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Abstract

Graph Transformer (GT) recently has emerged
as a new paradigm of graph learning algorithms,
outperforming the previously popular Message
Passing Neural Network (MPNN) on multiple
benchmarks. Previous work (Kim et al., 2022)
shows that with proper position embedding, GT
can approximate MPNN arbitrarily well, implying
that GT is at least as powerful as MPNN. In this
paper, we study the inverse connection and show
that MPNN with virtual node (VN), a commonly
used heuristic with little theoretical understand-
ing, is powerful enough to arbitrarily approximate
the self-attention layer of GT. In particular, we
first show that if we consider one type of linear
transformer, the so-called Performer/Linear Trans-
former (Choromanski et al., 2020; Katharopoulos
et al., 2020b), then MPNN + VN with only O(1)
depth and O(1) width can approximate a self-
attention layer in Performer/Linear Transformer.
Next, via a connection between MPNN + VN
and DeepSets, we prove the MPNN + VN with
O(nd) width and O(1) depth can approximate
the self-attention layer arbitrarily well, where d is
the input feature dimension. Lastly, under some
assumptions, we provide an explicit construction
of MPNN + VN with O(1) width and O(n) depth
approximating the self-attention layer in GT ar-
bitrarily well. On the empirical side, we demon-
strate that 1) MPNN + VN is a surprisingly strong
baseline, outperforming GT on the recently pro-
posed Long Range Graph Benchmark (LRGB)
dataset, 2) our MPNN + VN improves over early
implementation on a wide range of OGB datasets
and 3) MPNN + VN outperforms Linear Trans-
former and MPNN on the climate modeling task.
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Figure 1: MPNN + VN and Graph Transformers.

1. Introduction
MPNN (Message Passing Neural Network) (Gilmer et al.,
2017) has been the leading architecture for processing graph-
structured data. Recently, transformers in natural language
processing (Vaswani et al., 2017; Kalyan et al., 2021) and
vision (d’Ascoli et al., 2021; Han et al., 2022) have extended
their success to the domain of graphs. There have been
several pieces of work (Ying et al., 2021; Wu et al., 2021;
Kreuzer et al., 2021; Rampášek et al., 2022; Kim et al., 2022)
showing that with careful position embedding (Lim et al.,
2022), graph transformers (GT) can achieve compelling
empirical performances on large-scale datasets and start to
challenge the dominance of MPNN.

MPNN imposes a sparsity pattern on the computation graph
and therefore enjoys linear complexity. It however suffers
from well-known over-smoothing (Li et al., 2018; Oono
& Suzuki, 2019; Cai & Wang, 2020) and over-squashing
(Alon & Yahav, 2020; Topping et al., 2021) issues, limiting
its usage on long-range modeling tasks where the label of
one node depends on features of nodes far away. GT relies
purely on position embedding to encode the graph structure
and uses vanilla transformers on top. 1 It models all pairwise
interactions directly in one layer, making it computationally
more expensive. Compared to MPNN, GT shows promising
results on tasks where modeling long-range interaction is
the key, but the quadratic complexity of self-attention in GT

1GT in this paper refers to the practice of tokenizing graph
nodes and applying standard transformers on top (Ying et al., 2021;
Kim et al., 2022). There exists a more sophisticated GT (Kreuzer
et al., 2021) that further conditions attention on edge types but it is
not considered in this paper.
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Table 1: Summary of approximation result of MPNN + VN on self-attention layer. n is the number of nodes and d is the
feature dimension of node features. The dependency on d is hidden.

Depth Width Self-Attention Note

Theorem 4.1 O(1) O(1) Approximate Approximate self attention in Performer (Choromanski et al., 2020)
Theorem 5.5 O(1) O(nd) Full Leverage the universality of equivariant DeepSets
Theorem 6.3 O(n) O(1) Full Explicit construction, strong assumption on X
Proposition B.9 O(n) O(1) Full Explicit construction, more relaxed (but still strong) assumption on X

limits its usage to graphs of medium size. Scaling up GT
to large graphs remains an active research area (Wu et al.,
2022).

Theoretically, it has been shown that graph transformers can
be powerful graph learners (Kim et al., 2022), i.e., graph
transformers with appropriate choice of token embeddings
have the capacity of approximating linear permutation equiv-
ariant basis, and therefore can approximate 2-IGN (Invariant
Graph Network), a powerful architecture that is at least as
expressive as MPNN (Maron et al., 2018). This raises an
important question that whether GT is strictly more powerful
than MPNN. Can we approximate GT with MPNN?

One common intuition of the advantage of GT over MPNN
is its ability to model long-range interaction more effectively.
However, from the MPNN side, one can resort to a simple
trick to escape locality constraints for effective long-range
modeling: the use of an additional virtual node (VN) that
connects to all input graph nodes. On a high level, MPNN
+ VN augments the existing graph with one virtual node,
which acts like global memory for every node exchanging
messages with other nodes. Empirically this simple trick has
been observed to improve the MPNN and has been widely
adopted (Gilmer et al., 2017; Hu et al., 2020; 2021) since
the early beginning of MPNN (Gilmer et al., 2017; Battaglia
et al., 2018). However, there is very little theoretical study
of MPNN + VN (Hwang et al., 2022).

In this work, we study the theoretical property of MPNN
+ VN, and its connection to GT. We systematically study
the representation power of MPNN + VN, both for certain
approximate self-attention and for the full self-attention
layer, and provide a depth-width trade-off, summarized in
Table 1. In particular,

• With O(1) depth and O(1) width, MPNN + VN
can approximate one self-attention layer of Performer
(Choromanski et al., 2020) and Linear Transformer
(Katharopoulos et al., 2020b), a type of linear trans-
formers (Tay et al., 2020).

• Via a link between MPNN + VN with DeepSets (Za-
heer et al., 2017), we prove MPNN + VN with O(1)
depth and O(nd) width (d is the input feature dimen-
sion) is permutation equivariant universal, implying

it can approximate self-attention layer and even full-
transformers.

• Under certain assumptions on node features, we prove
an explicit construction of O(n) depth O(1) width
MPNN + VN approximating 1 self-attention layer ar-
bitrarily well on graphs of size n. Unfortunately, the
assumptions on node features are rather strong, and
whether we can alleviate them will be an interesting
future direction to explore.

• Empirically, we show 1) that MPNN + VN works sur-
prisingly well on the recently proposed LRGB (long-
range graph benchmarks) datasets (Dwivedi et al.,
2022), which arguably require long-range interaction
reasoning to achieve strong performance 2) our imple-
mentation of MPNN + VN is able to further improve
the early implementation of MPNN + VN on OGB
datasets and 3) MPNN + VN outperforms Linear Trans-
former (Katharopoulos et al., 2020b) and MPNN on
the climate modeling task.

2. Related Work
Virtual node in MPNN. The virtual node augments the
graph with an additional node to facilitate the information
exchange among all pairs of nodes. It is a heuristic proposed
in (Gilmer et al., 2017) and has been observed to improve
the performance in different tasks (Hu et al., 2021; 2020).
Surprisingly, its theoretical properties have received little
study. To the best of our knowledge, only a recent paper
(Hwang et al., 2022) analyzed the role of the virtual node in
the link prediction setting in terms of 1) expressiveness of
the learned link representation and 2) the potential impact
on under-reaching and over-smoothing.

Graph transformer. Because of the great successes
of Transformers in natural language processing (NLP)
(Vaswani et al., 2017; Wolf et al., 2020) and recently in
computer vision (Dosovitskiy et al., 2020; d’Ascoli et al.,
2021; Liu et al., 2021), there is great interest in extending
transformers for graphs (Müller et al., 2023). One common
belief of advantage of graph transformer over MPNN is its
capacity in capturing long-range interactions while alleviat-
ing over-smoothing (Li et al., 2018; Oono & Suzuki, 2019;
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Cai & Wang, 2020) and over-squashing in MPNN (Alon &
Yahav, 2020; Topping et al., 2021).

Fully-connected Graph transformer (Dwivedi & Bresson,
2020) was introduced with eigenvectors of graph Laplacian
as the node positional encoding (PE). Various follow-up
works proposed different ways of PE to improve GT, ranging
from an invariant aggregation of Laplacian’s eigenvectors
in SAN (Kreuzer et al., 2021), pair-wise graph distances in
Graphormer (Ying et al., 2021), relative PE derived from dif-
fusion kernels in GraphiT (Mialon et al., 2021), and recently
Sign and Basis Net (Lim et al., 2022) with a principled way
of handling sign and basis invariance. Other lines of re-
search in GT include combining MPNN and GT (Wu et al.,
2021; Rampášek et al., 2022), encoding the substructures
(Chen et al., 2022), GT for directed graphs (Geisler et al.,
2023), and efficient graph transformers for large graphs (Wu
et al., 2022).

Deep Learning on Sets. Janossy pooling (Murphy et al.,
2018) is a framework to build permutation invariant ar-
chitecture for sets using permuting & averaging paradigm
while limiting the number of elements in permutations to
be k < n. Under this framework, DeepSets (Zaheer et al.,
2017) and PointNet (Qi et al., 2017) are recovered as the
case of k = 1. For case k = 2, self-attention and Relation
Network (Santoro et al., 2017) are recovered (Wagstaff et al.,
2022). Although DeepSets and Relation Network (Santoro
et al., 2017) are both shown to be universal permutation
invariant, recent work (Zweig & Bruna, 2022) provides a
finer characterization on the representation gap between the
two architectures.

3. Preliminaries
We denote X ∈ Rn×d the concatenation of graph node
features and positional encodings, where node i has feature
xi ∈ Rd. When necessary, we use x

(l)
j to denote the node

j’s feature at depth l. Let M be the space of multisets of
vectors in Rd. We use X ⊆ Rn×d to denote the space of
node features and the Xi be the projection of X on i-th
coordinate. ∥ · ∥ denotes the 2-norm. [x,y, z] denotes the
concatenation of x,y, z. [n] stands for the set {1, 2, ..., n}.

Definition 3.1 (attention). We denote key and query matrix
as WK ,WQ ∈ Rd×d′

, and value matrix as WV ∈ Rd×d

2. Attention score between two vectors u,v ∈ Rd×1 is de-
fined as α(u,v) = softmax(uTWQ(WK)Tv). We denote
A as the space of attention α for different WQ,WK ,WV .
We also define unnormalized attention score α′(·, ·) to be
α′(u,v) = uTWQ(WK)Tv. Self attention layer is a ma-

2For simplicity, we assume the output dimension of self-
attention is the same as the input dimension. All theoretical results
can be extended to the case where the output dimension is different
from d.

trix function L : Rn×d → Rn×d of the following form:
L(X) = softmax(XWQ(XWK)T )XWV .

3.1. MPNN Layer

Definition 3.2 (MPNN layer (Gilmer et al., 2017)). An
MPNN layer on a graph G with node features x(k) at k-th
layer and edge features e is of the following form

x
(k)
i = γ(k)

(
x
(k−1)
i , τj∈N (i)ϕ

(k)
(
x
(k−1)
i ,x

(k−1)
j , ej,i

))
Here γ : Rd × Rd′ → Rd is update function, ϕ : Rd ×
Rd × Rde → Rd′

is message function where de is the edge
feature dimension, τ : M → Rd is permutation invariant
aggregation function and N (i) is the neighbors of node i
in G. Update/message/aggregation functions are usually
parametrized by neural networks. For graphs of different
types of edges and nodes, one can further extend MPNN to
the heterogeneous setting. We use 1, ..., n to index graph
nodes and vn to denote the virtual node.
Definition 3.3 (heterogeneous MPNN + VN layer). The
heterogeneous MPNN + VN layer operates on two types
of nodes: 1) virtual node and 2) graph nodes, denoted as
vn and gn, and three types of edges: 1) vn-gn edge and 2)
gn-gn edges and 3) gn-vn edges. It has the following form

x(k)
vn = γ(k)

vn

(
x
(k−1)
i , τj∈[n]ϕ

(k)
vn-gn

(
x
(k−1)
i ,x

(k−1)
j , ej,i

))
(1)

for the virtual node, and

x
(k)
i = γ(k)

gn (x
(k−1)
i , τj∈N1(i)ϕ

(k)
gn-vn

(
x
(k−1)
i ,x

(k−1)
j , ej,i

)
+ τj∈N2(i)ϕ

(k)
gn-gn

(
x
(k−1)
i ,x

(k−1)
j , ej,i)

)
(2)

for graph node. Here N1(i) for graph node i is the virtual
node and N2(i) is the set of neighboring graph nodes.

Our proof of approximating self-attention layer L with
MPNN layers does not use the graph topology. Next, we
introduce a simplified heterogeneous MPNN + VN layer,
which will be used in the proof. It is easy to see that set-
ting ϕ

(k)
gn-gn to be 0 in Definition 3.3 recovers the simplified

heterogeneous MPNN + VN layer.
Definition 3.4 (simplified heterogeneous MPNN + VN
layer). A simplified heterogeneous MPNN + VN layer is
the same as a heterogeneous MPNN + VN layer in Defini-
tion 3.3 except we set θgn-gn to be 0. I.e., we have

x(k)
vn = γ(k)

vn

(
x
(k−1)
i , τj∈[n]ϕ

(k)
vn-gn

(
x
(k−1)
i ,x

(k−1)
j , ej,i

))
for the virtual node, and

x
(k)
i = γ(k)

gn

(
x
(k−1)
i , τj∈N1(i)ϕ

(k)
gn-vn

(
x
(k−1)
i ,x

(k−1)
j , ej,i

))
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for graph nodes.

Intuitively, adding the virtual node (VN) to MPNN makes it
easy to compute certain quantities, for example, the mean
of node features (which is hard for standard MPNN unless
the depth is proportional to the diameter of the graph). Us-
ing VN thus makes it easy to implement for example the
mean subtraction, which helps reduce over-smoothing and
improves the performance of GNN (Yang et al., 2020; Zhao
& Akoglu, 2019). See more connection between MPNN +
VN and over-smoothing in Appendix D.6.

3.2. Assumptions

We have two mild assumptions on feature space X ⊂ Rn×d

and the regularity of target function L.
AS1. ∀i ∈ [n],xi ∈ Xi, ∥xi∥ < C1. This implies X is
compact.
AS2. ∥WQ∥ < C2, ∥WK∥ < C2, ∥WV ∥ < C2 for target
layer L. Combined with AS1 on X , this means α′(xi,xj)
is both upper and lower bounded, which further implies∑

j e
α′(xi,xj) be both upper bounded and lower bounded.

4. O(1)-depth O(1)-width MPNN + VN for
unbiased approximation of attention

The standard self-attention takes O(n2) computational time,
therefore not scalable for large graphs. Reducing the compu-
tational complexity of self-attention in Transformer is active
research (Tay et al., 2020). In this section, we consider
self-attention in a specific type of efficient transformers, Per-
former (Choromanski et al., 2020) and Linear Transformer
(Katharopoulos et al., 2020b).

One full self-attention layer L is of the following form

x
(l+1)
i =

n∑
j=1

κ
(
W

(l)
Q x

(l)
i ,W

(l)
K x

(l)
j

)
∑n

k=1 κ
(
W

(l)
Q x

(l)
i ,W

(l)
K x

(l)
k

) ·(W (l)
V x

(l)
j

)
(3)

where κ : Rd × Rd → R is the softmax kernel
κ(x,y) := exp(xTy). The kernel function can be ap-
proximated via κ(x,y) = ⟨Φ(x),Φ(y)⟩V ≈ ϕ(x)Tϕ(y)
where the first equation is by Mercer’s theorem and
ϕ(·) : Rd → Rm is a low-dimensional feature map
with random transformation. For Performer (Choroman-
ski et al., 2020), the choice of ϕ is taken as ϕ(x) =

exp

(
−∥x∥22

2

)
√
m

[
exp

(
wT

1 x
)
, · · · , exp

(
wT

mx
)]

where wk ∼
N (0, Id) is i.i.d sampled random variable. For Linear Trans-
former (Katharopoulos et al., 2020b), ϕ(x) = elu(x) + 1.

By switching κ(x,y) to be ϕ(x)Tϕ(y), and denote qi =

W
(l)
Q x

(l)
i ,ki = W

(l)
K x

(l)
i and vi = W

(l)
V x

(l)
i , the approx-

imated version of Equation (3) by Performer and Linear

Transformer becomes

x
(l+1)
i =

n∑
j=1

ϕ (qi)
T
ϕ (kj)∑n

k=1 ϕ (qi)
T
ϕ (kk)

· vj

=

(
ϕ (qi)

T ∑n
j=1 ϕ (kj)⊗ vj

)T

ϕ (qi)
T ∑n

k=1 ϕ (kk)
.

(4)

where we use the matrix multiplication association rule to
derive the second equality.

The key advantage of Equation (4) is that
∑n

j=1 ϕ (kj) and∑n
j=1 ϕ(kj)⊗ vj can be approximated by the virtual node,

and shared for all graph nodes, using only O(1) layers of
MPNNs. We denote the self-attention layer of this form
in Equation (4) as LPerformer. Linear Transformer differs
from Performer by choosing a different form of ϕ(x) =
Relu(x) + 1 in its self-attention layer LLinear-Transformer.

In particular, the VN will approximate
∑n

j=1 ϕ (kj) and∑n
j=1 ϕ (kj) ⊗ vj , and represent it as its feature. Both

ϕ (kj) and ϕ (kj)⊗vj can be approximated arbitrarily well
by an MLP with constant width (constant in n but can be
exponential in d) and depth. Note that ϕ(kj)⊗ vj ∈ Rdm

but can be reshaped to 1 dimensional feature vector.

More specifically, the initial feature for the virtual node is
1(d+1)m, where d is the dimension of node features and m
is the number of random projections ωi. Message function
+ aggregation function for virtual node τϕvn-gn : R(d+1)m ×
M → R(d+1)m is

τj∈[n]ϕ
(k)
vn-gn(·, {xi}i) = [

n∑
j=1

ϕ (kj) ,

ReshapeTo1D(
n∑

j=1

ϕ (kj)⊗ vj)]

(5)

where ReshapeTo1D(·) flattens a 2D matrix to a 1D vec-
tor in raster order. This function can be arbitrarily approxi-
mated by MLP. Note that the virtual node’s feature dimen-
sion is (d + 1)m (where recall m is the dimension of the
feature map ϕ used in the linear transformer/Performer),
which is larger than the dimension of the graph node
d. This is consistent with the early intuition that the vir-
tual node might be overloaded when passing information
among nodes. The update function for virtual node γvn :
R(d+1)m × R(d+1)m → R(d+1)m is just coping the second
argument, which can be exactly implemented by MLP.

VN then sends its message back to all other nodes, where
each graph node i applies the update function γgn :

4
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R(d+1)m × Rd → Rd of the form

γgn(xi, [

n∑
j=1

ϕ (kj) ,ReshapeTo1D(
n∑

j=1

ϕ (kj)⊗ vj)])

=

(
ϕ (qi)

∑n
j=1 ϕ (kj)⊗ vj

)T

ϕ (qi)
T ∑n

k=1 ϕ (kk)
(6)

to update the graph node feature.

As the update function γgn can not be computed exactly in
MLP, what is left is to show that error induced by using
MLP to approximate τϕvn-gn and γgn in Equation (5) and
Equation (6) can be made arbitrarily small.

Theorem 4.1. Under the AS1 and AS2, MPNN + VN of
O(1) width and O(1) depth can approximate LPerformer and
LLinear-Transformer arbitrarily well.

Proof. We first prove the case of LPerformer. We can decom-
pose our target function as the composition of τj∈[n]ϕ

(k)
vn-gn,

γgn and ϕ. By the uniform continuity of the functions,
it suffices to show that 1) we can approximate ϕ, 2) we
can approximate operations in γgn and τϕvn-gn arbitrar-
ily well on the compact domain, and 3) the denominator
ϕ (qi)

T ∑n
k=1 ϕ (kk) is uniformly lower bounded by a pos-

itive number for any node features in X .

For 1), each component of ϕ is continuous and all inputs
kj ,qj lie in the compact domain so ϕ can be approximated
arbitrarily well by MLP with O(1) width and O(1) depth
(Cybenko, 1989).

For 2), we need to approximate the operations in γgn and
τϕvn-gn, i.e., approximate multiplication, and vector-scalar
division arbitrarily well. As all those operations are con-
tinuous, it boils down to showing that all operands lie
in a compact domain. By assumption AS1 and AS2 on
WQ,WK ,WV and input feature X , we know that qi,ki,vi

lies in a compact domain for all graph nodes i. As ϕ is con-
tinuous, this implies that ϕ(qi),

∑n
j=1 ϕ(kj)⊗ vj lies in a

compact domain (n is fixed), therefore the numerator lies
in a compact domain. Lastly, since all operations do not
involve n, the depth and width are constant in n.

For 3), it is easy to see that ϕ (qi)
T ∑n

k=1 ϕ (kk) is always
positive. We just need to show that the denominator is bound
from below by a positive constant. For Performer, ϕ(x) =
exp

(
−∥x∥22

2

)
√
m

[
exp

(
wT

1 x
)
, · · · , exp

(
wT

mx
)]

where wk ∼
N (0, Id). As all norm of input x to ϕ is upper bounded
by AS1, exp(−∥x∥2

2

2 ) is lower bounded. As m is fixed,
we know that ∥wT

i x∥ ≤ ∥wi∥∥x∥, which implies that
wT

i x is lower bounded by −∥wi∥∥x∥ which further im-
plies that exp(wT

i x) is lower bounded. This means that

MPNN (GCN, GAT,
GraphSage...) + Virtual Node Graph Transformer

DeepSets

Invariant Graph Network (IGN)

Figure 2: The link between MPNN and GT is drawn via
DeepSets in Section 5 of our paper and Invariant Graph
Network (IGN) in Kim et al. (2022). Interestingly, IGN is a
generalization of DeepSets (Maron et al., 2018).

ϕ (qi)
T ∑n

k=1 ϕ (kk) is lower bounded.

For Linear Transformer, the proof is essentially the same
as above. We only need to show that ϕ(x) = elu(x) + 1 is
continuous and positive, which is indeed the case.

Besides Performers, there are many other different ways of
obtaining linear complexity. In Appendix C.2, we discuss
the limitation of MPNN + VN on approximating other types
of efficient transformers such as Linformer (Wang et al.,
2020b) and Sparse Transformer (Child et al., 2019).

5. O(1) depth O(nd) width MPNN + VN
We have shown that the MPNN + VN can approximate self-
attention in Performer and Linear Transformer using only
O(1) depth and O(1) width. One may naturally wonder
whether MPNN + VN can approximate the self-attention
layer in the full transformer. In this section, we show that
MPNN + VN with O(1) depth (number of layers), but with
O(nd) width, can approximate 1 self-attention layer (and
full transformer) arbitrarily well.

The main observation is that MPNN + VN is able to ex-
actly simulate (not just approximate) equivariant DeepSets
(Zaheer et al., 2017), which is proved to be universal in
approximating any permutation invariant/equivariant maps
(Zaheer et al., 2017; Segol & Lipman, 2019). Since the
self-attention layer is permutation equivariant, this implies
that MPNN + VN can approximate the self-attention layer
(and full transformer) with O(1) depth and O(nd) width fol-
lowing a result on DeepSets from Segol & Lipman (2019).

We first introduce the permutation equivariant map, equiv-
ariant DeepSets, and permutation equivariant universality.

Definition 5.1 (permutation equivariant map). A map F :
Rn×k → Rn×l satisfying F (σ · X) = σ · F (X) for all
σ ∈ Sn and X ∈ Rn×d is called permutation equivariant.

Definition 5.2 (equivariant DeepSets of Zaheer et al.
(2017)). Equivariant DeepSets has the following form
F (X) = Lds

m◦ν◦· · ·◦ν◦Lds
1 (X), where Lds

i is a linear per-
mutation equivariant layer and ν is a nonlinear layer such as
ReLU. The linear permutation equivariant layer in DeepSets
has the following form Lds

i (X) = XA+ 1
n11

TXB+1cT ,

5
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where A,B ∈ Rdi×di+1 , c ∈ Rdi+1 is the weights and bias
in layer i, and ν is ReLU.

Definition 5.3 (permutation equivariant universality). Given
a compact domain X of Rn×din , permutation equivariant
universality of a model F : Rn×din → Rn×dout means that
for every permutation equivariant continuous function H :
Rn×din → Rn×dout defined over X , and any ϵ > 0, there
exists a choice of m (i.e., network depth), di (i.e., network
width at layer i) and the trainable parameters of F so that
∥H(X)− F (X)∥∞ < ϵ for all X ∈ X .

The universality of equivariant DeepSets is stated as follows.

Theorem 5.4 (Segol & Lipman (2019)). DeepSets with con-
stant layer is universal. Using ReLU activation the width
ω := maxidi (di is the width for i-th layer of DeepSets)
required for universal permutation equivariant network sat-

isfies ω ≤ dout + din +

(
n+ din

din

)
= O(ndin).

We are now ready to state our main theorem.

Theorem 5.5. MPNN + VN can simulate (not just approx-
imate) equivariant DeepSets: Rn×d → Rn×d. The depth
and width of MPNN + VN needed to simulate DeepSets is up
to a constant factor of the depth and width of DeepSets. This
implies that MPNN + VN of O(1) depth and O(nd) width
is permutation equivariant universal, and can approximate
self-attention layer and transformers arbitrarily well.

Proof. Equivariant DeepSets has the following form
F (X) = Lds

m ◦ ν ◦ · · · ◦ ν ◦ Lds
1 (X), where Lds

i is the
linear permutation equivariant layer and ν is an entrywise
nonlinear activation layer. Recall that the linear equivariant
layer has the form Lds

i (X) = XA+ 1
n11

TXB+1cT . As
one can use the same nonlinear entrywise activation layer ν
in MPNN + VN, it suffices to prove that MPNN + VN can
compute linear permutation equivariant layer Lds. Now we
show that 2 layers of MPNN + VN can exactly simulate any
given linear permutation equivariant layer Lds.

Specifically, at layer 0, we initialized the node features as
follows: The VN node feature is set to 0, while the node
feature for the i-th graph node is set up as xi ∈ Rd.

At layer 1: VN node feature is 1
n11

TX , average of node
features. The collection of features over n graph node fea-
ture is XA. We only need to transform graph node features
by a linear transformation, and set the VN feature as the
average of graph node features in the last iteration. Both
can be exactly implemented in Definition 3.4 of simplified
heterogeneous MPNN + VN.

At layer 2: VN node feature is set to be 0, and the graph node
feature is XA+ 1

n11
TXB + 1cT . Here we only need to

perform the matrix multiplication of the VN feature with B,

as well as add a bias c. This can be done by implementing a
linear function for γgn.

It is easy to see the width required for MPNN + VN to
simulate DeepSets is constant. Thus, one can use 2 layers
of MPNN + VN to compute linear permutation equivariant
layer Lds

i , which implies that MPNN + VN can simulate
1 layer of DeepSets exactly with constant depth and con-
stant width (independent of n). Then by the universality of
DeepSets, stated in Theorem 5.4, we conclude that MPNN +
VN is also permutation equivariant universal, which implies
that the constant layer of MPNN + VN with O(nd) width
is able to approximate any continuous equivariant maps.
As the self-attention layer L and full transformer are both
continuous and equivariant, they can be approximated by
MPNN + VN arbitrarily well.

Thanks to the connection between MPNN + VN with
DeepSets, there is no extra assumption on X except for
being compact. The drawback on the other hand is that the
upper bound on the computational complexity needed to
approximate the self-attention with wide MPNN + VN is
worse than directly computing self-attention when d > 2.

6. O(n) depth O(1) width MPNN + VN
The previous section shows that we can approximate a full at-
tention layer in Transformer using MPNN with O(1) depth
but O(nd) width where n is the number of nodes and d is the
dimension of node features. In practice, it is not desirable
to have the width depend on the graph size.

In this section, we hope to study MPNN + VNs with O(1)
width and their ability to approximate a self-attention layer
in the Transformer. However, this appears to be much more
challenging. Our result in this section only shows that for
a rather restrictive family of input graphs (see Assumption
3 below), we can approximate a full self-attention layer
of transformer with an MPNN + VN of O(1) width and
O(n) depth. We leave the question of MPNN + VN’s ability
in approximate transformers for more general families of
graphs for future investigation.

We first introduce the notion of (V , δ) separable node fea-
tures. This is needed to ensure that VN can approximately
select one node feature to process at each iteration with
attention αvn, the self-attention in the virtual node.

Definition 6.1 ((V , δ) separable by α). Given a graph G
of size n and a fixed V ∈ Rn×d = [v1, ...,vn] and ᾱ ∈ A,
we say node feature X ∈ Rn×d of G is (V , δ) separable
by some ᾱ if the following holds. For any node feature xi,
there exist weights W ᾱ

K ,W ᾱ
Q in attention score ᾱ such that

ᾱ(xi,vi) > maxj ̸=i ᾱ(xj ,vi) + δ. We say set X is (V , δ)
separable by ᾱ if every element X ∈ X is (V , δ) separable
by ᾱ.

6



On the Connection Between MPNN and Graph Transformer

Table 2: Baselines for Peptides-func (graph classification) and Peptides-struct (graph regression). The perfor-
mance metric is Average Precision (AP) for classification and MAE for regression. Bold: Best score.

Model # Params. Peptides-func Peptides-struct

Test AP before VN Test AP after VN ↑ Test MAE before VN Test MAE after VN ↓
GCN 508k 0.5930±0.0023 0.6623±0.0038 0.3496±0.0013 0.2488±0.0021
GINE 476k 0.5498±0.0079 0.6346±0.0071 0.3547±0.0045 0.2584±0.0011
GatedGCN 509k 0.5864±0.0077 0.6635±0.0024 0.3420±0.0013 0.2523±0.0016
GatedGCN+RWSE 506k 0.6069±0.0035 0.6685±0.0062 0.3357±0.0006 0.2529±0.0009

Transformer+LapPE 488k 0.6326±0.0126 - 0.2529±0.0016 -
SAN+LapPE 493k 0.6384±0.0121 - 0.2683±0.0043 -
SAN+RWSE 500k 0.6439±0.0075 - 0.2545±0.0012 -

Table 3: Test performance in graph-level OGB benchmarks (Hu et al., 2020). Shown is the mean ± s.d. of 10 runs.

Model ogbg-molhiv ogbg-molpcba ogbg-ppa ogbg-code2
AUROC ↑ Avg. Precision ↑ Accuracy ↑ F1 score ↑

GCN 0.7606 ± 0.0097 0.2020 ± 0.0024 0.6839 ± 0.0084 0.1507 ± 0.0018
GCN+virtual node 0.7599 ± 0.0119 0.2424 ± 0.0034 0.6857 ± 0.0061 0.1595 ± 0.0018
GIN 0.7558 ± 0.0140 0.2266 ± 0.0028 0.6892 ± 0.0100 0.1495 ± 0.0023
GIN+virtual node 0.7707 ± 0.0149 0.2703 ± 0.0023 0.7037 ± 0.0107 0.1581 ± 0.0026

SAN 0.7785 ± 0.2470 0.2765 ± 0.0042 – –
GraphTrans (GCN-Virtual) – 0.2761 ± 0.0029 – 0.1830 ± 0.0024
K-Subtree SAT – – 0.7522 ± 0.0056 0.1937 ± 0.0028
GPS 0.7880 ± 0.0101 0.2907 ± 0.0028 0.8015 ± 0.0033 0.1894 ± 0.0024

MPNN + VN + NoPE 0.7676 ± 0.0172 0.2823 ± 0.0026 0.8055 ± 0.0038 0.1727 ± 0.0017
MPNN + VN + PE 0.7687 ± 0.0136 0.2848 ± 0.0026 0.8027 ± 0.0026 0.1719 ± 0.0013

The use of (V , δ) separability is to approximate hard se-
lection function arbitrarily well, which is stated below and
proved in Appendix B.1.

Lemma 6.2 (approximate hard selection). Given X is
(V , δ) separable by ᾱ for some fixed V ∈ Rn×d, ᾱ ∈ A
and δ > 0, the following holds. For any ϵ > 0 and i ∈ [n],
there exists a set of attention weights Wi,Q,Wi,K in i-th
layer of MPNN + VN such that αvn(xi,vi) > 1 − ϵ for
any xi ∈ Xi. In other words, we can approximate a hard
selection function fi(x1, ...,xn) = xi arbitrarily well on
X by setting αvn = ᾱ.

With the notation set up, We now state an extra assumption
needed for deep MPNN + VN case and the main theorem.
AS3. X is (V , δ) separable by ᾱ for some fixed V ∈ Rn×d,
ᾱ ∈ A and δ > 0.

Theorem 6.3. Assume AS 1-3 hold for the compact set X
and L. Given any graph G of size n with node features X ∈
X , and a self-attention layer L on G (fix WK ,WQ,WV

in α), there exists a O(n) layer of heterogeneous MPNN
+ VN with the specific aggregate/update/message function
that can approximate L on X arbitrarily well.

The proof is presented in the Appendix B. On the high level,
we can design an MPNN + VN where the i-th layer will
select x̃i, an approximation of xi via attention mechanism,
enabled by Lemma 6.2, and send x̃i to the virtual node.

Virtual node will then pass the x̃i to all graph nodes and
computes the approximation of eα(xi,xj),∀j ∈ [n]. Repeat
such procedures n times for all graph nodes, and finally, use
the last layer for attention normalization. A slight relaxation
of AS3 is also provided in the appendix.

7. Experiments
We benchmark MPNN + VN for three tasks, long range
interaction modeling in Section 7.1, OGB regression tasks
in Section 7.2, and focasting sea surface temperature in
Section 7.3. The code is available https://github.
com/Chen-Cai-OSU/MPNN-GT-Connection.

7.1. MPNN + VN for LRGB Datasets

We experiment with MPNN + VN for Long Range Graph
Benchmark (LRGB) datasets. Original paper (Dwivedi
et al., 2022) observes that GT outperforms MPNN on
4 out of 5 datasets, among which GT shows signifi-
cant improvement over MPNN on Peptides-func and
Peptides-struct for all MPNNs. To test the effec-
tiveness of the virtual node, we take the original code and
modify the graph topology by adding a virtual node and
keeping the hyperparameters of all models unchanged.

Results are in Table 2. Interestingly, such a simple
change can boost MPNN + VN by a large margin on
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Table 4: Evaluation on PCQM4Mv2 (Hu et al., 2021) dataset. For GPS evaluation, we treated the validation set of the
dataset as a test set, since the test-dev set labels are private.

Model PCQM4Mv2
Test-dev MAE ↓ Validation MAE ↓ Training MAE # Param.

GCN 0.1398 0.1379 n/a 2.0M
GCN-virtual 0.1152 0.1153 n/a 4.9M
GIN 0.1218 0.1195 n/a 3.8M
GIN-virtual 0.1084 0.1083 n/a 6.7M

GRPE (Park et al., 2022) 0.0898 0.0890 n/a 46.2M
EGT (Hussain et al., 2022) 0.0872 0.0869 n/a 89.3M
Graphormer (Shi et al., 2022) n/a 0.0864 0.0348 48.3M
GPS-small n/a 0.0938 0.0653 6.2M
GPS-medium n/a 0.0858 0.0726 19.4M

MPNN + VN + PE (small) n/a 0.0942 0.0617 5.2M
MPNN + VN + PE (medium) n/a 0.0867 0.0703 16.4M
MPNN + VN + NoPE (small) n/a 0.0967 0.0576 5.2M
MPNN + VN + NoPE (medium) n/a 0.0889 0.0693 16.4M

Peptides-func and Peptides-struct. Notably,
with the addition of VN, GatedGCN + RWSE (random-walk
structural encoding) after augmented by VN outperforms
all transformers on Peptides-func, and GCN outper-
forms transformers on Peptides-struct.

7.2. Stronger MPNN + VN Implementation

Next, by leveraging the modularized implementation from
GraphGPS (Rampášek et al., 2022), we implemented a ver-
sion of MPNN + VN with/without extra positional embed-
ding. Our goal is not to achieve SOTA but instead to push
the limit of MPNN + VN and better understand the source
of the performance gain for GT. In particular, we replace
the GlobalAttention Module in GraphGPS with DeepSets,
which is equivalent to one specific version of MPNN + VN.
We tested this specific version of MPNN + VN on 4 OGB
datasets, both with and without the use of positional em-
bedding. The results are reported in Table 3. Interestingly,
even without the extra position embedding, our MPNN +
VN is able to further improve over the previous GCN +
VN & GIN + VN implementation. The improvement on
ogbg-ppa is particularly impressive, which is from 0.7037
to 0.8055. Furthermore, it is important to note that while
MPNN + VN does not necessarily outperform GraphGPS,
which is a state-of-the-art architecture using both MPNN,
Position/structure encoding and Transformer, the difference
is quite small – this however, is achieved by a simple MPNN
+ VN architecture.

We also test MPNN + VN on large-scale molecule datasets
PCQMv2, which has 529,434 molecule graphs. We fol-
lowed (Rampášek et al., 2022) and used the original vali-
dation set as the test set, while we left out random 150K
molecules for our validation set. As we can see from Table 4,
MPNN + VN + NoPE performs significantly better than the
early MPNN + VN implementation: GIN + VN and GCN +
VN. The performance gap between GPS on the other hand is

rather small: 0.0938 (GPS) vs. 0.0942 (MPNN + VN + PE)
for the small model and 0.0858 (GPS) vs. 0.0867 (MPNN +
VN + PE) for the medium model.

7.3. Forecasting Sea Surface Temperature

In this experiment, we apply our MPNN + VN model to
forecast sea surface temperature (SST). We are particularly
interested in the empirical comparison between MPNN +
VN and Linear Transformer (Katharopoulos et al., 2020a)
as according to Section 4, MPNN + VN theoretically can
approximate Linear Transformer.

In particular, from the DOISST data proposed by (Huang
et al., 2021), we construct a dataset of daily SST in the
Pacific Ocean from 1982 to 2021, in the region of lon-
gitudes from 180.125◦E to 269.875◦E and latitudes from
−14.875◦N to 14.875◦N. Following the procedure from
(de Bezenac et al., 2018; de Bézenac et al., 2019) and Wang
et al. (2022), we divide the region into 11 batches of equal
size with 30 longitudes and 30 latitudes at 0.5◦-degree reso-
lution, that can be represented as a graph of 900 nodes. The
tasks are to predict the next 4 weeks, 2 weeks and 1 week
of SST at each location, given 6 weeks of historical data.
We train on data from years 1982–2018, validate on data
from 2019 and test on data from 2020–2021. The number of
training, validation, and testing examples are roughly 150K,
3K, and 7K. See details of dataset construction, model ar-
chitectures, and training scheme in Appendix D.6.

We compare our model to other baselines including TF-
Net (Wang et al., 2020a), a SOTA method for spatiotempo-
ral forecasting, Linear Transformer (Katharopoulos et al.,
2020a; Wang et al., 2020b) with Laplacian positional en-
coding (LapPE), and Multilayer Perceptron (MLP). We use
Mean Square Error (MSE) as the metric and report the er-
rors on the test set, shown in the Table 5. We observe that
the virtual node (VN) alone improves upon MPNN by 3.8%,
6.6% and 4.5% in 4-, 2- and 1-week settings, respectively.
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Table 5: Results of SST prediction.

Model 4 weeks 2 weeks 1 week

MLP 0.3302 0.2710 0.2121
TF-Net 0.2833 0.2036 0.1462
Linear Transformer + LapPE 0.2818 0.2191 0.1610
MPNN 0.2917 0.2281 0.1613

MPNN + VN 0.2806 0.2130 0.1540

Furthermore, aligned with our theory in Section 4, MPNN +
VN indeed achieves comparable results with Linear Trans-
former and outperforms it by a margin of 0.4%, 2.8% and
4.3% in 4-, 2- and 1-week settings, respectively.

8. Concluding Remarks
In this paper, we study the expressive power of MPNN +
VN under the lens of GT. If we target the self-attention
layer in Performer and Linear Transformer, one only needs
O(1)-depth O(1) width for arbitrary approximation error.
For self-attention in full transformer, we prove that hetero-
geneous MPNN + VN of either O(1) depth O(nd) width or
O(n) depth O(1) width (under some assumptions) can ap-
proximate 1 self-attention layer arbitrarily well. Compared
to early results (Kim et al., 2022) showing GT can approx-
imate MPNN, our theoretical result draws the connection
from the inverse direction.

On the empirical side, we demonstrate that MPNN + VN
remains a surprisingly strong baseline. Despite recent ef-
forts, we still lack good benchmark datasets where GT can
outperform MPNN by a large margin. Understanding the
inductive bias of MPNN and GT remains challenging. For
example, can we mathematically characterize tasks that re-
quire effective long-range interaction modeling, and provide
a theoretical justification for using GT over MPNN (or vice
versa) for certain classes of functions on the space of graphs?
We believe making processes towards answering such ques-
tions is an important future direction for the graph learning
community.
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A. Notations
We provide a notation table for references.

Table 6: Summary of important notations.

Symbol Meaning

X ∈ X ⊂ Rn×d graph node features
xi ∈ R1×d graph node i’s feature
x̃i ∈ R1×d approximated graph node i’s feature via attention selection
M A multiset of vectors in Rd

W
(l)
Q ,W

(l)
K ,W

(l)
V ∈ Rd×d′

attention matrix of l-th self-attention layer in graph transformer
X feature space
Xi projection of feature space onto i-th coordinate
Lds

i i-th linear permutation equivariant layer in DeepSets
L,L′ full self attention layer; approximate self attention layer in Performer
z
(l)
vn , z

(l)
i virtual/graph node feature at layer l of heterogeneous MPNN + VN

αvn attention score in MPNN + VN
α(·, ·) normalized attention score
αGATv2(·, ·) normalized attention score with GATv2
α′(·, ·) unnormalized attention score. α′(u,v) = uWQ(WK)TvT

α′
GATv2(·, ·) unnormalized attention score with GATv2. α′

GATv2(u,v) := aT LeakyReLU (W · [u∥v] + b)
A space of attentions, where each element α ∈ A is of form α(u,v) = softmax(uWQ(WK)TvT )
C1 upper bound on norm of all node features ∥xi∥
C2 upper bound on the norm of WQ,WK ,WV in target L
C3 upper bound on the norm of attention weights of αvn when selecting xi

γ(k)(·, ·) update function
θ(k)(·, ·) message function
τ(·) aggregation function

B. O(n) Heterogeneous MPNN + VN Layer with O(1) Width Can Approximate 1 Self Attention
Layer Arbitrarily Well

B.1. Assumptions

A special case of (V , δ) separable is when δ = 0, i.e., ∀i, ᾱ(xi,vi) > maxj ̸=i ᾱ(xj ,vi). We provide a geometric
characterization of X being (V , 0) separable.

Lemma B.1. Given ᾱ and V , X is (V , 0) separable by ᾱ⇐⇒ xi is not in the convex hull spanned by {xj}j ̸=i. ⇐⇒ there
are no points in the convex hull of {xi}i∈[n].

Proof. The second equivalence is trivial so we only prove the first equivalence. By definition, X is (V , 0) separable by ᾱ

⇐⇒ ᾱ(xi,vi) > maxj ̸=i ᾱ(xj ,vi)∀i ∈ [n]⇐⇒ ⟨xi,W
ᾱ
QW ᾱ,T

K vi⟩ > maxj ̸=i⟨xj ,W
ᾱ
QW ᾱ,T

K vi⟩∀i ∈ [n].

By denoting the v′
i := W ᾱ

QW ᾱ,T
K vi ∈ Rd, we know that ⟨xi,v

′
i⟩ > maxj ̸=i⟨xj ,v

′
i⟩∀i ∈ [n], which implies that

∀i ∈ [n],xi can be linearly seprated from {xj}j ̸=i ⇐⇒ xi is not in the convex hull spanned by {xj}j ̸=i, which concludes
the proof.

Lemma B.2 (approximate hard selection). Given X is (V , δ) separable by ᾱ for some fixed V ∈ Rn×d, ᾱ ∈ A and
δ > 0, the following holds. For any ϵ > 0 and i ∈ [n], there exists a set of attention weights Wi,Q,Wi,K in i-th layer of
MPNN + VN such that αvn(xi,vi) > 1− ϵ for any xi ∈ Xi. In other words, we can approximate a hard selection function
fi(x1, ...,xn) = xi arbitrarily well on X by setting αvn = ᾱ.

Proof. Denote ᾱ′ as the unnormalized ᾱ. As X is (V , δ) separable by ᾱ, by definition we know that ᾱ(xi,vi) >
maxj ̸=i ᾱ(xj ,vi) + δ holds for any i ∈ [n] and xi ∈ M. We can amplify this by multiple the weight matrix in ᾱ by a
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constant factor c to make ᾱ′(xi,vi) > maxj ̸=i ᾱ
′(xj ,vi) + cδ. This implies that eᾱ

′(xi,vi) > ecδ maxj ̸=i e
ᾱ′(xj ,vi). This

means after softmax, the attention score ᾱ(xi,vi) will be at least ecδ

ecδ+n−1
. We can pick a large enough c(δ, ϵ) such that

ᾱ(xi,vi) > 1− ϵ for any xi ∈ Xi and ϵ > 0.

Proof Intuition and Outline. On the high level, i-th MPNN + VN layer will select x̃i, an approximation i-th node feature
xi via attention mechanism, enabled by Lemma 6.2, and send x̃i to the virtual node. Virtual node will then pass the x̃i to all
graph nodes and computes the approximation of eα(xi,xj),∀j ∈ [n]. Repeat such procedures n times for all graph nodes,
and finally, use the last layer for attention normalization.

The main challenge of the proof is to 1) come up with message/update/aggregation functions for heterogeneous MPNN
+ VN layer, which is shown in Appendix B.2, and 2) ensure the approximation error, both from approximating Aggre-
gate/Message/Update function with MLP and the noisy input, can be well controlled, which is proved in Appendix B.4.

We will first instantiate the Aggregate/Message/Update function for virtual/graph nodes in Appendix B.2, and prove that
each component can be either exactly computed or approximated to an arbitrary degree by MLP. Then we go through an
example in Appendix B.3 of approximate self-attention layer L with O(n) MPNN + VN layers. The main proof is presented
in Appendix B.4, where we show that the approximation error introduced during different steps is well controlled. Lastly, in
Appendix B.5 we show assumption on node features can be relaxed if a more powerful attention mechanism GATv2 (Brody
et al., 2021) is allowed in MPNN + VN.

B.2. Aggregate/Message/Update Functions

Let M be a multiset of vectors in Rd. The specific form of Aggregate/Message/Update for virtual and graph nodes are listed
below. Note that ideal forms will be implemented as MLP, which will incur an approximation error that can be controlled to
an arbitrary degree. We use z

(k)
vn denotes the virtual node’s feature at l-th layer, and z

(k)
i denotes the graph node i’s node

feature. Iteration index k starts with 0 and the node index starts with 1.

B.2.1. VIRTUAL NODE

At k-th iteration, virtual node i’s feature z
(k)
i is a concatenation of three component [x̃i,vk+1, 0] where the first component

is the approximately selected node features xi ∈ Rd, the second component is the vi ∈ Rd that is used to select the node
feature in i-th iteration. The last component is just a placeholder to ensure the dimension of the virtual node and graph node
are the same. It is introduced to simplify notation.

Initial feature is z(0)
vn = [0d,v1, 0].

Message function + Aggregation function τj∈[n]ϕ
(k)
vn-gn : R2d+1 ×M → R2d+1 has two cases to discuss depending on value

of k. For k = 1, 2, ..., n,

τj∈[n]ϕ
(k)
vn-gn(z

(k−1)
vn , {z(k−1)

i }i) ={∑
i αvn(z

(k−1)
vn , z

(k−1)
i )z

(k−1)
i k = 1, 2, ..., n

12d+1 k = n+ 1, n+ 2

(7)

where z
(k−1)
vn = [x̃k−1,vk, 0]. z

(k−1)
i = [

2d+1 dim︷ ︸︸ ︷
xi︸︷︷︸
d dim

, ..., ...] is the node i’s feature, where the first d coordinates remain fixed for

different iteration k. τj∈[n]ϕ
(k)
vn-gn use attention αvn to approximately select k-th node feature [

2d+1 dim︷ ︸︸ ︷
xk︸︷︷︸
d dim

, ..., ...]. Note that the

particular form of attention αvn needed for soft selection is not important as long as we can approximate hard selection
arbitrarily well. As the z

(k−1)
vn contains vk and z

(k−1)
i contains xi (see definition of graph node feature in Appendix B.2.2),

this step can be made as close to hard selection as possible, according to Lemma B.6.

In the case of k = n+ 1, τj∈[n]ϕ
(k)
vn-gn : R2d+1︸ ︷︷ ︸

vn

× M︸︷︷︸
set of gn

→ Rd simply returns 12d+1. This can be exactly implemented by

an MLP.
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Update function γ
(k)
vn : R2d+1︸ ︷︷ ︸

vn

×R2d+1︸ ︷︷ ︸
gn

→ R2d+1: Given the virtual node’s feature in the last iteration, and the selected

feature in virtual node y = [xk, ..., ...] with αvn,

γ(k)
vn (·,y) =


[y0:d,vk+1, 0] k = 1, ..., n− 1

[y0:d,0d, 0] k = n

12d+1 k = n+ 1, n+ 2

(8)

where y0:d denotes the first d channels of y ∈ R2d+1. y denotes the selected node zi’s feature in Message/Aggregation
function. γ(k)

vn can be exactly implemented by an MLP for any k = 1, ..., n+ 2.

B.2.2. GRAPH NODE

Graph node i’s feature vi ∈ R2d+1 can be thought of as a concatenation of three components [ xi︸︷︷︸
d dim

, tmp︸︷︷︸
d dim

,partialsum︸ ︷︷ ︸
1 dim

],

where xi,∈ Rd, tmp ∈ Rd 3, and partialsum ∈ R.

In particular, xi is the initial node feature. The first d channel will stay the same until the layer n + 2. tmp =∑
j∈subset of[n] e

α′
ijxj stands for the unnormalized attention contribution up to the current iteration. partialsum ∈ R

is a partial sum of the unnormalized attention score, which will be used for normalization in the n+ 2-th iteration.

Initial feature z
(0)
gn = [xi,0d, 0].

Message function + Aggregate function: τj∈[n]ϕ
(k)
gn-vn : R2d+1 × R2d+1 → R2d+1 is just “copying the second argument”

since there is just one incoming message from the virtual node, i.e., τj∈[n]ϕ
(k)
gn-vn(x, {y}) = y. This function can be exactly

implemented by an MLP.

Update function γ
(k)
gn : R2d+1︸ ︷︷ ︸

gn

×R2d+1︸ ︷︷ ︸
vn

→ R2d+1 is of the following form.

γ(k)
gn ([x, tmp,partialsum],y) =
[x, tmp,partialsum] k = 1

[x, tmp + eα
′(x,y0:d)WV y0:d,

partialsum + eα
′(x,y0:d)] k = 2, ..., n+ 1

[ tmp
partialsum ,0d, 0] k = n+ 2

(9)

where α′(x,y0:d) is the usual unnormalized attention score. Update function γ
(k)
gn can be arbitrarily approximated by an

MLP, which is proved below.

Lemma B.3. Update function γ
(k)
gn can be arbitrarily approximated by an MLP from R2d+1 × R2d+1 to R2d+1 for all

k = 1, ..., n+ 2.

Proof. We will show that for any k = 1, ..., n+ 2, the target function γ
(k)
gn : R2d+1 × R2d+1 → R2d+1 is continuous and

the domain is compact. By the universality of MLP in approximating continuous function on the compact domain, we know
γ
(k)
gn can be approximated to arbitrary precision by an MLP.

Recall that

γ(k)
gn ([x, tmp,partialsum],y) =
[x, tmp,partialsum] k = 1

[x, tmp + eα
′(x,y0:d)WV y0:d,

partialsum + eα
′(x,y0:d)] k = 2, ..., n+ 1

[ tmp
partialsum ,0d, 0] k = n+ 2

3tmp technicially denotes the dimension of projected feature by WV and does not has to be in Rd. We use Rd here to reduce the
notation clutter.
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it is easy to see that k = 1, γ(1)
gn is continuous. We next show for k = 2, ..., n+ 2, γ(1)

gn is also continuous and all arguments
lie in a compact domain.

γ
(k)
gn is continuous because to a) α′(x,y) is continuous b) scalar-vector multiplication, sum, and exponential are all

continuous. Next, we show that four component x, tmp,partialsum,y0:d all lies in a compact domain.

x is the initial node features, and by AS1 their norm is bounded so x is in a compact domain.

tmp is an approximation of eα
′
i,1WV x1 + eα

′
i,2WV x2 + .... As α′(xi,xj) is both upper and lower bounded by AS2 for all

i, j ∈ [n] and xi is bounded by AS1, eα
′
i,1WV x1 + eα

′
i,2WV x2 + ... is also bounded from below and above. tmp will also

be bounded as we can control the error to any precision.

partialsum is an approximation of eα
′
i,1 + eα

′
i,2 + .... For the same reason as the case above, partialsum is also bounded

both below and above.

y0:d will be x̃i at i-th iteration so it will also be bounded by AS1.

Therefore we conclude the proof.

B.3. A Running Example

We provide an example to illustrate how node features are updated in each iteration.

Time 0: All nodes are initialized as indicated in Appendix B.2. Virtual node feature z
(0)
vn = [0d,v1, 0]. Graph node feature

z
(0)
i = [xi,0d, 0] for all i ∈ [n].

Time 1:

For virtual node, according to the definition of τj∈[n]ϕ
(1)
vn-gn in Equation (7), it will pick an approximation of x1, i.e. x̃1.

Note that the approximation error can be made arbitrarily small. VN’s node feature z
(1)
vn = [x̃1,v2, 0].

For i-th graph node feature, z(0)
vn = 1d, and z

(0)
i = [xi,0d, 0]. According to γ

(k)
gn in Equation (9), z(1)

i = [xi,0d, 0].

Time 2:

For the virtual node feature: similar to the analysis in time 1, VN’s feature z(2)
vn = [x̃2,v3, 0] now. Note that the weights and

bias in τj∈[n]ϕ
(2)
vn-gn will be different from those in τj∈[n]ϕ

(1)
vn-gn.

For i-th graph node feature, as z
(1)
vn = [x̃1,v2, 0] and z

(1)
i = [xi,0d, 0], according to γ

(k)
gn in Equation (9), z(2)

i =

[xi, e
α̃′

i,1WV x̃1, e
α̃′

i,1 ]. Here α̃′
i,1 := α′(xi, x̃1). We will use similar notations in later iterations. 4

Time 3:

Similar to the analysis above, z(3)
vn = [x̃3,v4, 0].

z
(3)
i = [xi, e

α̃′
i,1WV x̃1 + eα̃

′
i,2WV x̃2, e

α̃′
i,1 + eα̃

′
i,2 ].

Time n:

z
(n)
vn = [x̃n,0d, 0].

z
(n)
i = xi, e

α̃′
i,1WV x̃1 + ...+ eα̃

′
i,n−1WV x̃n−1︸ ︷︷ ︸

n−1 terms

,

eα̃
′
i,1 + eα̃

′
i,2 + ...+ eα̃

′
i,n−1 ]︸ ︷︷ ︸

n−1 terms

.

Time n+ 1:
4To reduce the notation clutter and provide an intuition of the proof, we omit the approximation error introduced by using MLP to

approximate aggregation/message/update function, and assume the aggregation/message/update can be exactly implemented by neural
networks. In the proofs, approximation error by MLP is handled rigorously.
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According to Appendix B.2.1, in n+ 1 iteration, the virtual node’s feature will be 1d.

z
(n+1)
i = [xi,

∑
k∈[n] e

α̃′
ikWV x̃k,

∑
k∈[n] e

α̃′
ik ]

Time n+ 2 (final layer):

For the virtual node, its node feature will stay the same.

For the graph node feature, the last layer will serve as a normalization of the attention score (use MLP to approximate vector-

scalar multiplication), and set the last channel to be 0 (projection), resulting in an approximation of [xi,
∑

k∈[n] e
α̃′
ikWV x̃k∑

k∈[n] e
α̃′
ik

, 0].

Finally, we need one more linear transformation to make the node feature become [
∑

k∈[n] e
α̃′
ikWV x̃k∑

k∈[n] e
α̃′
ik

,0d, 0]. The first d

channel is an approximation of the output of the self-attention layer for node i where the approximation error can be made
as small as possible. This is proved in Appendix B, and we conclude that heterogeneous MPNN + VN can approximate the
self-attention layer L to arbitrary precision with O(n) MPNN layers.

B.4. Controlling Error

On the high level, there are three major sources of approximation error: 1) approximate hard selection with self-attention and
2) approximate equation γ

(k)
gn with MLPs, and 3) attention normalization in the last layer. In all cases, we aim to approximate

the output of a continuous map Lc(x). However, our input is usually not exact x but an approximation of x̃. We also cannot
access the original map Lc but instead, an MLP approximation of Lc, denoted as LMLP. The following lemma allows to
control the difference between Lc(x) and LMLP(x̃).

Lemma B.4. Let Lc be a continuous map from compact set to compact set in Euclidean space. Let LMLP be the
approximation of Lc by MLP. If we can control ∥x − x̃∥ to an arbitrarily small degree, we can then control the error
∥Lc(x)−LMLP(x̃)∥ arbitrarily small.

Proof. By triangle inequality ∥Lc(x)−LMLP(x̃)∥ ≤ ∥Lc(x)−LMLP(x))∥+ ∥LMLP(x)−LMLP(x̃)∥.

For the first term ∥Lc(x̃)−LMLP(x̃)∥, by the universality of MLP, we can control the error ∥Lc(x̃)−LMLP(x̃)∥ in arbitrary
degree.

For the second term ∥LMLP(x)−LMLP(x̃)∥, as LMLP is continuous on a compact domain, it is uniformly continuous by
Heine-Cantor theorem. This means that we can control the ∥LMLP(x) − LMLP(x̃)∥ as long as we can control ∥x − x̃∥,
independent from different x. By assumption, this is indeed the case so we conclude the proof.

Remark B.5. The implication is that when we are trying to approximate the output of a continuous map Lc on the compact
domain by an MLP LMLP, it suffices to show the input is 1) ∥Lc −LMLP∥∞ and 2) ∥x̃− x∥ can be made arbitrarily small.
The first point is usually done by the universality of MLP on the compact domain (Cybenko, 1989). The second point needs
to be shown case by case.

In the Appendix B.3, to simplify the notations we omit the error introduced by using MLP to approximate aggrega-
tion/message/update functions (continuous functions on the compact domain of Rd.) in MPNN + VN. Lemma B.4 justify
such reasoning.

Lemma B.6 (x̃i approximates xi. α̃′
i,j approximates α′

i,j .). For any ϵ > 0 and x ∈ X , there exist a set of weights for

message/aggregate functions of the virtual node such that ||xi − x̃i|| < ϵ and |α′
i,j − α̃′

i,j | < ϵ.

Proof. By Lemma 6.2 We know that α̃i,j := α̃(xi,xj) → δ(i− j) as C3(ϵ) goes to infinity. Therefore we have

||x̃i − xi|| = ||
∑
j

α̃i,jxj − xi|| = ||
∑

(α̃i,j − δ(i− j))xj || < ϵ
∑

||xj || < nC1ϵ (10)

As n and C1 are fixed, we can make the upper bound as small as we want by increasing C3.

|α′
i,j−α̃′

i,j | = |α′(xi,xj)−α′
MLP(x̃i,xj)| = |α′(xi,xj)−α′(x̃i,xj)|+|α′(x̃i,xj)−α′

MLP(x̃i,xj)| = |α′(xi−x̃i,xj)| =
(xi − x̃i)

TxjC
2
2 + ϵ < nC1ϵC1C

2
2 + ϵ = (nC2

1C
2
2 + 1)ϵ. As α′

i,j , α̃
′
i,j is bounded from above and below, it’s easy to see
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that |eα
′
i,j − eα̃

′
i,j | = |eα

′
i,j (1− eα

′
i,j−α̃′

i,j )| < C(1− eα
′
i,j−α̃′

i,j ) can be controlled to arbitrarily degree.

Theorem 6.3. Assume AS 1-3 hold for the compact set X and L. Given any graph G of size n with node features X ∈ X ,
and a self-attention layer L on G (fix WK ,WQ,WV in α), there exists a O(n) layer of heterogeneous MPNN + VN with
the specific aggregate/update/message function that can approximate L on X arbitrarily well.

Proof. i-th MPNN + VN layer will select x̃i, an arbitrary approximation i-th node feature xi via attention mechanism. This
is detailed in the message/aggregation function of the virtual node in Appendix B.2.1. Assuming the regularity condition on
feature space X , detailed in AS3, the approximation error can be made as small as needed, as shown in Lemmas 6.2 and B.6.

Virtual node will then pass the x̃i to all graph nodes, which computes an approximation of eα
′(x̃i,xj),∀j ∈ [n]. This step

is detailed in the update function γ
(k)
gn of graph nodes, which can also be approximated arbitrarily well by MLP, proved

in Lemma B.3. By Lemma B.4, we have an arbitrary approximation of eα
′(x̃i,xj),∀j ∈ [n], which itself is an arbitrary

approximation of eα
′(xi,xj),∀j ∈ [n].

Repeat such procedures n times for all graph nodes, we have an arbitrary approximation of
∑

k∈[n] e
α′

ikWV xk ∈ Rd and∑
k∈[n] e

α′
ik ∈ R. Finally, we use the last layer to approximate attention normalization Lc(x, y) =

x
y , where x ∈ Rd, y ∈ R.

As inputs for attention normalization are arbitrary approximation of
∑

k∈[n] e
α′

ikWV xk and
∑

k∈[n] e
α′

ik , both of them
are lower/upper bounded according to AS1 and AS2. Since the denominator is upper bounded by a positive number, this
implies that the target function Lc is continuous in both arguments. By evoking Lemma B.4 again, we conclude that we can

approximate its output
∑

k∈[n] e
α′
ikWV xk∑

k∈[n] e
α′
ik

arbitrarily well. This concludes the proof.

B.5. Relaxing Assumptions with More Powerful Attention

One limitation of Theorem 6.3 are assumptions on node features space X : we need to 1) restrict the variability of node
feature so that we can select one node feature to process each iteration. 2) The space of the node feature also need to satisfy
certain configuration in order for VN to select it. For 2), we now consider a different attention function for αvn in MPNN +
VN that can relax the assumptions AS3 on X .

More powerful attention mechanism. From proof of Theorem 6.3, we just need α(·, ·) uniformly select every node in
X ∈ X . The unnormalized bilinear attention α′ is weak in the sense that f(·) = ⟨xiWQW

T
K , ·⟩ has a linear level set. Such

a constraint can be relaxed via an improved attention module GATv2. Observing the ranking of the attention scores given by
GAT (Veličković et al., 2017) is unconditioned on the query node, Brody et al. (2021) proposed GATv2, a more expressive
attention mechanism. In particular, the unnormalized attention score α′

GATv2(u,v) := aT LeakyReLU (W · [u∥v] + b),
where [·||·] is concatenation. We will let αvn = αGATv2 to select features in τj∈[n]ϕ

(k)
vn-gn.

(a) (b)

Figure 3: In the left figure, we have one example of X being (V , δ) separable, for which α can uniformly select any point
(marked as red) xi ∈ Xi. In the right figure, we change αvn in MPNN + VN to αGATv2, which allows us to select more
diverse feature configurations. The cluster in the middle cannot be selected by any α ∈ A but can be selected by αGATv2
according to Proposition B.9.

Lemma B.7. α′
GATv2(·, ·) can approximate any continuous function from Rd × Rd → R. For any v ∈ Rd, a restriction of

α′
GATv2(·,v) can approximate any continuous function from Rd → R.

Proof. Any function continuous in both arguments of α′
GATv2 is also continuous in the concatenation of both arguments. As
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any continuous functions in R2d can be approximated by α′
GATv2 on a compact domain according to the universality of MLP

(Cybenko, 1989), we finish the proof for the first statement.

For the second statement, we can write W as 2× 2 block matrix and restrict it to cases where only W11 is non-zero. Then
we have

α′
GATv2(u,v) = aT LeakyReLU

([
W11 W12

W21 W22

]
·
[

u
v

]
+ b

)
= aT LeakyReLU (W11u+ b) (11)

which gives us an MLP on the first argument u. By the universality of MLP, we conclude the proof for the second statement.

Definition B.8. Given δ > 0, We call X is δ nonlinearly separable if and only if mini ̸=j d(Xi,Xj) > δ.

AS 3’. X is δ nonlinearly separable for some δ > 0.

Proposition B.9. If X ⊂ Rn×d satisfies that Xi is δ-separated from Xj for any i, j ∈ [n], the following holds. For any
X ∈ X and i ∈ [n], there exist a αGATv2 to select any xi ∈ Xi. This implies that we can arbitrarily approximate the
self-attention layer L after relaxing AS3 to AS3’.

Proof. For any i ∈ [n], as Xi is δ-separated from other Xj ,∀j ̸= i, we can draw a region Ωi ⊂ Rd that contains Xi and
separate Xi from other Xj(j ̸= i), where the distance from Xi from other Xj is at least δ according to the definition of
Definition B.8. Next, we show how to construct a continuous function f whose value in Xi is at least 1 larger than its values
in any other Xj ∀j ̸= i.

We set the values of f in Xi to be 1.5 and values of f in Xj ,∀j ̸= i to be 0. We can then interpolate f in areas outside
of ∪Xi (one way is to set the values of f(x) based on d(x,Xi), which results in a continuous function that satisfies our
requirement. By the universality of αGATv2, we can approximate f to arbitrary precision, and this will let us select any
Xi.

C. On the Limitation of MPNN + VN
Although we showed that in the main paper, MPNN + VN of varying depth/width can approximate the self-attention of
full/linear transformers, this does not imply that there is no difference in practice between MPNN + VN and GT. Our
theoretical analysis mainly focuses on approximating self-attention without considering computational efficiency. In this
section, we mention a few limitations of MPNN + VN compared to GT.

C.1. Representation Gap

The main limitation of deep MPNN + VN approximating full self-attention is that we require a quite strong assumption:
we restrict the variability of node features in order to select one node feature to process each iteration. Such assumption is
relaxed by employing stronger attention in MPNN + VN but is still quite strong.

For the large width case, the main limitation is the computational complexity: even though the self-attention layer requires
O(n2) complexity, to approximate it in wide MPNN + VN framework, the complexity will become O(nd) where d is the
dimension of node features.

We think such limitation shares a similarity with research in universal permutational invariant functions. Both DeepSets
(Zaheer et al., 2017) and Relational Network (Santoro et al., 2017) are universal permutational invariant architecture but
there is still a representation gap between the two (Zweig & Bruna, 2022). Under the restriction to analytic activation
functions, one can construct a symmetric function acting on sets of size n with elements in dimension d, which can be
efficiently approximated by the Relational Network, but provably requires width exponential in n and d for the DeepSets.
We believe a similar representation gap also exists between GT and MPNN + VN and leave the characterization of functions
lying in such gap as the future work.

C.2. On The Difficulty of Approximating Other Linear Transformers

In Section 4, we showed MPNN + VN of O(1) width and depth can approximate the self-attention layer of one type of
linear transformer, Performer. The literature on efficient transformers is vast (Tay et al., 2020) and we do not expect MPNN
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+ VN can approximate many other efficient transformers. Here we sketch a few other linear transformers that are hard to
approximate by MPNN + VN of constant depth and width.

Linformer (Wang et al., 2020b) projects the n×d dimension keys and values to k×d suing additional projection layers, which
in graph setting is equivalent to graph coarsening. As MPNN + VN still operates on the original graph, it fundamentally
lacks the key component to approximate Linformer.

We consider various types of efficient transformers effectively generalize the virtual node trick. By first switching to a more
expansive model and reducing the computational complexity later on, efficient transformers effectively explore a larger
model design space than MPNN + VN, which always sticks to the linear complexity.

C.3. Difficulty of Representing SAN Type Attention

In SAN (Kreuzer et al., 2021), different attentions are used conditional on whether an edge is presented in the graph or not,
detailed below. One may wonder whether we can approximate such a framework in MPNN + VN.

In our proof of using MPNN + VN to approximate regular GT, we mainly work with Definition 3.4 where we do not use any
gn-gn edges and therefore not leverage the graph topology. It is straightforward to use gn-gn edges and obtain the different
message/update/aggregate functions for gn-gn edges non-gn-gn edges. Although we still achieve the similar goal of SAN to
condition on the edge types, it turns out that we can not arbitrarily approximate SAN.

Without loss of generality, SAN uses two types of attention depending on whether two nodes are connected by the edge.
Specifically,

ŵk,l
ij =


Q1,k,lhl

i◦K
1,k,lhl

j◦E
1,k,leij√

dk
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2,k,lhl
j◦E
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γ
1+γ · softmax

(∑
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ŵk,l
ij

)
otherwise


(12)

where ◦ denotes element-wise multiplication and Q1,k,l,Q2,k,l,K1,k,l,K2,k,l,E1,k,l,E2,k,l ∈ Rdk×d. γ ∈ R+is a
hyperparameter that tunes the amount of bias towards full-graph attention, allowing flexibility of the model to different
datasets and tasks where the necessity to capture long-range dependencies may vary.

To reduce the notation clutter, we remove the layer index l, and edge features, and also consider only one-attention head
case (remove attention index k). The equation is then simplified to

ŵij =


Q1hl

i◦K
1hl

j√
dk

if i and j are connected in sparse graph
Q2hl

i◦K
2hl

j√
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otherwise


wij =

{ 1
1+γ · softmax (

∑
d ŵij) if i and j are connected in sparse graph

γ
1+γ · softmax (

∑
d ŵij) otherwise

} (13)

We will then show that Equation (13) can not be expressed (up to an arbitrary approximation error) in MPNN + VN
framework. To simulate SAN type attention, our MPNN + VN framework will have to first simulate one type of attention
for all edges, as we did in the main paper, and then simulate the second type of attention between gn-gn edges by properly
offset the contribution from the first attention. This seems impossible (although we do not have rigorous proof) as we cannot
express the difference between two attention in the new attention mechanism.

D. Experimental Details
D.1. Dataset Description

ogbg-molhiv and ogbg-molpcba (Hu et al., 2020) are molecular property prediction datasets adopted by OGB from
MoleculeNet. These datasets use a common node (atom) and edge (bond) featurization that represent chemophysical
properties. The prediction task of ogbg-molhiv is a binary classification of molecule’s fitness to inhibit HIV replication. The
ogbg-molpcba, derived from PubChem BioAssay, targets to predict the results of 128 bioassays in the multi-task binary
classification setting.
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ogbg-ppa (Wu et al., 2021) consists of protein-protein association (PPA) networks derived from 1581 species categorized
into 37 taxonomic groups. Nodes represent proteins and edges encode the normalized level of 7 different associations
between two proteins. The task is to classify which of the 37 groups does a PPA network originate from.

ogbg-code2 (Wu et al., 2021) consists of abstract syntax trees (ASTs) derived from the source code of functions written in
Python. The task is to predict the first 5 subtokens of the original function’s name.

OGB-LSC PCQM4Mv2 (Hu et al., 2021) is a large-scale molecular dataset that shares the same featurization as ogbg-mol*
datasets. It consists of 529,434 molecule graphs. The task is to predict the HOMO-LUMO gap, a quantum physical property
originally calculated using Density Functional Theory. True labels for original test-dev and test-challange dataset splits are
kept private by the OGB-LSC challenge organizers. Therefore for the purpose of this paper, we used the original validation
set as the test set, while we left out random 150K molecules for our validation set.

D.2. Reproducibility

For LRGB results in Section 7.1, we reproduce the original results up to very small differences.

Table 7: Reproduce the original results up to small differences. No VN is used.

Model # Params. Peptides-func Peptides-struct

Test AP (reproduce) Test AP ↑ Test MAE (reproduce) Test MAE ↓
GCN 508k 0.5918±0.0065 0.5930±0.0023 0.3468±0.0009 0.3496±0.0013
GINE 476k 0.5595±0.0126 0.5498±0.0079 0.3532±0.0024 0.3547±0.0045
GatedGCN 509k 0.5886±0.0027 0.5864±0.0077 0.3409±0.0011 0.3420±0.0013
GatedGCN+RWSE 506k 0.6083±0.0032 0.6069±0.0035 0.3377±0.0025 0.3357±0.0006

D.3. The Role of Graph Topology

In our experiments, we considered graph topology in experiments (i.e., message passing operates on both GN-VN (graph
node-virtual node) and GN-GN edges). To understand the role of GN-VN and GN-GN edges, we carried out a set of new
experiments where we discard the original graph topology, and only do message passing on GN-VN edges, for Peptides-func
& Peptides-struct datasets. The results are shown in Appendix D.3.

We observe that in general, MPNN + VN using GN-VN edges only perform slightly worse than MPNN + VN using both
GN-VN and GN-GN edges. However, it still performs better than the standard MPNN without VN. We believe adding VN
as a simple way of long-range modeling is the main reason we see good results on Peptides-func & Peptides-struct datasets.
Utilizing local graph topology in MPNN will further improve the performance.

In general, combining local (message passing) and global modeling (such as GT and VN) in GNN is an active research
direction, with novel applications in macromolecule (DNA, RNA, Protein) modeling. In the recent SOTA model GraphGPS
(Rampášek et al., 2022), MPNN is interleaved with GT. Consistent with our findings, Rampášek et al. (2022) also showed
both the local component (MPNN) and global component (GT) contribute to the final performance.

Table 8: Utilizing local graph topology in MPNN will further improve the performance on Peptides-func and
Peptides-struct.

Peptides-func AP ↑ Peptides-struct MAE ↓
w/o VN (only graph topology) w/ VN + graph topology Only VN w/o VN (only graph topology) w/ VN + graph topology Only VN

GCN 0.5930± 0.0023 0.6623± 0.0038 0.6488± 0.0056 0.3496± 0.0013 0.2488± 0.0021 0.2511± 0.0025
GINE 0.5498± 0.0079 0.6346± 0.0071 0.6022± 0.0072 0.3547± 0.0045 0.2584± 0.0011 0.2608± 0.0021
GatedGCN 0.5864± 0.0077 0.6635± 0.0024 0.6493± 0.0044 0.3420± 0.0013 0.2523± 0.0016 0.2684± 0.0039
GatedGCN+RWSE 0.6069± 0.0035 0.6685± 0.0062 0.6432± 0.0072 0.3357± 0.0006 0.2529± 0.0009 0.2645± 0.0023

D.4. Additional Experiments

We tested MPNN + VN on PascalVOC-SP datasets and also observe improvement, shown in Table 9, although the
improvement is not as large as that of Peptides-func and Peptides-struct datasets. The best MPNN + VN model
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is GatedGCN + LapPE where the performance gap to the best GT model is rather small.

Table 9: Baseline experiments for PascalVOC-SP and COCO-SP with rag-boundary graph on SLIC compactness
30 for the node classification task. The performance metric is macro F1 on the respective splits (Higher is better). All
experiments are run 4 times with 4 different seeds. The MP-GNN models are 8 layers deep, while the transformer-based
models have 4 layers in order to maintain comparable hidden representation size at the fixed parameter budget of 500k.
Bold: Best score.

Model # Params PascalVOC-SP

Before VN + Test F1 After VN + Test F1 ↑
GCN 496k 0.1268±0.0060 0.1901±0.0040
GINE 505k 0.1265±0.0076 0.1198±0.0073
GatedGCN 502k 0.2873±0.0219 0.2874±0.0178
GatedGCN+LapPE 502k 0.2860±0.0085 0.3103±0.0068

Transformer+LapPE 501k 0.2694±0.0098 -
SAN+LapPE 531k 0.3230±0.0039 -
SAN+RWSE 468k 0.3216±0.0027 -

D.5. Predicting Sea Surface Temperature

In this experiment, we consider a specific physical modeling problem: forecasting sea surface temperature (SST), that
is the water temperature close to the ocean’s surface. SST is an essential climate indicator and plays a significant role
in analyzing and monitoring the dynamics of weather, climate, and other biological systems for several applications in
environmental protection, agriculture, and industry. We use the NOAA/NESDIS/NCEI Daily Optimum Interpolation Sea
Surface Temperature (DOISST) version 2.1 proposed by (Huang et al., 2021) as an improvement upon version 2.0 from
(Reynolds et al., 2007).

We consider the daily SST data of the Pacific Ocean from 1982 to 2021, in the region of longitudes from 180.125◦E to
269.875◦E and latitudes from −14.875◦N to 14.875◦N. We reduce the resolution of the original data from 0.25◦-degree to
0.5◦-degree. Following the procedure from (de Bezenac et al., 2018), (de Bézenac et al., 2019) and (Wang et al., 2022), we
divide the region into 11 square batches of equal size (see Table 11), each contains exactly 30 longitudes and 30 latitudes
that can be represented as a grid graph of 900 nodes in which we connect each node to its nearest 8 neighbors. We take time
series from 1982 to 2018 as our training set, data in 2019 as our validation set, and data from 2020 to 2021 as our testing set.
In our experiments, we set the history window wh as 6 weeks (i.e. 42 days) and the prediction window wp as 4 weeks (i.e.
28 days), 2 weeks (i.e. 14 days) or 1 week (i.e. 7 days). For each example, each node of the graph is associated with an
input time series capturing the temperatures at the corresponding (longitude, latitude) for the last wh days, and the task is to
predict the output time series of temperatures for the next wp days.

We represent each time series as a long vector and the learning task is fundamentally a node-level regression task. We make
sure that there is no overlapping among training, validation and testing sets (e.g., the output of a training example will not
appear in any input of another validation example). The number of training, validation, and testing examples are roughly
150K, 3K and 7K, respectively for each setting (see Table 10). We compare our MPNN + VN model with:

• Multilayer Perceptron (MLP) which treats both the input and output as long vectors and has 512 hidden neurons.

• TF-Net (Wang et al., 2020a) with the setting as in the original paper.

• Linear Transformer (Katharopoulos et al., 2020a) (Wang et al., 2020b)5 with Laplacian positional encoding (LapPE).
We compute the first 16 eigenvectors as positions for LapPE.

Both MPNN and MPNN + VN have 3 layers of message passing with 256 hidden dimensions. We apply an MLP with one
hidden layer of 512 neurons on top of the network to make the final prediction.

5The Linear Transformer implementation is publicly available at https://github.com/lucidrains/
linear-attention-transformer
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Table 10: Number of training, validation and testing examples for each setting in the task of SST prediction.

History window Prediction window Train size Validation size Test size

6 weeks 4 weeks 147, 884 3, 245 7, 271
2 weeks 148, 038 3, 399 7, 425
1 week 148, 115 3, 476 7, 502

Table 11: These are 11 regions of the Pacific in our experiment.

Index Longitudes Latitues

1 [180.125◦E, 194.875◦E] [-14.875◦N, -0.125◦N]
2 [195.125◦E, 209.875◦E] [-14.875◦N, -0.125◦N]
3 [210.125◦E, 224.875◦E] [-14.875◦N, -0.125◦N]
4 [225.125◦E, 239.875◦E] [-14.875◦N, -0.125◦N]
5 [240.125◦E, 254.875◦E] [-14.875◦N, -0.125◦N]
6 [255.125◦E, 269.875◦E] [-14.875◦N, -0.125◦N]
7 [180.125◦E, 194.875◦E] [0.125◦N, 14.875◦N]
8 [195.125◦E, 209.875◦E] [0.125◦N, 14.875◦N]
9 [210.125◦E, 224.875◦E] [0.125◦N, 14.875◦N]

10 [225.125◦E, 239.875◦E] [0.125◦N, 14.875◦N]
11 [240.125◦E, 254.875◦E] [0.125◦N, 14.875◦N]

We train all our models with 100 epochs with batch size 20, initial learning rate 10−3, and Adam optimizer (Kingma & Ba,
2014).

D.6. Connection to Over-Smoothing Phenomenon

Over-smoothing refers to the phenomenon that deep GNN will produce same features at different nodes after too many
convolution layers. Here we draw some connection between VN and common ways of reducing over-smoothing. We think
that using VN can potentially help alleviate the over-smoothing problem. In particular, we note that the use of VN can
simulate some strategies people use in practice to address over-smoothing. We give two examples below.

Example 1: In (Zhao & Akoglu, 2019), the two-step method (center & scale) PairNorm is proposed to reduce the over-
smoothing issues. In particular, PairNorm consists of 1) Center and 2) Scale
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∑
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1
n

∑
i ||x̃c

i | |22

Where x̃ is the node features after graph convolution and s is a hyperparameter. The main component for implementing
PairNorm is to compute the mean and standard deviation of node features. For the mean of node features, this can be exactly
computed in VN. For standard deviation, VN can arbitrarily approximate it using the standard universality result of MLP
[5]. If we further assume that the standard deviation is lower bounded by a constant, then MPNN + VN can arbitrarily
approximate the PairNorm on the compact set.

Example 2: In (Yang et al., 2020) mean subtraction (same as the first step of PairNorm) is also introduced to reduce
over-smoothing. As mean subtraction can be trivially implemented in MPNN + VN, arguments in (Yang et al., 2020) (with
mean subtraction the revised power Iteration in GCN will lead to the Fiedler vector) can be carried over to MPNN + VN
setting.
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In summary, introducing VN allows MPNN to implement key components of (Yang et al., 2020; Zhao & Akoglu, 2019), we
think this is one reason why we observe encouraging empirical performance gain of MPNN + VN.
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