Furthermore, even though the return of COMA is comparable to that of COMA (GCN) in the source
environment, the performance gap widens in each of the target environments, performing about as
well as IAC. This indicates that a simple MLP critic is not able to capture and distill knowledge
about agent-level interactions and that the GCN model of the coordination graph is what facilitates
knowledge transfer.

4.2 Traffic Junction

The traffic junction environment is a popular benchmark in multi-agent reinforcement learning where
cars are randomly added to a traffic grid network and must avoid collisions as they travel to their
pre-determined destinations. At every intersection of the N ×M road network, an agent models
the traffic light and is able to observe information within a limited range of one grid from itself. To
prevent flickering of lights, agents are able to toggle the color of the traffic light every 5 timesteps.

Even though the traffic junction environment is commonly used in literature, there is no universal
reward function that all works agree upon. [50] suggests that a reward based on the queue length at
traffic lights is optimal for learning, so in this work, we follow the implementation given by [49],
where the reward function is a combination of queue length, wait time, and vehicle delay. However,
to better indicate transfer performance, we switch to episodic rollouts of length 100 rather than follow
an infinite horizon approach. Furthermore, we introduce the Static baseline, which switches the color
of the traffic lights every 5 timesteps (as soon as they can be switched). This represents a common
real-world implementation of traffic lights, and thus is included to better compare results.

(a) Training on Source Environment (b) Fine-tuning (c) Fine-tuning

Figure 5: Traffic Junction Environment (1 source and 2 target environments). GCN uses an adjacency
matrix with edges corresponding to roads between agents. All methods other than COMA (Fine
Tune) and IAC (Fine Tune) are trained from scratch on the target environments.

In contrast to park lights, the actions of a traffic light agent will eventually influence the actions of
agents beyond those immediately adjacent to it given that vehicles take many timesteps to travel
down the road. While the coordination graph is still structured the same as the road network itself (as
an agent does not interact with agents other than its neighbors in the same timestep), we expect that
increasing the grid size has some non-trivial impact on optimal behaviors. Figure 5 demonstrates that
our approach is reasonable in this environment. We observe that while the zero-shot performance
of the proposed critic is high, fine-tuning it with a few samples of the target environment is able
to improve its performance. As a result, our method converges much quicker than the others and
generally has the best performance.
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(a) Training on Source Environment (b) Fine-tuning (c) Fine-tuning

Figure 6: Cooperative Navigation Environment (1 source and 2 target environments). GCN uses the
learned adjacency matrix depicted in Figure 2. All methods other than COMA (Fine Tune) and IAC
(Fine Tune) are trained from scratch on the target environments.

4.3 Cooperative Navigation

Cooperative navigation is a commonly used scenario for the popular multi-agent particle environment
(MPE) [27]. Here, N agents are tasked with cooperatively covering N landmarks across the map
and are able to observe information about the k closest landmarks and agents. We follow the
implementation given by the official codebase for [26].

Figure 7: Cooperative Navi-
gation Environment (2 target
environments). Zero-shot per-
formance

As demonstrated by Table 1, the k-nearest neighbors observation
space causes superlinear growth in runtime with respect to the num-
ber of agents in the environment. Thus, we provide fine-tuned
methods only for environments up to n = 30; we emphasize that
zero-shot performance becomes much more critical as the number
of agents grows beyond that amount. Since there is no clear coor-
dination graph encoded into the structure of the environment, we
use the Learned Adjacency Matrix module illustrated in Figure 2 to
learn a dynamic coordination graph. To maintain fair comparison,
we also include the parameters introduced here into the total count.

We observe in Figure 6 that while the GCN critic with the Learned
Adjacency Matrix module does converge, it is less consistently mono-
tonic when compared to the MLP critic, particularly when fine-
tuning is used. Most importantly though, the zero-shot performance
of the proposed critic is still high (and the highest in Figure 7),
indicating that transfer is effective even in environments where a
coordination graph is completely unknown. This can be explained
by the fact that the dynamic coordination graph model may not ad-
just well to environments with a different amount of agents. The
architecture learns a representation of dynamics in the smaller source
environment, which corresponds to strong performance on the target
environment; however, we hypothesize that suddenly introducing
many more agents destabilizes the self-attention module, as the nearest agents observed by an individ-
ual varies more in the larger environments (the n = 3 source environment always observes the same
agents). The module then needs to adjust its learned queries to account for this shift in input domain.

5 Conclusion and Future Work

In this work, we propose a joint critic architecture that is able to be transferred directly between
environments with differing numbers of agents. While we demonstrate in Section 4 that it performs
better than baseline critics and is able to effectively facilitate knowledge distillation, we acknowledge
that its reliance on parameter sharing and a simple GCN architecture can be limiting [7]. In future
works, we would like to investigate the possibilities of using more of the various critic structures
found in literature, such as hypernetworks [32].

We further propose a transfer learning procedure to share knowledge between a single source environ-
ment and multiple target environments. This is effective for the environments that we experiment
in; however, there may be cases where utilizing knowledge from multiple source environments can
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improve performance, such as in the single agent setting [33, 46]. We leave the choice of these source
environments – selecting a cut S from the coordination graph of the target environment – to future
work.
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Supplementary Material for Large Scale Coordination Transfer
for Copperative Multi-Agent Reinforcement Learning

A Experiment Details

All methods for each environment are trained over 4 separate seeds and evaluated by averaging 4
evaluation episodes.

Table 1: Average environment simulation times (100 step)

Environment Number of Agents Training Time

Park Lights 4 4.92e-03 sec
75 0.0812 sec
100 0.106 sec
400 0.425 sec

Traffic Junction 4 3.37 sec
100 19.5 sec
200 67.0 sec

Cooperative Navigation 3 0.0828 sec
15 3.57 sec
30 25.2 sec
100 113 sec
200 7312 sec

Table 1 depicts the simulation time of a hundred steps in the corresponding environment. While
these type of explicit computational costs are not often shown in literature due to their dependence on
factors such as hardware, cluster usage, and implementation, we include this table to illustrate the
importance of maximizing knowledge transferred from the source environment. All times refer to
the same implementation on the same hardware (Intel Xeon Silver 4116 CPU and NVIDIA GeForce
RTX 2080 Ti), and overall cluster usage is kept constant to the best of our ability.

A.1 Park Lights

Agents are located within cells of an N ×M grid and are given two possible actions corresponding
with the state of their light: [ON, OFF]. ON lights are able to illuminate all cells within a 3 × 3
enclosure around them. At each timestep, an agent observes: 1) the state (ON or OFF) of the lights
corresponding to agents in the 8 adjacent grids, 2) the state of their own light, and 3) the number of
timesteps their light has been in the ON state. This corresponds with an observation shape of 18. All
transitions are deterministic, and lights have randomly initialized state. We compare algorithms with
approximately 5k policy parameters and 80k critic parameters, where policy and critic networks are
share parameters across all agents.

A.2 Traffic Junction

We follow the traffic lights implementation from the official FLOW repository1. We follow the reward
function given by the authors of [49], which corresponds to a linear combination of queue length, wait
time, vehicle delay, emergency stops, traffic light phase changes, and the number of vehicles passing
the traffic light. Traffic light agents are given two actions, [NO-OP, CHANGE], and are allowed to
change their lights every 5 timesteps. Observation spaces and SUMO parameters likewise follow
[49]. We allow agents to observe a finite distance around them, gathering information about vehicle
velocity, distance to intersection, average waiting time, and queue length as well as run heterogenous

1https://github.com/flow-project/flow
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autonomous vehicles over the road network. Here, we compare algorithms with approximately 5k
policy parameters and 90k critic parameters.

A.3 Cooperative Navigation

For all cooperative navigation scenarios, we follow implementation given by [26]. However, we fix
the number of observed agents in the observation space to 2 and set the number of landmarks to N ,
the total number of agents in the environment. The environment then uses a discrete action space,
[NO-OP, LEFT, RIGHT, UP, DOWN], with each direction corresponding to noisy force on the agent
resulting in movement. Finally, we compare algorithms with approximately 6k policy parameters and
250k critic parameters.

B Baseline Implementation Details

Policy networks between all methods across all agents share the same structure. Table 2 displays the
corresponding layer types and shapes. We remark that this corresponds with a basic MLP policy that
outputs the probability of each action in the action space.

Table 2: Policy Network Structure

Layer Size

Linear + ReLU 64
Linear + ReLU 64
Linear + Softmax Action Shape

Critic networks differ between MLP joint critics, MLP individual critics, and GCN critics. As is
expected, COMA uses the MLP joint critic, COMA (GCN) uses the GCN critic, and IAC uses the
MLP individual critic. All critics take observation-action pairs as input, and we scale layer sizes
depending on the environment to match the number of parameters for each algorithm. Architectures
are listed below:

Table 3: Joint/Individual MLP Critic Structure

Layer Size

Linear + ReLU Varying (Usually 256 or 512)
Linear + ReLU Varying (Usually 256 or 512)
Linear 1

Table 4: GCN Critic Structure

Layer Size

Linear (Attention Encoding) Varying (Usually 256 or 512)
Linear (Attention Queries) Varying (Usually 256 or 512)
Linear (Attention Values) Varying (Usually 256 or 512)

Linear + ReLU Varying (Usually 256 or 512)
Matrix Multiplication + Linear + ReLU Varying (Usually 256 or 512)
Sum + Linear 1

COMA and IAC share the same general parameters. We update each step of the environment on a
replay buffer of size one and do not use batching across environments. Table 5 provides all relevant
hyperparameters for the algorithms.
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Table 5: Algorithm Hyperparameters

Parameters Value

Discount γ 0.95
Exploration Rate 0.1
Exploration Anneal 0.998
Policy learning rate 0.0001
Critic learning rate 0.001
Optimizer Adam

C Algorithms

Algorithm 1 Multiagent Large Scale Coordination Transfer
Require: Ts iterations on Es, a policy gradient multi-agent reinforcement learning method RL
that uses our proposed critic structure
Initialize: Policy parameters θs and critic parameters φs.
while t < Ts do:

Train agents on the source environment: θs, φs = RL(θs, φs, Es)
end while
Evaluate: Measure performance of πθτ on Eτ .

Algorithm 2 Multiagent Large Scale Coordination Transfer with Fine-Tuning
Require: Ts iterations on Es, Tτ iterations on Eτ , a policy gradient multi-agent reinforcement
learning method RL that uses our proposed critic structure
Initialize: Policy parameters θs and critic parameters φs.
while t < Ts do:

Train agents on the source environment: θs, φs = RL(θs, φs, Es)
end while
Transfer: Initalize policy parameters θτ = θs and critic parameters φτ = φs
while t < Tτ do:

Train agents on the target environment: θτ , φτ = RL(θτ , φτ , Eτ )
end while
Evaluate: Measure performance of πθτ on Eτ .
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