
Provably Learning Nash Policies in
Constrained Markov Potential Games

Pragnya Alatur
Department of Computer Science
ETH Zurich and ETH AI Center
pragnya.alatur@ai.ethz.ch

Giorgia Ramponi
Department of Computer Science
ETH Zurich and ETH AI Center
giorgia.ramponi@ai.ethz.ch

Niao He
Department of Computer Science

ETH Zurich
niao.he@inf.ethz.ch

Andreas Krause
Department of Computer Science

ETH Zurich
krausea@ethz.ch

Abstract

Multi-agent reinforcement learning (MARL) addresses sequential decision-making
problems with multiple agents, where each agent optimizes its own objective.
In many real-world instances, the agents may not only want to optimize their
objectives, but also ensure safe behavior. For example, in traffic routing, each car
(agent) aims to reach its destination quickly (objective) while avoiding collisions
(safety). Constrained Markov Games (CMGs) are a natural formalism for safe
MARL problems, though generally intractable. In this work, we introduce and
study Constrained Markov Potential Games (CMPGs), an important class of
CMGs. We first show that a Nash policy for CMPGs can be found via constrained
optimization. One tempting approach is to solve it by Lagrangian-based
primal-dual methods. As we show, in contrast to the single-agent setting, however,
CMPGs do not satisfy strong duality, rendering such approaches inapplicable
and potentially unsafe. To solve the CMPG problem, we propose our algorithm
Coordinate-Ascent for CMPGs (CA-CMPG), which provably converges to a Nash
policy in tabular, finite-horizon CMPGs. Furthermore, we provide the first sample
complexity bounds for learning Nash policies in unknown CMPGs, and, which
under additional assumptions, guarantee safe exploration.

1 Introduction

Multi-Agent Reinforcement Learning (MARL) addresses sequential decision-making problems
with multiple agents, where the decisions of individual agents may also affect others. In this work,
we focus on a rich and fundamental class of MARL problems, known as Markov Potential Games,
(MPGs, Leonardos et al., 2022). Important applications, such as traffic routing (Altman et al., 2006)
or wireless communication (Yamamoto, 2015), can be modeled as MPGs. The main characteristic of
an MPG is the existence of an underlying potential function, which captures the agents’ incentives to
deviate between different policies. MPGs can model both fully cooperative scenarios1 and scenarios,
in which the agents have individual objectives, as long as such a potential function exists.

In many real-world applications, however, the standard MPG framework fails to incorporate additional
requirements like safety. For instance, in traffic routing, we do want to find the fastest route to the
individual destinations, while ensuring that the vehicles drive safely and do not collide. In this work,

1In fully cooperative scenarios, the agents have one common objective.
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we introduce the framework of Constrained Markov Potential Games (CMPGs) to study safety in
the context of MPGs. We incorporate safety using coupled constraints on the policies of the agents.
Coupled constraints are relevant because they allow us to model requirements like collision avoidance.
Our objective is to find a Nash policy (Nash et al., 1950; Altman and Shwartz, 2000), i.e., a set
of policies such that no agent has the incentive to deviate unilaterally within the constrained set of
policies. Prior work on algorithms for (unconstrained) MPGs, in which each agent improves its
own objective independently, cannot be applied to the constrained setting, as the agents may need to
coordinate to satisfy the constraints. A more detailed discussion of prior work is provided in Section 2.
We study tabular CMPGs in the finite-horizon setting and summarize our contributions here:

1. First, we show that a Nash policy can in principle be recovered by solving a constrained optimiza-
tion problem, which, however, becomes intractable as the number of agents increases (Section 4).

2. Given tractable algorithms for unconstrained MPGs (cf. Leonardos et al., 2022; Fox et al., 2022),
a tempting approach would be to utilize Lagrangian duality to reduce the constrained problem
to an unconstrained one (Diddigi et al., 2019; Parnika et al., 2021). Unfortunately, we show that
strong duality does not hold for our problem (Section 4), rendering such approaches sub-optimal
and unsafe. This is in sharp contrast to the single-agent setting, for which strong duality does
hold (Paternain et al., 2019).

3. Instead of solving the constrained optimization problem, we propose to directly search for a
Nash policy. We present our algorithm – Coordinate-Ascent for CMPGs (CA-CMPG) – which
provably converges to an ε-Nash policy, assuming that the agents have full knowledge of the
CMPG (Section 5).

4. Finally, we prove a sample complexity bound for our algorithm CA-CMPG, when the agents
do not know the CMPG beforehand (Section 6). With access to a generative model (Section 6.1),
the agents converge to an ε-Nash policy with Õ

(
H8

ε3ζ2

)
samples, where ζ is the Slater constant

of the CMPG and H is the horizon. On the other hand, if the agents do not have access to a
generative model, but still want to ensure safe exploration, we obtain a sample complexity bound
of Õ

(
H10

ε5c2

)
(Section 6.2), where c ∈ (0, ζ] is a quantity related to the constraint set of the CMPG.

2 Related Work

Markov Potential Games: MPGs have become popular in recent years and have been studied
for the tabular setting (Leonardos et al., 2022; Zhang et al., 2022, 2021b; Chen et al., 2022; Mao
et al., 2022; Maheshwari et al., 2022; Fox et al., 2022) and for state-action spaces with function
approximation (Ding et al., 2022; Cui et al., 2023). For the tabular setting with known rewards
and transitions, Leonardos et al. (2022) prove that independent policy gradient (IPG) converges to
an ε-Nash policy in O(1/ε2) iterations. If rewards and transitions are unknown, Mao et al. (2022)
prove that IPG with access to a stochastic gradient oracle converges to an ε-Nash policy with a
sample complexity of O

(
1/ε4.5

)
. In these IPG algorithms, the agents improve their own objectives

independently. It is challenging to apply these algorithms with coupled constraints, as the agents
may need to coordinate to satisfy those constraints, at least during the learning process. Song et al.
(2021) present a different approach for tabular MPGs with unknown rewards and transitions, in
which the agents coordinate to compute an ε-Nash policy with a sample complexity of Õ(1/ε3).
While their algorithm is for unconstrained MPGs, we show in our work, that this type of approach
can be extended to the constrained setting. Maheshwari et al. (2022) present a different approach
with asymptotic convergence to a Nash policy, whereas we target finite-time convergence. Note that
MPGs are only one way to model MARL problems, and for a more comprehensive overview on
MARL, we refer the reader to the surveys by Yang and Wang (2021) and Zhang et al. (2021a).

Constrained Markov Decision Processes: A common approach to constrained single-agent RL are
Constrained Markov Decision Processes (CMDPs, Altman, 1999). CMDPs are widely studied, and
a comprehensive survey is given by García et al. (2015). Below, we focus on aspects relevant to our
work. In CMDPs, the agent optimizes a reward function subject to constraints. Lagrangian duality is a
common approach for constrained optimization and Paternain et al. (2019) proved that CMDPs possess
the strong duality property, giving theoretical justification for the use of Lagrangian dual approaches.

Constrained Markov Games: One of the common approaches to constrained multi-agent RL are
Constrained Markov Games (CMGs, Altman and Shwartz, 2000). CMGs restrict the policies of the
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agents, which can be used to model safety objectives. Note that CMPGs are one class of CMGs. In
cooperative CMPGs2, where the agents have one common reward function, the CMPG objective very
much resembles the CMDP formulation. Furthermore, Diddigi et al. (2019) and Parnika et al. (2021)
demonstrate good experimental results for cooperative CMPGs with Lagrangian dual approaches,
but provide no theoretical guarantees. We prove in our work, however, that strong duality does not
hold in general for CMPGs (cf. Section 4), rendering Lagrangian dual approaches inapplicable in
those cases. Furthermore, we demonstrate that the dual might even return unsafe solutions.

3 Background and Problem Definition

Notation: For any n ∈ N, we use the short-hand notation [n] to refer to the set of integers
{1, ..., n}. For any finite set X , we denote by ∆X the probability simplex over X , i.e.,
∆X = {v ∈ [0, 1]|X||

∑
x∈X v(x) = 1}.

3.1 Markov Potential Games

An n-agent Markov Potential Game (MPG) is a tuple G = (S, {Ai}ni=1, H, {Ph}Hh=1 ,

{{ri,h}Hh=1}
n
i=1, µ), where S is the state space, Ai is agent i’s action space. We denote by

A ≜ ×n
i=1Ai the joint action space, H ∈ N>0 the horizon. Ph : S ×A → ∆S is the environment’s

transition function at time h ∈ [H] and Ph(s
′|s, a) denotes the probability of moving to state s′ from

state-action pair (s, a) ∈ S ×A at step h ∈ [H], ri,h : S ×A → [0, 1] is agent i’s reward function
at step h ∈ [H] and µ ∈ ∆S denotes the initial state distribution. We assume S and A to be finite.

Policies: For every agent i ∈ [n], we define its policy space as Πi ≜{
{πi,h}Hh=1 | πi,h : S → ∆Ai ,∀h ∈ [H]

}
. If agent i follows a policy π ∈ Πi, it means that

at step h ∈ [H] and state s ∈ S, the agent samples its next action from πh(·|s). We denote by
Π ≜

{
π = (π1, ..., πn) |πi ∈ Πi,∀i ∈ [n]

}
the set of joint policies. For any policy π ∈ Π and agent

i ∈ [n], we denote by π−i the policy of the other n− 1 agents.

Value Function: For any policy π ∈ Π and agent i ∈ [n], the value function V ri(π) measures the
expected, cumulative reward of agent i, and is defined as follows:

V ri(π) ≜ E
s∼µ,

ah∼πh(·|sh),
sh+1∼Ph(·|sh,ah)

[ H∑
h=1

ri,h(sh, ah)|s0 = s
]
. (1)

Potential Function: An MPG possesses an underlying potential function Φ : Π→ R such that:

V ri(πi,π−i)− V ri(π′
i,π−i) = Φ(πi,π−i)− Φ(π′

i,π−i) ∀π′
i ∈ Πi,∀π ∈ Π,∀i ∈ [n]. (2)

This is an adaptation of the potential function defined in Leonardos et al. (2022) to the finite-horizon
setting. Instead of defining a per-state potential function, we directly consider the potential function
with respect to the initial distribution µ.

Remark: Note that the potential function is a property of the MPG and is typically not known to the
agents. In a cooperative game, the agents have one shared reward function r such that ri ≡ r, ∀i ∈ [n].
In this case, the potential function is simply the value function of the agents, i.e., Φ = V r. Note,
however, that cooperative games are a strict subset of MPGs, and MPGs have the ability to express non-
cooperative scenarios, such as traffic congestion. In Section 7, we describe different instances in detail.

3.2 Constrained Markov Potential Games

An n-agent Constrained Markov Potential Game (CMPG) is an MPG G = (S, {Ai}ni=1 ,

H, {Ph}Hh=1 , {{ri,h}
H
h=1}

n
i=1, µ) with constraints {({cj,h}Hh=1 , αj)}kj=1, where cj,h : S × A →

[0, 1] denotes the j-th cost function at step h ∈ [H] and αj ∈ [0, H] is the constraint threshold.3

2Note that cooperative games are a strict subclass of CMPGs, as CMPGs are able to model non-cooperative
settings too.

3Even though we define our problem in the finite-horizon setting, our results can be easily extended to the
discounted, infinite-horizon setting.
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Feasible Policies: We call a policy π ∈ Π feasible, if it satisfies the following constraints:

V cj
µ (π) ≜ E

s∼µ,
ah∼πh(·|sh),

sh+1∼Ph(·|sh,ah)

[ H∑
h=1

cj,h(sh, ah)
∣∣∣s0 = s

]
≤ αj , ∀j ∈ [k].

In the rest of the paper, we use ΠC to refer to the set of feasible policies. For every agent i and
policy π−i of the other n− 1 agents, we define Πi

C(π−i) ≜
{
πi ∈ Πi|(πi,π−i) ∈ ΠC

}
. We refer

to this type of constraints as coupled constraints, as the values of the constraints depend on the joint
actions of the agents. If we wish to model an intersection in a traffic scenario, an important constraint
to incorporate would be collision avoidance. To decide whether a certain set of actions causes a
collision or not, we need to take the actions of all agents at the intersection into account.

In a CMPG, each agent i aims to maximize its own value function V ri . Since the rewards and
transitions depend on the joint policy, it may not be possible to find a policy that is globally optimal
for all value functions simultaneously. Instead, the agents typically need to settle for an equilibrium
policy, at which no agent has an incentive to deviate unilaterally. Many different types of equilibria
exist in the literature, such as the Nash equilibrium (Nash et al., 1950), correlated equilibrium
(Aumann, 1987) or Stackelberg equilibrium (Breton et al., 1988). In this work, our goal is to obtain
a Nash equilibrium policy (Nash et al., 1950; Altman and Shwartz, 2000) in a CMPG. We define a
relaxed notion in the following paragraph.

ε-Nash Equilibrium Policy: For any ε ≥ 0, a policy π∗ = (π∗
1 , ..., π

∗
n) ∈ ΠC is a ε-Nash

equilibrium policy, if it is the ε-best-response policy for each agent, i.e.,4:

max
πi∈Πi

C(π∗
−i)

V ri(πi,π
∗
−i)− V ri(π∗) ≤ ε, ∀i ∈ [n]. (3)

We call π∗ a Nash equilibrium policy, if Eq. (3) holds with ε = 0. In the rest of the paper, we refer to
the Nash equilibrium policy as Nash policy.

3.3 Constrained Markov Decision Processes

A Constrained Markov Decision Process (CMDP) is a tupleM = (S,A, H, {Ph}Hh=1 , {rh}Hh=1,

µ, {({cj,h}Hh=1 , αj)}kj=1). In a CMDP, there is a single agent. However, the individual elements
in M carry the same meaning as in CMPGs. Furthermore, the policy sets Π,ΠC and the value
functions V r : Π → R (reward), V cj : Π → R, j ∈ [k] (costs) are defined in the same way as for
CMPGs. In a CMDP, the agent aims to find a policy π∗, that satisfies:

π∗ ∈ arg max
π∈ΠC

V r(π). (4)

In the following section, we prove that a Nash policy in a CMPG can be found by maximizing the po-
tential function with respect to the given constraints, similar to Eq. (4). We will show that Lagrangian
duality, a common approach for constrained optimization, will not work in general for CMPGs.

4 Duality for Constrained Markov Potential Games?

For an MPG with potential function Φ, a globally optimal policy π∗ ∈ argmaxπ∈Π Φ(π) is also
a Nash policy (Leonardos et al., 2022). We show in Proposition 1 that this property generalizes to
CMPGs. We defer the proofs for all theoretical results in this section to Appendix A.
Proposition 1. Define the following constrained optimization problem:

π∗ ∈ arg max
π∈ΠC

Φ(π). (5)

Then, π∗ is a Nash policy for a CMPG with potential function Φ.

Solving Eq. (5) directly is not trivial; even if the agents know the rewards and transitions, the potential
function is usually not known. Moreover, the fact that we have coupled constraints makes solving
Eq. (5) directly intractable. Nevertheless, a common approach for solving constrained optimization

4This is an extension of the generalized Nash equilibrium (Facchinei and Kanzow, 2010) to CMPGs.
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problems is Lagrangian duality, which, in our case, turns the CMPG into an (unconstrained) MPG
with modified rewards (Proposition 2). This would enable the use of scalable algorithms that have
been developed for unconstrained MPGs (Leonardos et al., 2022). Furthermore, in previous works
(Liu et al., 2021a; Diddigi et al., 2019), Lagrangian duality was used for cooperative CMPGs and
showed promising experimental results. This makes Lagrangian duality a tempting approach for
CMPGs. For this, we define the Lagrangian L : Π× Rk

+ → R and the primal5 and dual problems
for Eq. (5) as follows:

L(π,λ) ≜ Φ(π) +

k∑
j=1

λj (αj − V cj (π)) (Lagrangian)

P ∗ = max
π∈Π

min
λ∈Rk

+

L(π,λ) (Primal)

D∗ = min
λ∈Rk

+

max
π∈Π
L(π,λ). (Dual)

As a first step, in Proposition 2, we prove that the dual problem does indeed correspond to an
(unconstrained) MPG.

Proposition 2. For any λ ∈ Rk
+, L(·,λ) is a potential function for an MPG with reward functions

r̃i,h ≜ ri,h −
∑k

j=1 λjcj,h,∀i ∈ [n],∀h ∈ [H].

Then, weak duality guarantees that D∗ ≥ P ∗ holds. Unfortunately, in the following proposition,
however, we show that strong duality, i.e., D∗ = P ∗, does not hold in general for CMPGs.

Proposition 3. There exists a CMPG, for which strong duality does not hold, i.e., for which P ∗ ̸= D∗.

To give an intuition on Proposition 3, consider a cooperative CMPG with Φ ≡ V r, i.e., the potential
function is equal to the shared value function V r. Note that, in this case, the primal problem very
much resembles the CMDP objective (Eq. (5)) and it is tempting to solve the CMPG as a CMDP
with a large action space A = ×n

i=1Ai. Recall also, that strong duality does indeed hold for CMDPs
(Paternain et al., 2019) and CMDPs can be solved via primal-dual algorithms. By solving this large
CMDP, we obtain a solution π∗ that specifies distributions over the joint action space A. To obtain
a solution for the original CMPG, however, we require a policy that can be factored into a set of
independent policies {π∗

i }i∈[n] such that π∗
h(a|s) =

∏n
i=1 π

∗
i,h(ai|s),∀(s, a, h) ∈ S × A × [H].

We show in Appendix A that unfortunately, this property is not always guaranteed, implying that
already for a simple class of CMPGs, strong duality may not always hold.

5 Solving Constrained Markov Potential Games

In this section, we propose an efficient algorithm to compute Nash policies in CMPGs6. Similar
to the work on unconstrained MPGs by Song et al. (2021), in our algorithm Coordinate-Ascent for
CMPGs (CA-CMPG), agents take turns to solve a Constrained Markov Decision Process (CMDP),
i.e., a single-agent reinforcement learning problem, in every iteration. To do this, the agents need
to coordinate, such that, when one agent is solving the CMDP, the others provide a stationary
environment to that agent by keeping their policies fixed. There are some technical challenges
compared to the unconstrained MPG setting. The main difference is that in the CMPG setting, to
ensure the convergence to a Nash policy, we need also to ensure that the intermediate policies remain
feasible (see remark at the end of this section). Our algorithm CA-CMPG is described in Algorithm 1.

We assume for now that the agents know their own reward functions, the cost functions as well as the
transition model. As a starting point for CA-CMPG, the agents require access to a feasible, initial
policy, which we state in the following assumption:

Assumption 1. Given a CMPG, the agents have access to a feasible policy πS ∈ ΠC .

This type of assumption is common for safe exploration in CMDPs (Bura et al., 2022; Liu et al.,
2021b). We discuss in Appendix B, why we require it for our setting. While, in general, it may be
computationally hard to compute a feasible πS in the multi-agent setting, we provide examples in

5Note that the primal is equivalent to Eq. (5).
6Note that we may not find a Nash policy that solves Eq. (5) though.
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Algorithm 1 CA-CMPG (Known Transitions)

Require: ε > 0 (approximation error), πS ∈ ΠC (feasible policy), T (number of iterations)
1: π0 ← πS

2: for t = 1, ..., T do
3: for agent i = 1, ..., n do
4: Agent i computes π̂i

t such that Eq. (6) is satisfied.
5: εti ← V ri(π̂t

i ,π
t−1
−i )− V ri(πt−1).

6: if maxi∈[n] ε
t
i > ε/2 then

7: Set πt = (π̂t
j ,π

t−1
−j ), where j = argmaxi∈[n] ε

t
i, break ties arbitrarily.

8: else
9: break

Appendix B, for which it is easy to compute πS . In CA-CMPG, the agents start with the feasible
policy πS . In every iteration, the agents take turns to maximize their own value function. While one
agent is maximizing its value function, the other agents keep their policy fixed (Line 4); therefore,
that agent is essentially solving a CMDP. We defer the exact description of the CMDP that agent i
faces in iteration t to Appendix B. Let us recall the CMDP objective from Eq. (4). In practice, we can
only solve Eq. (4) approximately. Given ε > 0, we assume that in every iteration t, agent i ∈ [n] can
efficiently compute a policy π̂t

i ∈ Πi
C(π

t−1
−i ) such that it satisfies the following conditions7:

max
π∈Πi

C(πt−1
−i )

V ri(π,πt−1
−i )− V ri(π̂t

i ,π
t−1
−i ) ≤ ε/2. (6)

Due to the potential property (Eq. (2)), if agent i ∈ [n] improves its own value function, it implicitly
also improves the potential function. To prove that the potential function can be increased only a
finite number of times, implying termination of CA-CMPG, we require the potential function to
be bounded.
Lemma 1. Fix an arbitrary base policy πB ∈ Π. Then, for every π ∈ Π, the potential function can
be bounded as: Φ(π) ≤ nH +Φ(πB).

We defer the proofs to all theoretical results in this section to Appendix B. CA-CMPG terminates
when the agents cannot deviate unilaterally and improve their value function by more than ε, i.e.,
when they reach an ε-Nash policy. We state this result in the following theorem:
Theorem 1. Suppose that Assumption 1 holds. Then, given ε > 0, if we invoke CA-CMPG with
T = 2nH

ε , it converges to an ε-Nash policy.

Remark: What if we relax the feasibility requirement in Eq. (6) and allow the CMDP solver to
return an ε-feasible policy π such that V cj (π) ≤ αj + ε, ∀j ∈ [k], for an ε > 0? In that case, the
intermediate policies might not be feasible and CA-CMPG may get stuck in an infeasible policy,
which is not a Nash policy.

6 Learning in Unknown Constrained Markov Potential Games

In this section, we assume that the agents do not know the transition model beforehand. For
simplicity, we assume that they do know the rewards and costs8. Our objective is to establish a
sample complexity bound for learning in CMPGs. Concretely, we want to construct an algorithm,
such that, given any ε > 0, δ ∈ (0, 1), the algorithm returns an ε-Nash policy with probability at least
1− δ, using at most F(ε, δ) samples from the transition model P . Before we proceed, we define an
important quantity related to the constraint set, which also contributes to the final sample complexity.
Definition 1 (Slater constant). Given a feasible CMPG G, we define its Slater constant ζ as follows:

ζ ≜ min
j∈[k]

min
i∈[n]

min
π−i∈Π\Πi

max
π∈Πi
{αj − V cj (π,π−i)}.

7This can be achieved using state-of-the-art primal-dual methods, such as the work by Ding et al. (2020);
Paternain et al. (2019).

8In general, learning the transitions is harder than learning rewards and costs. Concretely, this also means
that learning rewards and costs will not add any dominating terms to the overall sample complexity (see Vaswani
et al. (2022)).
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We call G strictly feasible if and only if ζ > 0.

In the rest of this section, we assume that the agents face an unknown, strictly feasible CMPG with
Slater constant ζ > 0. Next, we discuss which parts of CA-CMPG need to be adapted for this setting.

1. In every iteration t, each agent i ∈ [n] needs to solve the CMDP described in Section 5 (Line 4).
To solve this CMDP, we assume access to a sample-efficient CMDP solver, which has the following
guarantees: Given ε > 0, δ ∈ (0, 1), the solver uses at most FC

(
|S|, |Ai|, H, ζ, δ, ε

4

)
samples and

returns a policy π̂t
i ∈ Πi

C(π
t−1
−i ) such that it satisfies the following, with probability at least 1− δ:

max
π∈Πi

C(πt−1
−i )

V ri(π,πt−1
−i )− V ri(π̂i

t,πt−1
−i ) ≤ ε/4, (7)

Compared to the setting with known transitions, we have a stricter bound on the approximation
error of ε/4 here. We discuss in Appendix C, why we require this.

2. To compute εti in step t, agent i needs to estimate the value functions V ri(π̂t
i ,π

t−1
−i ) and

V ri(πt−1). For the former, the agents execute the policy (π̂t
i ,π

t−1
−i ) for M > 0 episodes9 and

agent i estimates V̂ ri(π̂t
i ,π

t−1
−i ) with the average of the observed, cumulative rewards. For the

latter, similarly, the agents execute πt−1 for M episodes, but these observations can be used to
estimate V r1(πt−1), ..., V rn(πt−1) simultaneously10.

The resulting algorithm Coordinate-Ascent for CMPGs with Exploration (CA-CMPG-E) is
described in Algorithm 2 (cf. Appendix C).

Theorem 2. Given a strictly feasible CMPG G with Slater constant ζ > 0, suppose that the agents
have access to an initial feasible policy (cf. Assumption 1). Furthermore, assume that the agents have
access to a sample-efficient CMDP solver (Eq. (7)). Then, for any ε > 0, δ ∈ (0, 1), CA-CMPG-

E invoked with M = 32H2

ε2 log
(

32n2H
εδ

)
and T = 4nH

ε returns an ε-Nash policy with probability at
least 1− δ, using the following number of samples:

F(ε, δ) ≜
T∑

t=1

n∑
i=1

FC

(
|S|, |Ai|, H, ζ,

εδ

8n2H
,
ε

4

)
+

256n2H4

ε3
log

(
32n2H

εδ

)
.

In the next two sub-sections, we will instantiate CA-CMPG-E with two different state-of-the-art
CMDP solvers and state the resulting sample complexity bounds. Both algorithms are designed for
CMDPs with a single constraint. Due to this, we set k = 1 and denote our cost function by {ch}Hh=1
and refer to the constraint parameter as α. Note that this is due to a limitation of the existing CMDP
algorithms and not of CA-CMPG-E.

6.1 Generative model

In this section, we assume that the agents have access to a generative model, i.e., they can directly
obtain samples from the transition model Ph(·|s, a), for any state-action pair (s, a) ∈ S × A and
any h ∈ [H]. Similar to previous results in CMDPs (Vaswani et al., 2022) we propose a novel
algorithm for finite-horizon CMDPs and describe it in Algorithm 3 (cf. Appendix D). Lemma 2
(cf. Appendix D) establishes the sample complexity for Algorithm 3.

Corollary 1. Given a strictly feasible CMPG G, assume that its Slater constant ζ > 0 is known.
Furthermore, assume that the agents invoke Algorithm 3 with ε′ = ε

4 , δ′ = O
(

εδ
n2H

)
and parameters

set as in Lemma 2 to solve Eq. (7). Then, for any ε > 0, δ ∈ (0, 1), CA-CMPG-E invoked with

M = O
(

H2

ε2 log
(
nH
εδ

))
and T = 4nH

ε , returns an ε-Nash policy with probability at least 1 − δ

with an overall sample complexity of:

F(ε, δ) ≤ Õ

(
n|S|H8 log

(
1
εδ

)∑n
i=1 |Ai|

ε3ζ2
+

n2H4 log
(

1
εδ

)
ε3

)
.

9Each episode is a sequence of H steps. At the beginning of each episode, the initial state is freshly sampled
from µ.

10This holds because we assumed that the reward functions are known.
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Remark: Compared to the result for unconstrained MPGs (Song et al., 2021, Theorem 7), our
Corollary 1 has an additional dependence on 1

ζ2 and a worse dependence on the horizon H . These
are due to the fact that our CMDP solver must always return a feasible policy. Finally, the sample
complexity result in Song et al. (2021) explicitly depends on Φmax ≜ maxπ∈Π Φ(π), whereas we
substituted Φmax ≤ nH (Lemma 1).

6.2 Safe exploration without a generative model

We now consider the more challenging setting where the agents do not have access to a generative
model, but can only explore by executing policies and observing the transitions. Moreover, during
the learning process, we want to ensure that the agents explore safely. Existing algorithms with
safe exploration (Bura et al., 2022; Liu et al., 2021b) have guarantees on the regret, but no sample
complexity guarantees. To address this, we derive a sample complexity bound for the algorithm
by Bura et al. (2022) (Algorithm 4 in Appendix E) in Lemma 14. To apply this CMDP solver in
CA-CMPG-E, we need to ensure that in every iteration, the agents have access to a strictly feasible
policy. We state a stronger condition in the following assumption.

Assumption 2. There exists c ∈ (0, ζ] s.t. for any agent i ∈ [n] and policy π−i ∈ ΠC \ Πi of the
other agents, the agent can obtain a strictly feasible policy π ∈ Πi s.t. V c(π,π−i) ≤ α− c.

This is a stronger assumption than in Section 6.1, as we additionally require access to a strictly
feasible policy for every CMDP that is solved in CA-CMPG-E.

Corollary 2. Suppose that Assumption 2 holds. Given ε > 0, δ ∈ (0, 1), assume that we invoke CA-

CMPG-E with M = O
(

H2

ε2 log
(
nH
εδ

))
and T = 4nH

ε . Furthermore, assume that we use Algorithm 4

as CMDP solver with ε′ = ε
4 , δ′ = O

(
εδ

n2H

)
and parameters set as in Lemma 14. Then, CA-CMPG-

E returns an ε-Nash policy with probability at least 1− δ with an overall sample complexity of:

F(ε, δ) ≤ Õ

(
n|S|2H10 log

(
1
εδ

)∑n
i=1 |Ai|

ε5c2
+

n2H4 log
(

1
εδ

)
ε3

)
.

Note that to satisfy Assumption 2, any c ∈ (0, ζ] is a valid choice. A large c yields a better sample
complexity for Corollary 2, but restricts the set of strictly feasible policies for the CMDP solver. A
smaller c increases the sample complexity, but gives more flexibility, as it allows for a larger set of
strictly feasible policies. Comparing the two corollaries, we observe that safe exploration without a
generative model leads to a worse dependence of |S|, H and ε.

7 Experiments

Grid world: We consider a cooperative CMPG with two agents, in which the agents navigate in
a 4x4 grid world (cf. Appendix F). Each cell in the grid represents a state and in every state, each
agent can choose to move up, right, down or left. State transitions are deterministic and if an agent
selects an action that would make it leave the grid, it remains in the current state. Fig. 4a illustrates
the rewards that an agent can obtain in the individual states. Both agents start from the bottom left
state and their goal is to reach the target state, which is the state with a reward of 10. To model this
as a cooperative game, we set the agents’ joint objective to be the sum of their individual rewards.
Whenever the agents are on the same state, excluding the start and target states, they collide and
incur a cost of 1. The agents must keep the expected cost below a pre-defined threshold α ∈ [0, 1].

We evaluate our algorithm CA-CMPG with known transitions and use a primal-dual algorithm
as CMDP solver. We set the horizon to H = 6 and use a threshold of α = 0.1. Fig. 1a (top row)
displays the reward differences between the current policy and the new policy for both agents and
after every cycle of the algorithm, averaged over 20 runs. One cycle corresponds to one full iteration
of Algorithm 2, i.e. all agents solving their CMDPs. When the reward differences reach zero for
both agents, this implies that the agents have converged to a Nash policy. The bottom row tracks
the cost over the cycles of Algorithm 2. The agents start from a strictly feasible policy with a cost
of 0, and converge to a policy with a cost close to α. We provide more details about the resulting
Nash policies in Appendix F. Note also, that for this experiment, solving the dual problem may lead
to an infeasible policy (cf. Appendix F).
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(a) Grid world
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(b) Congestion game

Figure 1: These plots illustrate the results of the grid world (Fig. 1a) and congestion game (Fig. 1b)
experiments. One cycle on the x-axis corresponds to one full iteration of Algorithm 2, i.e. all N agents
solving their CMDPs. The top row displays, for each agent, an average of their reward difference
between the current and new policy. When the difference reaches zero, they have converged to a
Nash policy. The bottom row tracks the averaged cost over the cycles of Algorithm 2 (green, solid
line). The agents start from a strictly feasible policy and converge to a cost close to α (red, dashed
line). In all plots, we additionally also plot the standard error.

Congestion game: We consider a finite-horizon version of the setup described in Leonardos
et al. (2022) in which every state is a congestion game11. The game consists of two states
S = {safe, unsafe}, N agents and action space A = {A,B,C,D} for every agent. Each action
a ∈ A in state s ∈ S has a weight ws

a > 0 associated with it. In the safe state, an agent that
selects action a ∈ A, receives a reward of ka · wsafe

a , where ka denotes the number of agents that
selected action a. In the unsafe state, the reward structure is similar, however, we subtract an offset
c ≥ 0, resulting in a reward of ka · wunsafe

a − c. In both states s ∈ S, the weights follow the order
ws

A < ws
B < ws

C < ws
D. Thus, in both states, the agents prefer to take the action that is chosen

by most agents. Furthermore, for every action a ∈ A, ka · wsafe
a ≫ ka · wunsafe

a − c s.t. the agents
prefer to stay in the safe state. In the safe state, if more than N/2 agents choose the same action,
the system transitions to the unsafe state. To get back to the safe state from the unsafe state, the
agents must equally distribute themselves among the four actions (cf. Appendix F).

We evaluate our algorithm CA-CMPG with N = 8 agents and a horizon of H = 2. Furthermore, we
assume that the transitions are known and use a linear program to solve the CMDPs (Altman, 1999).
For the initial state, we set µ(safe) = µ(unsafe) = 0.5. At step h = 1, in the unsafe state, if more
than N/2 agents select the same action, the agents incur a cost of 1. Their goal is to keep the cost below
a threshold α = 0.5. Fig. 1b (top row) displays, as before, the reward differences between the current
policy and the new policy, for each agents and averaged over 50 runs. When this difference reaches
zero, this implies that the agents have converged to a Nash policy. The bottom plots track the cost over
the cycles of Algorithm 2. The agents start from a strictly feasible policy with a cost of 0, and converge
to a value close to α. We provide more details about the resulting Nash policies in Appendix F.

8 Conclusion

In this paper, we proved that strong duality does not hold always hold in CMPGs. An interesting
future question could be to understand under which conditions primal-dual methods may work for
CMPGs. To tackle CMPGs, we presented our algorithm CA-CMPG, which provably converges to

11Note that every congestion game is also a potential game and vice versa (Monderer and Shapley, 1996);
however, the setup considered here may not necessarily be MPGs as pointed out in Leonardos et al. (2022).
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an ε-Nash policy.12 Furthermore, we established the first sample complexity bound for learning
in CMPGs. In CA-CMPG, exploration happens only within the CMDP sub-routines. It would be
interesting to understand whether the sample complexity bound for the generative model setting
(Section 6.1) can be made tighter if we move the exploration outside the CMDP sub-routines.
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A Duality for Constrained Markov Potential Games? (Section 4)

This section provides the theoretical proofs for Section 4. We start by proving that a Nash policy can
be found via constrained optimization in the following proposition.
Proposition 1. Define the following constrained optimization problem:

π∗ ∈ arg max
π∈ΠC

Φ(π). (5)

Then, π∗ is a Nash policy for a CMPG with potential function Φ.

Proof. We prove this by contradiction. Suppose that π∗ is not a Nash policy. Therefore, there is
an agent i ∈ [n], for which there exists a policy π̂i ∈ argmaxπ∈Πi

C(π∗
−i)

V ri
(
π,π∗

−i

)
such that

V ri
(
π̂i,π

∗
−i

)
> V ri (π∗). Thus, agent i can strictly increase its value function by deviating to π̂i.

This implies that we can also increase the potential function, i.e.

Φ(π̂i,π
∗
−i)− Φ(π∗) = V ri(π̂i,π

∗
−i)− V ri(π∗) > 0 (By Eq. (2).)

⇒ Φ(π̂i,π
∗
−i) > Φ(π∗).

Since (π̂i,π
∗
−i) ∈ ΠC and Φ(π̂i,π

∗
−i) > Φ(π∗), this contradicts our assumption that π∗ is a

solution to Eq. (5). Therefore, π∗ must be a Nash policy.

As stated in Section 4, we make use of the constrained optimization formulation in Proposition 1 to
define the Lagrangian primal and dual problems in Eq. (Primal) and Eq. (Dual), respectively. We are
interested in solving the dual problem, as it corresponds to a modified, unconstrained MPG, which
we prove in the following lemma.
Proposition 2. For any λ ∈ Rk

+, L(·,λ) is a potential function for an MPG with reward functions
r̃i,h ≜ ri,h −

∑k
j=1 λjcj,h,∀i ∈ [n],∀h ∈ [H].

Proof. Consider an arbitrary λ ∈ Rk
+. Then, we can write the new value function, for any agent

i ∈ [n], as follows:

V r̃i(π) = E

[
H∑

h=1

r̃i,h(sh, ah)|s0 = s

]
,

12



where the expectation is taken with respect to µ,π and P . Next, we plug in the definition for r̃i and
obtain:

V r̃i = E

 H∑
h=1

ri,h(sh, ah) +

k∑
j=1

λjcj,h(sh, ah)

∣∣∣s0 = s


= E

[
H∑

h=1

ri,h(sh, ah)
∣∣∣s0 = s

]
+

k∑
j=1

λjE

[
H∑

h=1

cj,h(sh, ah)
∣∣∣s0 = s

]
(8)

= V ri(π) +

k∑
j=1

λjV
cj (π),

where Eq. (8) is due to linearity of expectation. Next, we show that L(·,λ) is indeed a potential
function for the value functions

{
V r̃i
}
i∈[n]

. For any π ∈ Π and πi ∈ Πi, we evaluate the difference
in L(·,λ) between π and (πi,π−i):

L ((πi,π−i) ,λ)− L (π,λ) =

Φ(πi,π−i) +

k∑
j=1

λj (V
cj (πi,π−i)− αj)

−
Φ(π) +

k∑
j=1

λj (V
cj (π)− αj)

 (By Eq. (Lagrangian).)

= Φ(πi,π−i)− Φ(π) +

k∑
j=1

λj (V
cj (πi,π−i)− V cj (π))

= V ri(πi,π−i)− V ri(π)+ (By Eq. (2).)
k∑

j=1

λj (V
cj (πi,π−i)− V cj (π))

= V r̃i(πi,π−i)− V r̃i(π).

The last equality implies that L(·,λ) satisfies Eq. (2) for the new value functions. We conclude that
L(·,λ) is indeed potential function for the modified rewards.

While Proposition 2 proves that the dual problem reduces to an unconstrained MPG, which can be
solved using existing techniques (Leonardos et al., 2022), we prove in Proposition 3, that, unfortu-
nately, strong duality does not always hold for CMPGs. Moreover, we show that the resulting policy
is not only sub-optimal but also does not respect the constraints.
Proposition 3. There exists a CMPG, for which strong duality does not hold, i.e., for which P ∗ ̸= D∗.

Proof. We prove this using a counter-example. Consider the following two-agent CMPG with
|S| = 1, A1 = A2 = {1, 2}, reward functions r = r1 = r2, constraint function c and threshold
α = 1/2. The rewards and constraints are specified via the matrices

A =

[
3 2
2 4

]
, B =

[
0 0
0 1

]
,

where r(i, j) = A(i, j) and c(i, j) = B(i, j),∀i, j ∈ {1, 2}. This is a cooperative CMPG with
potential function Φ(π) = πT

1 Aπ2. The optimization formulation (Eq. (5)) corresponding to this
CMPG is:

max
π1,π2∈∆2

πT
1 Aπ2, subject to: πT

1 Bπ2 ≤ 1/2. (9)

Primal problem: First, we solve the primal problem, which is defined as follows:

P ∗ = max
π1,π2∈∆2

min
λ∈R+

(
πT
1 Aπ2 + λ

(
1

2
− πT

1 Bπ2

))
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Figure 2: This figure displays the dual function d(λ) for the CMPG in Eq. (9), evaluated at 1000
equidistant locations λ ∈ [0, 2].

The policies π1 = π2 =
[
1−

√
1
2 ,
√

1
2

]
solve the primal problem with a reward of P ∗ ≈ 3.09. One

can easily verify that these three policies are also Nash policies.

Dual problem: Next, we solve the dual problem, which is defined as follows:

D∗ = min
λ∈R+

max
π1,π2∈∆2

(
πT
1 Aπ2 + λ

(
1

2
− πT

1 Bπ2

))
︸ ︷︷ ︸

=:d(λ)

,

where d(λ) is the dual function. Fig. 2 visualizes d(λ) for λ ∈ [0, 2]. Since the dual function is always
convex, it is sufficient to focus only on this interval. From Fig. 2, we can see that d(λ) reaches its
minimum at λ∗

D = 1 with D∗ = d(λ∗
D) = 3.5. Note that this is strictly larger than the primal solution

P ∗ = 3, and therefore, strong duality does not hold here. Next, we list two policies that are solutions
to the dual problem, i.e., policies π∗

D that satisfy π∗
D ∈ argmaxπ

{
πT
1 Aπ2 + λ∗

D

(
1
2 − πT

1 Bπ2

)}
:

1. π1 = [1, 0] , π2 = [1, 0]

2. π1 = [0, 1] , π2 = [0, 1]

The first policy satisfies the constraints and is indeed a Nash policy, with a reward of 3 < P ∗. The
second policy, however, does not satisfy the constraints. Solving the dual problem does therefore not
necessarily guarantee a feasible policy.

We have proved in Proposition 3 that strong duality does not always hold in CMPGs. Furthermore,
we showed that solving the dual may not lead to a feasible policy. What if a CMPG satisfies the
strong duality property? Next, we modify the CMPG in Eq. (9) such that strong duality holds. We
will demonstrate that even in that case, the dual problem might not return a feasible Nash policy.
Consider a modified version of the CMPG in Eq. (9) with A defined as follows:

A =

[
3 3
3 4

]
. (10)

Primal problem: First, we recall the primal problem, which is defined as follows:

P ∗ = max
π1,π2∈∆2

min
λ∈R+

(
πT
1 Aπ2 + λ

(
1

2
− πT

1 Bπ2

))
It is easy to see that P ∗ = 3.5 here. The following policies return an expected reward of P ∗:

1. π1 =
[
1
2 ,

1
2

]
, π2 = [0, 1]

2. π1 = [0, 1] , π2 =
[
1
2 ,

1
2

]
Dual problem: Next, we recall the dual problem, which is defined as follows:

D∗ = min
λ∈R+

max
π1,π2∈∆2

(
πT
1 Aπ2 + λ

(
1

2
− πT

1 Bπ2

))
︸ ︷︷ ︸

=:d(λ)

,
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Figure 3: This figure displays the dual function d(λ) for the CMPG in Eq. (10), evaluated at 1000
equidistant locations λ ∈ [0, 2].

Fig. 3 visualizes the dual function in the interval λ ∈ [0, 2]. Using the same reasoning as before, it is
easy to see that the optimal dual variable is λ∗

D = 1, resulting in the dual value D∗ = 3.5. Note that
in this CMPG, strong duality holds, i.e., P ∗ = D∗. Next, we list three policies that are solutions to
the dual problem, i.e., policies that satisfy π∗

D ∈ argmaxπ
{
πT
1 Aπ2 + λ∗

D

(
1
2 − πT

1 Bπ2

)}
:

1. π1 = [1, 0] , π2 = [1, 0]

2. π1 = [0, 1] , π2 = [0, 1]

3. π1 =
[
1
2 ,

1
2

]
, π2 =

[
1
2 ,

1
2

]
The first policy is feasible and is indeed a Nash policy. As established before, the second policy does
not satisfy the constraints. The third policy is feasible, but it is not a Nash policy. For example, agent
1 can improve the expected reward by switching to policy π1 = [0, 1], and vice versa. Therefore,
even if strong duality hold, the dual problem may not return a Nash policy.

B Solving Constrained Markov Potential Games (Section 5)

This section provides the theoretical proofs for Section 5. We start by discussing the initialization
for CA-CMPG. As stated in Assumption 1, we require access to an initial, feasible policy. This type
of assumption is common in the single-agent CMDP setting (Bura et al., 2022; Liu et al., 2021b).
While finding such a policy in the multi-agent setting may be computationally expensive, we provide
two examples here and explain, how such a policy can be computed by the agents. In both cases, we
assume that the CMPG is feasible, i.e., ΠC ̸= ∅.
Example 1 (Single Constraint). Consider the problem minπ∈Π V c1(π). Since the constraint set
is feasible, we must have that minπ∈Π V c1(π) ≤ α1. Note that this is an unconstrained Markov
decision process (MDP) with state space S and action space A. It is well-known that MDPs always
possess at least one deterministic, optimal policy, which can be computed using dynamic programming
techniques. Thus, we compute a deterministic policy πC ∈ argminπ∈Π V c1(π), s.t. for every state
s ∈ S and step h ∈ [H], there is exactly one action a = (a1, ..., an) ∈ A, for which πC

h (a|s) = 1
and πC

h (a
′|s) = 0,∀a′ ̸= a. Then, for every agent i ∈ [n], we set πC

i,h(ai|s) = 1 and πC
i,h(a

′
i|s) = 0,

for all a′i ̸= ai. It is easy to verify that πC =
∏n

i=1 π
C
i .

Example 2 (Independent Transitions and Composite Constraints). Consider a CMPG with per-agent
state spaces S1, ...,Sn and transition models P1, ...,Pn, where Pj,h(s

′|s, a) is the probability that
agent j transitions to state s′ ∈ Sj from state-action pair (s, a) ∈ Sj × Aj at step h ∈ [H].
We denote by S ≜ ×n

i=1S the joint state space and define Ph(s
′|s, a) ≜

∏n
i=1 Pi

h(s
′
i|si, ai) as

the joint probability of transitioning to state s′ ∈ S from state-action pair (s, a) ∈ S × A at
step h ∈ [H]. Furthermore, assume that for each j ∈ [k], the constraint function cj can be
written as cj,h(s, a) ≜

∑n
i=1 c

i
j,h(si, ai). Due to this, the cumulative constraints can be written

as V cj (π) =
∑n

i=1 V
cij (πi), ∀j ∈ [k]. To find a feasible policy, each agent i ∈ [n] computes

πi ∈
{
π ∈ Πi

∣∣∣V cij (π) ≤ c∗i ,∀j ∈ [k]
}

, where c∗i ≜ minc∈R

{
∃π ∈ Πi

∣∣∣V cij (π) ≤ c,∀j ∈ [k]
}

. As-

suming that the constraint set is feasible, it is easy to see that πS = (πS
1 , ..., π

S
n ) must be feasible.

We are now ready to move to the next part of CA-CMPG, in which each agent solves a single-agent
CMDP. As stated in Section 5, in CA-CMPG, while one agent is maximizing its own value function,
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the others keep their policy fixed. By doing this, the others provide a stationary environment and the
agent essentially faces a CMDP. We now provide an exact description of said CMDP. In iteration t,

agent i ∈ [n] faces the CMDPM =

(
S,Ai, H,

{
P̃h

}H

h=1
, {r̃h}Hh=1 , µ,

{(
{c̃j,h}Hh=1 , αj

)}k

j=1

)
,

where the reward function r̃, cost functions {c̃j}j∈[n] and transition model P̃ are defined according
to Eq. (11), Eq. (12) and Eq. (13):

r̃h(s, ai) ≜
∑

a−i∈A\Ai

ri,h(s, (ai, a−i)) · πt−1
−i,h(a−i|s), (11)

c̃j,h(s, ai) ≜
∑

a−i∈A\Ai

cj,h(s, (ai, a−i)) · πt−1
−i,h(a−i|s), (12)

P̃h(s
′|s, ai) ≜

∑
a−i∈A\Ai

Ph(s
′|s, (ai, a−i)) · πt−1

−i,h(a−i|s), (13)

for all (s, ai, s′, h) ∈ S ×Ai × S × [H].

We are almost ready to prove the convergence of CA-CMPG (Theorem 1). One important requirement
for proving convergence is that the potential function is bounded, which we prove in the following
lemma.
Lemma 1. Fix an arbitrary base policy πB ∈ Π. Then, for every π ∈ Π, the potential function can
be bounded as: Φ(π) ≤ nH +Φ(πB).

Proof. For any π ∈ Π, we define a new sequence of policies
{
π̃k
}
k=0,...,n

as follows:

π̃k ≜



πB
1
...

πB
k

πk+1

...
πn


, k = 0, ..., n. (14)

It is easy to see that π̃0 ≡ π and π̃n ≡ πB . For any agent i ∈ [n], the policies π̃i−1 and π̃i differ
only in agent i. By applying the potential property (Eq. (2)), we obtain:

Φ(π̃i−1)− Φ(π̃i) = V ri(π̃i−1)− V ri(π̃i).

Summing over all i ∈ [n] and rearranging the terms, we get:

Φ(π) =

n∑
i=1

[
V ri

(
π̃i−1

)
− V ri

(
π̃i
)]

+Φ(πB)

≤
n∑

i=1

∣∣V ri
(
π̃i−1

)
− V ri

(
π̃i
)∣∣︸ ︷︷ ︸

≤H

+Φ(πB)

≤ nH +Φ(πB) (Since ri,h ∈ [0, 1],∀i ∈ [n],∀h ∈ [H]).)

We are now ready to prove the convergence of Algorithm 1. For completeness, we repeat the statement
of Theorem 1 here.
Theorem 1. Suppose that Assumption 1 holds. Then, given ε > 0, if we invoke CA-CMPG with
T = 2nH

ε , it converges to an ε-Nash policy.

Proof. Consider time step t and assume that the algorithm has not converged yet. This implies that
there is an agent i ∈ [n] s.t. V ri(π̂t

i ,π
t−1
−i )−V ri(πt−1) > ε/2; therefore, Φ(πt)−Φ(πt−1) > ε/2

holds due to the potential property (Eq. (2)).
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Algorithm 2 CA-CMPG-E (Unknown Transitions)

Require: ε > 0 (approximation error), δ ∈ (0, 1) (confidence), πS ∈ ΠC (feasible policy), T
(number of iterations), M > 0 (number of samples per policy)

1: π0 ← πS

2: for t = 1, ..., T do
3: Execute policy πt−1 for M episodes and estimate V̂ r1(πt−1), ..., V̂ rn(πt−1).
4: for agent i = 1, ..., n do
5: Agent i computes π̂i

t such that Eq. (7) is satisfied.
6: Execute policy (π̂t

i ,π
t−1
−i ) for M episodes and estimate V̂ ri(π̂t

i ,π
t−1
−i ).

7: εti ← V̂ ri(π̂t
i ,π

t−1
−i )− V̂ ri(πt−1).

8: if maxi∈[n] ε
t
i > ε/2 then

9: Set πt = (π̂j
t,πt−1

−j ), where j = argmaxi∈[n] ε
t
i, break ties arbitrarily.

10: else
11: break

By applying Lemma 11 with the initial policy π0, we know that Φ(π) ≤ nH + Φ(π0) holds, for
all π ∈ Π. Since, in every iteration, the potential function increases by at least ε/2, we must have
V ri(π̂T

i ,π
T−1
−i )− V ri

(
πT−1

)
≤ ε/2, ∀i ∈ [n] after T iterations.

Combining this with Eq. (6), we obtain the following guarantee for every agent i ∈ [n]:

max
π∈Πi

C(πT−1
−i )

V ri(π,πT−1
−i )− V ri(π̂T

i ,π
T−1
−i ) ≤ ε.

Finally, recall that we start from a feasible policy π0 ∈ ΠC and solving Eq. (6) ensures that πt ∈ ΠC ,
∀t ≤ T . Therefore, πT−1 is feasible and is indeed an ε-Nash policy.

C Learning in Unknown Constrained Markov Potential Games (Section 6)

This section provides the theoretical proofs for Section 6. As discussed in Section 6, in the learning
setting, we need to modify CA-CMPG to make it work in the learning setting. The resulting
algorithm CA-CMPG-E is described in Algorithm 2. We prove the sample complexity bound for
CA-CMPG-E in the following theorem.

Theorem 2. Given a strictly feasible CMPG G with Slater constant ζ > 0, suppose that the agents
have access to an initial feasible policy (cf. Assumption 1). Furthermore, assume that the agents have
access to a sample-efficient CMDP solver (Eq. (7)). Then, for any ε > 0, δ ∈ (0, 1), CA-CMPG-

E invoked with M = 32H2

ε2 log
(

32n2H
εδ

)
and T = 4nH

ε returns an ε-Nash policy with probability at
least 1− δ, using the following number of samples:

F(ε, δ) ≜
T∑

t=1

n∑
i=1

FC

(
|S|, |Ai|, H, ζ,

εδ

8n2H
,
ε

4

)
+

256n2H4

ε3
log

(
32n2H

εδ

)
.

Proof. First, we define the following events:

1. GCMDP = {∀i ∈ [n],∀t ∈ [T ] : π̂t
i satisfies Eq. (7).}

2. Ĝestimate =
{
∀i ∈ [n],∀t ∈ [T ] :

∣∣∣V ri(π̂t
i ,π

t−1
−i )− V̂ ri(π̂t

i ,π
t−1
−i )

∣∣∣ ≤ ε/8
}

3. Gestimate =
{
∀i ∈ [n],∀t ∈ [T ] :

∣∣∣V ri(πt−1)− V̂ ri(πt−1)
∣∣∣ ≤ ε/8

}
Then, we define the "good event" as G ≜ GCMDP ∩ Ĝestimate ∩ Gestimate. In the rest of the proof,
we will use the notation EC to refer to the complement of an event E .
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1. For any t ≤ T , if the algorithm did not terminate, the potential function is strictly increased:
Assume that G holds. For any t ≤ T before termination, there exists an agent j ∈ [n], for which
εtj > ε/2 holds. This implies the following increase in the potential function:

Φ(π̂t
j ,π

t−1
−j )− Φ(πt−1) = V rj (π̂t

j ,π
t−1
−j )− V rj (πt−1) (By Eq. (2).)

≥
(
V̂ rj (π̂t

j ,π
t−1
−j )− ε

8

)
−
(
V̂ rj (πt−1) +

ε

8

)
(By Gestimate, Ĝestimate.)

= εtj −
ε

4

>
ε

4
(Since εtj > ε/2.)

2. πT is an ε-Nash policy: Assume that G holds. We apply Lemma 1 with the base policy π0 to
establish that Φ(πT )− Φ(π0) ≤ nH . Since Φ is increased by at least ε/4 in every iteration t ≤ T ,
the condition maxi∈[n] ε

T
i ≤ ε/2 must hold at time T . With this, we can bound the differences in the

true value functions as follows, for every agent i ∈ [n]:

V ri(π̂T
i ,π

T−1
−i )− V ri(πT−1) ≤

(
V̂ ri

(
π̂T
i ,π

T−1
−i

)
+ ε/8

)
−
(
V̂ ri

(
π̂T
i ,π

T−1
−i

)
− ε/8

)
(By Gestimate, Ĝestimate.)

= εTi +
ε

4

≤ 3

4
ε.

Combining this with GCMDP , we obtain:

max
π∈Πi

C(πT−1
−i )

V ri(π,πT−1
−i )− V ri(πT−1) = max

π∈Πi
C(πT−1

−i )
V ri(π,πT−1

−i )− V ri(π̂T
i ,π

T−1
−i )+

V ri(π̂T
i ,π

T−1
−i )− V ri(πT−1)

≤ ε.

Finally, observe that πT ∈ ΠC and therefore, πT is an ε-Nash policy. Until now, we focused on
the convergence of CA-CMPG-E, assuming that the event G holds. In the following paragraphs, we
bound the number of samples that are required for G to hold with high probability.

3. Number of samples to obtain Pr [GCMDP ] ≥ 1 − δ
2 : Define δ′ ≜ εδ

8n2H ∈ (0, 1). Sup-
pose that in iteration t ≤ T , agent i ∈ [n] uses a CMDP solver with a sample complexity of
FC

(
|S|, |Ai|, H, ζti , δ

′, ε
4

)
s.t. π̂t

i satisfies Eq. (7) with probability at least 1− δ′. We take a union
bound over all iterations t ∈ {1, ..., T} and all agents i ∈ [n], and obtain the following bound on
Pr
[
GCCMDP

]
:

Pr
[
GCCMDP

]
≤

n∑
i=1

T∑
t=1

Pr
[
π̂t
i does not satisfy Eq. (7)

]
(Union bound.)

≤ nTδ′

=
δ

2
.

⇒ Pr [GCMDP ] = 1− Pr
[
GCCMDP

]
≥ 1− δ

2
.

Finally, to obtain Pr [GCMDP ] ≥ 1− δ
2 , we require the following number of samples:

T∑
t=1

n∑
i=1

FC

(
|S|, |Ai|, H, ζti ,

εδ

8n2H
,
ε

4

)
.

4. Number of samples to obtain Pr
[
Gestimate ∩ Ĝestimate

]
≥ 1 − δ

2 : Consider an arbitrary
policy π ∈ Π and suppose that the agents execute π forM > 0 episodes Then, each agent i ∈ [n]
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estimates V̂ ri(π) with the averaged, cumulative reward from those M episodes. Since the episodes
are independent13 from each other, and the cumulative reward per episode is bounded in the range
[0, H], we can apply Hoeffding’s inequality to bound the estimation error for agent i as follows:

Pr
[∣∣∣V̂ ri(π)− V ri(π)

∣∣∣ ≥ ε

8

]
≤ 2 exp

(
−2M (ε/8)

2

H2

)
(By Hoeffding’s inequality.)

= 2 exp

(
−Mε2

32H2

)
.

The agents need to estimate 2nT value functions in total for Gestimate and Ĝestimate. By set-
ting M = 32H2

ε2 log
(

32n2H
εδ

)
, we ensure that Pr

[∣∣∣V̂ ri(π)− V ri(π)
∣∣∣ ≥ ε

8

]
≤ εδ

16n2H holds,

for all policies π that are required for Gestimate and Ĝestimate. We are now ready to bound
Pr
[
GCestimate ∪ ĜCestimate

]
:

Pr
[
GCestimate ∪ ĜCestimate

]
≤ Pr

[
GCestimate

]
+ Pr

[
ĜCestimate

]
(Union bound.)

≤
T∑

t=1

n∑
i=1

Pr
[∣∣∣V̂ ri(πt−1)− V ri(πt−1)

∣∣∣ ≥ ε

8

]
+

T∑
t=1

n∑
i=1

Pr
[∣∣∣V̂ ri(π̂t

i ,π
t−1
−i )− V ri(π̂t

i ,π
t−1
−i )

∣∣∣ ≥ ε

8

]
(Union bound.)

≤ 8n2H

ε
· εδ

16n2H

≤ δ

2
.

⇒ Pr
[
Gestimate ∩ Ĝestimate

]
= 1− Pr

[
GCestimate ∪ ĜCestimate

]
≥ 1− δ

2
.

To obtain Pr
[
Gestimate ∩ Ĝestimate

]
≥ 1− δ

2 , considering that each episode requires H samples,
the number of samples required is at most:

2nTMH ≤ 256n2H4

ε3
log

(
32n2H

εδ

)
.

5. Conclusion: Combining 3. and 4., we obtain Pr[G] ≥ 1 − δ with the following number of
samples:

T∑
t=1

n∑
i=1

FC

(
|S|, |Ai|, H, ζti ,

εδ

8n2H
,
ε

4

)
+

256n2H4

ε3
log

(
32n2H

εδ

)
.

In Theorem 2, we proved the sample complexity bound for CA-CMPG-E, however, the actual number
of samples will depend on the CMDP solver that is used within CA-CMPG-E. In the following two
sections, we will instantiate CA-CMPG-E with two different state-of-the-art CMDP solvers and state
the resulting sample complexity bounds. Recall that both algorithms are designed for CMDPs with a
single constraint. Due to this, we set k = 1 and denote our cost function by {ch}Hh=1 and refer to the
constraint parameter as α. Note that this is due to a limitation of the existing CMDP algorithms and
not of CA-CMPG-E.

13After every episode, the initial state for the next episode is freshly sampled from µ.
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Algorithm 3 CMDPs with generative model

Require: S (state space), A (action space), H (horizon), {rh}Hh=1 (reward function), {ch}Hh=1
(constraint function), ζ > 0 (Slater constant), N (number of samples), α′ (constraint threshold),
U (projection upper bound), λ0 = 0 (initialization).

1: For each state-action (s, a) pair and step h ∈ [H], collect N samples from Ph(·|s, a) and form
the empirical transition model P̂h(·|s, a).

2: Form the empirical CMDP M̂ =

(
S,A, H,

{
P̂h

}H

h=1
, µ, {rh}Hh=1 , {ch}

H
h=1 , α

′
)

.

3: for t = 0, ..., T − 1 do
4: Update the policy: π̂t ∈ argmaxπ∈Π V̂ r−λtc(π)

5: Update the dual-variables: λt+1 = P[0,U ]

[
λt − η

(
α′ − V̂ c(π̂t)

)]
6: Convert {π̂t}T−1

t=0 into a single policy π̄ s.t. V̂ l(π̄) = 1
T

∑T
t=1 V̂

l(π̂t) for l = r, c (see Ap-
pendix D.1).

D Learning in Unknown Constrained Markov Potential Games: Generative
Model (Section 6.1)

In this section, similar to Vaswani et al. (2022), we present a novel algorithm for finite-horizon
CMDPs, assuming access to a generative model. While the algorithm by Vaswani et al. (2022) returns
a mixture policy14, we require an actual policy. To address this issue, we make use of occupancy
measures, which we discuss this in detail in Appendix D.1. Our CMDP algorithm is described in
Algorithm 3. We start by proving the sample complexity bound for Algorithm 3. Before we start, we
first introduce the following definitions, which are used in the proofs in this section:

π∗ ∈ arg max
π∈ΠC

V r(π), subject to: V c(π) ≤ α (Optimal policy)

π̂∗ ∈ argmax
π∈Π

V̂ r(π), subject to: V̂ c(π) ≤ α′ (Optimal empirical policy)

λ∗ such that: V̂ r(π̂∗) = max
π∈Π

[
V̂ r(π) + λ∗

(
α′ − V̂ c(π)

)]
,

(Optimal dual variable, (Paternain et al., 2019).)

where the value function V̂ l is defined with respect to the empirical transition model P̂ (Line 1), for
l = r, c. We are now ready to state the sample complexity bound for Algorithm 3 in the following
lemma.

Lemma 2. Consider a CMDPM =
(
S,A, H, {rh}h∈[H] , {Ph}h∈[H] , {ch}h∈[H] , α

)
. Assume

that the CMDP is strictly feasible, i.e., ∃π ∈ ΠC s.t. V c(π) < α. Furthermore, assume that the
Slater constant ζ ≜ maxπ∈Π {α− V c(π)}, ζ > 0, is known. Then, for any ε′ > 0 and δ′ ∈ (0, 1),

Algorithm 3 with parameters N = Õ
(

H6 log( 1
δ′ )

ε′2ζ2

)
, α′ = α− ε′ζ

16H , U = 8H
ζ , T = O

(
H6

ζ4ε′2

)
and

η = U√
TH

returns a policy π̄ ∈ ΠC s.t. maxπ∈ΠC
V r(π) − V r(π̄) ≤ ε′, with probability at least

1 − δ′. Thus, the sample complexity of Algorithm 3 is FC (|S|, |Ai|, H, ζ, δ′, ε′) = |S||A|HN =

Õ
(

|S||A|H7 log( 1
δ′ )

ε′2ζ2

)
.

Proof. We prove the lemma for an arbitrary ∆ > 0 and constraint threshold α′ ≜ α−∆. We denote
by εopt the error from the primal-dual algorithm (Line 3-Line 5). As shown in Lemma 7, the policies

14A mixture policy is a probability distribution over a set of policies.
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{π̂t}T−1
t=0 satisfy:

V̂ r(π̂∗)− 1

T

T−1∑
t=0

V̂ r(π̂t) ≤ εopt,

1

T

T−1∑
t=0

V̂ c(π̂t) ≤ α′ + εopt.

For now, we restrict εopt < ∆ and later determine the right choice of εopt and ∆. Next, we analyze
the reward sub-optimality and constraint violation guarantees.

Constraint Violation: Assume that
∣∣∣V c(π̄)− V̂ c(π̄)

∣∣∣ ≤ ∆− εopt holds. We will later determine
how many samples are required in Line 1 to satisfy this. Then, it is easy to verify that π̄ does indeed
satisfy the constraints in the original CMDPM, i.e.

V c(π̄) ≤ V̂ c(π̄) + ∆− εopt

≤ (α′ + εopt)−∆+ εopt (By Lemma 7.)
= α (Since α′ = α+∆.)

Reward Sub-Optimality: First, we define the following relaxed objective with respect to the
empirical CMDP M̂:

π̃∗ ∈ argmax
π∈Π

V̂ r(π), subject to: V̂ c(π) ≤ α+∆. (15)

Next, we decompose the reward sub-optimality, by adding and subtracting common terms, as follows:

V r(π∗)− V r(π̄) =
[
V r(π∗)− V̂ r(π∗)

]
+
[
V̂ r(π∗)− V̂ r(π̂∗)

]
+
[
V̂ r(π̂∗)− V̂ r(π̄)

]
︸ ︷︷ ︸

≤εopt, Lemma 7

+

[
V̂ r(π̄)− V r(π̄)

]
≤
[
V r(π∗)− V̂ r(π∗)

]
︸ ︷︷ ︸

Concentration error

+
[
V̂ r(π̃∗)− V̂ r(π̂∗)

]
︸ ︷︷ ︸

Sensitivity error

+εopt +
[
V̂ r(π̄)− V r(π̄)

]
︸ ︷︷ ︸

Concentration error

.

(16)

To bound the sensitivity error, first assume that
∣∣∣V c(π∗)− V̂ c(π∗)

∣∣∣ ≤ ∆ holds. Then, π∗ is feasible
for Eq. (15):

V̂ c(π∗) ≤ V c(π∗) + ∆ ≤ α+∆.

Since π̃∗ is optimal for Eq. (15), we know that V̂ r(π∗) ≤ V̂ r(π̃∗) must hold. Then, we apply
Lemma 10 to bound the sensitivity error as:

V̂ r(π̃∗)− V̂ r(π̂∗) =
∣∣∣V̂ r(π̃∗)− V̂ r(π̂∗)

∣∣∣ ≤ 2∆λ∗.

To further bound λ∗, we define π∗
c ∈ argminπ∈Π V c(π) and assume that

∣∣∣V c(π∗
c )− V̂ c(π∗

c )
∣∣∣ ≤

ζ
2 −∆ holds. Then, we can apply Lemma 11 and obtain the bound λ∗ ≤ 2H

ζ . Plugging this into
Eq. (16), we obtain:

V r(π∗)− V r(π̄) ≤
[
V r(π∗)− V̂ r(π∗)

]
+

4∆H

ζ
+ εopt +

[
V̂ r(π̄)− V r(π̄)

]
.

Next, we discuss how to set ∆ and εopt. To achieve V r(π∗) − V r(π̄) ≤ ε in the end, we set
∆ = εζ

16H < ζ
2 and εopt = ∆

5 < ε
4

15. This simplifies our reward sub-optimality to the following
expression:

V r(π∗)− V r(π̄) ≤ ε

2
+
[
V r(π∗)− V̂ r(π∗)

]
+
[
V̂ r(π̄)− V r(π̄)

]
.

15Here, we make a trade-off between sample and computational complexity. We only require εopt < ∆, but
selecting a large εopt increases the sample complexity, due to the concentration bounds, whereas a smaller εopt
increases the computational complexity in the primal-dual algorithm.
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Based on our choice of εopt, we set U = 8H
ζ (Lemma 7). Note that Lemma 11 guarantees that

U > λ∗ then. Furthermore, we set T = U2H2

ε2opt

(
1 + 1

(U−λ∗)2

)
= O

(
H6

ζ4ε2

)
(by Lemma 7).

To obtain V r(π∗)− V r(π̄) ≤ ε, we require the following concentration bounds to hold overall:∣∣∣V c(π∗)− V̂ c(π∗)
∣∣∣ ≤ ∆,

∣∣∣V r(π∗)− V̂ r(π∗)
∣∣∣ ≤ ε

4
,
∣∣∣V c(π∗

c )− V̂ c(π∗
c )
∣∣∣ ≤ 7∆,∣∣∣V c(π̄)− V̂ c(π̄)

∣∣∣ ≤ ∆− εopt,
∣∣∣V r(π̄)− V̂ r(π̄)

∣∣∣ ≤ ε

4
. (17)

For the third inequality in Eq. (17), note that 7∆ ≤ ζ
2 −∆.

Sample complexity: Applying Lemma 12 to each inequality in Eq. (17), we have that with N =

O
(

H6 log( |S||A|H
δ )

ε2ζ2

)
= Õ

(
H6 log( 1

δ )
ε2ζ2

)
, Eq. (17) holds with probability at least 1 − δ. Thus, the

sample complexity of Algorithm 3 is FC(|S|, |A|, H, ζ, δ, ε) = |S||A|HN = Õ
(

|S||A|H7 log( 1
δ )

ε2ζ2

)
.

In the following section, we discuss how to construct a policy π̄ s.t. V̂ l(π̄) = 1
T

∑T−1
t=0 V̂ l(π̂t), for

l = r, c.

D.1 Convert mixture to a single policy

Value functions are typically not linear in the policy, i.e., 1
T

∑T−1
t=0 V̂ l(π̂t) is, in general, not equal to

V̂ l
(

1
T

∑T−1
t=0 π̂t

)
, for l = r, c. State-action occupancy measures (Borkar, 1988), however, allow us

to reformulate the value function in a linear way. For brevity, we will refer to state-action occupancy
measures as "occupancy measures" in the rest of this section.

Definition 2 (Occupancy Measure). For every policy π, we define its occupancy measure {ρ̂πh}
H
h=1

with respect to the transition model
{
P̂h

}H

h=1
as follows:

ρ̂πh(s, a) ≜
∑
(s,a)

Prπ(sh = s, ah = a), ∀(s, a, h) ∈ S ×A× [H].

Alternatively, the occupancy measure can be expressed recursively as follows:

ρ̂π1 (s, a) = µ(s) · π1(a|s),

ρ̂πh(s, a) =
∑

(s′,a′)

ρ̂πh−1(s
′, a′) · P̂h(s|s′, a′) · πh(a|s),∀h ∈ [H] \ {1} ,

for all state-action pairs (s, a) ∈ S ×A. The following lemma establishes how we can construct a
policy π̄ from the primal-dual policies {π̂t}T−1

t=0 s.t. V̂ l(π̄) = 1
T

∑T−1
t=0 V̂ l(π̂t), for l = r, c.

Lemma 3. Given policies {π̂t}T−1
t=0 , consider the averaged occupancy measure ρ̄ ≜ 1

T

∑T−1
t=0 ρ̂π̂t .

Define the policy π̄ as follows:

π̄h(a|s) ≜

{
ρ̄h(s,a)∑
a′ ρ̄h(s,a′)

∑
a′ ρ̄h(s, a

′) > 0
1

|A| otherwise,
(18)

∀h ∈ [H] and ∀(s, a) ∈ S ×A. Then, π̄ satisfies the following property:

V̂ l(π̄) =
1

T

T−1∑
t=0

V̂ l(π̂t), . (for l = r, c.)

Proof. Since the set of occupation measures is convex (Lemma 5), ρ̄ is a valid occupation measure,
i.e., there exists a policy π s.t. ρ̄ ≡ ρ̂π. Then, Lemma 6 guarantees that the policy π̄ constructed in
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Eq. (18) indeed satisfies ρ̂π̄ ≡ ρ̄. We are now ready to prove the statement of this lemma:

V̂ l(π̄) =

H∑
h=1

∑
(s,a)

ρ̂π̄h(s, a) · lh(s, a) (By Lemma 4.)

=

H∑
h=1

∑
(s,a)

(
1

T

T−1∑
t=0

ρ̂π̂t

h (s, a)

)
· lh(s, a)

=
1

T


T−1∑
t=0

H∑
h=1

∑
(s,a)

ρ̂π̂t

h (s, a) · lh(s, a)︸ ︷︷ ︸
=V̂ l(π̂t), Lemma 4


=

1

T

T−1∑
t=0

V̂ l(π̂t).

D.1.1 Standard lemmas for occupancy measures

Note: The lemmas in this section are well-known in the literature (Efroni et al., 2020). We state
them here for completeness.

Lemma 4. Consider a policy π ∈ Π and its respective occupancy measure {ρ̂πh}h∈[H] (Definition 2).

Then, for any l = r, c, the value function V̂ l(π) can be expressed in terms of the occupancy measure
as follows:

V̂ l(π) =

H∑
h=1

∑
(s,a)

ρ̂πh(s, a) · lh(s, a).

Proof. See Efroni et al. (2020, section 2.1).

Lemma 5 (Convexity of Occupancy Measures). The set of occupancy measures D ≜{
{ρ̂πh}h∈[H] |π ∈ Π

}
is convex.

Proof. See Efroni et al. (2020, section 2.3).

Lemma 6. Given a valid occupation measure {ρ̂h}h∈[H] ∈ D, the following policy π induces
{ρ̂h}h∈[H]:

πh(a|s) =

{
ρh(s,a)∑
a′ ρh(s,a′)

∑
a′ ρh(s, a

′) > 0
1

|A| otherwise,
(19)

∀h ∈ [H] and ∀(s, a) ∈ S ×A.

Proof. See Efroni et al. (2020, section 2.3).

D.2 Proofs of auxiliary lemmas

Lemma 7 (Guarantees for the primal-dual algorithm). For any εopt > 0, with U > λ∗, T =
U2H2

ε2opt

(
1 + 1

(U−λ∗)2

)
, η = U√

TH
, the primal-dual algorithm (Line 3 - Line 5) produces policies
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{π̂t}T−1
t=0 , which satisfy:

V̂ r(π̂∗)− 1

T

T−1∑
t=0

V̂ r(π̂t) ≤ εopt, (20)

1

T

T−1∑
t=0

V̂ c(π̂t) ≤ α′ + εopt. (21)

Proof. In iteration t ∈ {0, ..., T − 1}, we compute π̂t ∈ argmaxπ∈Π V̂ r−λtc(π).16. Since π̂t is
optimal at time t, the following inequality holds for every π ∈ Π:

V̂ r(π̂t) + λt

(
α′ − V̂ c(π̂t)

)
≥ V̂ r(π) + λt

(
α′ − V̂ c(π)

)
Setting π = π̂∗, and using the fact that π̂∗ is feasible with respect to M̂ i.e., V̂ c(π̂∗) ≤ α′, we obtain:

V̂ r(π̂∗)− V̂ r(π̂t) ≤ λt

(
α′ − V̂ c(π̂t)

)
.

Fixing λ ∈ [0, U ], subtracting λ
(
α′ − V̂ c(π̂t)

)
, summing over all t = 0, ..., T − 1, and dividing by

T , we obtain:

V̂ r(π̂∗)− 1

T

T∑
t=1

V̂ r(π̂t)− λ

(
α′ − 1

T

T∑
t=1

V̂ c(π̂t)

)
≤ 1

T

T−1∑
t=0

(λt − λ)
(
α′ − V̂ c(π̂t)

)
≤ UH√

T
(By Lemma 8, setting η =

U√
TH

.)

(22)

We will now bound the reward sub-optimality (Eq. (20)) and constraint violation (Eq. (21)) separately.

Reward Sub-Optimality: Since Eq. (22) holds for any λ ∈ [0, U ], we can set λ = 0 to obtain:

V̂ r(π̂∗)− 1

T

T−1∑
t=0

V̂ r(π̂t) ≤
UH√
T
. (23)

Constraint Violation: If 1
T

∑T−1
t=0 V̂ c(π̂t) ≤ α′, then Eq. (21) holds trivially. Consider the case

1
T

∑T−1
t=0 V̂ c(π̂t) > α′. Recall that π̄ is constructed in a way that it satisfies V̂ l(π̄) = 1

T

∑T−1
t=0 V̂ l(π̂t)

for l = r, c (Line 6). Plugging this into Eq. (22) with λ = U ∈ [0, U ], we obtain:

V̂ r(π̂∗)− V̂ r(π̄) + U
(
V̂ c(π̄)− α′

)
︸ ︷︷ ︸

≥0

≤ UH√
T

⇒ V̂ c(π̄)− α′ ≤ UH√
T (U − λ∗)

. (By Lemma 9.)

⇒ 1

T

T−1∑
t=0

V̂ c(π̂t)− α′ ≤ UH√
T (U − λ∗)

. (24)

Finally, we set T = U2H2

ε2opt

(
1 + 1

(U−λ∗)2

)
s.t. Eq. (23) and Eq. (24) are both bounded by εopt. This

completes the proof of this lemma.

Lemma 8 (Dual regret). For any λ ∈ [0, U ], the dual regret Rd(λ, T ) ≜∑T−1
t=0 (λt − λ)

(
α′ − V̂ c(π̂t)

)
can be bounded as follows:

Rd(λ, T ) ≤ U
√
TH,

by setting η = U√
TH

in Algorithm 3.
16This is an unconstrained Markov decision process (MDP) and can be solved exactly using dynamic

programming (Bertsekas, 1995)
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Proof. For any t ∈ {0, ..., T − 1}, consider the term |λt+1 − λ|2:

|λt+1 − λ|2 =
∣∣∣P[0,U ]

[
λt − η

(
α′ − V̂ c(π̂t)

)]
− λ

∣∣∣2
≤
∣∣∣λt − η

(
α′ − V̂ c(π̂t)

)
− λ

∣∣∣2 (The projection P[0,U ] is non-expansive.)

= |λt − λ|2 − 2η (λt − λ)
(
α′ − V̂ c(π̂t)

)
+ η2

∣∣∣α′ − V̂ c(π̂t)
∣∣∣2︸ ︷︷ ︸

≤H2

≤ |λt − λ|2 − 2η (λt − λ)
(
α′ − V̂ c(π̂t)

)
+ η2H2.

Rearranging the terms, dividing by 2η and summing over t = 0, ..., T − 1, we obtain a bound on the
dual regret:

Rd(λ, T ) =

T−1∑
t=0

(λt − λ)
(
α′ − V̂ c(π̂t)

)
≤ 1

2η

T−1∑
t=0

(
|λt − λ|2 − |λt+1 − λ|2

)
+

ηTH2

2

=

≤U2︷ ︸︸ ︷
|λ0 − λ|2−

≥0︷ ︸︸ ︷
|λT − λ|2

2η
+

ηTH2

2

≤ U
√
TH. (Setting η = U√

TH
.)

Lemma 9. For any C > λ∗ and any policy π̃ s.t. V̂ r(π̂∗) − V̂ r(π̃) + C
[
V̂ c(π̃)− α′

]
+
≤ β, we

have: [
V̂ c(π̃)− α′

]
+
≤ β

C − λ∗ .

Proof. We define the function ν(τ) ≜ maxπ∈Π

{
V̂ r(π)

∣∣∣V̂ c(π) ≤ α′ − τ
}

for any τ ∈ R. Strong
duality for CMDPs (Paternain et al., 2019) gives us the following inequality:

ν(0) = V̂ r(π̂∗) = max
π∈Π

[
V̂ r(π) + λ∗

(
α′ − V̂ c(π)

)]
.

Next, consider an arbitrary τ and any policy π′ s.t. V̂ c(π′) ≤ α′ − τ . Subtracting τλ∗ from the
inequality above, we obtain:

ν(0)− τλ∗ = max
π∈Π

[
V̂ r(π) + λ∗

(
α′ − V̂ c(π)

)]
− τλ∗

≥ V̂ r(π′) + λ∗
(
α′ − V̂ c(π′)

)
− τλ∗

= V̂ r(π′) + λ∗
(
α′ − τ − V̂ c(π′)

)
︸ ︷︷ ︸

≥0

≥ V̂ r(π′).

Since this inequality holds for any π′ with V̂ c(π′) ≤ α′ − τ , it also holds for π′∗ ∈
argmaxπ∈Π

{
V̂ r(π)

∣∣∣V̂ c(π) ≤ α′ − τ
}

. Plugging this into the inequality above, we obtain:

ν(0)− τλ∗ ≥ max
π∈Π

{
V̂ r(π)

∣∣∣V̂ c(π) ≤ α′ − τ
}

︸ ︷︷ ︸
=ν(τ)

⇒ τλ∗ ≤ ν(0)− ν(τ).
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Now, we select τ̃ = −
(
V̂ c(π̃)− α′

)
and bound the following expression:

(C − λ∗) |τ̃ | = τ̃λ∗ + C |τ̃ |
≤ ν(0)− ν(τ̃) + C |τ̃ |
= V̂ r(π̂∗)− V̂ r(π̃) + C |π̃|︸ ︷︷ ︸

=β

+ V̂ r(π̃)− ν(τ̃)︸ ︷︷ ︸
≤0

(Addition and subtraction of common terms.)

⇒ |τ̃ | =
[
V̂ c(π̃)− α′

]
+
≤ β

C − λ∗ .

Lemma 10 (Sensitivity Error). Let ∆ > 0 and define π̂∗, π̃∗ as follows:

π̂∗ ∈ argmax
π∈Π

[
V̂ r(π), subject to: V̂ c(π) ≤ α−∆

]
(25)

π̃∗ ∈ argmax
π∈Π

[
V̂ r(π), subject to: V̂ c(π) ≤ α+∆

]
Then, the sensitivity error

∣∣∣V̂ r(π̂∗)− V̂ r(π̃∗)
∣∣∣ can be bounded as follows:∣∣∣V̂ r(π̂∗)− V̂ r(π̃∗)

∣∣∣ ≤ 2∆λ∗,

where λ∗ is the optimal dual variable for Eq. (25), i.e.:

V̂ r(π̂∗) = max
π∈Π

[
V̂ r(π) + λ∗

(
α−∆− V̂ c(π)

)]
,

which holds due to the strong duality property for CMDPs (Paternain et al., 2019).

Proof. We start with the strong duality property for π̂∗:

V̂ r(π̂∗) = max
π∈Π

[
V̂ r(π) + λ∗

(
α−∆− V̂ c(π)

)]
≥ V̂ r(π̃∗) + λ∗

α−∆− V̂ c(π̃∗)︸ ︷︷ ︸
≤α+∆


≥ V̂ r(π̃∗)− 2∆λ∗

⇒ V̂ r(π̃∗)− V̂ r(π̂∗) ≤ 2∆λ∗.

Note that the constraint set considered for π̃∗ is larger than the one for π̂∗. Therefore, V̂ r(π̃∗) ≥
V̂ r(π̂∗) holds and this implies:∣∣∣V̂ r(π̃∗)− V̂ r(π̂∗)

∣∣∣ = V̂ r(π̃∗)− V̂ r(π̂∗) ≤ 2∆λ∗. (26)

Lemma 11 (Bound on the dual variable). Define π∗
c ≜ argminπ∈Π V c(π) and ζ ≜

maxπ∈Π {α− V c(π)}. Let α′ = α −∆, for ∆ ∈
(
0, ζ

2

)
and assume that

∣∣∣V̂ c(π∗
c )− V c(π∗

c )
∣∣∣ ≤

ζ
2 −∆ holds. Furthermore, let π̂∗ ∈ argmaxπ∈Π

[
V̂ r(π) subject to: V̂ c(π) ≤ α′

]
denote the op-

timal policy to the empirical CMDP, and let λ∗ denote the corresponding optimal dual variable,
i.e.:

V̂ r(π̂∗) = max
π∈Π

[
V̂ r(π) + λ∗

(
α′ − V̂ c(π)

)]
Then, the dual variable λ∗ can be bounded as follows:

λ∗ ≤ 2H

ζ
.
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Proof. First, we define the policy π̂∗
c ∈ argminπ∈Π V̂ c(π). Next, we use the strong duality property

(Paternain et al., 2019) for π̂∗:

V̂ r(π̂∗) = max
π∈Π

[
V̂ r(π) + λ∗

(
α′ − V̂ c(π)

)]
≥ V̂ r(π̂∗

c ) + λ∗
(
α′ − V̂ c(π̂∗

c )
)

= V̂ r(π̂∗
c ) + λ∗

α− V c(π∗
c )︸ ︷︷ ︸

=ζ

−∆+ V c(π∗
c )− V̂ c(π̂∗

c )



= V̂ r(π̂∗
c ) + λ∗

ζ −∆+ V̂ c(π∗
c )− V̂ c(π̂∗

c )︸ ︷︷ ︸
≥0

+ V c(π∗
c )− V̂ c(π∗

c )︸ ︷︷ ︸
≥−|V c(π∗

c )−V̂ c(π∗
c )|



≥ V̂ r(π̂∗
c ) + λ∗

ζ −∆−
∣∣∣V̂ c(π∗

c )− V c(π∗
c )
∣∣∣︸ ︷︷ ︸

≤ ζ
2−∆


≥ V̂ r(π̂∗

c ) +
λ∗ζ

2

⇒ λ∗ ≤
2
(
V̂ r(π̂∗)− V̂ r(π̂∗

c )
)

ζ
≤ 2H

ζ
.

Lemma 12. Given ε ∈ (0, H], δ > 0, for each (s, a, h) ∈ S × A × [H], obtain N =

log

(
2|S|2|A|H

δ

)
H4

ε2 independent samples from Ph(·|s, a) and form the estimate P̂h(·|s, a). Then, the
following concentration bound holds for all policies π and all l ∈ {r, c} uniformly with probability
at least 1− δ:

∣∣∣V l(π)− V̂ l(π)
∣∣∣ ≤ ε.

Proof. We start with an arbitrary β > 0 and assume that the difference between {Ph}h∈[H] and{
P̂h

}
h∈[H]

is bounded by β, i.e.

max
(s,a,s′,h)∈S×A×S×[H]

∣∣∣Ph(s
′|s, a)− P̂h(s

′|s, a)
∣∣∣ ≤ β. (27)

For any policy π ∈ Π and l ∈ {r, c}, by Lemma 13, the difference V l(π) − V̂ l(π) can be written
as V l(π) − V̂ l(π) = E s∼µ,

ah∼πh(·|sh),
sh+1∼P̂h(·|sh,ah)

[∑H
h=1

(
Ph − P̂h

)
(sh+1|sh, ah)V l

h+1(sh+1;π)|s0 = s
]
,
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where V l
h+1(·;π) is defined according to Eq. (29). Next, we bound

∣∣∣V l(π)− V̂ l(π)
∣∣∣ as follows:

∣∣∣V l(π)− V̂ l(π)
∣∣∣ =

∣∣∣∣∣∣∣∣∣ E
s∼µ,

ah∼πh(·|sh),
sh+1∼P̂h(·|sh,ah)

[
H∑

h=1

(
Ph − P̂h

)
(sh+1|sh, ah)V l

h+1(sh+1;π)|s0 = s

]∣∣∣∣∣∣∣∣∣
≤ E

s∼µ,
ah∼πh(·|sh),

sh+1∼Ph(·|sh,ah)

[∣∣∣∣∣
H∑

h=1

(
Ph − P̂h

)
(sh+1|sh, ah) · V l

h+1(sh+1;π)|s0 = s

∣∣∣∣∣
]

(Triangle inequality.)

≤ E
s∼µ,

ah∼πh(·|sh),
sh+1∼Ph(·|sh,ah)

 H∑
h=1

∣∣∣(Ph − P̂h

)
(sh+1|sh, ah)

∣∣∣︸ ︷︷ ︸
≤β

·
∣∣V l

h+1(sh+1;π)
∣∣︸ ︷︷ ︸

≤H−h

|s0 = s


(Triangle inequality.)

≤ βH2.

To ensure that
∣∣∣V l(π)− V̂ l(π)

∣∣∣ ≤ ε, we set β = ε
H2 . Now, consider an arbitrary (s, a, h) and

assume that we obtain N > 0 independent samples from Ph(·|s, a). Applying Hoeffding’s inequality,
we obtain the following bound on the estimation error:

Pr
[∣∣∣Ph(s

′|s, a)− P̂h(s
′|s, a)

∣∣∣ > β
]
≤ 2 exp

(
−2Nβ2

)
. (28)

Setting N =
log

(
2|S|2|A|H

δ

)
H4

ε2 , we obtain that Pr
[∣∣∣Ph(s

′|s, a)− P̂h(s
′|s, a)

∣∣∣ > β
]
≤ δ

|S|2|A|H .
Taking the union bound over all (s, a, s′, h), we obtain Eq. (27) with probability at least 1− δ.

Lemma 13 (Value difference lemma). For any policy π ∈ Π and l ∈ {r, c}, the value difference
V l(π)− V̂ l(π) can be expressed as follows:

V l(π)− V̂ l(π) = E
s∼µ,

ah∼πh(·|sh),
sh+1∼P̂h(·|sh,ah)

[
H∑

h=1

(
Ph − P̂h

)
(sh+1|sh, ah)V l

h+1(π; sh+1)|s0 = s

]

= E
s∼µ,

ah∼πh(·|sh),
sh+1∼Ph(·|sh,ah)

[
H∑

h=1

(
P̂h − Ph

)
(sh+1|sh, ah) V̂ l

h+1(π; sh+1)|s0 = s

]
,

where the per-step and per-state value functions are defined as follows:

V l
h(π; s) ≜ E

ah∼πh(·|sh),
sh+1∼Ph(·|sh,ah)

[
H∑

h′=h

lh(sh, ah)|s0 = s

]
,∀s ∈ S,∀h ∈ [H], (29)

V̂ l
h(π; s) ≜ E

ah∼πh(·|sh),
sh+1∼P̂h(·|sh,ah)

[
H∑

h′=h

lh(sh, ah)|s0 = s

]
,∀s ∈ S,∀h ∈ [H].

Proof. See Efroni et al. (2020, Lemma 35).

E Learning in Unknown Constrained Markov Potential Games - Safe
Exploration Without a Generative Model (Section 6.2)

In this section, we consider the setting, where the agents want to explore safely, but they do not have
access to a generative model anymore. Existing algorithms with safe exploration (Bura et al., 2022;
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Algorithm 4 CMDPs with safe exploration

Require: T (total number of iterations), δ ∈ (0, 1) (confidence), (πS , αS) (strictly feasible policy
and its constraint value), M > 0 (episodes per policy)

1: Execute DOPE(δ, πS , αS , α, T ) and obtain policies π1, ..., πT .
2: for t = 1, ..., T do
3: Execute policy πt for M episodes and form the estimate V̂ r(πt).
4: Return policy π̂ ∈ argmaxπ∈{πt}t∈[T ]

V̂ r(π).

Liu et al., 2021b) have guarantees on the regret, but no sample complexity guarantees. First, we
define a no-regret algorithm with safe exploration guarantees as follows:
Definition 3 (No-regret algorithm with safe exploration). Consider a fixed number of T > 0 rounds
and an algorithm A, which selects a policy πt ∈ Π in every round t ∈ [T ]. A’s regret after T rounds
is defined as follows:

R(T ) ≜
T∑

t=1

max
π∈ΠC

V r(π)− V r(πt).

We call A is called a no-regret algorithm with safe exploration, if R(T ) ∈ o(T ) and if πt ∈ ΠC ,∀t ∈
[T ]. Examples of such algorithms are Liu et al. (2021b) and Bura et al. (2022).

Next, we discuss how we can use the notion of regret to derive a sample complexity bound. For
unconstrained MDPs, sub-linear regret bounds can be converted to a sample complexity bound by
applying the well-known online-to-batch conversion trick (Jin et al., 2018). Applying the same trick
to the DOPE algorithm Bura et al. (2022), we derive a sample-efficient algorithm in Algorithm 4 and
prove its sample complexity in the following lemma.

Lemma 14. Consider a CMDP M =
(
S,A, H, {rh}h∈[H] , {Ph}h∈[H] , {ch}h∈[H] , α

)
. As-

sume that a strictly feasible policy πS and its constraint value αS ≜ V c(πS) are known s.t.

αS < α. Then, for any ε′ ∈ (0, H] and δ′ ∈ (0, 1), Algorithm 4 with T = O
(

|S|2H6|A|
(α−αS)2ε′2

)
and

M = Õ
(

H2

ε′2 log
(

1
ε′δ′

))
returns a policy π̂ ∈ ΠC s.t. maxπ∈ΠC

V r(π) − V r(π̂) ≤ ε holds, with

probability at least 1− δ′. This results in a sample complexity of FC (|S|, |A|, H, α− αS , δ
′, ε′) =

Õ
(

|S|2|A|H9

(α−αS)2ε′4
log
(

1
ε′δ′

))
.

Proof. First, recall that Lemma 15 provides the following regret guarantees with probability at least
1− 5δ:

πt ∈ ΠC ,∀t ∈ [T ], (30)

R(T ) ≤ Õ
(
|S|H3

(α− αS)

√
|A|T

)
. (31)

Constraint violation: Since π̂ is selected from {πt}t∈[T ] (Line 4) and Eq. (30) holds, the policy π̂ is
a feasible policy too.

Reward sub-optimality: Applying Lemma 16 with C =
|S|H3

√
|A|

(α−αS)
, we obtain that with T =

O
(

|S|2H6|A|
(α−αS)2ε2

)
and M = Õ

(
H2

ε2 log
(

1
εδ

))
, the returned policy π̂ satisfies maxπ∈ΠC

V r(π) −
V r(π̂) ≤ ε, with probability at least 1− δ. Taking a union bound over this, Eq. (30) and Eq. (31), the
following guarantees hold with probability at least 1− 6δ:

max
π∈ΠC

V r(π)− V r(π̂) ≤ ε,

V c(π̂) ≤ α.

To compute the final sample complexity, note that DOPE internally uses an initial phase of T0 episodes,
during which the agent plays the initial policy πS . We do not discuss the details here, but need
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to account for those T0 episodes in the sample complexity. The resulting sample complexity is as
follows:

FC (|S|, |A|, H, ζ, δ, ε) =

T + T0︸ ︷︷ ︸
Line 1

+TM︸︷︷︸
Line 4

H

= Õ

(
|S|2|A|H9

(α− αS)
2
ε4

log

(
1

εδ

))
+ Õ

(
|S|2|A|H5

(α− αS)
2

)
(T0 = Õ

(
|S|2|A|H4

(α−αS)2

)
by Lemma 15.)

= Õ

(
|S|2|A|H9

(α− αS)
2
ε4

log

(
1

εδ

))
.

Remark: Note that we used a specific definition of no-regret algorithms in Definition 3. Other
notions of no-regret algorithms for CMDPs exist in the literature (Efroni et al., 2020), but they usually
do not require feasibility of the iterates (safe exploration). The trick in Lemma 16 assumes that at
least one of the iterates is both feasible and ε-optimal. This may not be guaranteed by no-regret
algorithms without the safe exploration guarantee.

E.1 Proofs of auxiliary lemmas

Lemma 15 (Theorem 3 from Bura et al. (2022)). Consider a CMDP M =(
S,A, H, {rh}h∈[H] , {Ph}h∈[H] , {ch}h∈[H] , α

)
. Fix any δ ∈ (0, 1). Then, DOPE invoked

with T0 = Õ
(

|S|2|A|H4

(α−αS)2

)
generates a sequence of policies {πt}t∈[T ] s.t. πt ∈ ΠC ,∀t ∈ [T ] and the

sequence has the following regret:

R(T ) =

T∑
t=1

max
π∈ΠC

V r(π)− V r(πt) ≤ Õ
(
|S|H3

(α− αS)

√
|A|T

)
,

with probability at least 1− 5δ.

Lemma 16 (Regret to Sample Complexity). Consider a no-regret CMDP algorithm A (see Defini-
tion 3) with regret bound R(T ) =

∑T
t=1 maxπ∈ΠC

V r(π)−V r(πt) ≤ C
√
T , where C is a constant

that does not depend on T , and πt ∈ ΠC ,∀t ∈ [T ]. Given ε ∈ (0, H], δ ∈ (0, 1), run algorithm A

with T = 4C2

ε2 episodes. Next, execute each policy π ∈ {πt}t∈[T ] for M = 16H2

ε2 log
(
2C
εδ

)
episodes

and estimate the value functions
{
V̂ r(πt)

}
t∈[T ]

. Then, the policy π̂ = argmaxπ∈{πt}t∈[T ]

{
V̂ r(π)

}
satisfies the following guarantees:

V r(π∗)− V r(π̂) ≤ ε,

with probability at least 1− δ.

Proof. For any t ∈ [T ], we can bound the estimation error of the value function for πt as follows:

Pr
[∣∣∣V r(πt)− V̂ r(πt)

∣∣∣ ≥ ε

4

]
≤ 2 exp

(
−2N

(
ε
4

)2
H2

)
(Hoeffding’s inequality.)

= 2 exp

(
−Nε2

8H2

)
=

δ

T
(Setting N = 16H2

ε2 log
(
2C
εδ

)
.)

Taking the union bound over all t ∈ [T ], we obtain Pr
[
∃t ∈ [T ] :

∣∣∣V r(πt)− V̂ r(πt)
∣∣∣ ≥ ε

4

]
≤ δ.
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Figure 4: Grid world experiment: Fig. 4a illustrates the state space that the agents navigate in. Both
agents start from the bottom left state and their goal is to maximize the sum of their individual
rewards. The numbers on the states indicate the rewards associated with those states. The choice
of parameters for our evaluation is described in Section 7. Fig. 4b displays the policies with their
corresponding probabilities returned by CA-CMPG. If the agents were to solve the dual problem
directly (Section 4), they might obtain the policy illustrated in Fig. 4c, which is not feasible.

Next, we note that the average regret can be bounded as R(T )
T ≤ C√

T
= ε

2 with T = 4C2

ε2 . Thus, there

exists t∗ ∈ argmint∈[T ] {V r(π∗)− V r(πt)} s.t. V r(π∗) − V r(πt∗) ≤ R(T )
T ≤ ε

2 holds. We do a
case analysis on V r(πt∗)− V r(π) ≥ 0:

Case 1: V r(πt∗)− V r(π) ≤ ε
2 . Then, we can bound V r(π∗)− V r(π) as follows:

V r(π∗)− V r(π) = [V r(π∗)− V r(πt∗)] + [V r(πt∗)− V r(π)]
(Addition/subtraction of the common term.)

≤ ε.

Case 2: V r(πt∗) − V r(π) > ε
2 . In this case, note that the following property must hold for the

estimated value functions:

V̂ r(πt∗) ≥ V r(πt∗)−
ε

4

> V r(π) +
ε

4

≥ V̂ r(π).

Thus, in this case, π cannot be the maximizer of
{
V̂ r(πt)

}
t∈[T ]

.

Overall number of episodes required for this technique: TN = 64C2H2

ε4 log
(
2C
εδ

)
.

F Experiments

This section contains further details to the experiments in Section 7.

Grid world: Fig. 4a illustrates the 4x4 grid world (state space) that the agents navigate in. Both
agents start from the bottom left state and their goal is to maximize the sum of their individual
rewards. The numbers on the states indicate the rewards associated with those states. We evaluate our
algorithm Algorithm 2 with horizon H = 6 and constraint threshold α = 0.1. The resulting policies
with the corresponding probabilities are shown in Fig. 4b. With this, the agents collide once with
probability 0.1, thus, satisfying the constraint of the experiment. On the other hand, if we solve the
Lagrangian dual problem directly (Section 4), one of the returned policies is illustrated in Fig. 4c. In
this case, they always have one collision, which does not satisfy the constraint of the experiment.

Congestion game:

For every action a ∈ A, we denote by ka the number of agents that select a in the current step. Figure
5 visualizes the state transitions in every step, where k∗ ≜ maxa∈A ka denotes the maximum number
of agents that have selected the same action. The choice of parameters and constraint function is

31



detailed in Section 7. Fig. 6a and Fig. 6b plot the resulting distributions over the actions for steps
h = 1 and h = 2, respectively. We observe that in step h = 1, if the agents start from the safe state,
they select their actions s.t. in step h = 2, the system remains in the safe state. At step h = 2, the
agents maximize their rewards by selecting action D, irrespective of the state that the system is in. At
step h = 1, without the constraints, all agents would prefer to choose action D at the unsafe state.
With the choice of our constraints, as we can observe in Fig. 6a, the agents distribute themselves
equally amongst actions C and D.

safe unsafe

k∗ > N/2

k∗ ≤ N/2

k∗ ≤ N/4

k∗ > N/4

Figure 5: Congestion game experiment: For every action a ∈ A, we denote by ka the number of
agents that select a in the current step. This figure visualizes the state transitions in every step, where
k∗ ≜ maxa∈A ka denotes the maximum number of agents that have selected the same action.
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Figure 6: Congestion game experiment: The choice of parameters and constraint function is detailed
in Section 7. Fig. 6a and Fig. 6b plot the resulting distributions over the actions for steps h = 1 and
h = 2, respectively.
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