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ABSTRACT

In cooperative Multi-Agent Reinforcement Learning (MARL), agents sharing pol-
icy network parameters are observed to learn similar behaviors, which impedes
efficient exploration and easily results in the local optimum of cooperative policies.
In order to encourage multi-agent diversity, many recent efforts have contributed to
distinguishing different trajectories by maximizing the mutual information objec-
tive, given agent identities. Despite their successes, these mutual information-based
methods do not necessarily promote exploration. To encourage multi-agent di-
versity and sufficient exploration, we propose a novel Wasserstein Multi-Agent
Diversity (WMAD) exploration method that maximizes the Wasserstein distance
between the trajectory distributions of different agents in a latent representation
space. Since the Wasserstein distance is defined over two distributions, we further
extend it to learn diverse policies for multiple agents. We empirically evaluate
our method in various challenging multi-agent tasks and demonstrate its supe-
rior performance and sufficient exploration compared to existing state-of-the-art
methods.

1 INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) has shown promise in addressing various multi-agent
challenges, such as multiplayer video games (Vinyals et al., 2019) and autonomous cars (Cao et al.,
2012), attracting growing interest in recent years. MARL facilitates efficient collaboration by training
multiple agents together towards maximizing team rewards. Yet, there are still many challenges
such as partial observation constraints and high scalability requirements, when learning effective
cooperative policies for agents in complex multi-agent tasks. To resolve these issues, recent works
commonly employ the Centralized Training with Decentralized Execution (CTDE) framework (Lowe
et al., 2017) where agents make decisions based on local observations using a decentralized policy
jointly trained with global information, ensuring robust and stable performance.

The CTDE framework develops distinct decentralized policies for each agent, but training numerous
policy network parameters can be inefficient. Thus, parameter sharing has become universal, allowing
agents to share the same policy network parameters for action decision-making. This practice
significantly reduces the number of parameters, leading to lower computational cost and speeding up
training. Additionally, parameter sharing promotes experience sharing during centralized training,
fostering robust policy learning and improving overall efficiency (Wang et al., 2020b).

Given these benefits, various MARL algorithms integrate parameter sharing, including value-
decomposition approaches (Iqbal et al., 2021; Yang et al., 2021; Wang et al., 2020a; Sunehag
et al., 2018; Rashid et al., 2018) and policy gradients (Ma et al., 2021; Wang et al., 2020d; Ndousse
et al., 2021; Zhang et al., 2021). However, shared policy parameters can lead to homogeneous
behaviors among agents, hindering multi-agent diversity and efficient exploration (Hu et al., 2022).
In challenging multi-agent tasks, extensive exploration and diverse policies are crucial. For example,
in a football game, agents must adopt varied roles and strategies for effective collaboration and goal
scoring.

To address this issue, previous methods aim to promote identity-aware multi-agent diversity by
maximizing mutual information between trajectories and agent identities (Jiang and Lu, 2021; Li
et al., 2021; Charakorn et al., 2023; Jo et al., 2024). While these methods do learn trajectories
that are mutually different, the mutual information objective cannot measure how different the
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learned trajectories are. Slight differences between trajectories are enough to maximize the mutual
information objective, which does not necessarily encourage exploration.

To encourage multi-agent diversity and sufficient exploration, we proposes a novel Wasserstein Multi-
Agent Diversity (WMAD) exploration method. Our method relies on the Wasserstein distance (Villani
et al., 2009), a metric-aware quantity to measure the distance between two different distributions.
Wasserstein distance has drawn increasing attention in unsupervised reinforcement learning to
encourage agents to sufficiently explore the state space, resulting in learning a diverse set of skills
(Park et al., 2024). The motivation behind our method is that as the Wasserstein distance naturally
quantifies the differences between different distributions, we can enlarge the distance between the
trajectory distributions of different agents by maximizing the Wasserstein distance. Therefore,
compared to mutual information-based methods, our method can lead to more diverse policies and
sufficient exploration.

Our contributions can be summarized as follows: First, because of the similar trajectories generated
by agents sharing the same policy network parameters, the Wasserstein distance, which measures
the distance between different agents’ trajectories, tends to approach zero. This implies that the
Wasserstein distance cannot provide effective feedback for policy learning. To solve this issue, we
consider a latent representation space in order to make the Wasserstein distance meaningful. To
construct the representation space, we propose a next-step prediction method based on Contrastive
Predictive Coding (CPC) (Oord et al., 2018) to learn distinguishable trajectory representations.
Second, due to the high computation cost of calculating the Wasserstein distance, we propose a novel
Gaussian kernel method to optimize dual functions of the Wasserstein distance, significantly reducing
the computational cost. Third, we extend the Wasserstein distance to multiple policy learning by
introducing a nearest neighbor intrinsic reward. We further integrate our method with QMIX. Fourth,
we show the outperformance of our method against existing state-of-the-art methods by testing it in
various challenging multi-agent tasks.

2 BACKGROUNDS

2.1 MULTI-AGENT SYSTEM

We consider modeling the fully cooperative multi-agent Decentralized Partially Observable
Markov Decision Process (Dec-POMDP) (Oliehoek and Amato, 2015), defined as a tuple
〈A,S, U, P,R,O,Ω, γ〉. Here, A denotes a set of |A| agents, s ∈ S represents the global state
of the environment, and U stands for the set of agents’ actions. At each time step, each agent
a receives an observation oa ∈ Ω drawn from the function O(s, a) and subsequently selects an
action ua ∈ U . All agents’ actions collectively form a joint action u, leading the environment to
transition to the next state s′ based on the probability drawn from the transition function P (s′ | s,u).
Simultaneously, the environment provides the agents with a shared team reward r = R(s,u).
γ ∈ [0, 1) is the reward discount factor. The observation-action pairs 〈oa, ua〉 of agent a during
an episode constitute its trajectory τa ∈ T . Each agent a learns its individual policy πa (ua | τa),
contributing to the formation of a joint policy π, aimed at maximizing the joint action-value function
Qπ(s,u) = Es0:∞,u0:∞ [

∑∞
t=0 γ

trt | s0 = s,u0 = u,π].

2.2 WASSERSTEIN DISTANCE

The Wasserstein distance formulates an optimal transport problem that measures the distance or
discrepancy between two probability distributions (Villani et al., 2009). Given two probability
distributions p and q over domains X ⊆ Rm and Y ⊆ Rn respectively, the Wasserstein distance with
a cost function c(x, y): X × Y → R is defined as:

Wc(p, q) = inf
γ∈Γ(p,q)

∫
X×Y

c(x, y)dγ(x, y) (1)

where Γ(p, q) is a set of all possible couplings of distributions p and q over the product space X × Y .
The probability distributions p and q are the marginals of the coupling γ(x, y) over space X and Y ,
respectively, i.e.,

∫
M γ(x, y)dy = p(x) and

∫
M γ(x, y)dx = q(y).
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Figure 1: Architecture of WMAD.

In practice, we adopt a smoothed Wasserstein distance W̃c(p, q), which is a variant of the Wasserstein
distance that can help mitigate the effects of outliers or noise in the distributions and lead to more
stable optimization results (Genevay et al., 2016). It is intractable to compute the W̃c(p, q) directly,
we resort to a traceable smoothed Fenchel-Rockafellar duality (Villani et al., 2009),

W̃c(p, q) = sup
µ,ν

Ex∼p(x),y∼q(y)

[
µ(x)− ν(y)− β exp

(
µ(x)− ν(y)− c(x, y)

β

)]
(2)

where µ : X → R and ν : Y → R are dual functions on continuous domains. β is a smoothing
parameter. The dual form of the Wasserstein distance allows for the parametrization of dual functions,
thereby mitigating the computational complexity of optimizing the optimal transport problem.

3 LIMITATIONS OF MI-BASED MULTI-AGENT DIVERSITY

To encourage multi-agent diversity, the most common approach adopted in prior work is to maximize
the mutual information between trajectories τ and agent identities i (Jiang and Lu, 2021; Li et al.,
2021; Charakorn et al., 2023; Jo et al., 2024), which associates different trajectories with different
agent identities. Agents can learn trajectories that are mutually distinct through maximizing the
mutual information objective. The mutual information objective is based on the KL divergence,
computed by a variational lower bound,

I(τ ; i) = DKL(p(τ, i)‖p(τ)p(i)) ≥ Ei,τ [log qθ(i | τ)]− Ei[log p(i)], (3)

where the distribution of agent identities p(i) is a constant since the agent identity i follows a
uniform distribution. Thus, the objective of maximizing the mutual information can be achieved by
maximizing the trajectory discriminator qθ(i | τ) parameterized by θ, i.e., once agent trajectories can
be successfully discriminated given agent identities, the maximum of the mutual information can
be achieved. However, this category of methods share a limitation that the maximum of the mutual
information can be easily obtained when the trajectories learned by agents are slightly different,
which does not necessarily encourage the visitations of trajectories with large variations, resulting
in insufficient exploration. This occurs because the KL divergence remains entirely agnostic to the
metric of the underlying data distribution and unaffected by any invertible transformation (Ozair
et al., 2019). The KL divergence is very sensitive to small changes in the data samples, which means
that any slight difference is sufficient to maximize the KL divergence.

To address this issue, our method encourages multi-agent diversity by enlarging the Wasserstein
distance between trajectory distributions of different agents in a latent representation space. Different
from the KL divergence, Wasserstein distance explicitly measures the distance between different
distributions. Thus, our method can drive agents to visit different trajectories as far as possible,
leading to sufficient exploration. We refer the reader to Appendix D for a quantitative comparison
between the Wasserstein distance and the KL divergence.
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4 WASSERSTEIN MULTI-AGENT DIVERSITY

In this section, we detail our proposed Wasserstein Multi-Agent Diversity (WMAD). First, we present
how to learn meaningful representations to generate effective feedback for the Wasserstein distance.
Then, we show how to maximize the Wasserstein distance between different trajectory distributions
in the latent representation space.

4.1 CONTRASTIVE PREDICTIVE TRAJECTORY REPRESENTATIONS

Due to the similar trajectories induced by the agents sharing the same policy network parameters,
the Wasserstein distance between any two agents’ trajectory distributions approaches zero, i.e.,
W (X,Y ) → 0, where X and Y respectively represent the trajectory distributions of two agents.
Since we want the Wasserstein distance to produce effective feedback for agents to learn diverse
policies, we propose a next-step prediction method based on Contrastive Predictive Coding (CPC)
(Oord et al., 2018) to learn distinguishable trajectory representations.

Initially, we encode the observation-action pairs xat = (oat , u
a
t ) with a non-linear encoder gθe into

a latent embedding zat = gθe(x
a
t ). Then, we use an autoregressive model gθg to summarize all the

latent embeddings and output the trajectory representation cat = gθg (za≤t) at timestep t. We simply
denote gθ = {gθe , gθg} to represent the overall trajectory encoder. For simplicity, we adopt standard
architectures such as MLPs for gθe and GRUs for gθg .

To train gθ to learn distinguishable trajectory representations, we model a density ratio that preserves
the underlying information between the trajectory representation cat and the next-step observation-
action xat+1:

f
(
xat+1, c

a
t

)
∝
p
(
xat+1 | cat

)
p
(
xat+1

) (4)

where f
(
xat+1, c

a
t

)
= exp(gθe(x

a
t+1)

T
Wcat ) = exp(zat+1

TWcat ) calculates the similarity between
the next-step observation-action embedding zat+1 and a linear transformation WT cat with the parame-
ter W used for the next-step perdiction. Compared to modeling p

(
xat+1 | cat

)
directly by a generative

method that requires to reconstruct every detail in xat+1, modeling the density ratio has lower compu-
tation cost and is more effective in extracting shared information between xat+1 and cat . Moreover, we
infer the latent embedding zat+1 instead of the raw xat+1, which avoids modeling high-dimensional
observation-action space. To let f

(
xat+1, c

a
t

)
be proportional to the density ratio, inspired by CPC,

given a set of next-step observation-action pairs of all agents C = {xa′t+1 = (oa
′

t+1, u
a′

t+1)}|A|a′=1, we
minimize a InfoNCE loss (Oord et al., 2018):

LN = − E
(cat ,C)∼D

[
log

f
(
xat+1, c

a
t

)∑
xa

′
t+1∈C

f
(
xa

′
t+1, c

a
t

)] (5)

By using the next-step observation-action pairs of other agents as noisy samples in Equation 5 and
contrasting the trajectory representation cat with these noises, the trajectory representation cat stays
close to its associated next-step observation-action embedding while being far away from other noisy
embeddings. As a result, the trajectory encoder gθ is trained by minimizing the InfoNCE loss to learn
distinguishable trajectory representations.

4.2 WASSERSTEIN DISTANCE BETWEEN TRAJECTORY REPRESENTATIONS

We then encourage the exploration of diverse trajectories by maximizing the Wasserstein distance
between the trajectory distributions of different agents in a latent representation space. Let pπ1

and
pπ2

be the trajectory representation distributions of agent 1 and agent 2, respectively. The Wasserstein
distance between pπ1

and pπ2
is defined as follows:

W̃c(pπ1
, pπ2

) = sup
µ,ν

Ec1t∼pπ1 ,c2t∼pπ2

[
µ(c1t )− ν(c2t )− β exp

(
µ(c1t )− ν(c2t )− c(c1t , c2t )

β

)]
(6)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where the cost function c(c1t , c
2
t ) is represented by the Euclidean distance between the points c1t

and c2t , i.e., c(c1t , c
2
t ) = ‖c1t − c2t‖. It is notable that to compute the Wasserstein distance, we may

simply parameterize dual functions with neural networks like previous works (Pacchiano et al., 2020;
Dadashi et al., 2021; He et al., 2022; Park et al., 2024). However, this may lead to high computational
costs in our multi-agent settings, as we need to compute the Wasserstein distance for each pair
of agents. To learn optimal dual functions µ and ν to compute the Wasserstein distance with low
computational costs, we resort to the kernel method (Hearst et al., 1998) that has been widely used in
machine learning. Specifically, we consider representing dual functions with linear combinations
of Gaussian kernel functions approximated by the random feature map (Rahimi and Recht, 2007).
For example, let the dual function µ has the following form: µ(x) = (λµ)

>
φ(x). For x ∈ Rd,

φ(x) = 1√
m

cos(Gx + b) represents a m-dimensional random feature map, where G ∈ Rm×d is a
Gaussian with entries sampled from a normal distribution N (0, 1) and b ∈ Rm with entries sampled
from a uniform distribution U(0, 2π). This means that when we optimize the dual function µ, we
only need to learn the dual vector λµ ∈ Rm, which significantly reduces the computational cost
compared with parameterizing dual functions with computationally intensive neural networks.

To learn optimal dual functions, we perform stochastic gradient descent (SGD) over the Wasserstein
distance objective in Equation 6. Given dual functions µ and ν that are modeled by kernels κ and `,
respectively, and trajectory representaion samples {c1t , c2t} ∼ (pπ1

, pπ2
), we apply the chain rule to

Equation 6 and the gradients with respect to λµ and λν are

∇(λµ,λν)W̃c(pπ1
, pπ2

) =

Ec1t∼pπ1 ,c2t∼pπ2

[(
1− exp

(
(λµ)

>
φκ(c1t )− (λν)

>
φ`(c

2
t )− C(c1t , c

2
t )

β

))(
φκ(c1t )
−φ`(c2t )

)]
.

(7)

We approximate the expectation by averaging the function values over a batch of trajectory represen-
tation samples from the replay buffer that is used to store agent experiences during training.

As we have computed the value of the Wasserstein distance, we can view the Wasserstein distance as
an intrinsic reward rw = W (pπ1 , pπ2), which enables us to deploy our method in MARL algorithms
to maximize the Wasserstein distance. When the number of agents |A| is more than two, the trajectory
of an arbitrary agent should keep distance with any other agent. In practice, we empirically find that
employing an intrinsic reward rw = min

|A|
a′=1,a′ 6=aW

(
pπa , pπa′

)
for each agent to keep the trajectory

of the current agent a to be away from its nearest neighbor trajectory in a latent representation space
can lead to better performance. The pseudocode for our method can be found in Appendix E.

4.3 PRACTICAL LEARNING ALGORITHM

We next show how to integrate our method with QMIX (Rashid et al., 2018), a state-of-the-art MARL
algorithm. QMIX learns optimal individual policies, that maximizes shared team rewards, for agents
through optimizing the joint action-value function Qπ approximated by Qtot, an output of a mixing
network that monotonically mixes the agent utilities (where the policies are derived) of all agents. In
QMIX, in order to maximize the Wasserstein distance-based intrinsic rewards, we cannot simply add
each agent’s intrinsic rewards to the shared team reward. More detailed explanations can be found
in Appendix C. To integrate our method with QMIX, we additionally introduce an intrinsic utility
network Qwa , which takes as input the agent utility Qa(oat , u

a
t ) and the trajectory representation cat .

We update Qwa towards maximizing the intrinsic rewards by minimizing the TD loss as follows

LwTD = E(oat ,u
a
t ,o

a
t+1)∼D

[
(Qwa (cat , Qa(oat , u

a
t ))− y)

2
]
,

where y = rw + γQ̄wa
(
cat+1, Q̄a

(
oat+1, u

a
t+1

)) (8)

where Q̄wa and Q̄a are target networks employed to stabilize training and D is the replay buffer for
storing trajectory samples. LwTD can be seen as a regularizer that introduces an auxiliary gradient
to the agent utility network Qa in order to learn diverse trajectories. We can thus get the total loss
function

5
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Figure 2: Performance comparison between our proposed WMAD and baselines in Pac-Men. We
report both the mean and standard deviation of the performance tested across five random seeds.

Ltotal = LTD + αLwTD (9)
where LTD is the TD loss of QMIX to train Qtot and α is a cofficient that changes the weight
of LwTD. As α → 0, our method converges to QMIX. Through minimizing Ltotal, we train the
overall framework of our method end-to-end in a centralized manner. As a result, agents learn their
policies towards maximizing both team rewards and the Wasserstein distance between different
agent’s trajectory representation distributions. For policy gradient methods, we refer the reader to
Appendix F where we integrate our method with the policy gradient-based method MAPPO.

5 EXPERIMENTS

In this section, we use challenging multi-agent tasks from Pac-Men, SMAC, and SMACv2 to
demonstrate the outperformance of our method. We show comparison of our method against the
state-of-the-art methods such as value-decomposition methods (QMIX (Rashid et al., 2018) and
QTRAN (Son et al., 2019)) and mutual information-based exploration methods (MAVEN (Mahajan
et al., 2019), EOI (Jiang and Lu, 2021), SCDS (Li et al., 2021), PMIC (Li et al., 2022), LIPO
(Charakorn et al., 2023), and FoX (Jo et al., 2024)). Without loss of generality, the comparison results
are shown with both the mean and standard deviation of the performance tested across five random
seeds. For a fair comparison, we adopt the same common hyperparameters and policy network
architecture across all methods. More training details and hyperparameters are provided in Appendix
I.

5.1 PAC-MEN

We first test our method in Pac-Men, as illustrated in Figure 2a, to investigate the effectiveness of
our method in encouraging multi-agent diversity. Pac-Men is a foraging game, where four agents
initialized at the center of the maze try to eat the dots randomly distributed in four edge rooms. Agents
can move to these rooms along paths of different lengths. Each agent only has a partial observation
of 4×4 grid around them. The goal of the agent is to collect as many dots as possible to achieve more
rewards. Notably, agents arriving at the same edge room may result in inefficient competition. They
are expected to behave differently and move to different rooms.

The results shown in Figure 2b demonstrate the outperformance of our method compared to baselines.
Through maximizing the Wasserstein distance between different trajectory distributions in a latent
space, agents respectively move to the four edge rooms, as depicted by Figure 2d, leading to diverse
policies and efficient cooperation. QMIX fails to learn diverse policies. As shown in Figure 2c,
some agents adopt the same policy and move to the same edge room, resulting in poor performance.
Some mutual information-based baselines such as EOI and SCDS employing the variational intrinsic
rewards rv achieve similar performance. They may not find the edge room with the longest path
due to inefficient exploration caused by the variational intrinsic rewards rv, leading to sub-optimal
performance. From Figure 2e, we note that the variational intrinsic reward rv converges quickly
due to its metric-agnostic property, leading to insufficient incentives for exploration. Conversely,
our Wasserstein distance-based metric-aware intrinsic reward rw can continuously provide effective
reward signals for agents to encourage sufficient exploration.
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(a) 3s5z (easy) (b) 2c_vs_64zg (hard) (c)7sz (hard)

(d) 6h_vs_8z (super hard) (e) corridor (super hard) (f)3s5z_vs_3s6z (super hard)

Figure 3: Performance comparison between our proposed WMAD and baselines in the SMAC
scenarios.

5.2 SMAC

We then test our method on the StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019),
a commonly used benchmark for evaluating cooperative MARL algorithms, consisting of various
combat scenarios with different difficulties. We evaluate our method in 6 scenarios of SMAC
including 3s5z (easy), 2c_vs_64zg (hard), 7sz (hard), 6h_vs_8z (super hard), corridor (super hard),
and 3s5z_vs_3s6z (super hard). The version of SMAC adopted in our experiments is SC2.4.10. The
performance comparison are not applicable across different SMAC versions.

As shown in Figure 3, our method maintains its outperformance in both easy and hard scenarios
and significantly outperforms all baselines in the super hard scenarios. QMIX struggles to learn
optimal cooperative policies in the super hard scenarios. However, our method can efficiently
improve the performance of QMIX by encouraging multi-agent diversity. Compared to mutual
information-based methods, our method achieves better performance due to the maximization of
the metric-aware Wasserstein distance, leading to more sufficient exploration. We further present
visualization examples of diverse policies learned by our method in the super hard scenarios in
Appendix 7. The mutual information-based methods may not enable agents to learn trajectories
with large variations. EOI does not result in satisfactory performance as the trajectory classifier
employed in EOI overfits the agent identity information, impeding further exploration. Moreover, it
is notable that our method also achieves satisfactory performance in the easy 3s5z scenario where
agents sometimes need to behave in the same way to master the trick of ’focus fire’, demonstrating
that our method would not prevent the homogeneous behaviors that can lead to more environmental
rewards. More experimental results related to such homogeneous behaviors can be found in Appendix
G.2. These results reveal that our method efficiently balances exploration and exploitation, resulting
in the learning of optimal cooperative policies.

Stochasticity and Exploration Although SMAC consists of many challenging scenarios, the agents
may overfit the timesteps regardless of real environmental states Ellis et al. (2022) since the team
compositions and the initial positions of units are the same in each episode. We further adopt the
SMACv2 benchmark Ellis et al. (2022). SMACv2 introduces stochasticity by deploying random
team compositions and random initial positions, which challenges agents to continuously explore
optimal policies. The performance comparison of our method against baselines are shown in Figure
4. Our method achieves superior performance in all scenarios compared to the baselines. Our method
significantly improves the performance of QMIX by introducing the Wasserstein distance objective
as a regularizer to encourage multi-agent diversity. The mutual information-based methods do not
yield satisfactory performance. We believe this is because the variational intrinsic reward adopted in
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(a) terran_5_vs_5 (b) protoss_5_vs_5 (c)zerg_5_vs_5

Figure 4: Performance comparison between WMAD and baselines in the SMACv2 scenarios.

(a) MAVEN (b) EOI (c)SCDS (d) LIPO (e) FoX (f) WMAD

Figure 5: Visitation heatmaps of different algorithms in the terran_5_vs_5 scenario.

these methods converge quickly when the trajectories of different agents are identified. As a result,
it cannot provide effective feedback for agents to continuously explore. Instead, our method can
continuously provide efficient Wasserstein distance-based intrinsic rewards to encourage exploration.
This can be verified by the visitation heatmaps of agents trained by various methods shown in Figure
5. We observe that agents trained by our method achieve more extensive environmental exploration
compared to those trained using baselines distributed only in partial areas.

5.3 ABLATION STUDY

We conduct ablation studies to evaluate the contributions of the main components in our method. To
test the contribution of the autoregressive model employed to learn trajectory representations, we
ablate the autoregressive model and only use the non-linear encoder gθe regardless of the trajectory
context. To measure the contribution of CPC, we design five variants: (i) employing a randomly
initialized encoder with fixed parameters for encoding trajectories, (ii) learning trajectory represen-
tations by directly predicting the agent identities of various trajectories instead of employing the
InfoNCE loss, (iii) learning trajectory representations by adopting a generative method to model
p
(
xat+1 | cat

)
instead of modeling the density ratio, (iv) using CPC to predict the trajectory represen-

tation cat+1 instead of the latent embedding zat+1, and (v) adopting CPC to directly predict the raw
observation-action xat+1. To test the Wasserstein distance objective, we ablate the nearest neighbor
intrinsic reward rw and use the Wasserstein distance between trajectory representation distributions
of the current agent and another randomly selected agent and the average Wasserstein distance of all
agents as intrinsic rewards, respectively.

We test these variants in the scenarios from SMAC, and the results are shown in Figure 6a. We note
that the absence of any of the components employed in our method results in significant performance
degradation. Encoding trajectory representations with a fixed encoder leads to poor performance,
demonstrating the importance of using CPC to learn distinguishable trajectory representations.
Moreover, learning trajectory representations by minimizing the identity prediction loss or learning
a generative model is less efficient than our method. These methods do not necessarily learn
distinguishable trajectory representations with large variations, thus the representations may not
work properly in the Wasserstein distance objective to produce efficient feedback. Also, using
the generative method leads to lower learning efficiency due to high computational cost. Using
CPC to predict the trajectory representations or the raw observation-action does not lead to better
performance than predicting the latent embeddings adopted in our method. The average Wasserstein
distance does not yield satisfactory performance and even achieves worse performance than the
random agent Wasserstein distance. As shown in Figure 6b, the average Wasserstein distance intrinsic
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(a) (b)

Figure 6: (a) Performance comparison of different variants in the scenarios of SMAC. (b) Different
kinds of Wasserstein distances.

rewards do not provide effective incentives to encourage multi-agent diversity. Instead, our nearest
neighbor Wasserstein distance is more sensitive to the trajectory representation variations. Despite
the performance degradation caused by different kinds of Wasserstein distances, these Wasserstein
distance methods also lead to significant performance improvement over QMIX, demonstrating the
robustness of our representation learning method. As the difficulty of the task increases, we note
obvious performance degradation caused by the ablation of the autoregressive model, indicating that
learning trajectory representations results in more robust performance, especially in hard tasks.

5.4 RELATED WORKS

Diversity within MARL aims to learn diversified policies among agents to encourage efficient explo-
ration. To achieve this goal, numerous diversity-driven methods have proposed different intrinsic
motivations or regularizers. RODE (Wang et al., 2020c) promotes diversity by assigning distinct
actions to predefined roles; however, its effectiveness may decrease in scenarios with continuous
actions and extensive action spaces. MAVEN (Mahajan et al., 2019) introduces a value-based ap-
proach that conditions agents’ joint behaviors on a shared latent variable controlled by a hierarchical
policy. EOI (Jiang and Lu, 2021) utilizes a supervised learning approach to promote agent individu-
ality, employing a probabilistic classifier to predict agents’ probability distributions based on their
observations. SCDS (Li et al., 2021) concentrates on enhancing multi-agent diversity by optimizing
mutual information between agent identities and trajectories. PMIC (Li et al., 2022) adopts a unique
approach by maximizing the mutual information concerning superior cooperative behaviors while
minimizing it regarding inferior behaviors. LIPO (Charakorn et al., 2023) uses policy compatibility
as a proxy to learn diverse policies and diversifies agents’ behaviors through the mutual information
objective. FoX (Jo et al., 2024) proposes formation-based exploration, encouraging visitations of
diverse formations by guiding agents to fully understand their current formations. Although these
approaches show promise in enhancing multi-agent diversity, the KL divergence derived from the
mutual information objective may lead to insufficient exploration. We refer the reader to Appendix A
for related works about Wasserstein distance.

6 LIMITATIONS AND FUTURE DIRECTIONS

It is notable that the Wasserstein distance is determined by the cost function defining how the
probability mass is transported. For simplicity, we choose the Euclidean distance as the cost function
in all experimental environments. The cost function can be defined as different metrics across various
tasks to measure the trajectory differences. However, choosing an appropriate cost function for the
Wasserstein distance to solve specific multi-agent tasks can be challenging, which remains a goal for
our future work.

7 CONCLUSION

In this paper, we propose a new WMAD exploration method. Unlike previous mutual information-
based methods, our method maximizes the Wasserstein distance between the trajectory distributions
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of different agents in a latent representation space learned by a next-step prediction method, leading
to sufficient exploration. We deploy our method in MARL by introducing a nearest neighbor
intrinsic reward based on the Wasserstein distance. The experimental results demonstrate that our
method learns more diverse policies and leads to more sufficient exploration compared to mutual
information-based methods. This simple yet effective method provides a novel idea of learning
useful representations to promote exploration, which shows promising results in learning cooperative
policies for challenging multi-agent tasks.
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A RELATED WORKS ABOUT WASSERSTEIN DISTANCE

Wasserstein distance, emerging as an advanced measure of distribution dissimilarity, has garnered the
attention of researchers from the machine learning community. Many generative models (Arjovsky
et al., 2017; Ambrogioni et al., 2018; Patrini et al., 2020; Tolstikhin et al., 2018) have incorporated the
Wasserstein distance objective and demonstrate the effectiveness of Wasserstein distance in scenarios
where distributions become degenerate on a sub-manifold within pixel space. In reinforcement learn-
ing, the Wasserstein distance is used to evaluate the policy differences, supplanting commonly utilized
KL divergence. BGPG (Pacchiano et al., 2020) uses the Wasserstein distance as a regularizer to im-
prove the trust region policy optimization. PWIL (Dadashi et al., 2021) demonstrates the effectiveness
of the Wasserstein distance in imitation learning by minimizing the Wasserstein distance between
behavioral policies and expert policies. WURL (He et al., 2022) proposes using the Wasserstein
distance to maximize the distance of state distributions to encourage the agent to sufficiently visit
state space. METRA (Park et al., 2024) applies the Wasserstein distance to unsupervised pre-training
to cover a compact latent space that is metrically associated with the state space. Our method is
inspired by these methods and uses the metric-aware Wasserstein distance to encourage agents to
learn more diverse policies in the domain of MARL.

B DIFFERENCES TO PERVIOUS MUTUAL INFORMATION-BASED METHODS

Prior work that maximizes the mutual information between trajectories and agent identities by
maximizing the variational lower bound typically formulates a variational intrinsic reward:

rv = log qθ(i | τ)− log p(i), (10)

The intrinsic reward rv intuitively encourages agents to visit different trajectories that can be suc-
cessfully distinguished by the discriminator qθ(i | τ) given agent identities. However, the intrinsic
reward rv cannot measure how different the trajectories are. To solve the issue, our method formu-
lates a Wasserstein distance-based metric-aware intrinsic reward rw = min

|A|
a′=1,a′ 6=aW

(
pπa , pπa′

)
measuring the distance between the trajectory representation distributions of the current agent and its
nearest neighbor. Therefore, through maximizing the intrinsic reward rw, the Wasserstein distance
can be enlarged, leading to more diverse trajectories.

C THE TD LOSS OF QMIX

The TD loss of QMIX to learn the optimal Qtot is defined as:

LTD =

b∑
i=1

[(
r + γmax

ut+1

Q̄tot (st+1,ut+1)−Qtot(st,ut)
)2
]

(11)

where Q̄tot is the target network and b is the size of transition samples from the replay buffer D. r
is the global reward shared among agents. Note that since all agent’s policies are jointly trained by
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minimizing the TD loss, we cannot simply apply each agent’s intrinsic reward rw to the global reward
r to formulate a reward-shaping to independently train each agent’s individual policy. That is why we
need to learn an additional intrinsic utility network to maximize the intrinsic reward rw.

D QUANTITATIVE COMPARISON BETWEEN THE WASSERSTEIN DISTANCE AND
THE KL DIVERGENCE

To illustrate the difference between the Wasserstein distance and the KL divergence, we take a
Gaussian distribution example. Let p ∼ N

(
µp, σ

2
)

and q ∼ N
(
µq, σ

2
)
. As σ → 0, the probability

mass of p and q converges to their means, thus we can achieve the KL divergence between two
distributions p and q limσ→0DKL(p‖q) = ∞, which is independent of the specific means µp and
µq. The Wasserstein distance between p and q is limσ→0W (p, q) = |µp − µq|. We note that the
Wasserstein distance provides an explicit measurement of distance, whereas the KL divergence focuses
only on distinguishability and has no relevance to the metric of the underlying data distribution.
As a result, due to the metric-aware property of the Wasserstein distance, our method can not only
encourage the visitations of different trajectories, as in the KL divergence, but also maximize the
distance between diverse trajectories that leads to better trajectory space coverage and more sufficient
exploration.

E PSEUDOCODE FOR WMAD

The pseudocode for WMAD is given in Algorithm 1.

Algorithm 1: Wasserstein Multi-Agent Diversity (WMAD)

Initialize dual functions µ and ν. Initialize the joint policy π = {πa}|A|a=1.
Randomly initialize Qtot for QMIX.
repeat

for each episode do
Collect the trajectories of all agents τ induced by the joint policy π.
Store them into a replay buffer D.

end for
Sample a batch of trajectories τ from the replay buffer D.
Train the trajectory encoder gθ to learn trajectory representations by minimizing the InfoNCE
loss given by Equation 5.
Train dual functions µ and ν by SGD with the gradient given by Equation 7.
Compute the intrinsic reward rw = min

|A|
a′=1,a′ 6=aW

(
pπa , pπa′

)
for each agent.

Jointly train the policy πa for each agent by minimizing Ltotal = LTD + αLwTD.
until Qtot is converged

F INTEGRATING WMAD WITH THE POLICY-BASED METHOD

We have implemented our method with the value-based method QMIX. Here, we illustrate the
integration of our proposed WMAD with policy-based methods. Specifically, we integrate WMAD
with MAPPO, a state-of-the-art policy-based MARL algorithm measured by SMAC. In MAPPO,
all agents share an actor network and a critic network. As each agent learns its own critic, we can
straightforwardly incorporate a shaped reward renv + αrw (where renv represents the environmental
reward and rw denotes the Wasserstein distance-based intrinsic reward) when computing the reward-
to-go R̂ for updating each agent’s critic network. The remaining components of MAPPO do not
require modification. We conduct experiments on Pac-Men, SMAC, and SMACv2 to test the
performance of WMAD+MAPPO. The results, presented in Table 1, demonstrate the superior
performance of WMAD+MAPPO compared to the baselines.

G ENVIRONMENTAL DETAILS AND ADDITIONAL EXPERIMENTAL RESULTS
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G.1 ENVIRONMENTAL DETAILS AND EXPERIMENTAL RESULTS

In Pac-Men, four agents are initialized in the central room of a maze. Each agent is restricted to
observing a 4×4 grid surrounding them. Randomly distributed dots are present in each edge room.
The objective for the agent is to gather as many dots as possible in each edge room. We vary the
lengths of paths to evaluate the exploration of environments. Specifically, path lengths for downward,
leftward, rightward, and upward directions are set to 3, 6, 6, and 10, respectively. Only one path falls
within the agent’s observation scope. Dots in each room will respawn once all have been consumed
by agents. Agents receive an environmental reward equal to the total number of dots consumed in
each time step.

The SMAC benchmark includes many cooperative tasks based on Blizzard’s real-time strategy game
StarCraft II, designed to evaluate the efficacy of different Multi-Agent Reinforcement Learning
(MARL) algorithms. Agent-level control in SMAC utilizes the Machine Learning APIs provided by
StarCraft II and DeepMind’s PySC2. Each task presents a combat scenario with two armies: one
led by allied RL agents and the other by a non-learning game AI. The game ends when all units
from any army perish or a predefined time limit is reached. The objective for allied agents is to
maximize the game’s win rate. To achieve this, agents must learn a sequence of actions to effectively
collaborate with allies in vanquishing enemy forces. An illustrative example of such collaboration
involves mastering kiting skills, where agents organize formations based on armor types to lure enemy
units into pursuit while maintaining a safe distance to minimize damage. The SC2.4.10 version of
StarCraft II is utilized, and performance comparison across different versions are not applicable.
Experiments are conducted across six scenarios, including 3s5z, 2c_vs_64zg, 7sz, 6h_vs_8z, corridor,
and 3s5z_vs_3s6z, spanning various difficulty levels.

SMAC is greatly limited by its lack of stochasticity. To remedy this, the newly released SMACv2
proposes modifications such as incorporating random team compositions and random start positions.
These adjustments aim to inject more stochastic elements into the environment to effectively evaluate
the exploration capabilities of MARL algorithms. We conduct experiments in three SMACv2
scenarios: terran_5_vs_5, protoss_5_vs_5, and zerg_5_vs_5. In SMACv2, each race in the game
of StarCraft II employs three unit types, with units algorithmically assembled into teams. The
probability of each unit type appearing in each episode remains fixed throughout training and testing
phases. Allied agents have the same unit types as their adversaries. In each episode, allied agents are
randomly deployed on the map using either a reflect or surround style.

We present the average returns of all algorithms in Pac-Men, SMAC, and SMACv2, along with their
standard deviation over five random seeds, in Table 1. The results indicate the significant performance
superiority of our method over baseline methods.

Table 1: Average returns of all algorithms in Pac-Men, SMAC, and SMACv2. ± denotes the standard
deviation over five random seeds.

Method Pac-Men
SMAC SMACv2

3s5z 2c_vs_64zg 7sz 6h_vs_8z corridor 3s5z_vs_3s6z terran_5_vs_5 protoss_5_vs_5 zerg_5_vs_5

QMIX 0.21±0.04 0.72±0.13 0.85±0.08 0.17±0.02 0.23±0.03 0.57±0.07 0.36±0.12 0.68±0.03 0.53±0.05 0.41±0.04

MAPPO 0.49±0.03 0.81±0.05 0.83±0.04 0.52±0.06 0.53±0.03 0.62±0.05 0.57±0.08 0.52±0.04 0.47±0.03 0.37±0.03

MAVEN 0.32±0.06 0.51±0.21 0.72±0.06 0.00±0.00 0.42±0.04 0.36±0.08 0.18±0.15 0.58±0.04 0.31±0.05 0.29±0.03

EOI 0.41±0.05 0.87±0.07 0.83±0.02 0.37±0.03 0.08±0.03 0.25±0.11 0.42±0.13 0.65±0.05 0.42±0.03 0.47±0.04

QTRAN 0.28±0.08 0.21±0.19 0.75±0.05 0.00±0.00 0.02±0.02 0.08±0.07 0.02±0.01 0.42±0.02 0.40±0.04 0.25±0.02

SCDS 0.37±0.05 0.76±0.07 0.57±0.09 0.21±0.03 0.03±0.01 0.56±0.06 0.00±0.00 0.52±0.03 0.47±0.05 0.38±0.04

PMIC 0.34±0.03 0.82±0.03 0.79±0.05 0.58±0.02 0.51±0.05 0.37±0.03 0.18±0.06 0.47±0.03 0.36±0.02 0.42±0.02

LIPO 0.43±0.02 0.71±0.03 0.76±0.02 0.39±0.04 0.36±0.06 0.27±0.03 0.21±0.03 0.43±0.02 0.46±0.03 0.37±0.03

FoX 0.39±0.03 0.74±0.02 0.64±0.05 0.56±0.03 0.45±0.05 0.52±0.04 0.43±0.04 0.54±0.03 0.56±0.02 0.49±0.02

WMAD+QMIX 0.87±0.03 0.95±0.03 0.96±0.02 0.87±0.04 0.83±0.03 0.85±0.04 0.82±0.03 0.85±0.03 0.90±0.02 0.84±0.03

WMAD+MAPPO 0.82±0.02 0.93±0.02 0.89±0.05 0.94±0.03 0.79±0.04 0.87±0.05 0.89±0.04 0.89±0.03 0.82±0.02 0.91±0.04

G.2 ADDITIONAL RESULTS

Homogeneous behaviors Agents may sometimes desire to behave in the same way. For instance,
allied agents in the scenarios of SMAC might take the same action to fire at the same enemy in order
to rapidly defeat it. In this section, to demonstrate the effectiveness of our method in learning such
behaviors, we evaluate our method in four homogeneous scenarios of SMAC that require the trick of
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Table 2: Performance of our method and QMIX in homogeneous scenarios.

Method 8m 5m_vs_6m 8m_vs_9m 10m_vs_11m
WMAD+QMIX 0.94±0.02 0.95±0.03 0.93±0.04 0.91± 0.03

QMIX 0.87±0.03 0.65±0.04 0.58±0.05 0.43±0.04

Table 3: Performance of our method and QMIX in scenarios of SMACv2 with different number of
agents

Method terran_5_vs_5 terran_10_vs_10 terran_15_vs_15 terran_20_vs_20
WMAD+QMIX 0.85±0.03 0.86 ±0.02 0.83 ±0.04 0.81 ±0.05

QMIX 0.68±0.03 0.39±0.04 0.24 ±0.06 0.11±0.05

focus fire. The results are shown in Table 2. Our method outperforms QMIX across all scenarios,
demonstrating that our method would not prevent the homogeneous behaviors if they can lead to
more environmental rewards. In contrast, our method encourages sufficient exploration to search for
such optimal cooperative behaviors.

Scalability The scalability of the MARL algorithms refers to their ability to effectively handle the
growing number of agents in the environment. The action space grows exponentially with the number
of agents, highlighting the urgent need for exploration. In this section, we evaluate the scalability
of our method in four scenarios of SMACv2 with an increasing number of agents: terran_5_vs_5,
terran_10_vs_10, terran_15_vs_15, and terran_20_vs_20. We present the results in Table 3. Our
method maintains its outperformance over QMIX across all scenarios. QMIX suffers from poor
scalability due to limited exploration, while our method scales well with an increasing number of
agents, demonstrating that our method can lead to sufficient exploration of action space by enlarging
the Wasserstein distance between trajectory distributions of different agents in the latent representation
space.

H COMPARISON WITH ε-GREEDY

The ε-greedy method is a commonly used exploration strategy in many RL algorithms. Typically,
increasing the value of ε enhances exploration. In this section, we compare our Wasserstein distance-
based method with ε-greedy to highlight its effectiveness in promoting exploration within MARL.
For this comparison, we set the ε values to 0.05, 0.075, and 0.1 for QMIX, and evaluate these settings
in the challenging scenarios including corridor, 3s5z_vs_3s6z, terran_5_vs_5, and protoss_5_vs_5.
The results, presented in Table 4, show that our entropy maximization method is more effective in
fostering exploration compared to simply increasing ε. Notably, increasing ε values does not lead to
significant performance gains. In multi-agent settings, higher ε values primarily increase randomness
in an individual agent’s action selection without enhancing diversity or coordination among agents,
as they fail to consider the trajectories of other agents, resulting in inefficient exploration.

I TRAINING DETAILS AND HYPERPARAMETERS

In this section, we provide the training details and hyperparameters adopted in our experiments. To
implement CPC, we use a two-layer MLP with a hidden size of 64 for the encoder gθe followed by
the batch normalization and a GRU unit for the autoregressive model gθg . We adopt a dual vector
with a dimension m of 64 to parameterize the dual function. To integrate our method with QMIX, the
intrinsic agent utility network is implemented with a two-layer MLP with a hidden size of 64. We
keep other components the same as in QMIX.

Table 4: Comparison of performance between our method and QMIX using various ε values

Method corridor 3s5z_vs_3s6z terran_5_vs_5 protoss_5_vs_5
ε = 0.05 (QMIX) 0.57 ±0.07 0.36 ±0.12 0.68 ±0.03 0.53 ±0.05
ε = 0.075 (QMIX) 0.61 ±0.04 0.39 ±0.11 0.72 ±0.04 0.62 ±0.07
ε = 0.1 (QMIX) 0.63 ±0.06 0.44 ± 0.15 0.74 ±0.03 0.69 ±0.06

Wasserstein distance (our method) 0.85 ± 0.04 0.82 ± 0.03 0.85 ±0.03 0.90 ±0.02
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The policy networks of all agents are implemented with Deep Recurrent Q-Networks. At each time
step, an agent’s policy network processes a local observation as input, which is then forwarded
through a fully-connected hidden layer, followed by a GRU unit, and ultimately a fully-connected
layer generating U outputs, where U is the number of actions. Furthermore, all agents’ policies
share the same policy network parameters to accelerate training. We set the evaluation interval to
10K steps followed by 32 test episodes. We run all methods for 5 million steps in all tested tasks.
We employ hard updates to update target networks every 200 episodes in SMAC and SMACv2.
In Pac-Men, we utilize soft updates for updating target networks with a momentum of 0.01. The
common hyperparameters are consistent across various methods for each multi-agent task. Detailed
hyperparameters are provided in Table 5. The replay buffer size is set to 5K. We implement our
method using NumPy and PyTorch. All experiments are performed on a NVIDIA GeForce RTX
4090 GPU.

Table 5: Hyperparameters

Pac-Men SMAC SMACv2
hidden dimension 64 128

learning rate 0.0003 0.005
optimizer Adam

target update 0.01(soft) 200(hard)
batch size 32 64

β 0.03 0.05

α for WMAD+QMIX 0.01 0.005 for 3s5z, 2c_vs_64zg, 8m, 5m_vs_6m, 8m_vs_9m, and 10m_vs_11m,
0.05 for 7sz, 6h_vs_8z, corridor, and 3s5z_vs_3s6z 0.03

α for WMAD+MAPPO 0.01 0.005 for 3s5z, 2c_vs_64zg, 8m, 5m_vs_6m, 8m_vs_9m, and 10m_vs_11m,
0.03 for 7sz, 6h_vs_8z, corridor, and 3s5z_vs_3s6z 0.03

epsilon anneal time 200,000 200,000 for 3s5z, 2c_vs_64zg, 8m, 5m_vs_6m, 8m_vs_9m, and 10m_vs_11m,
500,000 for 7sz, 6h_vs_8z, corridor, and 3s5z_vs_3s6z 500,000

J VISUALIZATIONS

Challenging tasks typically necessitate complex cooperative behaviors requring agents to learn diverse
policies. We next present some visualization examples of diverse policies learned by our method
in the super hard scenarios (6h_vs_8z, corridor, and 3s5z_vs_3s6z) in Figure 7. In the 6h_vs_8z
scenario, one agent first leaves the team, causing most enemies to follow the lone agent’s movements.
The agent continues moving away to draw the enemies’ fire and cover other agents. Other agents
then quickly surround the few remaining enemies. Through learning such cooperative tactics, agents
successfully scatter the enemies’ powerful attacks. If all agents behave similarly and directly move
towards enemies, they would be killed by enemies immediately. Similar tactics can also be observed
in the other two scenarios, demonstrating the effectiveness of our method in encouraging multi-agent
diversity.

We also present the visitation heatmaps of mutual information-based methods and our method in
the protoss_5_vs_5 and the zerg_5_vs_5 scenarios in Figures 8 and 9, respectively. The visitation
heatmaps reveal that our proposed WMAD leads to more sufficient exploration compared to the
baselines. We believe this is because the mutual information objective does not provide effective
incentives for exploring the environment. As a result, the agents trained by mutual information-based
methods are slow to search for randomly appearing enemies on the map. In contrast, our method
enables sufficient exploration by enlarging the Wasserstein distance.

K EVALUATIONS OF DIFFERENT KERNEL FUNCTIONS

We use the Gaussian kernel by default in our paper. We may also use a linear kernel to parameterize
dual functions. To evaluate the effectiveness of using the linear kernel for dual functions, we design a
linear kernel variant and test it in the super hard scenarios of SMAC. The results are shown in Table 6
.We note that using the linear kernel to parameterize dual functions leads to significant performance
decline. We suspect this is because the dual function may not be linear functions. Using the linear
kernel constraints the representation ability of the dual function.
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Figure 7: Visualization examples of diverse policies emerging in 6h_vs_8z (top), corridor (medium),
and 3s5z_vs_3s6z (bottom) from initial (left) to final (right). Green and red shadows represent agents
and enemies, respectively. Green and red arrows represent the moving directions of agents and
enemies, respectively.

(a) MAVEN (b) EOI (c)SCDS (d) LIPO (e) FoX (f) WMAD

Figure 8: Visitation heatmaps of different algorithms in the protoss_5_vs_5 scenario.

(a) MAVEN (b) EOI (c)SCDS (d) LIPO (e) FoX (f) WMAD

Figure 9: Visitation heatmaps of different algorithms in the zerg_5_vs_5 scenario.

L EVALUATIONS OF DIFFERENT VALUES FOR THE WEIGHT OF THE INTRINSIC
REWARD α

The values for the weight of the intrinsic reward α in different scenarios are listed in Table 5 in our
paper. To investigate the effect of different weights of the intrinsic reward, we evaluate different
weight values in the easy scenario 3s5z and the super hard scenario corridor. The results are shown in
Table 7. The results demonstrate that our method is not very sensitive to the values of the weight.
Sub-optimal weights do not result in a significant performance drop even in the super hard scenario.
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Table 6: Performance comparisons of WMAD with different kernel functions in the scenarios of
SMAC

Methods 6h_vs_8z corridor 3s5z_vs_3s6z
WMAD (Linear Kernel) 0.57± 0.07 0.39 ± 0.05 0.32 ± 0.03

WMAD (Ours) 0.85 ± 0.03 0.90 ± 0.03 0.87 ± 0.04

Table 7: Performance comparisons of WMAD with different values for the weight of the intrinsic
reward α.

Methods 3s5z corridor
α = 0.02 α = 0.05 α = 0.1 α = 0.02 α = 0.05 α = 0.1

WMAD 0.89 ± 0.03 0.91 ± 0.02 0.93 ± 0.03 0.82 ± 0.07 0.85 ± 0.04 0.81 ± 0.05

M EVALUATIONS OF DIFFERENT COST FUNCTIONS

In our paper, we mainly use the Wasserstein distance to encourage sufficient exploration and simply
adopt the Euclidean distance as the cost function as in many prior works. We may also use cosine
similarity as the cost function, which measures the direciton differences between data points. We
test the cosine similarity in Pac-Men, where agents need to move to different directions. The resutls
are shown in Table 8. We note that the Wasserstein distance based on the cosine similarity achieves
higher rewards in Pac-Men. In our work, we do not specifically discuss different cost functions
and use the default Euclidean distance because we want to be consistent with prior works using the
Wasserstein distance to ensure a fair comparison.

Table 8: Performance comparisons of WMAD using different cost functions.

Method Pac-Men
WMAD (Cosine Similarity) 94 ± 0.05
WMAD (Euclidean Distance) 87 ± 0.03
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