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Abstract

Reference-driven image completion, which restores missing regions in a target
view using additional images, is particularly challenging when the target view
differs significantly from the references. Existing generative methods rely solely
on diffusion priors and, without geometric cues such as camera pose or depth, often
produce misaligned or implausible content. We propose GeoComplete, a novel
framework that incorporates explicit 3D structural guidance to enforce geomet-
ric consistency in the completed regions, setting it apart from prior image-only
approaches. GeoComplete introduces two key ideas: conditioning the diffusion
process on projected point clouds to infuse geometric information, and applying
target-aware masking to guide the model toward relevant reference cues. The
framework features a dual-branch diffusion architecture. One branch synthesizes
the missing regions from the masked target, while the other extracts geometric
features from the projected point cloud. Joint self-attention across branches en-
sures coherent and accurate completion. To address regions visible in references
but absent in the target, we project the target view into each reference to detect
occluded areas, which are then masked during training. This target-aware masking
directs the model to focus on useful cues, enhancing performance in difficult sce-
narios. By integrating a geometry-aware dual-branch diffusion architecture with a
target-aware masking strategy, GeoComplete offers a unified and robust solution
for geometry-conditioned image completion. Experiments show that GeoComplete
achieves a 17.1% PSNR improvement over state-of-the-art methods, significantly
boosting geometric accuracy while maintaining high visual quality.

1 Introduction

Reference-driven image completion restores missing regions in a target image using additional views
of the same scene. However, variations in viewpoint, occlusions, dynamic content, and camera
settings make it difficult to identify and transfer useful information, posing significant challenges for
accurate completion.

To address these challenges, traditional geometry-based methods [35, 48],149] rely on a sequential
pipeline of pose estimation, depth reconstruction, 3D warping, patch fusion, and image harmonization.
However, as highlighted in [40], this approach is fragile, as early-stage errors often cascade and
lead to failure in complex scenes with occlusions, dynamic content, or ambiguous geometry. To
handle complex scenes, generative methods like RealFill [40] fine-tune diffusion models on masked
reference images to directly synthesize missing regions. While effective, RealFill struggles when the
target view differs significantly from the references. Without geometric cues like camera poses or
depth, it often produces hallucinated structures or misaligned completions.

In this paper, we propose GeoComplete, a geometry-aware image completion framework that synthe-
sizes missing regions with strong geometric consistency. GeoComplete is based on two key ideas: (1)
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Figure 1: Given a few reference images of the same scene and a target image with missing regions,
our method completes the target’s missing regions while preserving geometric consistency more
effectively than the state-of-the-art Paint-by-Example [44]. Semi-transparent white masks indicate
the known, unaltered regions of the target image.

injecting explicit geometric cues into a diffusion model by conditioning on the projected point cloud,
and (2) guiding the model to focus on informative reference regions via target-aware masking. We
define “informative regions” as areas that are visible in reference views but missing from the target.

To obtain point clouds, our framework integrates two components: Visual Geometry Grounded
Transformer (VGGT) [41]] and Language Segment Anything (LangSAM) [25] 22, [32]]. Unlike
traditional geometry-based methods (e.g., [33} 149])) that rely on sequential estimation steps,
VGGT predicts key 3D attributes in a single forward pass. Trained on large-scale data, VGGT
delivers accurate and efficient geometry estimation, even in complex scenes, though its performance
may degrade with dynamic objects. To address this, we integrate LangSAM, which segments dynamic
regions using text prompts. By filtering out moving content before point cloud generation, LangSAM
enhances the robustness of geometry estimation. Prompts can be provided manually or generated
automatically by a large language model (LLM) [T

The resulting point cloud is projected to the target view and fed into our dual-branch diffusion
framework, comprising a target branch and a cloud branch. The target branch encodes the masked
image to generate missing content. The cloud branch processes the projected point cloud to provide
geometric guidance. Joint self-attention fuses the two branches, enabling geometry-aware synthesis
of missing regions.

To address the challenge of completing regions not visible in the target view, we introduce target-
aware masking to guide the model toward useful and non-redundant reference cues. Using 3D
attributes from VGGT, we project the target view into each reference to identify informative regions.
Rather than masking reference images randomly as in RealFill [40], we selectively mask these
informative regions to encourage the model to learn from content that complements the target view.

Figure [T] shows that GeoComplete significantly outperforms state-of-the-art methods, producing
missing regions with strong geometric consistency. The main contributions of this work are:

* Dual-branch Diffusion: We propose a geometry-aware dual-branch diffusion model that
synthesizes missing regions with strong geometric consistency. It comprises a target branch,
which conditions the diffusion model on the masked image to generate missing content, and
a cloud branch, which conditions it on the projected point cloud to provide geometric cues.

» Target-aware Masking Strategy: Unlike RealFill, which applies random masking to the
reference image, our method selectively masks informative regions to guide the diffusion
model toward meaningful cues, leading to more accurate and coherent completions.

* Extensive Experiments: GeoComplete significantly outperforms existing methods in both
structural accuracy and visual fidelity. Specifically, our method surpasses state-of-the-art
approaches by 17.1% in PSNR on benchmark datasets.
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Figure 2: Overview of our GeoComplete framework: We first construct a point cloud from
the reference and target images. During training, target-aware masking selectively occludes both
reference images and their projected point clouds to highlight informative regions. These inputs are
processed by a dual-branch diffusion model: the target branch encodes the masked image, while the
cloud branch encodes the projected point cloud. Joint self-attention fuses the two, allowing geometric
cues to guide synthesis. At inference, the masked target image and its projected point cloud are fed
into the finetuned model to complete the missing regions.

2 Related Work

Image Completion Traditional methods [15, 21} [38] [18] employ task-specific networks to fill
missing regions. Existing generative approaches [45, [10} 24, |9, 1377, 29, 12, [7, 16, 142} 20] leverage
pre-trained diffusion models to achieve strong image generation capabilities. Inspired by this, several
methods [37, 129, [2] fine-tune diffusion models with prompt guidance for image completion. In our
setting, text prompts fail to capture the rich cues available in reference images, leading to suboptimal
results. Reference-driven methods [49, 48| [35]] combine depth and pose estimation, image warping,
and harmonization, but these components are error-prone and often compound failures, especially
in dynamic scenes. Moreover, their limited generative ability hinders plausible content synthesis.
Recent diffusion-based methods [44, 40]] draw on Stable Diffusion priors. Paint-by-Example [44]
uses the target image and a CLIP embedding [28]] of a single reference for semantic guidance,
while RealFill [40] adapts the diffusion model per scene via LoRA to reconstruct masked references
with multiple inputs. However, both approaches neglect geometric cues such as depth and pose,
which are crucial for spatial consistency across views. Our method addresses this gap by explicitly
injecting geometry into the diffusion model, enabling geometry-aware generation with improved
spatial alignment. Concurrently, other works [33, 36]] couple NeRF [26] or 3DGS [17, 5] with
diffusion for scene inpainting. For example, the Geometric-aware 3D Scene Inpainter [33] conditions
diffusion on multi-view images and geometry to reconstruct 3D structure. These methods, however,
assume shared geometry across views, limiting applicability in dynamic or varying conditions.

Geometric Information Estimation Existing geometry-based completion methods [49] 48, 35]]
depend on separate estimation modules such as camera pose [46, [16], monocular depth [30, |19} 114],
and feature matching with robust fitting [34} 12, 3| 31} 4] to enable view warping. In contrast, the
Visual Geometry Grounded Transformer (VGGT) [41] unifies these tasks by jointly predicting camera
parameters, depth maps, point maps, and 3D tracks directly from input views. While VGGT achieves
strong results in static scenes, it struggles with dynamic objects. To address this, we incorporate
LangSAM [25) 122} 32] to filter dynamic content before applying VGGT, enabling more reliable 3D
attribute prediction in such settings.

3 Proposed Method

Figure [2] shows the overall pipeline of GeoComplete, which comprises three key components: point
cloud generation, dual-branch diffusion, and target-aware masking. The point cloud generation
module estimates camera parameters and depth maps from the reference and target images, constructs
a 3D point cloud, and projects it onto both views to provide geometric guidance. The dual-branch
diffusion model then synthesizes the missing regions while integrating this geometric information.
Finally, the target-aware masking strategy directs the model to focus on reference regions that are not
visible from the target view, encouraging the use of complementary cues.
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Figure 3: Overview of our point cloud generation pipeline. Given reference and target images, we
first obtain a text prompt describing dynamic objects, either provided by users or generated by an
LLM [1]]. Based on the prompt, LangSAM [25} 22, |32]] is employed to segment and remove dynamic
regions. VGGT [41]] is then applied to estimate camera parameters and depth maps, which are used
to construct and project the 3D point cloud.

3.1 Point Cloud Generation

Figure [3| shows our point cloud generation pipeline. Given a set of reference images and a target
image, we first obtain a text prompt that describes dynamic objects in the scene. The prompt is
preferably provided by the user; if unavailable, it is automatically generated by a large language
model (LLM)[1]]. LangSAM]125} 22} 132]] uses this prompt to segment and filter out dynamic regions
in both the reference and target images. By removing dynamic objects, geometry estimation focuses
on the static scene, enabling reliable correspondences across views.

We use VGGT [41]] to jointly estimate camera parameters and depth maps from the filtered reference
and target images, avoiding the error accumulation common in multi-stage geometry pipelines. The
resulting 3D attributes form point clouds, which are projected onto both views to provide explicit
geometric guidance. To prevent over-reliance on potentially inaccurate point clouds, we apply a
conditional cloud masking strategy (Section that introduces random masking during training.

Given a set of reference images {x*! | i = 1,2,..., N™'} and a target image x***, we introduce
a scene-specific text prompt p™ to describe dynamic objects. If not provided by the user, p9¥™ is
automatically generated by a large language model (LLM). Using this prompt, we apply LangSAM
to segment dynamic regions in both reference and target images. The resulting segmentation masks
are {min} for the references and m*®* for the target. We then mask out these dynamic regions to
produce filtered images {X:°!} and X', preserving only the static content of the scene.

To estimate the camera parameters and depth maps for all filtered reference images and the target
image, we formulate the prediction process using VGGT as:

({ei} ™ A}, ™) = fuger (K} X3 gt » @

where {ci®'} and {d!*!} are the predicted camera parameters and depth maps for the reference
images, and ¢**" and d**" are those for the target image. 6,44 is the pre-trained parameters of VGGT.

To obtain the projected point cloud for each reference image xgef, we first exclude its own information
during point cloud construction. The resulting point cloud is then projected onto the reference view,
formulated as:

p§ef - (ﬂ,fl ({d;ef,C?Ef | ] 7& Z} U {dtar7ctar}) 7C£ef) , (2)

where 771 (-) denotes the back-projection from depth maps to 3D space, and 7(-) denotes the forward
projection onto the 2D image plane. p*®f is the projected point cloud for the reference image x:°'.

i ()

Similarly, the point cloud constructed from all reference images is projected onto the target view:

ptar =7 (77_1 ({dEef’ C;_ef | Vj}) ’Ctar) , (3)

tar

where p'" is the projected point cloud for the target image x"3".



3.2 Target-aware Masking

During training, we apply target-aware masking to selectively mask both the reference images
and their projected point clouds. Using 3D geometric attributes from point cloud generation, we
project the target image into each reference view to identify regions that are absent in the target
(i.e., informative regions). As shown in Figure |2} these informative regions provide complementary
information, while the remaining areas are treated as redundant cues.

We then apply two conditional masking strategies: conditional reference masking and conditional
cloud masking. The reference masking randomly masks informative regions while preserving
redundant ones, encouraging the model to learn from complementary content. The cloud masking, on
the other hand, randomly applies white padding to the projected point maps while keeping informative
regions intact, guiding the model to leverage geometric cues in these informative areas.

Given the predicted depth maps ({d}*/} and d'*") and camera parameters ({c:°'} and c'*"), we

project the filtered target image x*** onto each reference view x:°f, defined as:

pgar—nef S (77_1 (dtar’ Ctar) 7C;ef) , (4)

where pgar—nef

projection into a binary mask r
to 1.

is the projection of the target view into the i-th reference view. We convert this
ref where visible regions are set to 0 and zero-valued regions are set

i

The conditional reference masking is defined as:

)A(yef _ Xgef ® ((1 o F§Ef) + r;"ef ® mgand) , (5)

(2

where m!* € {0, 1}#*W is a random binary mask applied only to the informative regions, and

H and W are the height and width of the reference image. The operator ® denotes element-wise
multiplication, and X3! is the resulting masked reference image. This operation preserves redundant

content while randomly masking informative, non-redundant regions.

In contrast, conditional cloud masking retains non-redundant geometric regions while applying
random masking to redundant ones. It is defined as:

point __ _ ref ref rand
m;"" =1 + (1 -1}%) O m;™, ©)
point

7

~ref f oint
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where vg)) is a predefined fill value assigned to masked-out points, and f)ff is the masked projected

point cloud for the i-th reference view. This operation guides the model to rely on geometric cues in
regions where visual reference content is lacking.

Following the training strategy of [40]], we also sample the target image x"%*

We apply random masking to obtain X'3, while the projected point cloud p

~tar

p

as input during training.
tar js directly used as

3.3 Dual-branch Diffusion

Figure [2] shows the pipeline of our dual-branch diffusion model, which consists of a target branch
and a cloud branch. The target branch conditions the diffusion model on a masked image to generate
the missing regions. The cloud branch conditions it on a projected point cloud to provide geometric
cues. The masked image and projected point cloud are first encoded into the latent space using a
VAE encoder. The resulting latent features, along with a noisy latent, are then passed to a UNet for
denoising.

To enable information exchange between branches, we concatenate hidden features from the target
and cloud branches before computing self-attention. This design allows the model to adaptively
integrate visual and geometric cues. However, since most regions in the target image are masked,
the resulting latent features often lack meaningful information. Although these masked tokens can
attend to the cloud branch, they struggle to extract useful guidance. To overcome this, we modify the
attention mask to explicitly link each masked token in the target branch to its corresponding token
in the cloud branch. This ensures that the target branch receives direct geometric cues, even when
visual information is absent.



Table 1: Quantitative comparisons on the RealBench benchmark. We evaluate both prompt-based and
reference-based inpainting methods across low-level (PSNR, SSIM, LPIPS), mid-level (DreamSim),
and high-level (DINO, CLIP) metrics. Higher PSNR, SSIM, DINO, CLIP, and User Study scores
(ranging from 1 to 5), and lower LPIPS and DreamSim scores, indicate better performance. We

highlight the best and second-best results for each metric.

| RealBench | QualBench
Method | Low-level | Mid-level | High-level | User
| PSNRT | SSIM 1 | LPIPS | | DreamSim | | DINO 1 | CLIP+ | Study 1
| SD Inpaint | 1063 | 0282 | 0605 | 0213 | 0831 | 0874 | 2.3
Prompt-based " Geperative Fill | 1092 | 0311 | 0598 | 0212 | 0851 | 0.898 | 2.6l
| Paint-by-Example | 10.13 | 0.244 | 0642 | 0237 | 0797 | 0.859 | 185
| TransFill | 1328 | 0404 | 0542 | 0192 | 0860 | 0866 |  —
Reference-based | g1 | 1478 | 0424 | 0431 | 0077 | 0948 | 0962 | 398
| Ours | 1732 | 0578 | 0197 | 003 | 098 | 0987 | 4.6l

Given the hidden features from the target and cloud branches, denoted as hy,, and hy,;, we concatenate
them along the token dimension:

hcat = Concat(htara hpt)a (7)

where h.,; € R?:%4, with L representing the number of tokens per branch and d the feature
dimension. The combined features h.,; are then used for self-attention.

To control information flow, we introduce an attention mask my;, € R2E*2L during self-attention.
The mask is constructed to: (1) allow tokens within the same branch to attend to each other, (2)
permit each target-branch token to attend to its corresponding cloud-branch token, and (3) block all
other cross-branch interactions. An illustration of the attention mask is shown in Figure[2] The joint
self-attention is formulated as:

hatn = fself—attn(hcat7 mattn)a (®)

where fieiram(+) denotes the masked self-attention operation, and h,yt, is the resulting attended
feature.

During training, the diffusion loss is defined as:

1 & o
L= 53 Eue[Iw; - (e = ol (0), 4,05 %)) - ©)

j=1

where L is the diffusion loss, B is the batch size, and ey(-) denotes the predicted noise. The
conditional inputs satisfy %; € {%*f} U {x'*} and p; € {pi°f} U {p**}. Here, x;(t) is the
ground-truth image at timestep ¢, and w; is a weighting map indicating valid regions (e.g., visible
areas in the target view). The loss is computed only over these valid regions.

tar tar

During inference, we use p'*" and x'#" as conditional inputs to guide the dual-branch diffusion,
generating missing regions while preserving geometric structures.

4 Experiments

In our experiments, we follow the evaluation protocol of [40] and test on two challenging reference-
based image completion datasets: RealBench and QualBench.

RealBench [40] contains 33 scenes (23 outpainting and 10 inpainting). Each scene provides 1-5
reference images, a target image with missing regions, a binary mask, and a ground-truth completion.
Scenes include large variations between target and references, such as viewpoint, blur, lighting, style,
and pose. Evaluation uses six metrics: PSNR, SSIM, LPIPS [47], DreamSim [13]], DINO [8]], and
CLIP [28]. PSNR, SSIM, and LPIPS capture low-level quality, while DreamSim, DINO, and CLIP
assess perceptual fidelity at mid- and high-levels.
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Figure 4: Qualitative comparisons from Transfill [49], RealFill [4Q], Paint-by-Example [44] and our
method. The red bounding box marks the known, unaltered region of the target image (i.e., the area
inside the box), except for the first-row images, where the known region lies outside the box. Our
method synthesizes missing regions while ensuring better geometric consistency.

QualBench [40] includes 25 scenes collected in the same way but without ground-truth completions.
We therefore conduct a user study where participants rate each result (1-5) based on: (1) realism of
the restored content, (2) consistency with references, and (3) structural and color coherence with the
unmasked target. Higher scores reflect more natural, geometrically consistent, and visually coherent
completions.

4.1 Implementation Details

All experiments are conducted on a server equipped with four NVIDIA GPUs, each with 24 GB of
memory. Our implementation involves three key components: point cloud generation, target-aware
masking, and dual-branch diffusion, each of which is described in detail below.

Point Cloud Generation Our point cloud generation pipeline incorporates two key components:
LangSAM [23] 22} [32] and VGGT [41]. In LangSAM, we employ SAM 2.1-Large [32] for segmen-
tation. The text prompts are either manually provided by users or automatically generated by a large
language model, ChatGPT-4o [27]. Since VGGT only supports inputs of size 518 x 518, we resize
the reference and target images while preserving their aspect ratios. After resizing, a center crop is
applied to obtain the final 518 x 518 resolution.

Target-aware Masking Our target-aware masking consists of a conditional reference masking and
a conditional point masking. Following the strategy in [38},39], the conditional reference masking
first generates multiple random rectangles and constructs the initial mask by either taking their
union or the complement of their union. Subsequently, following Equation [3] it selectively unmasks
less informative regions in the reference images. Similarly, the conditional point masking first
generates the initial mask and then selectively unmasks non-redundant geometric regions, as defined
in Equation[6] The fill value vgy is set to 1 (white) to replace masked-out regions in the projected
point cloud.

Dual-branch Diffusion Our diffusion model is built upon Stable Diffusion 2 Inpainting [37]. We
fine-tune it with LoRA, updating only rank-decomposed layers in the U-Net while keeping original
weights frozen. The LoRA rank is set to 8 to balance adaptation capacity and training efficiency. For
each scene, we fine-tune the model for 2,000 iterations with a batch size of 16. During training, all
reference and target images are resized to a resolution of 512 x 512.
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Figure 5: Qualitative comparisons from Transfill [49]], RealFill [40], Paint-by-Example [44] and our
method. The red bounding box marks the known, unaltered region of the target image (i.e., the area
inside the box). Our method synthesizes missing regions while ensuring better geometric consistency.

4.2 Evaluation

Quantitative Table [T] compares GeoComplete with state-of-the-art methods on RealBench and
QualBench. Baselines include prompt-based approaches (SD Inpaint [37], Generative Fill [2]) and
reference-based methods (Paint-by-Example [44]], TransFill [49], RealFill [40])). The prompt-based
models rely on text input, while the reference-based ones use images for completion.

Compared to prompt-based methods, GeoComplete achieves large gains across all low-level metrics,
improving PSNR by over 5 dB and reducing LPIPS from 0.605 to 0.237. Against TransFill, a
geometry-aware baseline, our model benefits from VGGT and LangSAM to generate more reliable
point clouds, yielding notable improvements. While RealFill already performs strongly with masked
reference conditioning, GeoComplete further improves SSIM (0.424 — 0.555) and reduces LPIPS by
0.194, producing sharper and more perceptually faithful reconstructions. These results underscore the
importance of explicit 3D geometric priors and validate the effectiveness of our dual-branch diffusion
design.

Qualitative Figures [ and [5]show qualitative comparisons on RealBench. Generative frameworks
such as RealFill leverage reference images to produce plausible completions, but without explicit
geometry they often fail to maintain spatial consistency, leading to misaligned or implausible content.
In contrast, GeoComplete enforces geometric consistency by integrating priors from LangSAM and
VGGT within a dual-branch architecture that jointly encodes visual and 3D cues. As illustrated in
Figure [d] GeoComplete reconstructs fine details and preserves scene-level alignment, even under
large viewpoint changes between the target and references.

4.3 Ablation Studies

We conduct ablation experiments to evaluate the contributions of target-aware masking and dual-
branch diffusion. Results are reported in Table[2] Without geometric guidance, our method reduces
to RealFill, shown in the first row as the baseline.

Dual-branch Diffusion We compare GeoComplete with and without explicit geometric cues. As
shown in Table[2] removing geometry causes clear drops across all metrics (e.g., PSNR and SSIM
decrease by 1.59 and 0.131). Figures [] and [3] further illustrate that without geometry, RealFill
often produces hallucinated or misaligned content. By contrast, GeoComplete integrates geometric
information into the generation process, yielding structurally consistent results. This highlights the
importance of explicit geometry in guiding diffusion-based restoration.



Table 2: Ablation study on the effectiveness of dual-branch diffusion, joint self-attention, and
target-aware masking. We report low-level (PSNR, SSIM, LPIPS), mid-level (DreamSim), and
high-level (DINO, CLIP) metrics. Higher PSNR, SSIM, DINO, and CLIP scores and lower LPIPS
and DreamSim scores indicate better performance.

Dual-branch | Joint Self-Attention | Target-aware | Low-level | Mid-level | High-level

Diffusion |  withMask | Masking | PSNRT | SSIM1 | LPIPS | | DreamSim | | DINO 1 | CLIP 1
< | x | x| 1478 | 0424 | 0431 | 0077 | 0948 | 0962
v x | x| 1637 | 0555 | 0237 | 0049 | 0981 | 0982
VR v | x| 1685 | 0564 | 0219 | 0045 | 0983 | 0.984
v v v | 1732 | 0578 | 0197 | 0036 | 098 | 0.987

Table 3: Robustness of GeoComplete to VGGT and LangSAM Errors. We simulate (1) noisy point
clouds, (2) sparse point clouds, and (3) LangSAM segmentation errors. “0% / 25% / 50% / 75%”
indicate ratios of points perturbed or removed. For the LangSAM case, “w/.” and “w/0.” denote
using or removing the masks, while “+Rand.” denotes randomly adding 10% extra masked regions
per mask. CM = Conditional Cloud Masking, JSA = Joint Self-Attention. PSNR (dB) is reported.

Method Noisy Point Cloud Sparse Point Cloud LangSAM (13 scenes)
0% 25%  50%  75% 0% 25%  50%  75% w/. w/o.  +Rand.
RealFill 14.78 14.78 1478 1478 1478 1478 1478 1478 1444 1444 1444
Ours w/o. CM & JSA 1637 14.60 1451 1435 1637 1458 1450 1435 1592 14.54 1458
Ours 17.32 17.14 17.03 1690 17.32 17.18 16.83 16.50 16.83 16.66 16.51

Joint Self-Attention We ablate the joint self-attention module, which fuses target and cloud-branch
features under a controlled attention mask. As shown in Table [2] removing this module results in
noticeable drops in PSNR, CLIP, and DINO, reflecting weaker low-level fidelity and high-level
semantic alignment. These results demonstrate the role of joint self-attention in ensuring alignment
between the target and projected point cloud.

Target-aware Masking We also evaluate the effect of target-aware masking. Removing this strategy
consistently reduces performance across all metrics (e.g., PSNR and SSIM drop by 0.47 and 0.014,
while CLIP and DINO decrease by 0.003). This indicates that target-aware masking helps the model
focus on non-redundant regions in the references, improving inference accuracy and fidelity.

Robustness of GeoComplete GeoComplete relies on upstream modules such as VGGT and
LangSAM, whose outputs may contain errors (see Sec. [3.1). To mitigate this, we introduce condi-
tional cloud masking (CM), which prevents the model from over-relying on unreliable geometry. We
also employ joint self-attention with masking (JSA), which enforces token-to-token links between
the target and cloud branches, ensuring that noisy cloud tokens do not propagate globally through
cross-attention, particularly when they dominate.

To evaluate robustness, we simulate (1) noisy point clouds, (2) sparse point clouds, and (3) LangSAM
segmentation errors. Details can be found in the Appendix. As shown in Table [3] GeoComplete
shows only small drops under these perturbations and consistently outperforms both RealFill and
the variant without CM and JSA. These results demonstrate the effectiveness of CM and JSA in
maintaining strong performance even when upstream predictions are noisy or partially erroneous.

5 Conclusion

We introduced GeoComplete, a geometry-guided diffusion framework for reference-driven image
completion. Unlike existing generative methods that operate solely in the image domain, GeoCom-
plete incorporates explicit 3D geometry by conditioning the diffusion model on projected point
clouds. To guide the model toward meaningful reference cues, we propose a target-aware masking
strategy that filters redundant content and emphasizes complementary regions. Our dual-branch ar-
chitecture jointly processes geometric and visual tokens through self-attention, enabling the synthesis
of structurally accurate and visually coherent results. Extensive experiments on real-world and syn-
thetic benchmarks demonstrate that GeoComplete achieves clear improvements over state-of-the-art
methods in both geometric consistency and perceptual quality.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction are consistent with the paper’s
actual contributions and scope, as detailed in Lines 7-17.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Limitations are discussed in the supplementary material.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: This paper does not include theoretical result.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All implementation details, including hyper-parameters and training settings,
are provided in Section 4.1 to ensure reproducibility of the main experimental results.

Guidelines:
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The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The code will be publicly available upon acceptance of this paper, along with
instructions for reproducing the main experimental results.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to section 4.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We do not include error bars in this paper; instead, we report PSNR, SSIM,
and LPIPS as evaluation metrics, which are widely used in the field.

Guidelines:

* The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please refer to section 4.1.
Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have fully adhered to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The potential societal impacts are provided in the supplementary material.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not pose such risks.
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14.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets are properly credited, and their licenses and terms of use
are respected, as detailed in Section 4.1.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will provide detailed documentation and our code upon acceptance of this
paper to ensure clarity and reproducibility.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human

16.

subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development is this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19


https://neurips.cc/Conferences/2025/LLM

Appendix

A Implementation Details

A.1 Detailed Clarification of Workflow

Initially, we process all reference images and the target image using VGGT and LangSAM to obtain
the point cloud.

During training, given a reference image /...y and its corresponding projected point cloud I.;oyq,
we use our conditional reference masking to mask the reference image, obtaining the augmented
reference image Igug—ref € R3*HXW and the mask image I,,,q5x € R>H*W _We also use our
conditional cloud masking to augment the projected point cloud, resulting in Jqg—cioud € R3XHXW,
We then encode these images into the latent space using a VAE. This results in a latent reference image

I f.‘j}e"t (used as the ground truth), a latent masked reference I, i%t;fﬁe #» and a latent projected point

cloud [latent all in R¥*h*w where h = H/8 and w = W/8. The mask is also downsampled to

aug—cloud?
latent 1xXhXw
Leert e R .

To fine-tune the diffusion model, we add noise to the ground truth latent I, i‘;}ent to obtain a noisy

latent H : H latent glatent latent
latent 7,%:57". The input to the target branch is the concatenation of J; 7S, I <h", and 1.5 ™ ¢,

resulting in a tensor of shape R?*"*™_ Similarly, the input to the cloud branch is the concatenation
of I}ufent, Ilatent, and I}t 4, also in R9*"* . The objective is to estimate the added noise,

which has shape R4*h>xw,

During inference, given the target image I;,,, its corresponding projected point cloud /.;,4, and
the mask image I, 451, we directly process them into the latent space. This results in a latent target
Ilatent and a latent projected point cloud I'¢'¢t. The mask is also downsampled to I'etent We

initialize If,%tiizt using standard Gaussian noise. Then, we concatenate the corresponding latent
tensors to construct the inputs for the target and cloud branches. After an iterative denoising process

and using the VAE decoder, we obtain the final output.

A.2 Details of Baseline Methods

For SD Inpaint [37] and Generative Fill [2], we follow the instructions from RealFill to generate
long descriptions for each scene with the help of ChatGPT. For RealFill [40]], we follow their official
setting by fixing the text prompt to a sentence containing a rare token, i.e., “a photo of [V]”. For a
fair comparison, our method also adopts this setting.

A.3 Robustness Evaluation Details
To evaluate robustness, we simulate three conditions that introduce errors from VGGT and LangSAM:

1. Noisy Point Cloud: Gaussian noise is added to a subset of points in the generated 3D point
cloud to mimic degraded geometry.

2. Sparse Point Cloud: A ratio of points is randomly dropped from the 3D point cloud before
projection to simulate sparse geometry.

3. Segmentation Errors: We manually selected 13 RealBench scenes with significant dynamic
objects and tested two variants: (1) removing LangSAM masks entirely and (2) introducing
errors by randomly adding 10% extra masked regions per mask.

A.4 Prompt Design

Since dynamic objects can significantly affect the geometric predictions of VGGT [41]], we introduce
LangSAM [25 122} 132] to filter out dynamic content before applying VGGT, thereby enabling robust
3D attribute prediction even in dynamic scenes. Prompts can be provided manually or generated
automatically by a large language model (LLM) [1]].

When using an LLM, we upload all reference images along with the target image. The following
guided prompt is used:
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Table 4: Comparison with existing reference-guided image generation methods. Results are reported
on different scene subsets (13 for Step1X-Edit, 28 for OmniGen, and 28 for Bagel). PSNR and SSIM
are reported.

13 scenes (Step1x-Edit) \ 28 scenes (OmniGen) \ 28 scenes (Bagel)

Method

PSNR SSIM \ PSNR SSIM \ PSNR SSIM
Step1X-Edit 9.95 0.3678 - - - -
OmniGen - - 8.93 0.3525 - -
Bagel - - - - 10.83 0.4705
RealFill 15.75 0.5130 14.92 0.5156 14.92 0.5043
Ours 18.12 0.5869 17.37 0.5857 17.48 0.5827

Identify and list only the objects that are inconsistent across the
images, such as dynamic objects that change position, appearance, or

are missing. Ignore consistent background objects even if the viewpoint
changes slightly.

B Comparison with Reference-Guided Image Editing Methods

In this section, we evaluate existing reference-guided image editing methods, including OmniGen
[43]], Steplx-Edit [23], and Bagel [11]. We initially follow the official instructions to run these
baseline models. For scenes where the models fail to perform adequately, we employ ChatGPT to
generate prompts and manually refine them as needed. However, these methods fail to handle all
scenes. In some cases, the restored results become completely white or visually meaningless. In
summary, only 28 scenes from OmniGen, 13 scenes from Step1X-Edit, and 28 scenes from Bagel
produce valid outputs. PSNR and SSIM are computed on these successfully restored results, as
summarized in Table ] Overall, the results suggest that under the reference-based image completion
setting, existing reference-guided image generation methods still perform suboptimally.

C Computational Cost

Table[5|summarizes the computational cost (using four 24G GPUs) of Paint-by-Example [44]], RealFill
[40], and our method. Both RealFill and our method are based on per-scene optimization. For a fair
comparison, we adopt identical experimental settings, including batch size, number of optimization
steps, and number of GPUs. Although our approach introduces slightly higher overhead than RealFill,
it achieves significantly better reconstruction quality. Notably, our method reaches promising results
within 500 steps (18 mins), outperforming RealFill even at 2000 steps (50 mins).

Compared to one-shot models such as Paint-by-Example, per-scene optimization methods gener-
ally provide more accurate content restoration but are less suitable for time-sensitive or real-time
applications. As shown in Figure[d]and Figure[5] our method produces more faithful results, while
Paint-by-Example often fails to preserve fine-grained content from the reference images.

To explore potential acceleration strategies, we first identify that the primary computational bottleneck
in our framework lies in the 2,000-step per-scene fine-tuning process. One potential solution is to
pre-train the LoRA parameters of the diffusion model on a large-scale, task-specific dataset. This
would serve as a strong initialization for subsequent per-scene adaptation, thereby significantly
reducing the number of required optimization steps while preserving the quality of generated results.
We consider this an important direction for future work.

D Limitations

While GeoComplete effectively leverages geometric cues for reference-driven image completion,
it inherits certain limitations from its components. For example, the quality of the projected point
cloud depends on the accuracy of the geometry estimation module (e.g., VGGT [41])). To mitigate the
impact of inaccurate point clouds, we introduce a conditional cloud masking strategy that prevents
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Table 5: Computational cost and performance comparison. We report pre-processing overhead,
training time, inference time, and PSNR (dB).

Method Pre-processing (one time) Training Time Inference PSNR
Paint-by-Example None One-shot ~30s 10.13
RealFill [40] (500 steps) None 12 mins ~8s 13.67
RealFill [40] (2000 steps) None 48 mins ~8s 14.78
Ours (500 steps) VGGT + LangSAM <30s 18 mins ~15s 16.33
Ours (2000 steps) VGGT + LangSAM <30s 72 mins ~15s 17.32

the model from relying on unreliable geometric input. This allows our framework to generate realistic
results even when the point cloud is inaccurate. However, when the point cloud is imprecise, the
framework may not be able to fully exploit geometric information, which can affect completion
quality in those regions.

E Societal Impact

Reference-driven image completion can benefit various applications, including occlusion removal,
image editing, and scene understanding in both consumer and industrial domains. GeoComplete
introduces explicit geometric information to guide the completion process, reducing hallucination
risks and improving structural fidelity. However, as the framework relies on generative models to
synthesize missing content, it may still produce plausible yet inaccurate completions, especially in
regions with limited geometric or visual cues. Therefore, we recommend caution when applying such
methods in safety-critical or forensic contexts that require guaranteed factual accuracy.
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