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ABSTRACT

Self-supervised image denoising (SSID) has witnessed significant progress in re-
cent years. Therein, most methods focus on exploring blind-spot techniques while
only employing a simple network architecture (e.g., plain CNN or U-Net) as a de-
noising backbone. However, with the ongoing advancements in image restoration
networks, these architectures have become somewhat outdated. In this work, we
aim to migrate the advanced restoration network designs (e.g., SwinIR, Restormer,
NAFNet, and HAT) into SSID methods. We begin by conducting an analysis of
the fundamental concepts in existing typical blind-spot networks (BSN). Subse-
quently, we introduce a series of approaches to adapt restoration networks into
various blind-spot ones. In particular, we suggest effective adjustment for window
attention to mimic the convolution layers in BSN. And we discourage the adop-
tion of channel attention in multi-level architectures, as it can potentially lead to
the leakage of blind-spot information, consequently impeding performance. Ex-
periments on both synthetic and real-world RGB noisy images demonstrate our
methods substantially enhance SSID performance. Furthermore, we hope this
study could enable SIDD methods to keep pace with the progress in restoration
networks, and serve as benchmarks for future works. The code and pre-trained
models will be publicly available.

1 INTRODUCTION

Image denoising is a fundamental low-level vision task that aims to recover clean images from
noisy observations. With the development of neural networks, learning-based methods (Mao et al.,
2016; Zhang et al., 2017a; Tai et al., 2017; Zhang et al., 2018a) have shown significant improve-
ment against traditional patch-based ones (Buades et al., 2005; Dabov et al., 2007; Gu et al., 2014).
Most of the early works synthesize noisy images with additive white Gaussian noise (AWGN) for
training models. Since the noise distribution gap, these models exhibit degraded performance in
real-world scenarios. One feasible solution is to capture noisy-clean image pairs (Plotz & Roth,
2017; Abdelhamed et al., 2018), and take them to train denoising models (Guo et al., 2019; An-
war & Barnes, 2019; Kim et al., 2020). However, the data collection process requires a rigorously
controlled environment and much human labor.

Recently, self-supervised image denoising (SSID) methods have been introduced to circumvent the
requirement of the paired dataset. Noise2Void (Krull et al., 2019) proposes a blind-spot technique
that splits the noisy images into input and target parts with a masking strategy, thus being able to
train networks with noisy images only. Instead of using the mask input strategy, some works (Cha &
Moon, 2019; Laine et al., 2019; Wu et al., 2020; Byun et al., 2021) design dedicated modules (i.e.,
blind-spot networks, BSN) that can exclude the corresponding input pixel from the receptive field
of each output location. Moreover, probabilistic inference (Laine et al., 2019) and regularization
loss functions (Huang et al., 2021; Wang et al., 2022a) are proposed to address the information loss
problem at blind-spot, and they mitigate the performance gap between SSID and the supervised
methods on synthetic noise. However, BSN is generally developed under the assumption of pixel-
wise independent noise. In order to remove spatially correlated noise in real-world scenarios, it is
suggested to break the noise correlation with pixel-shuffle downsampling (PD) (Wu et al., 2020;
Zhou et al., 2020). And asymmetric PD factors during training and inference have shown better
trade-off between noise removal and detail preserving (Lee et al., 2022; Wang et al., 2023).
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Despite the rapid development, the most common neural architectures used in SSID methods are
plain convolutional neural networks (CNN) or multi-level U-Net (Ronneberger et al., 2015), which
falls largely behind the network design in image restoration. For example, window attention (Liu
et al., 2021) exhibits strong local fitting capability and is successfully employed in some image
restoration works (Liang et al., 2021; Wang et al., 2022b). Restormer (Zamir et al., 2022) performs
self-attention along channel dimension. More recently, HAT (Chen et al., 2023) suggests a hybrid
architecture that combines both channel attention and window attention. NAFNet (Chen et al., 2022)
proposes a simple yet effective network design without nonlinear activations. In comparison, only
a few attempts (Wang et al., 2023; Papkov & Chizhov, 2023) have been made to apply advanced
network architectures to SSID, while the performance improvement is still unsatisfactory.

In this paper, we aim to migrate the advanced neural architecture design in image restoration into
SSID methods. And we start by revisiting the building concepts of some typical blind spot networks.
As shown in Fig. 1, they can be divided into two categories according to the construction manner.
Firstly, FC-AIDE (Cha & Moon, 2019) and Laine19 (Laine et al., 2019) are conducted with multiple
network branches, each of which has its receptive field restricted to a specific direction. At the end
of the branches, the features are connected to form a full receptive field except for the blind-spot.
Secondly, DBSN (Wu et al., 2020) and FBINet (Byun et al., 2021) are conducted with masked and
dilated convolutions. The receptive field of each layer is particularly designed, thus maintaining the
blind-spot mechanism throughout the whole network. Based on the above concepts, more advanced
neural architectures have the potential to be adapted into blind-spot ones to improve SSID.

Specifically, we introduce a series of approaches for integrating various blind-spot manners and
cutting-edge architecture designs effectively. In particular, we focus on the adjustments of the atten-
tion mechanism that is widely used in advanced restoration networks. On the one hand, for window
attention, we suggest a specific mask adding to the attention weights. The mask discards weights
at certain positions according to the relative spatial locations, thus creating a partial or sparse re-
ceptive field for building the blind-spot. On the other hand, for channel attention, we discourage
its utilization in multi-level architectures in SSID. We find that, in deep layers of this architecture,
as the channel number increases and spatial size decreases, spatial information tends to be shuffled
into the channel dimension. The interaction between channels may leak spatial information at the
blind-spot, leading to overfitting to noise.

Experiments are conducted on both synthetic and real-world RGB noisy images. We incorporate
four representative and well-known image restoration networks (i.e., SwinIR, Restormer, NAFNet,
and HAT) into various blind-spot ones. All the advanced architectures consistently exhibit improve-
ments while maintaining similar computational costs compared to the baselines, which demonstrates
their effectiveness for SSID. Furthermore, some of them show favorable performance against state-
of-the-art methods. Besides, we hope our work could bring attention to the development of more
advanced BSN architectures, and serve as a foundational reference for future works.

The contributions of this study can be summarised as follows:

• We notice the lack of research on backbone architectures in self-supervised image denois-
ing (SSID), and suggest adapting the advanced designs in restoration networks into SSID.

• We propose a series of adaptation approaches. Especially, we suggest an effective adjust-
ment for window attention with attention masks, and discourage the adoption of channel
attention in multi-level architectures.

• Experiments on multiple restoration networks migrating to various blind-spot networks
show that, the proposed method achieves better performance than the state-of-the-art ones.

2 RELATED WORK

2.1 DEEP IMAGE DENOISING

The development of learning based methods (Zhang et al., 2017a; 2018a) has shown superior perfor-
mance against traditional patch-based ones (Buades et al., 2005; Dabov et al., 2007; Gu et al., 2014)
on Gaussian denoising. More advanced deep neural architectures (Mao et al., 2016; Tai et al., 2017;
Liu et al., 2018) are further proposed to improve the learning ability. However, due to the domain
gap between synthetic and real noise, models trained on Gaussian noise exhibit little denoising effect
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on real-world noisy images (Plotz & Roth, 2017). In order to mitigate the noise discrepancy, (Guo
et al., 2019; Zamir et al., 2020) suggest simulating more realistic noise, while (Abdelhamed et al.,
2018) collects real-world pairs to train networks. With the help of these training data, denoising
methods (Anwar & Barnes, 2019; Yue et al., 2019; Kim et al., 2020; Yue et al., 2020; Cheng et al.,
2021; Ren et al., 2021) for real-world noisy images are rapidly proposed. Nonetheless, the noise
statistics vary in different camera sensors and illuminating conditions (Wei et al., 2020; Zhang et al.,
2021a), it is less practical to collect paired datasets for every device and scenario.

2.2 SELF-SUPERVISED IMAGE DENOISING

To circumvent collection of the paired data, self-supervised image denoising (SSID) approaches
seek to utilize information from the noisy images themselves as supervision (Lehtinen et al., 2018;
Krull et al., 2019; Batson & Royer, 2019). In order to prevent trivial solutions such as over-fitting
to the identity mapping, blind-spot networks (BSN) (Cha & Moon, 2019; Laine et al., 2019; Wu
et al., 2020; Byun et al., 2021) exclude the corresponding noisy pixel from the receptive field at
every spatial location. Probabilistic inference (Laine et al., 2019; Krull et al., 2020) and regular loss
functions (Huang et al., 2021; Wang et al., 2022a) are also proposed to leverage the information in
the blind-spot. Recently, SwinIA (Papkov & Chizhov, 2023) explores transformer-based architec-
tures (Liu et al., 2021; Liang et al., 2021) in SSID, but shows inferior performance.

Noise in real-world RGB images is spatially correlated due to the demosaic operation in image signal
processing (ISP) pipeline. A feasible solution is to break the noisy correlation with pixel-shuffle
downsampling (Zhou et al., 2020), then apply BSN to the downsampled images (Lee et al., 2022;
Wang et al., 2023). Apart from that, CVF-SID (Neshatavar et al., 2022) learns a cyclic function to
decompose the noisy image into clean and noisy components. (Li et al., 2023) detects flat as well as
textured areas, then constructs supervisions for them separately.

2.3 IMAGE RESTORATION NETWORK

Since the pioneering works (Dong et al., 2015; Zhang et al., 2017a), data-driven CNN has been
dominantly investigated in image restoration (Lai et al., 2017; Tai et al., 2017; Zhang et al., 2017b;
2018a; Guo et al., 2019; Ren et al., 2019; Abdelhamed et al., 2020; Zhang et al., 2022). Encoder-
decoder based U-Net architectures (Nah et al., 2017; Yue et al., 2019; Abuolaim & Brown, 2020;
Zhang et al., 2021b; Cho et al., 2021; Zamir et al., 2021) learn hierarchical multi-scale representation
while maintaining computational efficiency. Other architecture designs, such as residual block (Kim
et al., 2016), dense block (Wang et al., 2018; Zhang et al., 2020), and channel attention (Zhang
et al., 2018b; Dai et al., 2019; Anwar & Barnes, 2019) are also proposed to improve the model
ability. Recently, transformer (Vaswani et al., 2017) has shown much popularity in computer vision,
and has also been introduced for image restoration (Chen et al., 2021; Liang et al., 2021; Li et al.,
2021). Incorporating with hierarchical design (Wang et al., 2022b; Zamir et al., 2022), they make
better trade-offs between performance and efficiency. In addition, HAT (Chen et al., 2023) shows
hybrid design could benefit from the complementarity of CNN and transformer. NAFNet (Chen
et al., 2022) proposes a simple yet effective network without nonlinear activations.

3 METHOD

Here we first analyze the building concepts of some typical BSNs, i.e., FC-AIDE (Cha & Moon,
2019), Laine19 (Laine et al., 2019), DBSN (Wu et al., 2020) and FBI-Net (Byun et al., 2021). Then
we introduce how to adapt advanced image restoration designs into various blind-spot ones.

3.1 BUILDING CONCEPTS OF EXISTING BLIND-SPOT NETWORKS

Blind-spot networks (BSN) aim to exclude the corresponding input pixel from the receptive field of
every output position. Existing BSN can mainly be divided into two categories. One category (Cha
& Moon, 2019; Laine et al., 2019) implements BSN with multiple network branches that each branch
has its receptive field restricted in a specific direction. At the end of the network branches, the
features are fused to conduct full receptive field except for blind-spot. The other (Wu et al., 2020;
Byun et al., 2021) adopts masked and dilated convolutions. The receptive field of the layers are

3



Under review as a conference paper at ICLR 2024

⋯ 1x
1

(a) FC-AIDE

⋯ 1x
1

(b) Laine19

⋯

(c) DBSN

⋯

(d) FBINet

Figure 1: Illustration of four typical blind-spot networks. White squares indicate masked pixels and
blue ones indicate activated pixels. The upper sub-figure represents the convolution layer settings,
and the lower one represents the receptive field of a certain pixel. Please zoom in for details.

particularly designed to maintain the blind-spot mechanism through the whole network. Fig. 1
illustrates network layer settings and receptive fields of the four representative networks. Below we
revisit their details.

FC-AIDE (Cha & Moon, 2019) applies three network branches with respective field restricted to
upper right, upper left and downward, respectively. The restriction of receptive field is implemented
by applying mask to the convolution kernels. The output features of three branches are combined
with 1× 1 convolutions to create complete receptive field except for blind-spot.

Laine19 (Laine et al., 2019) also applies multiple network branches with receptive field restricted to
different directions. In practice, it inputs noisy images rotated in different directions into one shared
branch to improve the parameter efficiency. And U-Net (Ronneberger et al., 2015) architecture is
adopted for further computation efficiency.

DBSN (Wu et al., 2020) utilizes dilated convolution layers to design blind-spot network. Dilated
convolutions have sparse receptive fields whose distance is an integer multiple of the dilation rate.
This property maintains when multiple layers with the same dilation rate are stacked. In practice,
DBSN adopts 3 × 3 center masked convolution at the first layer, and 3 × 3 dilated convolutions
with dilation rate 2 in the following layers. As a result, in the deeper layers, the receptive field is
maintained at positions that are an even number of pixels away from the current pixel. And the
center masked convolution at first layer can reverse the receptive field, thus implementing the blind-
spot mechanism. Besides, DBSN employs two branches with varying dilation rates to address the
issue of an excessive number of missing positions in the receptive field.

FBINet (Byun et al., 2021) also applies dilated convolutions to construct BSN. The initial layer
adopts handcrafted kernel mask to decrease the redundant blind-spots. In the deep layers, the dilation
rate is set to 3 for fast expansion of the receptive field.

3.2 ADAPTING IMAGE RESTORATION ARCHITECTURES INTO BLIND-SPOT ONES

In this subsection, we demonstrate how to adapt advanced image restoration architectures (i.e.,
SwinIR (Liang et al., 2021), Restormer (Zamir et al., 2022), NAFNet (Chen et al., 2022), HAT (Chen
et al., 2023)) into various blind-spot ones. Actually, the building concepts of existing BSNs in
Sec. 3.1 have provided us some guidelines. On the one hand, for BSN based on multi-branch de-
sign (Cha & Moon, 2019; Laine et al., 2019), we first duplicate the image restoration network into
multiple branches and restrict the receptive field of each branch to a specific direction. Then we
add 1 × 1 convolution layers at the end to fuse the features from different branches. On the other
hand, for BSN based on dilated convolutions (Wu et al., 2020; Byun et al., 2021), we take masked
convolution as the first layer, and turn the deep layers in restoration networks into dilated ones.

However, the novel components (e.g., window attention and channel attention) in image restora-
tion architectures are not considered in existing blind-spot networks. We show how to adapt these
components into blind-spot ones in the following.

Window Attention enables interactions between contexts within local windows and shows favor-
able performance against CNN in image restoration (Liang et al., 2021; Chen et al., 2023). Denote
the input feature by X ∈ RH×W×C . It is first partitioned into HW

M2 local windows of size M ×M .
Within each local window, the feature is projected to query, key and value as Q,K,V ∈ RM2×d,
respectively. Then window-based self-attention can be formulated as,

Attention(Q,K,V) = SoftMax(QKT /
√
d+B)V, (1)
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(a) Modified window atten-
tion with masked attention
weights.
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(b) Fixed relative position matrix M̂ for calculating M.

(c) Receptive field of modified window attention.

Figure 2: Adapting window attention into blind-spot ones. (a) shows the window attention with
attention mask M, which is to mimic the masked and dilated convolutions. (b) shows the fixed
binary relative position matrix M̂ of various blind-spot manners for calculating M. The white
squares are set to 0 to mask weights and blue ones are set to 1 to activate weights. (c) shows the
receptive field of modified window attention, where white squares represent the blocked areas in the
receptive field of the pixel in red box.

where B ∈ RM2×M2

is the learnable relative positional bias, d is the feature dimension. Due to the
relative position along each axis lies in the range [−M +1,M − 1], B is parameterized as a smaller
bias matrix B̂ ∈ R(2M−1)×(2M−1). And B is calculated from B̂ based on the relative position, i.e.,

B(i, j) = B̂(xi − xj , yi − yj), (2)
where i and j are two positions within the local window, (xi, yi) and (xj , yj) are their coordinates
along H and W axis, respectively.

In order to implement the same functionality as masked (Cha & Moon, 2019; Laine et al., 2019)
or dilated (Wu et al., 2020; Byun et al., 2021) convolution layers, we restrict the receptive field of
window attention by masking out certain positions of the attention matrix. Specifically, we introduce
a fixed mask M ∈ RM2×M2

to the attention matrix, as shown in Fig. 2 (a). Thus, Eqn. (1) can be
modified as,

Attention(Q,K,V) = SoftMax(QKT /
√
d+B+M)V, (3)

where M is a two-value matrix that some locations are set to −∞ to mask attention weights and
others are set to 0 to activate weights. Similar to the relative positional bias B, M is calculated from
a fixed binary relative position matrix M̂ ∈ R(2W−1)×(2W−1), i.e.,

M(i, j) =

{
0, if M̂(xi − xj , yi − yj) = 1

−∞, if M̂(xi − xj , yi − yj) = 0
. (4)

The relative position matrix M̂ for adapting various BSN is shown in Fig. 2 (b). From Fig. 2 (c), the
receptive field of our modified window attention is identity with dilated or masked convolutions.

In addition, we also noticed that SwinIA (Papkov & Chizhov, 2023) implements BSN with window
attention as well. It initializes query features with positional encoding, and takes shallow features
of the noisy input as key and value features. Associated with an attention mask, the query features
do not interact with the key and value features at the same location, thereby achieving the blind-
spot mechanism. However, this implementation shows inferior performance to the convolutional
counterparts such as (Laine et al., 2019). Instead, we mimic the layers in convolution-based BSNs
with masked window attention to overcome its limitation.

Channel Attention enables global interaction and has been widely adopted in state-of-the-art image
restoration architectures (Chen et al., 2022; 2023). Given an input feature X ∈ RH×W×C , channel
attention CA can be formalized as,

CA(X) = X ∗ ϕ(X), (5)
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Table 1: Ablation study on channel attention.
Laine19 Baseline +Restormer +NAFNet
w/ CA - 30.12 / 0.788 22.60 / 0.595

w/o CA 32.26 / 0.881 32.52 / 0.884 32.68 / 0.888

where ∗ is a channel-wise product operation. The function ϕ should aggregate spatial information
of each channel and output a vector with size 1× 1× C. For example, NAFNet (Chen et al., 2022)
achieves ϕ by global average pooling and a linear layer, and Restormer (Zamir et al., 2022) utilizes
self-attention operations in the channel dimension to extract global information.

Note that BSN needs to meet the requirement that excepts the corresponding input pixel from the
receptive field of an output pixel. However, ϕ(X) aggregates the information of all spatial loca-
tions and has the global receptive field, which may violate the blind-spot requirement. Actually, in
experiments, we found that whether it is harmful to SSID depends on the spatial size and channel
width. In single-scale architectures (e.g., HAT (Chen et al., 2023)) the spatial size is maintained
constant through the network layers and it is much larger than the channel number. Thus, the spa-
tial information is largely compressed by ϕ(X), making it safe to adopt CA. However, when it
turns to hierarchical multi-level architectures (Zamir et al., 2022; Chen et al., 2022), the features are
downsampled multiple times at the deep levels. Thus, the spatial information may be distributed in
channel dimensions, which may cause information leaks of the blind-shot values. In order to avoid
this negative effect, we remove the channel attention in (Zamir et al., 2022; Chen et al., 2022) when
implementing BSN with hierarchical architecture (Laine et al., 2019).

Downsampling and Upsampling are commonly associated with hierarchical architectures in image
restoration (Zamir et al., 2022; Chen et al., 2022). They process in multi-scale resolutions and
are computationally efficient. However, several existing BSNs are single-scale architectures where
the feature resolution is maintained the same as that of input images through the network. When
adapting to these types of BSNs, downsampling and upsampling operations may conflict with the
blind-spot mechanism. For simplicity, we remove the downsampling and upsampling operations in
image restoration architectures when implementing BSNs with straight forward architectures (Cha
& Moon, 2019; Wu et al., 2020; Byun et al., 2021).

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Datasets for Synthetic Denoising. Following Laine19 (Laine et al., 2019), our training data con-
tains 44328 images of size between 256 × 256 and 512 × 512 from ImageNet (Deng et al., 2009)
validation dataset. Our test datasets are commonly used Kodak (24 images), BSD300 validation set
(100 images), and Set14 (14 images). We consider four synthetic noise types: Gaussian noise of
σ = 25, Gaussian noise of σ ∈ [5, 50], Poisson noise of λ = 30, Poisson noise of λ ∈ [5, 50].

Datasets for Real-World Denoising. Smartphone image denoising dataset (SIDD) (Abdelhamed
et al., 2018) collects noisy-clean pairs from five smartphone cameras. Each noisy image is captured
multiple times and the average image is served as ground truth. It provides 320 training pairs (SIDD-
Medium) and 40 testing images, while 1280 validation patches and 1280 benchmark patches are
cropped from the testing images. We train our network on SIDD-Medium dataset and test on the
validation and benchmark patches. Darmstadt noise dataset (DND) (Plotz & Roth, 2017) is a test
set captured from DSLR camera. The noisy image is captured with a short exposure time while the
corresponding clean image is captured with a long exposure time. It contains 50 noisy images for
test only. We train and test our method on the test images in a fully self-supervised manner.

Training Details. Some training settings are the same for synthetic and real-world noise. We
crop the training images into patches of size 128 × 128 to facilitate the network training. We use
Adam (Kingma & Ba, 2014) optimizer. The batch size is set to 8 and the initial learning rate is set to
3 × 10−4. For synthetic noise, we train the network with negative log-likelihood loss and test with
posterior inference (Laine et al., 2019). The learning rate is decreased to zero with cosine annealing
scheduler (Loshchilov & Hutter, 2016), and the network is trained total 500k iterations. For real-
world noise, we apply asymmetric pixel shuffle down-sampling rate for training and inference, and
improve the results with random replacement refinement (R3) (Lee et al., 2022). We use L1 loss
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Table 2: Ablation study on synthetic Gaussian denoising of σ = 25. PSNR (dB) and SSIM are
measured on Kodak24 dataset. The best results are shown in bold.

Noise2Void NBR2NBR FC-AIDE Laine19 DBSN FBINet
Baseline 30.07 / 0.818 32.08 / 0.879 32.21 / 0.878 32.26 / 0.881 32.18 / 0.876 32.33 / 0.882
+SwinIR 30.96 / 0.843 32.25 / 0.880 32.36 / 0.880 32.58 / 0.886 32.34 / 0.879 32.34 / 0.882
+Restormer 30.99 / 0.846 32.29 / 0.881 32.38 / 0.881 32.52 / 0.884 32.46 / 0.881 32.41 / 0.883
+HAT 30.99 / 0.844 32.41 / 0.883 32.43 / 0.882 32.66 / 0.887 32.47 / 0.881 32.35 / 0.882
+NAFNet 30.96 / 0.846 32.30 / 0.882 32.39 / 0.881 32.68 / 0.888 32.47 / 0.882 32.56 / 0.886

Table 3: Ablation study on real-world denoising.
PSNR (dB) is measured on SIDD validation dataset.

FC-AIDE Laine19 DBSN FBINet
Baseline 36.89 36.79 37.02 36.98
+SwinIR 36.87 36.97 37.12 37.14
+Restormer 37.10 37.16 37.09 37.10
+HAT 36.90 37.01 37.01 37.06
+NAFNet 36.95 37.20 37.28 37.07

Table 4: Ablation study on NAFNet on
SIDD validation dataset.

DConv LN SCA Activation PSNR
✓ ✓ ✓ Simple Gate 37.28
✓ ✓ ✓ ReLU 37.31
✓ ✓ % ReLU 37.30
✓ % % ReLU 37.42
% % % ReLU 37.32

to train the network, and the learning rate is decreased by 10 every 40k iterations with total 100k
iterations. The experiments are conducted on Nvidia Tesla V100 GPUs.

The BSNs and image restoration architectures are varied in network size and computation cost. For
a fair comparison, we adjust the channel numbers and network depth to control the computation cost
of all the methods to be the same (i.e., 100G FLOPs @ 256 × 256) in our ablation study. We scale
up to larger models (i.e., 4̃00G FLOPs @ 256 × 256) when comparing to state-of-the-art methods,
denoted as Ours-L.

4.2 ABLATION STUDY

Ablation study on channel attention. In Sec. 3.2, we demonstrate that channel attention may leak
the information when adapting image restoration networks (i.e., Restormer (Zamir et al., 2022) and
NAFNet (Chen et al., 2022)) into hierarchical BSN (Laine et al., 2019). As shown in Tab. 1, in such
situations, channel attention leads to an obvious performance drop, which seems to be overfitted to
the noisy images. Instead, large improvements are achieved by removing the channel attention.

Ablation study on synthetic noise. We adapt four representative image restoration architectures
into blind-spot ones according to Sec. 3.2 to assess their effectiveness in BSN-based SSID methods.
In addition, for SSID methods (Krull et al., 2019; Laine et al., 2019) adopting normal networks that
implement blind-spot mechanism with masked inputs, we simply replace their networks with image
restoration architectures. From Tab. 2, all the restoration networks bring noticeable improvements
over the baselines, which encourages to adoption of advanced architecture designs in SSID methods.
Among the image restoration architectures, NAFNet (Chen et al., 2022) achieves the largest average
improvement, which is consistent with the conclusion in image restoration. The BSN-based methods
show better overall performance than mask-based ones (Krull et al., 2019; Huang et al., 2021), while
Laine19 (Laine et al., 2019) perform best on SSID. This may be because the work (Laine et al., 2019)
has a complete receptive field (except for blind-spot) and hierarchical architecture. In conclusion,
adapting NAFNet into Laine19 (Laine et al., 2019) shows the best results on synthetic noise. We
adopt this implementation for synthetic denoising.

Ablation study on real-world noise. As shown in Tab. 3, implementing BSNs with advanced
image restoration architectures also shows large improvements on real-world denoising. Different
from synthetic noise, DBSN shows the best performance among BSNs, which is consistent with
the conclusion of AP-BPN (Lee et al., 2022). It may be because the dilated convolutions in DBSN
have sparse receptive fields similar to pixel-shuffle downsampling (PD). As AP-BPN (Lee et al.,
2022) adopts different PD factors between training and inference, DBSN may have better general-
ization ability from training PD factor to inference. In addition, although NAFNet has shown good
performance, we empirically found that novel components in NAFNet may cause unstable training
in SSID, leading to limited performance. Tab. 4 analysis the basic components, e.g., Depth-wise
Convolution (DConv), Layer Normalization (LN), simplified channel attention (SCA) and activa-
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Noisy Noise2Void Laine19 NBR2NBR Blind2Unblind Ours

Figure 3: Qualitative comparison on Gaussian denoising of σ = 25 on Kodak dataset.

Table 5: Quantitative comparison on synthetic denoising. PSNR (dB) and SSIM are measured on
Kodak dataset. Results on BSD300 and Set14 datasets are provided in the appendix.

Method Gaussian σ = 25 Gaussian σ ∈ [5, 50] Poisson λ = 30 Poisson λ ∈ [5, 50]

Noise2Void (2019) 30.32 / 0.821 30.32 / 0.821 28.90 / 0.788 28.78 / 0.758
Laine19 (2019) 32.40 / 0.883 32.40 / 0.870 31.67 / 0.874 30.88 / 0.850
Self2Self (2020) 31.28 / 0.864 31.37 / 0.860 30.31 / 0.857 29.06 / 0.834
DBSN (2020) 31.64 / 0.856 30.38 / 0.826 30.38 / 0.826 29.60 / 0.811
R2R (2021) 32.25 / 0.880 31.50 / 0.850 30.50 / 0.801 29.14 / 0.732
NBR2NBR (2021) 32.08 / 0.879 32.10 / 0.870 31.44 / 0.870 30.86 / 0.855
Blind2Unblind (2022) 32.27 / 0.880 32.34 / 0.872 31.64 / 0.871 31.07 / 0.857
Ours 32.67 / 0.888 32.54 / 0.886 31.86 / 0.877 31.40 / 0.862
Ours-L 32.81 / 0.890 32.68 / 0.888 31.98 / 0.879 31.61 / 0.870

tion function in the building block of NAFNet. Removing some of the components (i.e., LN and
SCA) and replacing the simple gate activation function with ReLU provide a more stable training
process and slightly better performance. We take this implementation for real-world denoising.

4.3 RESULTS FOR SYNTHETIC DENOISING

Benefiting from advanced architectures, our base model with 100G FLOPs computation cost
achieves favorable performance against state-of-the-art SSID methods, which could be further
improved with larger model size. The quantitative results of synthetic denoising on Kodak
dataset are shown in Tab. 5, results on BSD300 and Set14 datasets are provided in the appendix.
Noise2Void (Krull et al., 2019) can not sufficiently restore the clean signal due to the information
loss at blind-spot. Laine19 (Laine et al., 2019) mitigates this problem with Bayesian inference,
which has the potential to fully recover the clean information. In addition, R2R (Quan et al., 2020)
synthesis training pairs from single noisy images for network training. Neighbor2Neighbor (Huang
et al., 2021) and Blind2Unblind (Wang et al., 2022a) apply regular loss functions to add back the
information in the blind-spot. These methods exhibit performance close to their supervised counter-
parts. Nevertheless, all the above methods are based on U-Net or plain convolutional architecture,
which largely limits their modeling ability. Equipped with advanced neural architecture in image
restoration, we achieved up to 0.54dB improvement in terms of PSNR. This demonstrates the ef-
fectiveness of keeping up with advanced networks in image restoration. Fig. 3 shows visual com-
parisons of synthetic denoising, where our method sufficiently removes the noise and preserves the
fine-grained details on the sailboat.

4.4 RESULTS FOR REAL-WORLD DENOISING

Quantitative results for real-world denoising are shown in Tab. 6. Blind-spot techniques designed for
synthetic noise (Krull et al., 2019; Batson & Royer, 2019) assume the noise is spatial independent,
which shows little denoising effect on real-world noisy images. DBSN (Wu et al., 2020) firstly
applies pixel-shuffle downsampling to break the noise correlation, then denoises the noisy image
with blind-spot network. AP-BSN (Lee et al., 2022) introduces asymmetric PD factors to trade-off
between texture details and noise removal. However, their performance is largely limited by the plain
convolutional BSN architecture. Recently, LG-BPN (Wang et al., 2023) overcomes this limitation by
incorporating with transformer block (Zamir et al., 2022) for global information. Instead, our BSN
adapted from advanced image restoration architecture shows 1.06dB improvement against AP-BSN
on SIDD validation dataset, while also surpassing the state-of-the-art methods by a large margin.
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(a) Noisy (b) CVF-SID (c) AP-BSN (d) LG-BPN (e) Li et al. (f) Ours

Figure 4: Qualitative comparison on SIDD dataset (Abdelhamed et al., 2018).

(a) Noisy (b) CVF-SID (c) AP-BSN (d) LG-BPN (e) Li et al. (f) Ours

Figure 5: Qualitative comparison on DND dataset (Plotz & Roth, 2017).

Table 6: Quantitative comparison on real-world denoising. PSNR (dB) and SSIM are measured on
SIDD and DND datasets. Due to DND benchmark website is down before paper submission, we
will update the results as soon as the website is recovered.

Method SIDD Validation SIDD Benchmark DND Benchmark

Unpaired

GCBD (2018) - - 35.58 / 0.922
UIDNet (2020) - 32.48 / 0.897 -
Wu et al. (2020) - - 37.93 / 0.937
C2N (2021) 35.36 / 0.932 35.35 / 0.937 37.28 / 0.924

Self-Supervised

Noise2Void (2019) 27.48 / 0.664 27.68 / 0.668 -
Noise2Self (2019) 29.94 / 0.782 29.56 / 0.808 -
NAC (2020) - - 36.20 / 0.925
R2R (2021) - 34.78 / 0.898 -
CVF-SID (2022) 34.15 / 0.911 34.71 / 0.917 36.50 / 0.924
AP-BSN (2022) 36.74 / 0.934 36.91 / 0.931 38.09 / 0.937
Li et al. (2023) 37.39 / 0.934 37.41 / 0.934 38.18 / 0.938
LG-BPN (2023) - 37.28 / 0.936 38.43 / 0.942
Ours 37.42 / 0.935 37.36 / 0.934 -
Ours-L 37.80 / 0.940 37.74 / 0.939 -

Fig. 4 and Fig. 5 show visual comparisons in real-world scenarios. Our model can remove the
spatial correlated noise smoothly.

5 CONCLUSION

In this paper, we notice the lack of research on neural architectures in self-supervised image denois-
ing (SSID). We suggest adopting the advanced designs in image restoration and introduce a series
of approaches to adapt them into SSID. Specifically, we propose a fixed attention mask based on the
relative position for window attention to mimic the convolutional counterparts. And we discourage
the use of channel attention in hierarchical architectures. Experiments on representative restoration
networks migrating various blind-spot networks show consistent improvement against the convo-
lutional baselines. We hope our study could bring attention to the development of more advanced
BSN architectures, and serve as a foundational reference for future works.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Abdelrahman Abdelhamed, Stephen Lin, and Michael S Brown. A high-quality denoising dataset
for smartphone cameras. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1692–1700, 2018.

Abdelrahman Abdelhamed, Mahmoud Afifi, Radu Timofte, and Michael S Brown. Ntire 2020
challenge on real image denoising: Dataset, methods and results. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pp. 496–497, 2020.

Abdullah Abuolaim and Michael S Brown. Defocus deblurring using dual-pixel data. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part X 16, pp. 111–126. Springer, 2020.

Saeed Anwar and Nick Barnes. Real image denoising with feature attention. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 3155–3164, 2019.

Joshua Batson and Loic Royer. Noise2self: Blind denoising by self-supervision. In International
Conference on Machine Learning, pp. 524–533. PMLR, 2019.

Antoni Buades, Bartomeu Coll, and J-M Morel. A non-local algorithm for image denoising. In
2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05),
volume 2, pp. 60–65. Ieee, 2005.

Jaeseok Byun, Sungmin Cha, and Taesup Moon. Fbi-denoiser: Fast blind image denoiser for
poisson-gaussian noise. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5768–5777, 2021.

Sungmin Cha and Taesup Moon. Fully convolutional pixel adaptive image denoiser. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 4160–4169, 2019.

Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chun-
jing Xu, Chao Xu, and Wen Gao. Pre-trained image processing transformer. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 12299–12310, 2021.

Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun. Simple baselines for image restoration.
In European Conference on Computer Vision, pp. 17–33. Springer, 2022.

Xiangyu Chen, Xintao Wang, Jiantao Zhou, Yu Qiao, and Chao Dong. Activating more pixels in
image super-resolution transformer. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 22367–22377, 2023.

Shen Cheng, Yuzhi Wang, Haibin Huang, Donghao Liu, Haoqiang Fan, and Shuaicheng Liu.
Nbnet: Noise basis learning for image denoising with subspace projection. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 4896–4906, 2021.

Sung-Jin Cho, Seo-Won Ji, Jun-Pyo Hong, Seung-Won Jung, and Sung-Jea Ko. Rethinking coarse-
to-fine approach in single image deblurring. In Proceedings of the IEEE/CVF international con-
ference on computer vision, pp. 4641–4650, 2021.

Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. Image denoising by
sparse 3-d transform-domain collaborative filtering. IEEE Transactions on image processing, 16
(8):2080–2095, 2007.

Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and Lei Zhang. Second-order attention network
for single image super-resolution. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 11065–11074, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution using deep
convolutional networks. IEEE transactions on pattern analysis and machine intelligence, 38(2):
295–307, 2015.

10



Under review as a conference paper at ICLR 2024

Shuhang Gu, Lei Zhang, Wangmeng Zuo, and Xiangchu Feng. Weighted nuclear norm minimization
with application to image denoising. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 2862–2869, 2014.

Shi Guo, Zifei Yan, Kai Zhang, Wangmeng Zuo, and Lei Zhang. Toward convolutional blind de-
noising of real photographs. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 1712–1722, 2019.

Tao Huang, Songjiang Li, Xu Jia, Huchuan Lu, and Jianzhuang Liu. Neighbor2neighbor: Self-
supervised denoising from single noisy images. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 14781–14790, 2021.

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using very deep
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1646–1654, 2016.

Yoonsik Kim, Jae Woong Soh, Gu Yong Park, and Nam Ik Cho. Transfer learning from synthetic
to real-noise denoising with adaptive instance normalization. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 3482–3492, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alexander Krull, Tim-Oliver Buchholz, and Florian Jug. Noise2void-learning denoising from sin-
gle noisy images. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 2129–2137, 2019.
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APPENDIX

Here we provide the quantitative results of synthetic denoising on BSD300 and Set14 datasets in
Tab. A and Tab. B, respectively.

Table A: Quantitative comparison of synthetic image denoising on BSD300 dataset.

Method Gaussian σ = 25 Gaussian σ ∈ [5, 50] Poisson λ = 30 Poisson λ ∈ [5, 50]

Noise2Void (2019) 29.34 / 0.824 29.31 / 0.801 28.46 / 0.798 27.92 / 0.766
Laine19 (2019) 30.99 / 0.877 30.95 / 0.861 30.25 / 0.866 29.57 / 0.841
Self2Self (2020) 29.86 / 0.849 29.87 / 0.841 28.93 / 0.840 28.15 / 0.817
DBSN (2020) 29.80 / 0.839 28.34 / 0.788 28.19 / 0.790 27.81 / 0.771
R2R (2021) 30.91 / 0.872 30.56 / 0.855 29.47 / 0.811 28.68 / 0.771
NBR2NBR (2021) 30.79 / 0.873 30.73 / 0.861 30.10 / 0.863 29.54 / 0.843
Blind2Unblind (2022) 30.87 / 0.872 30.86 / 0.861 30.25 / 0.862 29.92 / 0.852
Ours 31.29 / 0.884 31.20 / 0.880 30.42 / 0.871 30.18 / 0.861
Ours-L 31.39 / 0.886 31.32 / 0.884 30.60 / 0.874 30.34 / 0.867

Table B: Quantitative comparison of synthetic image denoising on Set14 dataset.

Method Gaussian σ = 25 Gaussian σ ∈ [5, 50] Poisson λ = 30 Poisson λ ∈ [5, 50]

Noise2Void (2019) 28.84 / 0.802 29.01 / 0.792 27.73 / 0.774 27.43 / 0.745
Laine19 (2019) 31.36 / 0.866 31.21 / 0.855 30.47 / 0.855 28.65 / 0.785
Self2Self (2020) 30.08 / 0.839 29.97 / 0.849 28.84 / 0.839 28.83 / 0.841
DBSN (2020) 30.63 / 0.846 29.49 / 0.814 29.16 / 0.814 28.72 / 0.800
R2R (2021) 31.32 / 0.865 30.84 / 0.850 29.53 / 0.801 28.77 / 0.765
NBR2NBR (2021) 31.09 / 0.864 31.05 / 0.858 30.29 / 0.853 29.79 / 0.838
Blind2Unblind (2022) 31.27 / 0.864 31.14 / 0.857 30.46 / 0.852 30.10 / 0.844
Ours 31.47 / 0.872 31.42 / 0.869 30.70 / 0.858 30.31 / 0.856
Ours-L 31.58 / 0.874 31.51 / 0.872 30.88 / 0.860 30.44 / 0.858
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