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ABSTRACT

A unified representation space in multi-modal learning is essential for effectively
integrating diverse data sources, such as text, images, and audio, to enhance
efficiency and performance across various downstream tasks. Recent binding
methods, such as ImageBind (Girdhar et al., 2023), typically rely on a single,
fixed anchor modality for aligning multi-modal data. We mathematically analyze
these fixed anchor binding methods and uncover significant limitations: (1) over-
reliance on the choice of the anchor modality, (2) inadequate capture of intra-modal
information, and (3) failure to account for cross-modal correlation among non-
anchored modalities. To address these issues, we propose the need for adaptive
anchor binding methods, exemplified by our framework CENTROBIND. The
proposed method uses adaptively adjustable centroid-based anchors generated from
all available modalities, leading to a balanced and rich representation space. We
theoretically demonstrate that our approach captures three critical properties of
multi-modal learning—intra-modal learning, inter-modal learning, and multi-modal
alignment—while constructing a unified representation that spans all modalities.
Experiments on both synthetic and real-world datasets show that adaptive anchor
methods such as CENTROBIND consistently outperform fixed anchor binding
methods, verifying our analysis.

1 INTRODUCTION

Multi-modal alignment is defined as identifying and exploiting relationships and correspondences
between multiple modalities (e.g., text, image, audio) viewing common phenomena to establish
meaningful connections between their representations (Baltrušaitis et al., 2018). A common approach
is learning a shared embedding space (Tu et al., 2022; Girdhar et al., 2023; Liang et al., 2024b; Zhu
et al., 2024), which aims to project data from multiple modalities into a common embedding space
by clustering similar items together for direct comparison and linkage. This approach leverages well-
trained single-modal embeddings, aligning them with auxiliary objective functions like contrastive
loss (Oord et al., 2018) or triplet loss (Schroff et al., 2015) to minimize distances between similar
items and maximize distances between dissimilar ones across modalities.

Instead of training separate models for each modality, ImageBind (Girdhar et al., 2023) pairs images
with other modalities and projects them into a common image embedding space. Similarly, (Zhu
et al., 2024) shows that pairing texts with other modalities (LanguageBind) improves cross-modal
retrieval performance when language serves as the anchor modality. This approach has inspired
various “-Bind” methods tailored to align different modalities for specific domains, such as molecular
modeling (Xiao et al., 2024), medical imaging (Gao et al., 2024), brain signals (Yang et al., 2024b),
and music selection for videos (Teng et al., 2024). These models commonly use image or text
as the anchor embedding due to the abundance of data, with other modalities projected into this
anchor representation.

We refer to these approaches as Fixed Anchor Bind (FABIND) methods, where the primary anchor
modality’s embedding space is held fixed while aligning others. Many “-Bind” methods maximize
mutual information I(Z1;Zi) between the anchor representation Z1 and each non-anchor Zi for
i ∈ 2, . . . ,M . Despite their practical appeal for unified multimodal representations, we show, both
theoretically and empirically, that they have important limitations.
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: shapes represent semantics, such as dog, cat, or horse : colors represent modalities, such as image, text, and sound
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Poor embeddings in the anchor modality (top-left)
can lead to suboptimal alignment (top-right). This
can be addressed by selecting a higher-quality
anchor or, ideally, updating the anchor position
adaptively during the training.

Nuanced details in non-anchored modalities
(bottom-left), like the sound of summer nights with
insects singing, may be lost when alignment relies
solely on the anchored modality, such as images.

When mutual information is computed only with the
anchored modality, relationships between non-
anchored modalities (bottom-left) are lost. For
example, audio of summer nights and
corresponding descriptive text would not be
captured if alignment is anchored to images.
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Figure 1: Limitations of fixed-anchor binding (FABIND) and remedy via CentroBind (CB). Shapes
denote semantic classes (e.g., dog, cat, horse) and colors denote modalities (image, text, audio).
P1–Over-reliance on anchor: a poor or poorly chosen anchor yields misalignment across modalities.
P2–Loss of intra-modal information: anchoring suppresses modality-specific cues present only
in non-anchored views. P3–Loss of shared information among non-anchors: optimizing only
anchor ↔ others ignores correlations between non-anchored modalities. CB addresses all three by
computing adaptive, batch-wise anchors (centroids) from the available modalities and aligning each
modality to this shared anchor, preserving intra-information and non-anchor shared-information
while improving overall alignment.

BackboneBackbone

Aug.
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Modality 1
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Backbone…

Adaptive Anchor Construction

Anchor Representation Space
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Figure 2: Graphical illustration of adaptive
anchor alignment: Adaptive anchors are dy-
namically generated from current embeddings
using an aggregation method for every batch.

Issues with fixed anchor binding. As illustrated
in Figure 1, we discover three limitation of FABIND.
P1–over-reliance on anchor: the best anchor choice
depends on embedding quality and task, and com-
mon defaults (image or text) can be suboptimal when
no single modality dominates. P2–loss of intra-
information: a fixed anchor can discard semantics
captured primarily by other modalities (e.g., sound
revealing mood, images conveying expression be-
yond text like “a dog barks loudly”). P3–loss of
shared-information: optimizing only anchor–other
pairs ignores complementarities among non-anchor
modalities. These issues motivate adaptive anchor
alignment as an alternative to FABIND; we formalize
FABIND’s deficiencies in Section 2.

Adaptive anchor alignment. We propose an alter-
native to fixed anchor alignment by replacing fixed an-
chors with “adaptive” anchors computed from paired
multi-modal samples. Our proposed method, CEN-
TROBIND, an example of adaptive anchor bind methods, described in Section 3, removes the need for
selecting a fixed anchor modality, instead calculates the centroid over the aggregate of all modality’s
representations and generates a multi-modal anchor representation, as shown in Figure 2. We note
that various aggregation methods can be used for these embeddings, such as computing a weighted
average when the relative importance or quality of the backbone models is known, or even learn-
ing the weight coefficients dynamically during training. Some of these options are explored, with
experimental results provided in Appendix C.1.
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Our theoretical analysis demonstrates that CENTROBIND effectively addresses three critical compo-
nents of multi-modal learning: 1) capturing intra-modal mutual information, 2) learning inter-modal
mutual information, and 3) performing multi-modal alignment by maximizing embedding similarity
measures. By incorporating these elements, CENTROBIND outperforms other multi-modal alignment
methods, as shown empirically on both synthetic and real-world datasets in various downstream tasks.
The proposed approach yields a unified representation space and, in the perspective of (Huh et al.,
2024), who contends that multi-modal representations better align as they move toward a platonic
representation that captures the semantic information of all modalities simultaneously.

2 PROBLEM FORMULATION

In this section, we describe general representation learning and binding problems in multi-modal
learning. Then, we analyze fixed-anchor-bind (FABIND) methods such as ImageBind (Girdhar et al.,
2023), that bind multi-modal representations to a user-selected fixed modality.

2.1 REPRESENTATION LEARNING FRAMEWORK

Notation. Boldface upper case letters (e.g., X) denote random vectors, and a realization is denoted
by the boldface lower case letters (e.g., x); For n ∈ N, [n] := {1, 2, · · · , n}; PX and PX,Y denote
the marginal and the joint distributions of X and (X,Y), respectively.

Given M datasets D = {Di}Mi=1, let Di = {(xi,j ,yi,j)}
Ni
j=1 be the dataset from the i-th modality,

where xi,j ∈ Xi and yi,j ∈ Yi are respectively the j-th input instance (e.g., feature vector) and the

corresponding label in i-th modality, and we assume that (xi,j ,yi,j)
i.i.d.∼ PXi,Yi

.1 We assume that j
indexes paired samples among modalities. For instance, x1,c and x2,c are features having similar
semantic information (e.g., dog image and dog sound) in D1 and D2. The goal of representation
learning is to build M encoders fi : Xi → Zi for each modality, which maps the input instances xi,j

to its embedding zi,j = fi(xi,j), preserving as much information about xi,j as possible.

For the uni-modal case (M = 1), keeping maximum information about x1,j at its embedding z1,j is
generally preferred based on the “InfoMax” principle (Linsker, 1988), under which the objective is to
maximize mutual information I(Xi; f(Xi)) between Xi and f(Xi). Throughout the paper, we call
I(Xi; f(Xi)) intra information on Xi. For the multi-modal case (M ≥ 2), on top of the InfoMax
principle, “minimal sufficiency” is proposed in (Tian et al., 2020b), which suggests maximizing
shared information I(fi(Xi); fl(Xl)) between fi(Xi) and fl(Xl), while minimizing the unique
information I(Xi; fi(Xi)|{Xl}l ̸=i). Although minimal sufficiency often leads to an efficient encoder
with better performance in numerous multi-modal downstream tasks, it is not always a good strategy
as there exist exceptions where the unique information on an individual modality is crucial (Liang
et al., 2024b; Wang et al., 2022a). In other words, the optimality of minimal sufficiency is task-
dependent. To avoid task dependency, we do not consider minimal sufficiency; instead, we maximize
intra and shared information without reducing unique information. Next, we formalize the notion of
sufficient embedding.
Definition 2.1 (Zi-Sufficient embedding of Xi for Xl). For an embedding space Zi, the embedding
fi(Xi) is Zi-sufficient for Xl if and only if the embedding fi(Xi) achieves the maximum mutual
information between fi(Xi) and Xi. Specifically,

fi ∈ arg max
f :Xi→Zi

I(f(Xi);Xl). (1)

We call fi sufficient encoder of Xi for Xl.

We note that if i = l, the sufficient encoder provides embeddings with maximum intra information,
and if i ̸= l, it gives embeddings with maximum shared information between i-th and l-th modalities.2

In the context of contrastive representation learning having the goal of attaining sufficient en-
coders in Definition 2.1, InfoNCE loss INCE(X;Y ) is often employed since it relates to mu-
tual information. Specifically, InfoNCE provides a lower bound on mutual information, i.e.,

1In self-supervised learning, labels might not exist, which corresponds to the case that yi,j are empty.
2With Zi such that maxf :Xi→Zi I(f(Xi);Xl) = I(Xi;Xl), Definition 2.1 says that fi(xi,j) is a sufficient

statistic (Polyanskiy & Wu, 2024) of xi,j for xl,j as the encoding entails no information loss.
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I(X;Y) ≥ −INCE(X;Y) (Oord et al., 2018), and thus minimizing InfoNCE leads to an increase in
mutual information. InfoNCE loss between embeddings U and V can be written as follows:

INCE(U;V|τ) = EP

[
− log

exp(U⊤V/τ)

exp(U⊤V/τ) +
∑N

i=1 exp(U
⊤Vi/τ)

]
, (2)

where the expectation is taken with respect to the distribution P = PU,V

∏N
i=1 PVi . Here, we

say (U,V) is a positive pair if (U,V) ∼ PU,V and (U,V) is a negative pair if (U,Vi) ∼
PUPVi . In (2), N ≥ 1 and τ > 0 are hyper-parameters, specifying the number of negative
samples and the temperature parameter. For simplicity, in this paper, we assume that embeddings
are normalized (Wang & Isola, 2020) to unit vectors and are of the same dimensionality. Then, the
exponent U⊤V/τ in (2) is proportional the cosine similarity score between U and V.

2.2 BINDING REPRESENTATION SPACES

In addition to the objective of capturing intra and shared information, multi-modal learning often takes
into account multi-modal alignment (Radford et al., 2021; Duan et al., 2022). Without multi-modal
alignment, each modality can only access its own embedding structure depending on its encoder.
For example, embeddings of cat and dog images, respectively, locate around (1, 0) and (0, 2) in R2,
whereas embeddings of cat and dog text can lie around (0, 2) and (1, 0). Such a misalignment can
happen even for sufficient encoders (Definition 2.1), since the mutual information is invariant to
one-to-one mappings (Polyanskiy & Wu, 2024).

To align multi-modal embedding spaces, a unified representation space (Radford et al., 2021; Zhou
et al., 2023) or multi-modal alignment (Wang et al., 2023; Liang et al., 2024c) have been proposed
for multi-modal representation learning, in which embeddings of multi-modal features having similar
semantic should near each other in embedding space. Several FABIND methods have been proposed
(see Appendix A for a summary of FABIND methods) that include ImageBind (Girdhar et al.,
2023). ImageBind sets the image modality as the fixed anchor modality, and then InfoNCE loss is
minimized between the embeddings of the anchor modality and the other modalities. FABIND (e.g.,
ImageBind) aims to find encoders fFB

i for all modalities, except the anchor modality, such that for
all i ∈ {2, · · · ,M},

fFB
i ∈ arg min

fi:Xi→Zi

INCE(f1(X1); fi(Xi)), (3)

where f1 is the encoder for the anchor modality (an image encoder in ImageBind). Note that FABIND
freezes f1, initialized by an existing pretrained model, during the optimization.

2.3 ANALYSIS OF FABIND

In this section, we characterize the theoretical limitations of FABIND. To this end, we rewrite (3) as

fFB
i ∈ arg max

fi:Xi→Zi

I(f1(X1); fi(Xi)), ∀i ∈ {2, · · · ,M}, (4)

reflecting the fact that minimizing InfoNCE loss is equivalent to maximizing mutual information.3
Let FABIND encoders from (4) for each modality be defined as FFB = {f1, fFB

2 , · · · , fFB
M }.

The anchor encoder f1 is fixed during the entire FABIND procedure. Moreover, we assume that
I(f1(X1); f

FB
i (Xi)) = I(f1(X1);Xi) is the maximum value that can be achieved by (4) due to

data processing inequality (Polyanskiy & Wu, 2024). We next demonstrate that the quality of anchor
embedding f1(X1) significantly impacts the performance of FFB in terms of shared information.
The following propositions show the dependency of FABIND on anchor embedding quality.
Proposition 2.2 (FABIND with sufficient anchor). Let f suf

1 (X1) be a sufficient embedding of the
anchor X1, and let Xi, i ∈ [M ], be a discrete random variable. Assume that fFB

i , i ∈ {2, · · · ,M}
are obtained by (4) with a sufficient anchor encoder f1 = f suf

1 , i.e., I(f suf
1 (X1); f

FB
i (Xi)) =

I(f suf
1 (X1);Xi). Then, for all i ∈ {2, · · · ,M},

I(f suf
1 (X1); f

FB
i (Xi)) = I(X1;Xi). (5)

3In contrast to (3), fFB
i in (4) might not be aligned with other modalities due to the one-to-one mapping

invariant property of mutual information. However, we do not analyze the multi-modal alignment of FABIND
from (4), but rather investigate the performance of encoders in terms of the sufficiency in Definition 2.1.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Proof. The proof is in Appendix B.1.

Proposition 2.3 (FABIND with insufficient anchor). Let f ins
1 (X1) be an insufficient embedding of

the anchor X1 for X1, in the sense that there exists some ϵ > 0 such that I(f ins
1 (X1);X1) < ϵ ≤

maxf I(f(X1);X1). Assume that fFB
i , i ∈ {2, · · · ,M} are obtained by (4) with f1 = f ins

1 , i.e.,
I(f ins

1 (X1); f
FB
i (Xi)) = I(f ins

1 (X1);Xi). Then,

I(f ins
1 (X1); f

FB
i (Xi)) < ϵ, ∀i ∈ {2, · · · ,M}. (6)

Proof. The proof is in Appendix B.2.

Proposition 2.2 shows that the FABIND encoders FFB learned with a sufficient anchor embedding can
achieve the maximum shared information between the anchor and the other modalities. However, it
does not guarantee shared information between non-anchored modalities I(fi(Xi); fl(Xl)), i, l ̸= 1,
which can also be seen from (4). Proposition 2.3 establishes that an insufficient anchor may lead to
a reduction of shared information between the anchor and the other modalities, implying that the
performance of FABIND may overly depend on the quality of the arbitrarily selected anchor. Next,
we enumerate three limitations in FABIND, as illustrated in Figure 1:

P1–Over-reliance on a single anchor modality. Achieving maximum shared information requires
sufficient anchor representation (Proposition 2.2 and 2.3), which depends on having both an infor-
mative modality and a sufficient encoder. Without these conditions, FABIND may not effectively
capture shared information.

P2–Failure to capture intra information. Even with sufficient anchor representation, FABIND
may not provide encoders with maximum intra information. This is because its objective function (4)
does not take into account the mutual information between a sample from a modality and its
augmentation, i.e., I(fi(Xi);Xi).

P3–Absence of shared information among non-anchored modalities. The objective function
of FABIND (4) focuses solely on learning shared information between anchor and non-anchored
modalities, while disregarding shared information among non-anchored modalities. This implies that
FABIND may not capture shared information among them. This limitation could render FABIND
less effective when crucial shared information exists among non-anchored modalities.

We identify three key limitations (P1, P2, and P3) of FABIND, supported by empirical evidence
presented in Section 4.1. In addition to these constraints, the representations generated by FABIND
may not approximate an ideal standard, such as the “Platonic representation” described in (Huh et al.,
2024). Achieving an optimal multi-modal representation necessitates the comprehensive integration
of all modalities to fully capture their information. However, FABIND falls short of this objective. To
address these shortcomings, we next introduce an alternative multi-modal representation that fully
leverages sample-level information across all modalities.

3 ALIGNMENT USING ADAPTIVE ANCHOR

To address the limitations of fixed modality anchoring, we propose the concept of adaptive anchor
alignment. We aim for a unified representation that (1) remains unbiased toward any single modality
and (2) achieves high similarity alignment across all modalities. In this paper, we introduce a
centroid-based anchor representation that naturally fulfills these two requirements by acting as a
geometric center. Specifically, we train the encoders by minimizing the InfoNCE loss between each
modality and the centroid (similar to FABIND). Although other adaptive anchor methods—such as
median or weighted average—are viable alternatives (see Appendix C.1), we focus on the centroid
for its simplicity and strong theoretical grounding in aligning multi-modal representations. Next,
we formally define CENTROBIND and show how it maximizes both intra-modal and cross-modal
information within a unified embedding space.

5
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3.1 CENTROBIND

Consider M modalities with corresponding encoders {fi}Mi=1. The CENTROBIND algorithm is
presented in Algorithm 1 in Appendix C, and a graphical illustration is given in Figure ??. In the
following, we describe each step of CENTROBIND.

Initial encoders. We initialize M encoders fi : Xi → Z, ∀i ∈ [M ] for the M modalities. These
encoders can either be pretrained models (i.e., backbones) or parameterized models with random
weights. The primary constraint for these initial encoders is that their output space must be the
modality-independent embedding space Z . When using pretrained encoders that produce embeddings
in different output spaces, these are projected onto the embedding space Z , ensuring consistency of
output space across modalities.

Anchor embedding. Recall that xi,j ∈ Di denotes the j-th feature in the i-th modality, where j
indexes positive pairs of features (e.g., different views of the same object). In each training iteration
of CENTROBIND, we need to compute an anchor embedding aj for the j-th multi-modal positive
features {xi,j}Mi=1. This anchor aj serves as a desirable aligned embedding for these features. The
anchor aj is calculated as follows:

aj = mean
(
{fi(x′

i,j)}i
)
, (7)

where mean(·) denotes the mean operator that computes the average of its input, and x′
i,j represents

an augmented version of xi,j . If {xi,j}Mi=1 are available in multi-modal datasets, the anchor is given
by aj = 1

M

∑M
i=1 fi(x

′
i,j). If only m < M positive pairs are present among M modalities, the

anchor is given by aj =
1
m

∑
i∈Ij

fi(x
′
i,j), where Ij is the set of indices of modalities having the m

available features.

Binding encoders to the anchor. Once anchor embeddings {aj}j are derived from a batch
B = {xi,j}i,j , CENTROBIND aligns each modality-specific encoder embedding with the anchor
embedding by minimizing InfoNCE loss. Specifically, let A = mean({fi(Xi)}i) represent the
anchor embedding variable. Then, CENTROBIND aims to minimize InfoNCE loss INCE(A; fi(Xi))
across all modalities i ∈ [M ]. A detailed expression for this loss is provided in (8).

CENTROBIND optimizes the following symmetrized loss function:
LCB(fi|τ) = INCE(A; fi(Xi)|τ) + INCE(fi(Xi);A|τ), (8)

where LCB(fi|τ) denotes the loss function for the i-th modality. In particular, with a batch data
B = {xi,j : i ∈ [M ], j ∈ IB}, the loss can be computed as

INCE(A; fi(Xi)|τ) =
−1

|IB |

|IB |∑
k=1

log
exp(a⊤

k fi(xi,k)/τ)∑
j∈IB

exp(a⊤
k fi(xi,j)/τ)

(9a)

INCE(fi(Xi);A|τ) = −1

|IB |

|IB |∑
k=1

log
exp(a⊤

k fi(xi,k)/τ)∑
j∈IB

exp(f⊤
i (xi,k)aj/τ)

. (9b)

3.2 THEORETICAL ANALYSIS OF CENTROBIND

We start by providing a lower bound on the objective function of CENTROBIND LCB(fi|τ) (8) in
Theorem 3.1, followed by an analysis of the minimizer of LCB(fi|τ).
Theorem 3.1. Consider B = {xi,j : i ∈ [M ], j ∈ IB} with a set of indices IB , where xi,j is the
j-th sample of i-th modality. Then, for any encoders {fi}i and for any τ > 0, (9a) is bounded as

|IB |INCE (A; fi(Xi) | τ) ≥
M∑
l=1

INCE

(
fl(X

′
l); fi(Xi)

∣∣∣∣ τM|IB |
)
−

|IB |∑
k=1

logCF,k,i, (10)

where CF,k,i =
(cmin

F,k,i+cmax
F,k,i)

2

4cmin
F,k,ic

max
F,k,i

with g(l, j|k, i) := exp

(
|IB |f⊤

l (x′
l,k)fi(xi,j)

τM

)
,

cmin
F,k,i = min

l∈[M ],j∈IB

g(l, j|k, i), and cmax
F,k,i = max

l∈[M ],j∈IB

g(l, j|k, i). (11)
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Proof. The proof is in Appendix B.3.

Theorem 3.1 provides a lower bound of INCE (A; fi(Xi) | τ) in (9a), which is a part of the CEN-
TROBIND objective function LCB(fi|τ). Thus CENTROBIND minimizes a lower bound (10) that
consists of two terms,

∑M
l=1 INCE

(
fl(X

′
l); fi(Xi)

∣∣∣ τM
|IB |

)
and −

∑|IB |
k=1 logCF,k,i. We next pro-

vide intuition on why a minimization of the lower bound is justified.

The effect of minimizing
∑M

l=1 INCE (fl(X
′
l); fi(Xi) | ·). The objective of minimizing∑M

l=1 INCE(fl(X
′
l); fi(Xi) | τM

|IB | ) is to reduce several InfoNCE losses. Here, each term in the
sum represents InfoNCE loss between embeddings fl(X′

l) from modality l and fi(Xi) from modality
i, with τM

|IB | being a temperature parameter for scaling the loss. This summation can be divided
into two components: 1) Intra Information: When l = i, the term measures the similarity between
embeddings within the same modality. Minimizing this loss enhances the representation of modality
i, improving intra information; 2) Shared Information: When l ̸= i, the term measures the similarity
between embeddings from different modalities. Minimizing these losses helps in learning shared
information between modalities, contributing to a more representative multi-modal embedding.

By optimizing this summation, CENTROBIND effectively captures both intra and shared information.
As shown below, this generally results in a more balanced representation for the modalities. In contrast,
as noted in Section 2.3, FABIND does not adequately capture intra information and shared information
between non-anchored modalities. This limitation highlights the advantage of CENTROBIND in
achieving a more integrated multi-modal representation than fixed anchor binding methods.

The effect of minimizing −
∑|IB |

k=1 logCF,k,i. We show the effect of growing CF,k,i in terms of

cosine similarity score between embeddings. Since CF,k,i =
1
4

(√
γ +

√
1
γ

)2
with γ =

cmax
F,k,i

cmin
F,k,i

≥ 1,

maximizing CF,k,i is equivalent to simultaneously maximizing cmax
F,k,i and minimizing cmin

F,k,i. For
ease of analysis, we assume that the encoders are reasonably well-trained. Then, since a positive pair
of embeddings normally yields higher similarity score, cmax

F,k,i is attained by choosing l = i and j = k

in (11) as such choices make x′
l,k be positive pair with xi,j . Thus, cmax

F,k,i is roughly proportional to
the similarity score of a positive pair of embeddings. Conversely, cmin

F,k,i corresponds to the similarity

scores of negative pairs, which tend to be low. Hence, minimizing −
∑|IB |

k=1 logCF,k,i enhances
the similarity scores for positive pairs and reduces those for negative pairs, improving the overall
multi-modal alignment.

These comments suggest that CENTROBIND addresses the limitations P1,P2, and P3 of FABIND
identified in Section 2.3.

4 EXPERIMENT

To thoroughly evaluate the effectiveness of the proposed method, we design two sets of experiments:
(1) experiments on synthetically generated datasets and (2) experiments on real-world datasets
spanning diverse modality domains. The synthetic datasets allow controlled testing of extreme sce-
narios, such as varying numbers of modalities, modality imbalance, and backbone quality. The
real-world experiments demonstrate that the proposed method generalizes well across datasets of dif-
ferent scales: DreamBooth (Ruiz et al., 2023) (∼180 images across 30 subjects), MUStARD (Castro
et al., 2019) (∼690 labeled clips), AVE (Tian et al., 2018) (∼4,143 videos across 28 event categories),
UR-FUNNY (Hasan et al., 2019) (∼1,866 TED videos from 1,741 speakers, totaling ∼90 hours),
and AudioSet (Gemmeke et al., 2017) (∼2 million human-labeled 10-second clips across 632 event
classes). We compare CENTROBIND, FABIND (anchored at the text modality for MUStARD and at
the image modality for the other datasets), UniBind (Lyu et al., 2024), AudioCLIP (Guzhov et al.,
2022), and ViT-Lens (Lei et al., 2024).
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Table 1: Zero-shot One-to-One and Two-to-One retrieval accuracy. (V: video, A: audio, T : text)

One-to-One Two-to-One
Method Retrieval Top-1 Top-5 Top-10 Method Retrieval Top-1 Top-5 Top-10
FABIND V → T 0.446 0.719 0.822 FABind

V , A → T
0.309 0.665 0.781CENTROBIND 0.483 0.764 0.850

FABIND A→ T 0.077 0.238 0.367 CENTROBIND 0.745 0.957 0.978CENTROBIND 0.233 0.517 0.678
FABIND T → V 0.812 0.946 0.978 FABIND

T , A→ V
0.180 0.401 0.513CENTROBIND 0.591 0.839 0.909

FABIND A→ V 0.058 0.154 0.226 CENTROBIND 0.388 0.646 0.768CENTROBIND 0.052 0.184 0.284
FABIND T → A 0.201 0.438 0.584 FABIND

T , V → A
0.099 0.257 0.364CENTROBIND 0.290 0.572 0.706

FABIND V → A 0.051 0.155 0.223 CENTROBIND 0.232 0.490 0.625CENTROBIND 0.054 0.175 0.258

4.1 EXPERIMENTS WITH SYNTHETIC DATASETS

We conduct controlled experiments on synthetic datasets generated from a Gaussian mixture
model (Bishop & Nasrabadi, 2006). Appendix C.1 provides complete details on data generation,
experimental settings, and results. These experiments evaluate whether CENTROBIND resolves the
limitations in Section 2.3 across scenarios with varying numbers of modalities, modality imbalance,
and encoder quality. Across all configurations, the synthetic results show that CENTROBIND over-
comes the limitations of FABIND. Additional analyses (embedding visualizations, stability studies,
temperature tuning, and complexity) are also included in Appendix C.1.

4.2 EXPERIMENTS WITH REAL-WORLD DATASETS

We evaluate and compare the performance of CENTROBIND and baseline methods on real-world
datasets. See Appendix C.2 for detailed discussion on baselines and experimental results.

Table 2: Zero-shot accuracy results. (V:
video, A: audio, T : text). Asterisks∗: ac-
curacy evaluated in different settings.

Method Tr, (Ev) Sar-1 Spk-1 Spk-3 Spk-5
FABIND

V , (T )

0.706 0.378 0.614 0.730
UniBind 0.544 0.170 0.328 0.478

AudioCLIP∗ 0.501 0.096 0.258 0.388
ViT-Lens∗ 0.506 0.097 0.343 0.449

CENTROBIND 0.716 0.474 0.736 0.836
FABIND

A, (T )

0.648 0.186 0.455 0.577
UniBind 0.628 0.220 0.399 0.501

AudioCLIP∗ 0.486 0.094 0.214 0.322
ViT-Lens∗ 0.484 0.077 0.214 0.313

CENTROBIND 0.691 0.290 0.546 0.714
FABIND

T , (V)

0.572 0.243 0.445 0.630
UniBind 0.484 0.129 0.262 0.404

AudioCLIP∗ 0.506 0.158 0.345 0.461
ViT-Lens∗ 0.502 0.168 0.323 0.423

CENTROBIND 0.694 0.368 0.670 0.791
FABIND

A, (V)

0.623 0.228 0.484 0.628
UniBind 0.567 0.199 0.367 0.514

AudioCLIP∗ 0.503 0.209 0.384 0.496
ViT-Lens∗ 0.500 0.149 0.332 0.451

CENTROBIND 0.683 0.243 0.475 0.632
FABIND

V , (A)

0.604 0.255 0.472 0.636
UniBind 0.506 0.126 0.280 0.429

AudioCLIP∗ 0.501 0.080 0.199 0.326
ViT-Lens∗ 0.533 0.219 0.438 0.575

CENTROBIND 0.626 0.326 0.548 0.703
FABIND

T , (A)

0.534 0.241 0.509 0.635
UniBind 0.514 0.091 0.248 0.365

AudioCLIP∗ 0.477 0.088 0.309 0.439
ViT-Lens∗ 0.475 0.070 0.214 0.329

CENTROBIND 0.655 0.346 0.610 0.741

Downstream tasks with MUStARD. We perform
evaluations in zero-shot binary and multi-class clas-
sification tasks, One-to-One, and Two-to-One cross-
modal retrieval. For classification tasks, we use a
Multi-Layer Perceptron (MLP) to perform sarcasm
detection as a binary classification and speaker classi-
fication with 23 multi-class categories. In particular,
MLP is trained on embeddings in a single modality
(denoted by Tr in Table 2) and accuracy is evaluated
on another modality (denoted by Ev in Table 2). In
retrieval tasks, we measure the accuracy of correct
retrieval. For the One-to-One case, we retrieve data
sample in different modality by choosing the closest
embedding from a single input embedding, while for
the Two-to-One case we choose the closest embed-
ding from the centroid of two input embeddings in
two modalities. We denote input and target modali-
ties with → in Table 1.

Results on cross-modal retrieval. Table 1 shows
the performance for One-to-One and Two-to-One
retrieval tasks. CENTROBIND consistently excels in
One-to-One retrieval for text and audio modalities,
while FABIND performs better for video retrieval.
This might be due to the power of text to describe,
which may be suitable for FABIND anchored at text
modality. A notable observation is that the centroid of
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video and audio embeddings achieves the best text retrieval performance. This implies complementary
information exists and is captured by CENTROBIND.

Results on sarcasm & speaker classification. Table 2 presents results for sarcasm detection and
speaker classification tasks, where Sar-1 indicates Top-1 accuracy for sarcasm, and Spk-k, k = 1, 3, 5
represent Top-k accuracies for speaker classification. It is important to highlight that CENTROBIND
and FABIND are trained on a single modality (Tr) and evaluated on a different modality (Ev) in a
zero-shot setting, which can effectively measure the ability of multi-modal alignment.

In this experiment, CENTROBIND consistently outperforms FABIND and UniBind across all pairs
of train and evaluation modalities, which can be distributed to CENTROBIND generally learning a
better unified embedding space than FABIND. UniBind performs poorly in the zero-shot cross-modal
experiment, which we believe is due to its insufficient multi-modal alignment. Since UniBind utilizes
LLM-augmented descriptions for each modality and binds other encoders to these descriptions,
multi-modal alignment may fail if the descriptions are dispersed across the embedding space. As
analyzed in Section 2.3 and Section 3.2, these results highlight the CENTROBIND’s ability to preserve
intra and shared information among modalities, which are useful in unknown downstream tasks.
Moreover, the zero-shot setting verifies the multi-modal alignment of CENTROBIND.

Comparison with ImageBind backbone. We compare the performance of FABIND and CEN-
TROBIND using the ImageBind backbone (Girdhar et al., 2023) to assess whether CENTROBIND
yields additional gains over ImageBind, which was pretrained on large-scale datasets and is optimized
primarily for the image modality. As shown in Table 3, CENTROBIND outperforms ImageBind on
the DreamBooth (Ruiz et al., 2023), AVE (Tian et al., 2018), AudioSet (Gemmeke et al., 2017),
and UR-FUNNY (Hasan et al., 2019) datasets—even with 1) a strong pretrained backbone, 2) an
image-anchored modality, and 3) a bimodal setup. We expect this gap to widen with a weaker
backbone, without the image modality, or as additional modalities are introduced, as also evidenced
by the synthetic and MUStARD results. These findings align with our analysis of dynamic anchor
binding and highlight its effectiveness across nearly all evaluated scenarios. See Appendix C.3 for
more discussion.

Table 3: Cross-modal retrieval accuracy. Performance dynamics are shown in Fig 11.

IMAGEBIND CENTROBIND

DATASET MODALITIES TOP1 TOP5 TOP1 TOP5

DREAMBOOTH V, T 0.672 0.984 0.719 (↑ 0.047) 1.000 (↑ 0.016)
AVE V,A 0.313 0.649 0.327 (↑ 0.014) 0.676 (↑ 0.027)
AUDIOSET V,A 0.515 0.806 0.540 (↑ 0.025) 0.824 (↑ 0.018)
UR-FUNNY V,A 0.219 0.563 0.258 (↑ 0.039) 0.598 (↑ 0.035)
UR-FUNNY V, T 0.037 0.204 0.038 (↑ 0.001) 0.202 (↓ 0.002)
DREAMBOOTH + AVE + AUDIOSET V, T ,A 0.514 0.804 0.533 (↑ 0.019) 0.816 (↑ 0.012)

5 CONCLUSIONS

In this paper, we analyze the limitations of fixed-anchor-binding (FABIND) methods, including
their over-reliance on a single anchor modality and their inability to capture both intra-modal and
shared information among non-anchored modalities. To address these shortcomings, we propose
adaptive anchor binding methods such as CENTROBIND, which align multi-modal embeddings to
centroid-based anchors, removing the need for a fixed anchor modality. Our approach generalizes and
extends methods like ImageBind. We also provide a theoretical analysis showing that CENTROBIND
effectively captures both intra-modal and shared inter-modal information. Experiments on synthetic
and real-world datasets demonstrate that CENTROBIND outperforms FABIND across nearly all
settings—including modality imbalance, varying backbone quality, differing numbers of modalities
(including bimodal cases), and a wide range of dataset sizes—yielding a robust, unified representation
space and validating our theoretical insights.
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A RELATED WORK

A.1 MULTI-MODAL LEARNING

Multi-modal learning has gained significant attention in recent years due to its potential to enhance
machine learning models by leveraging diverse data modalities, such as text, images, audio, and video.
By combining these modalities, multi-modal learning seeks to mimic human-like perception, thereby
improving performance across a wide range of applications, from healthcare to natural language
processing. Common supervised multi-modal learning tasks include audio-visual classification (Peng
et al., 2022; Feichtenhofer et al., 2019; Zhu & Rahtu, 2022), visual question answering (Antol et al.,
2015; Guo et al., 2021), and vision-language tasks (Xu et al., 2015; Radford et al., 2021), as well as
vision-audio-language tasks (Aytar et al., 2017; Harwath et al., 2018).

Typically, these models integrate uni-modal features extracted by modality-specific encoders (Seichter
et al., 2021; Nagrani et al., 2021; Wu et al., 2022; Wang et al., 2020; Peng et al., 2022). For instance,
(Madaan et al., 2024) introduces inter- and intra-modality modeling frameworks that treat the target
as a composition of multiple modalities. Similarly, (Du et al., 2023) proposes a late-fusion approach
for supervised multi-modal tasks, demonstrating that insufficient feature extraction from individual
modalities negatively affects the model’s generalization ability. Additionally, (Zhang et al., 2024)
addresses joint optimization by alternating between uni-modal learning scenarios and integrating
modality-specific encoders with a unified head shared across all modalities.

Multi-view learning is closely related to multi-modal learning. Early work in (Tian et al., 2020a)
studies multi-view representation learning through predictive and contrastive approaches across
multiple modalities, demonstrating the efficacy of contrastive learning in multi-view settings. Building
on these insights, numerous subsequent studies have integrated contrastive learning into multi-view
tasks. For example, (Xing et al., 2019) proposes an approach that adaptively combines image-
text representations for few-shot learning; however, this method still relies on labeled data. Some
research leverages anchors or a fused modality as the anchor representation. (Zeng et al., 2021)
introduces a unified prototype representation to address cross-modal retrieval imbalance by employing
a reconstruction loss, but its reliance on unified prototypes as anchors restricts the capture of inter-view
information across modalities. Meanwhile, (Huang et al., 2023) develops a tri-modal alignment pre-
training task—extending text-video alignment to include a fused modality using pairwise contrastive
learning; however, it does not explicitly handle intra-view learning. Furthermore, (Wang et al., 2022b)
presents a cross-modal data augmentation technique for image-text multi-view learning, randomly
replacing visually grounded words with diverse image patches to increase data variety and encourage
token-level interaction across modalities. (Dufumier et al., 2024) introduces a contrastive multimodal
approach that maximizes mutual information between augmented multi-modal features by effectively
capturing redundant, unique, and synergistic interactions across modalities beyond traditional multi-
modal alignment constraints. (Lin et al.) presents inter-modality alignment combined with boundary
expansion for multi-view classification to mitigate information redundancy. Nevertheless, this
approach still overlooks intra-view information, indicating the need for methods that jointly consider
both inter- and intra-view representations.

A.2 MULTI-MODAL ALIGNMENT

Multi-modal learning addresses four key challenges (Liang et al., 2024c; Baltrušaitis et al., 2018;
Liang et al., 2024d): managing interactions among redundant, unique, and synergistic features (Dumas
et al., 2017; Liang et al., 2024a;b), aligning fine-grained and coarse-grained information (Wang
et al., 2023; 2024a), reasoning across diverse features (Yang et al., 2023), and integrating external
knowledge (Shen et al., 2022; Lyu et al., 2024). Among these challenges, multi-modal alignment is
one of the core challenges that many researchers aim to solve.

A common method in multi-modal alignment is using cross-modal alignment by using attention
mechanisms between pairwise modalities, such as vision-language (Tan & Bansal, 2019) and vision-
language-audio (Tsai et al., 2019). Another effective approach is leveraging graph neural networks to
align multi-modal datasets (Yang et al., 2021; Wilf et al., 2023). For instance, (Yang et al., 2021)
transforms unaligned multi-modal sequence data into nodes, with edges capturing interactions across
modalities over time. (Wilf et al., 2023) builds graph structures for each modality—visual, textual,
and acoustic—and create edges to represent their interactions.
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To enhance the generalizability of cross-modal representations, (Xia et al., 2024) employs a unified
codebook approach, facilitating a joint embedding space for visual and audio modalities. Another
prominent method achieves cross-modal alignment by leveraging large collections of image-text
pairs, making it a widely adopted strategy in multi-modal learning (Radford et al., 2021; Zhang et al.,
2022; Guzhov et al., 2022; Zhou et al., 2023).

A.3 MULTI-MODAL DOMAIN GENERALIZATION

Multimodal domain generalization (MMDG) aims to train models on data from multiple modalities
(e.g., image, audio, text) and source domains, such that the models generalize to unseen target domains
that share the same modalities. A primary challenge in MMDG lies in aligning heterogeneous
modality-specific representations into a shared embedding space while preserving both shared
semantics and modality-specific information.

(Fan et al., 2024) reduces generalization error by flattening the representation-space loss landscape
using multi-modal feature interpolation and teacher-student distillation. This strategy mitigates
modality dominance, in which stronger modalities (e.g., images) overpower weaker ones (e.g., audio),
but it aligns representations only between modality pairs and assumes that all modalities are present
during both training and inference. (Dong et al., 2023) decomposes modality features into shared and
specific components and apply supervised contrastive learning to the shared part using label supervi-
sion. They further use cross-modal translation modules to reconstruct one modality’s representation
from another. However, their framework depends on modality-specific translation paths and requires
prior knowledge of available modalities, limiting its scalability to new combinations. (Dong et al.,
2024) extends the setting to open-set domain generalization by introducing self-supervised tasks,
masked cross-modal translation and multi-modal jigsaw puzzles, that enhance the model’s ability to
detect unknown classes. While effective for class-level generalization, their method assumes a fixed
modality set and does not support unseen modalities at test time.

In contrast, CENTROBIND constructs a unified and modality-agnostic embedding space by dynami-
cally computing centroid-based anchors from all available modality embeddings within a sample.
Instead of aligning only modality pairs or relying on fixed translation modules, CENTROBIND pulls
each modality’s representation toward the centroid, enabling joint alignment without architectural
changes. This approach supports any combination of available or unseen modalities and eliminates
the need for predefined modality decomposition, making CENTROBIND scalable and adaptive for
real-world multimodal scenarios.

A.4 BINDING METHODS

Recent studies have focused on aligning multi-modal datasets by leveraging binding properties
in various modalities. ImageBind (Girdhar et al., 2023) align multi-modal data by using image
representation as the anchor and aligning each modality embedding with the image embedding.
Similarly, LanguageBind (Zhu et al., 2024) use language representation as the anchor, aligning other
modalities into the language space. PointBind (Guo et al., 2023) learn a joint embedding space
across 3d point, language, image, and audio modalities by designating the point space as the central
representation. Thanks to the efficacy of such a binding idea with a fixed anchor, several “-Bind”
approaches have been studied in numerous domains (Teng et al., 2024; Xiao et al., 2024; Gao et al.,
2024; Yang et al., 2024b; Balemans et al., 2024; Dhakal et al., 2024; Yang et al., 2024a) While these
methods demonstrate strong performance in zero-shot cross-modality retrieval and classification
tasks, they are constrained by their reliance on an existing single anchor modality.

Several approaches have integrated additional knowledge into multi-modal representation spaces
to address this limitation. Freebind (Wang et al., 2024a) introduce bi-modality spaces to enhance a
pretrained image-paired unified space. It generates pseudo-embedding pairs across diverse modality
pairs and aligns them with the pre-trained unified space using contrastive learning. Omnibind (Wang
et al., 2024b) leverage multiple pretrained multi-modal models to construct pseudo item-pair retrievals
based on top-1 recall across various modality combinations using pairwise cross-modal alignment.
Both methods show promising results in cross-modal retrieval by incorporating extra spaces into
existing pairwise binding spaces. However, they still rely on fixed (pre-trained) representation spaces.
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Unibind (Lyu et al., 2024) highlight the imbalanced representation when using image-centered
representation spaces. To address this, Unibind employs large language models (LLMs) to create a
unified and balanced representation space. It constructs a knowledge base with multi-modal category
descriptions, establishes LLM-augmented class-wise embedding centers, and aligns other modalities
to these centers through contrastive learning. This approach attempts to balance representations
across modalities but still depends heavily on large-scale pretrained LLMs and centers alignment
around a single unified space, namely, text (language).

ViT-Lens (Lei et al., 2024) build upon the Vision Transformer (ViT) (Dosovitskiy et al., 2021) and
multi-modal foundational models like CLIP (Radford et al., 2021) to align multiple modalities. It
extends ViT by incorporating an additional embedding layer and attention layer for each modality,
which are trained via contrastive learning involving embeddings generated by the CLIP and the
ViT models. This approach generalizes FABIND by allowing more than one fixed anchor modality;
specifically, image and text in this case. CENTROBIND could also adopt a similar strategy, leveraging
the powerful ViT model for modality alignment while adaptively computing anchors based on their
centroids.

B PROOFS

B.1 PROOF OF PROPOSITION 2.2

Using the chain rule of the mutual information, we observe that
I(X1, f

suf
1 (X1);Xi) = I(X1;Xi) + I(f suf

1 (X1);Xi|X1)

= I(f suf
1 (X1);Xi) + I(X1;Xi|f suf

1 (X1)), (12)

Since f suf
1 (X1) is a deterministic function of X1, we have

I(f suf
1 (X1);Xi|X1) = 0. (13)

Moreover, f suf
1 obtained in Definition 2.1 with proper choice of Z achieves the maximum mu-

tual information, implying together with I(X;Y) ≤ min{H(X), H(Y)} that I(f suf
1 (X1);X1) =

H(X1), where H(X1) is the entropy of X1 (Polyanskiy & Wu, 2024). In other words, we have
H(X1|f suf

1 (X1)) = H(X1)− I(f suf
1 (X1);X1) = 0. This gives

I(X1;Xi|f suf
1 (X1)) = H(X1|f suf

1 (X1))−H(X1|f suf
1 (X1),Xi)

= 0 (14)
Substituting (13) and (14) into (12) yields

I(X1;Xi) = I(f suf
1 (X1);Xi). (15)

We conclude the proof of Proposition 2.2 by noting that the optimality of FABIND (i.e.,
I(f suf

1 (X1);Xi) = I(f suf
1 (X1); f

FB
i (Xi)), ∀i ∈ {2, · · · ,M}) yields

I(X1;Xi) = I(f suf
1 (X1); f

FB
i (Xi)). (16)

B.2 PROOF OF PROPOSITION 2.3

Using the chain rule of mutual information, we have
I(f ins

1 (X1);X1,Xi) = I(f ins
1 (X1);X1) + I(f ins

1 (X1);Xi|X1)

= I(f ins
1 (X1);Xi) + I(f ins

1 (X1);X1|Xi). (17)

Moreover, since f ins
1 (X1) is a deterministic function of X1, we have I(f ins

1 (X1);Xi|X1) = 0,
leading to I(f ins

1 (X1);X1) = I(f ins
1 (X1);Xi) + I(f ins

1 (X1);X1|Xi). Then, using the assumption
I(f ins

1 (X1);X1) < ϵ, it follows that

ϵ > I(f ins
1 (X1);Xi) + I(f ins

1 (X1);X1|Xi)

(a)

≥ I(f ins
1 (X1);Xi)

(b)

≥ I(f ins
1 (X1); f

FB
i (Xi)), (18)

where the labeled inequalities follow from: (a) the non-negativity of mutual information; (b) the data
processing inequality. This concludes the proof of Proposition 2.3.
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B.3 PROOF OF THEOREM 3.1

To prove Theorem 3.1, we leverage the reverse inequality of M -variable Hölder inequality (Seo,
2013, eq. (2.8)). For the sake of completeness, we state the inequality in Lemma B.1.
Lemma B.1 (Reverse inequality of the M -variable Hölder inequality (Seo, 2013)). Consider M
sequences (xi,j)j∈[n], i ∈ [M ] of n positive scalars such that for some 0 < cm ≤ cM < ∞,

0 < cm ≤ xi,j ≤ cM < ∞, ∀i, j. (19)
Then,

M∏
i=1

 n∑
j=1

xi,j

 1
n

≤ (cm + cM )2

4cmcM

n∑
j=1

(
M∏
i=1

xi,j

) 1
n

. (20)

Now we start by writing the summation of InfoNCE losses for each f
(t)
l (x′

l,k), l ∈ [M ] to fi(Xi) as

M∑
l=1

INCE(fl(X
′
l); fi(Xi)|τ) = − 1

|IB |

|IB |∑
k=1

M∑
l=1

log

exp

(
f⊤
l (x′

l,k)fi(xi,k)

τ

)
∑

j∈IB
exp

(
f⊤
l (x′

l,k)fi(xi,j)

τ

) . (21)

Then, the inner summation in (21) is bounded as

M∑
l=1

log

exp

(
f⊤
l (x′

l,k)fi(xi,k)

τ

)
∑

j∈IB
exp

(
f⊤
l (x′

l,k)fi(xi,j)

τ

)
=

1

τ

M∑
l=1

f⊤
l (x′

l,k)fi(xi,k)− log

M∏
l=1

∑
j∈IB

exp

(
f⊤
l (x′

l,k)fi(xi,j)

τ

)

(a)

≥ 1

τ

M∑
l=1

f⊤
l (x′

l,k)fi(xi,k)− log

CF,k,i

∑
j∈IB

M∏
l=1

exp

(
f⊤
l (x′

l,k)fi(xi,j)

τ |IB |

)|IB |

(b)
=

M

τ
a⊤
k fi(xi,k)− |IB | log

∑
j∈IB

exp

(
Ma⊤

k fi(xi,j)

τ |IB |

)
− |IB | logCF,k,i

= |IB | log exp
(
Ma⊤

k fi(xi,k)

τ |IB |

)
− |IB | log

∑
j∈IB

exp

(
Ma⊤

k fi(xi,j)

τ |IB |

)
− |IB | logCF,k,i

= |IB | log
exp

(
Ma⊤

k fi(xi,k)
τ |IB |

)
∑

j∈IB
exp

(
Ma⊤

k fi(xi,j)

τ |IB |

) − |IB | logCF,k,i, (22)

where the labeled (in)equalities follow from: (a) Lemma B.1 and CF,k,i =
(cmin

F,k,i+cmax
F,k,i)

2

4cmin
F,k,ic

max
F,k,i

with

cmin
F,k,i = min

ℓ∈[M ],j∈IB

exp

(
f⊤
l (x′

l,k)fi(xi,j)

τ

)
, and

cmax
F,k,i = max

ℓ∈[M ],j∈IB

exp

(
f⊤
l (x′

l,k)fi(xi,j)

τ

)
; (23)

and (b) the definition of anchor embedding (7). Substituting (22) into (21) gives

M∑
l=1

INCE(fl(X
′
l); fi(Xi)|τ) ≤ − 1

|IB |

|IB |∑
k=1

|IB | log exp
(

Ma⊤
k fi(xi,k)
τ |IB |

)
∑

j∈IB
exp

(
Ma⊤

k fi(xi,j)

τ |IB |

) − |IB | logCF,k,i


= |IB |INCE

(
A; fi(Xi)

∣∣∣∣ τ |IB |M

)
+

|IB |∑
k=1

logCF,k,i. (24)
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Rearranging (24) and setting τ̃ = τ |IB |
M in (23) and (24) yield

INCE (A; fi(Xi) | τ̃) ≥
1

|IB |

M∑
l=1

INCE

(
fl(X

′
l); fi(Xi)

∣∣∣∣ τ̃M|IB |
)
− 1

|IB |

|IB |∑
k=1

logCF,k,i, (25)

which concludes the proof of Theorem 3.1.

C EXPERIMENTS

Algorithm 1 CENTROBIND

Initialize encoders f (0)
1 , f

(0)
2 , · · · , f (0)

M .
for t = 0, 1, . . . , tmax do

Sample B from multi-modal datasets {Di}i.
Generate anchor embeddings {aj}j∈IB

using (7)
for i = 1, . . . ,M do

Minimize LCB(f
(t+1)
i |τ) in (8)

end for
end for

In this section, we provide experimental details and additional results. Algorithmic expression of
CENTROBIND is given in Algorithm 1.

C.1 EXPERIMENTS WITH SYNTHETIC DATASETS

Synthetic datasets. We employ a latent variable model (Bishop & Nasrabadi, 2006) for generating
synthetic multi-modal datasets. A latent variable model is a statistical model for data X ∈ Rdx , under
which X is generated according to a conditional probability distribution PX|Z, where Z ∈ Rdz is the
latent variable. In terms of the representation learning framework, Z can be seen as a low dimensional
representation of X. We assume that the class label Y ∈ [K] and the latent variable Z are jointly
distributed according to PZ,Y. In our setting, we exploit Gaussian mixture model (GMM) (Bishop &
Nasrabadi, 2006) for the latent variable Z, and we generate M modalities Xi = gi(Z) +N, i ∈ [M ]
with random noise N and some non-linear projections gi : Rdz → Rdx . We choose the projections in
a way such that each model can be ranked in ascending order, i.e., X1 is the worst, and X4 is the best
modality in terms of their inherent correlation with the latent variable. The class label Y is set to the
component id of GMM.

In particular, the PDF of Z is defined as follows:

pZ(z) =

K∏
y=1

πyN (z;µy,Σy), (26)

where K is the number of mixture components, πy = Pr(Y = y) is the component prior probability,
and N (z;µy,Σy) denotes Gaussian PDF with mean µy ∈ Rdz and covariance matrix Σy ∈ Rdz×dz .
This leads to the conditional PDF of Z as pZ|Y(z|y) = N (z;µy,Σy).

Once a latent variable z is generated from GMM in (26), we generate data samples
(xi,1,xi,2, · · · ,xi,N ) for i-th modality using the conditional PDFs of Xi given z, denoted by
pXi|Z(xi|z). Specifically, we use the model Xi = gi(Zi) + N, where gi : Rdz → Rdx is a non-
linear projection from latent space to observation space, and N ∼ N (0, Idx

) is Gaussian noise with
zero-mean and identity covariance matrix. To make the inherent correlation between Xi and Zi

different among modalities, we choose gi such that

gi(Z) = Θ
(2)
i sigmoid

(
Θ

(1)
i Z

)
, (27)

where sigmoid(x) = 1
1+e−x is applied element-wise, and Θ

(1)
i ∈ Rdx×dz and Θ

(2)
i ∈ Rdx×dx

are matrices randomly generated from Gaussian distribution. Moreover, after Θ(1)
i , i ∈ [M ] are
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(a) Comparison. (b) Random vs. pretrained. (c) FABIND. (d) CENTROBIND.

Figure 3: (a) and (b): Accuracy as a measure of the representation space quality. Abbreviation: Xi-B
or CB: applying FABIND with anchor Xi or applying CentroBind; acc(Zi) or acc(All): accuracy of
Zi or of concatenated embeddings (Z1, · · · ,ZM ); (rnd): if random backbones are used. (c) and (d):
Representation visualization via UMAP.

generated, we set arbitrary columns of them all zero, so that the number of all zero columns decreases
in i. For example, 60% of columns of Θ(1)

1 are all-zero, while only 10% of columns of Θ(1)
M are

all-zero. This enables approximate control the correlation between Xi and Z, providing estimates
of best modality (XM ) or worst modality (X1). To have meaningful labels for this latent model,
which requires for downstream tasks, we set the labels Y being the component index in GMM. In
particular, since there are K components in GMM (26), there exist K categories in Y. We conduct
experiments with three different synthetic datasets by setting M = 4, 6, 8. For all synthetic datasets,
we fix dx = 16, dz = 8, and K = 50.

Experiment details. We initialize two different versions of backbones for all modalities, where
the first is a random backbone (highlighted by (rnd) in figures), and the second is a backbone
pretrained with InfoNCE loss. For each backbone, we use a simple multilayer perceptron (MLP).
Comparing the results with these two versions of backbone provides how much both FABIND and
CENTROBIND are robust to backbone quality. Given the backbones for M modalities, we align the
corresponding embedding spaces using either FABIND with anchor Xi (denoted by Xi-B in figures)
or CENTROBIND (denoted by CB in figures). Finally, with the encoders aligned by either FABIND
or CENTROBIND, we evaluate classification accuracy as a measure of representation quality. We use
a simple MLP for the classifier. To distinguish between accuracy with embeddings from a single
modality and the one with concatenated embeddings from all modalities, we denote by acc(Zi) the
accuracy with embeddings from i-th modality and by acc(All) the accuracy with embeddings from
all modalities. Specifically, for acc(All), we fuse the multi-modal embeddings using MLP layers.
Therefore, the accuracy of the multi-modal case without binding methods (e.g., × method and the
multi-modal column in Table 4) can be considered a naive baseline for multi-modal learning.

Comparison with baseline methods. Figure 3 shows the validation accuracy of each method
(without binding, FABIND with anchor X1, FABIND with anchor X4, and CENTROBIND). For the
same experimental setting, Figure 4 includes additional accuracy curves for acc(Z1) and acc(All).
For better readability, the corresponding accuracy is provided in Table 4.

We conduct experiments with two types of backbone encoders: randomly initialized backbones
and pre-trained backbones. For each type, we extract embeddings using four different methods:
representations without binding (denoted by × in Table 5), FABIND with anchor modality X1

(denoted as FABIND-X1), FABIND with anchor modality X4 (denoted as FABIND-X4), and
CENTROBIND. The embedding quality is then evaluated using classification accuracy. Specifically,
we train five different decoders for each case: four uni-modal decoders (one for each modality)
and one multi-modal decoder for the concatenated embeddings of all modalities. The results show
that CENTROBIND outperforms the other baseline methods. Notably, CENTROBIND demonstrates
superior performance in the case of randomly initialized backbones, indicating robustness to poor
backbone quality.

Additional experimental results on synthetic datasets with M = 6 and M = 8 modalities are
presented in Figure 8 and Figure 9, respectively. These results exhibit similar trends to those observed
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Table 4: Classification accuracies presented in Figure 3.

Backbone Method uni-modal multi-modal
X1 X2 X3 X4 X1, · · · ,X4

Pre-trained

× 0.2166 0.2878 0.3536 0.3923 0.6985
FABIND-X1 0.2180 0.2736 0.3210 0.2999 0.5541
FABIND-X4 0.2483 0.3349 0.4207 0.3896 0.7024

CENTROBIND 0.2540 0.3433 0.4162 0.4559 0.6974

Random

× 0.2109 0.2472 0.2597 0.2815 0.6648
FABIND-X1 0.2119 0.2587 0.3034 0.3081 0.5502
FABIND-X4 0.2447 0.3076 0.3826 0.2813 0.6742

CENTROBIND 0.2582 0.3392 0.4224 0.4649 0.7006

with M = 4 modalities. These experiments verify that CENTROBIND is capable of handling a large
number of modalities effectively.

(a) Pre-trained backbones are used. (b) Randomly initialized backbones are used.

Figure 4: Accuracy as a measure of the representation space quality. Abbreviation: Xi-B or CB:
applying FABIND with anchor Xi or applying CentroBind; acc(Zi) or acc(All): accuracy of Zi or of
concatenated embeddings (Z1, · · · ,ZM ); (rnd): if random backbones are used.

Representation visualization. Figure 5 presents t-SNE (Van der Maaten & Hinton, 2008) and
UMAP (McInnes et al., 2018) visualizations of embeddings generated by FABIND and CENTROBIND.
For this visualization, we use synthetic datasets with 4 modalities, ensuring that each modality is
equally informative, and plot the embeddings for X1. FABIND is anchored at X4, and both binding
methods utilize pre-trained backbones.

In both t-SNE and UMAP visualizations, CENTROBIND produces more clustered representations,
whereas FABIND results in more scattered embeddings. These findings validate our analysis that
CENTROBIND creates a superior representation space by effectively learning both intra and shared
information.

Convergence and stability analysis. The convergence rate of CENTROBIND may differ from that
of FABIND due to the replacement of the fixed anchor with a dynamic anchor. In Figure 6, we plot
the loss curves of CENTROBIND and FABIND during training. The results show that the loss of
CENTROBIND saturates earlier than that of FABIND. We attribute this to the fact that the centroid
serves as a minimizer of embeddings in terms of Euclidean distance, making it easier to converge
embeddings to their centroid compared to converging them to one specific embedding.

The plot also reveals a crossover point where the loss curves intersect. We believe this occurs due
to the number of InfoNCE losses optimized by CENTROBIND and FABIND. Specifically, with M
modalities, CENTROBIND minimizes M InfoNCE losses, while FABIND minimizes M −1 InfoNCE
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(a) t-SNE: FABIND. (b) t-SNE: CENTROBIND.

(c) UMAP: FABIND. (d) UMAP: CENTROBIND.

Figure 5: Representation visualization via t-SNE and UMAP.

Figure 6: Training loss.

losses. This results in a smaller loss for FABIND when the encoders are well-trained, which explains
the crossover point observed in Figure 6.

Temperature sensitivity. We examine the effect of temperature parameter τ in InfoNCE loss by
evaluating classification accuracy on the GMM synthetic dataset with different τ ∈ {0.07, 0.3, 0.7}.
Figure 7 displays the classification accuracy for each temperature setting. Three different τ yield
similar performance gap between CENTROBIND and FABIND , implying that the advantage of

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30
Epoch

0

10

20

30

40

50

60

Ac
cu

ra
cy

Pretrained backbone / Temperature 0.07
X4-B: acc(Z1)
CB: acc(Z1)
X4-B: acc(Z4)
CB: acc(Z4)
X4-B: acc(All)
CB: acc(All)

(a) τ = 0.07
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(c) τ = 0.7

Figure 7: Classification accuracy on GMM synthetic dataset. The embeddings are learned with
different temperature parameter τ ∈ {0.07, 0.3, 0.7}.

CENTROBIND is robust to hyperparameter. This further strengthens our claim that CENTROBIND
overcomes the inherent limitation of FABIND.

Complexity. CentroBind introduces only one additional InfoNCE term per batch—the interaction
between the learned centroid and the modality embeddings—so computational complexity rises
merely from O(M) to O(M + 1) for M modalities. In memory, it stores a single extra vector (the
current-batch centroid), adding a negligible constant overhead. Consequently, training and inference
costs remain practically unchanged from FABind.

Table 5: Classification accuracies presented in Figure 10. In the experiment in Figure 10a and 10b,
X1,X2, and X3 are very noisy, and X4 is highly informative. In the experiment in Figure 10c
and 10d, X1 and X2 are very noisy, and X3 and X4 are highly informative. We choose X4 for
FABIND for the best-fixed anchor modality for both cases. The weighted average method uses prior
knowledge of modality quality to determine the weights for each modality. Random anchor method
without intra-learning uses a randomly chosen modality as an anchor for each iteration under a fixed
anchor encoder, while with intra-learning we train intra-modal learning by not freezing the anchor
encoder.

Backbone Method Figure 10a and 10b Figure 10c and 10d
X2 X4 X1, · · · ,X4 X2 X4 X1, · · · ,X4

Pre-trained

× 0.115 0.296 0.566 0.099 0.256 0.537
FABIND-X4 0.124 0.297 0.639 0.115 0.263 0.540

CENTROBIND 0.131 0.363 0.618 0.116 0.336 0.563
Weighted average 0.133 0.342 0.609 0.102 0.338 0.574

Random + intra learning 0.131 0.347 0.613 0.105 0.353 0.554
Random anchor 0.147 0.359 0.619 0.097 0.327 0.579

Median (coordinate-wise) 0.134 0.363 0.634 0.112 0.375 0.582

Random

× 0.092 0.114 0.487 0.067 0.176 0.465
FABIND-X4 0.131 0.143 0.575 0.112 0.153 0.523

CENTROBIND 0.132 0.355 0.626 0.113 0.336 0.559
Weighted average 0.115 0.347 0.619 0.109 0.336 0.556

Random + intra learning 0.132 0.333 0.602 0.104 0.309 0.562
Random anchor 0.145 0.354 0.618 0.097 0.324 0.552

Median (coordinate-wise) 0.137 0.347 0.612 0.112 0.330 0.565

Comparison with other adaptive anchor generation. We compare the centroid-based adaptive
anchor method with other potential approaches, such as weighted average, random anchor fixing, and
component-wise median. Figure 10 illustrates the accuracies of each method under scenarios where
modalities are unevenly distributed. Specifically, we create 4 modalities with differing quality levels.
In experiments (a) and (b) of Figure 10, X1, X2, and X3 are set as highly uninformative, while X4

represents a high-quality dataset. Conversely, experiments (c) and (d) use X1 and X2 as poor-quality
datasets, while X3 and X4 are high-quality datasets.
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Table 6: Classification accuracy evaluated on each modality (training and evaluation modalities are
the same) with MUStARD dataset. Asterisk∗ denotes different backbone encoders and pretraining
settings.

Method Modality Sar-1 Spk-1 Spk-3 Spk-5
FABIND

T

0.606 0.219 0.458 0.632
UniBind 0.600 0.214 0.412 0.569

AudioCLIP∗ 0.488 0.155 0.280 0.388
ViT-Lens∗ 0.543 0.172 0.342 0.472

CENTROBIND 0.667 0.287 0.507 0.642
FABIND

V

0.668 0.375 0.587 0.691
UniBind 0.658 0.381 0.641 0.770

AudioCLIP∗ 0.504 0.110 0.275 0.414
ViT-Lens∗ 0.697 0.586 0.738 0.797

CENTROBIND 0.670 0.380 0.609 0.726

FABIND

A

0.639 0.201 0.457 0.599
UniBind 0.633 0.272 0.528 0.691

AudioCLIP∗ 0.525 0.158 0.343 0.454
ViT-Lens∗ 0.686 0.396 0.664 0.8

CENTROBIND 0.616 0.234 0.461 0.609

FactorCL∗

V,A,T
(V,A,T )

0.699 - - -
SimMMDG∗ 0.725 - - -

FABIND 0.678 0.343 0.554 0.677
UniBind 0.646 0.383 0.622 0.764

AudioCLIP∗ 0.530 0.119 0.261 0.378
ViT-Lens∗ 0.731 0.506 0.736 0.812

CENTROBIND 0.704 0.346 0.594 0.733

For the weighted average method (denoted as WAB in Figure 10), we assign weights based on modality
quality: (0.2, 0.2, 0.2, 1) for experiments (a) and (b), and (0.2, 0.2, 0.8, 0.8) for experiments (c) and
(d). These weights correspond to the information rate of each modality.

For the random modality dynamic anchor method (denoted as RB in Figure 10), we randomly select
one modality as the dynamic anchor at each iteration, with the anchor encoder frozen. To investigate
the impact of intra-modal learning, we also conduct experiments with a random anchor that includes
intra information learning (denoted as RB+Intra). In this case, the anchor modality is randomly
selected at each iteration, and the anchor encoder is not frozen, allowing all encoders to be trained.

Since the median is more robust to outliers than the average (Lopuhaä & Rousseeuw, 1991), we
additionally evaluate the case of a median-based dynamic anchor. In high-dimensional spaces, rather
than in the univariate case, a coordinate-wise median can be used as a naive generalization of the
univariate median to the multivariate setting, preserving its robustness to outliers. We assess the
dynamic anchor binding method using the coordinate-wise median approach (denoted as MB in
Figure 10). Specifically, for the median anchor, we compute the jth coordinate of the ith anchor as
ai,j = Median(z1,i,j , z2,i,j , · · · , zM,i,j), where zm,i,j denotes the jth coordinate of the embedding
for the ith sample in modality m. For improved readability, we summarize the final accuracies for
each method and modality in Table 5.

This scenario, where modal distributions are uneven, is commonly referred to as the modality
imbalance problem (Du et al., 2023; Peng et al., 2022; Zhang et al., 2024). Intuitively, in the presence
of modality imbalance, the centroid may produce suboptimal dynamic anchor constructions, and
other methods, such as weighted averages, might yield better results. Nevertheless, CENTROBIND
consistently performs better or comparably to weighted average methods, demonstrating its robustness
to the modality imbalance problem.

From these experiments, we conjecture that the specific dynamic anchor generation method may not
significantly impact final performance, provided that all encoders are well-trained during the process.

Addressing the modality imbalance problem typically requires additional information, such as domain
knowledge, labels, or downstream task insights. Since this work focuses on multi-modal alignment
under contrastive learning, we do not assume such information is available. We therefore leave the
exploration of the modality imbalance problem for dynamic anchor generation as a direction for
future work.
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(a) FABIND at X6 vs. CENTROBIND (b) When CENTROBIND uses random backbones.

(c) When FABIND uses random backbones. (d) When all backbones are random backbones.

Figure 8: Experiment results with synthetic dataset of M = 6 modalities. Abbreviation: Xi-B or
CB: applying FABIND method to backbones with anchor Xi or applying CENTROBIND; acc(Zi) or
acc(All): accuracy of Zi or of concatenated embeddings (Z1, · · · ,ZM ); (rnd): if random backbones
are used for Xi-B or CB.

C.2 EXPERIMENTS ON MUSTARD

Training details. We utilize Low-Rank Adaptation (Hu et al., 2022) for training CENTROBIND
and FABIND, enhancing training efficiency and achieving impressive results with fewer iterations.
For the backbones in FABIND and CENTROBIND, we use the pretrained VideoMAE (Tong et al.,
2022) for video data, the pretrained WaveLM (Chen et al., 2022) for audio data, and the pretrained
BERT (Devlin et al., 2019) for text data. For parameter settings, we set a learning rate of 0.001, the
AdamW optimizer (Loshchilov & Hutter, 2019) with a batch size of 16, and a temperature of 0.3 for
InfoNCE. Training CENTROBIND requires augmentation. We augment video frames with various
transformations, including random perspective shifts, random flips and rotation, color jitter, Gaussian
blur, and auto-contrast adjustment. For the audio modality, we apply a low-pass filter, speed changes,
echo effect, room impulse response convolution, and background noise. For the text modality, we
generate paraphrased sentences using the Phi-3 language model served using Ollama 4.

UniBind We evaluate UniBind as a baseline method, using LLM-generated descriptions as the
anchor modality. Specifically, UniBind generates descriptions for each modality using a large

4https://ollama.com/library/phi3
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(a) FABIND at X8 vs. CENTROBIND (b) When CENTROBIND uses random backbones.

(c) When FABIND uses random backbones. (d) When all backbones are random backbones.

Figure 9: Experiment results with synthetic dataset of M = 8 modalities. Abbreviation: Xi-B or
CB: applying FABIND method to backbones with anchor Xi or applying CENTROBIND; acc(Zi) or
acc(All): accuracy of Zi or of concatenated embeddings (Z1, · · · ,ZM ); (rnd): if random backbones
are used for Xi-B or CB.

language model (LLM), ensuring that every modality is paired with corresponding descriptions.
These descriptions collectively form a knowledge base, and UniBind optimizes the InfoNCE loss
between each modality and its paired description from the knowledge base. In this framework, the
anchor modality is the LLM-augmented representation. It is important to note that the LLM-generated
descriptions for different modality pairs can vary, which may hinder effective multi-modal alignment
(see Table 2). In our experiments, we generate descriptions for video and audio modalities using the
VideoLLaMA2.1-7B-AV audio-visual model from VideoLLaMA2 (Cheng et al., 2024), and for the
text modality, we use the Qwen2.5-32B-Instruct model from Qwen2.5 (Team, 2024). We evaluate
UniBind’s performance in two settings: standard classification accuracy (Table 6) and zero-shot
cross-modal classification (Table 2).

AudioCLIP We employ AudioCLIP (Guzhov et al., 2022), which aligns image, text, and audio
representations into a unified multi-modal space. To extend its capabilities to the video modality in
our experiments, we adapt AudioCLIP to extract embeddings for video, audio, and text modalities
using a pretrained model. For audio, we follow AudioCLIP’s approach, padding audio samples to
ensure uniform input sizes. For text, we utilize its pretrained settings, truncating tokenized text to
77 tokens, which only occurs in one instance. For the video modality, we use the center frame as
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(a) Pre-trained encoders are used. (b) Random backbones are used.

(c) Pre-trained backbones are used. (d) Random backbones are used.

Figure 10: Comparison of other dynamic anchor generation methods. (a) and (b): Modal qualities
are set to (0.2, 0.2, 0.2, 1). (c) and (d): Modal qualities are set to (0.2, 0.2, 0.8, 0.8). Abbreviation:
Xi-B or CB: applying FABIND method to backbones with anchor Xi or applying CENTROBIND;
WAB: weighted average for dynamic anchor with weight identical to the predefined quality for each
modality; RB+Intra: randomly choosing a modality for a dynamic anchor in every iteration and intra
information learning; RB: randomly choosing a modality for a dynamic anchor in every iteration; MB:
coordinate-wise median for dynamic anchors; acc(Zi) or acc(All): accuracy of Zi or of concatenated
embeddings (Z1, · · · ,ZM ); (ran): if random backbones are used.

a representative image sample. Finally, embeddings from all three modalities are concatenated for
downstream tasks.

ViT-Lens In our experiments, we leverage the pretrained models from ViT-Lens to extract embed-
dings for audio, text, and video modalities. We generally follow the example code provided by the
authors.5 Note that we select the center frame image from the video to extract the embedding.

Classification results. In contrast to the cross-modal retrieval results in Table 1 and zero-shot cross-
modal classification in Table 2, Table 6 presents the classification accuracy of FABIND, UniBind, and
CENTROBIND for each modality as well as for multi-modal scenarios. Specifically, embeddings are
extracted using the binding methods, and a simple decoder is trained to classify the embeddings. In
Table 6, we report the sarcasm and speaker classification accuracies of decoders trained and evaluated
on the same modality.

For sarcasm detection, CENTROBIND generally outperforms other baseline methods. While UniBind
performs poorly in cross-modal classification, it achieves better performance in speaker classification
compared to others. This improvement is due to the LLM-augmented descriptions, which provide
additional knowledge (from LLMs) to the embeddings. Notably, UniBind utilizes 4 modalities,
whereas FABIND and CENTROBIND only use 3, which could penalize the performance of FABIND

5https://github.com/TencentARC/ViT-Lens
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and CENTROBIND . Nevertheless, CENTROBIND consistently outperforms FABIND. Moreover,
our method can also incorporate LLM-augmented descriptions as an additional modality, potentially
improving its performance further.

Although a direct comparison is not feasible, we also include the sarcasm detection accuracy of
FactorCL (Liang et al., 2024b), SimMMDG (Dong et al., 2023), AudioCLIP (Guzhov et al., 2022), and
ViT-Lens (Lei et al., 2024) for reference. ViT-Lens, in particular, achieves higher performance than
CENTROBIND due to its use of larger backbone encoders, such as Vision Transformer (ViT) (Khan
et al., 2022) and pretraining on extremely large-scale datasets. However, since ViT-Lens can be
considered a variant of FABind, applying our dynamic anchor method could further improve its
performance. Specifically, ViT-Lens uses a pretrained CLIP model as the anchor encoder, while the
other non-anchored modalities use pretrained ViT models with modality adaptation layers. Within
our framework, CENTROBIND could adopt the pretrained Vision Transformer as backbone encoders,
potentially enhancing its performance further.

C.3 EXPERIMENTS WITH PRE-TRAINED BACKBONE

So far, the superiority of CENTROBIND is verified for controllable synthetic and MUStARD datasets.
Although such experiments and theoretical analysis show the effectiveness of CENTROBIND, we
further evaluate and compare the performance of CENTROBIND and FABIND to validate in additional
scenarios. In particular, we consider the following cases:

1. Bi-modal scenario → We compare performance in bi-modal datasets, DreamBooth (Ruiz
et al., 2023), AVE (Tian et al., 2018), AudioSet (Gemmeke et al., 2017), UR-FUNNY (Hasan
et al., 2019).

2. When a large-scale powerful backbone is available → We compare performance given the
pre-trained ImageBind backbone.

3. When strong anchor modality is available → We compare performance with the image
modality as anchor.

We conduct fine-tuning the ImageBind and CENTROBIND on DreamBooth (Ruiz et al., 2023),
AVE (Tian et al., 2018), AudioSet (Gemmeke et al., 2017), UR-FUNNY (Hasan et al., 2019) datasets.
For datasets containing video modality instead of image, we extract the middle frame from the video
and use the middle frame as image sample. Audio is also extracted from video if audio modality
does not exist in original dataset. The evaluation is conducted through a retrieval task, effectively
measuring the quality of the learned unified embedding space.

After fine-tuning, we measure the top-1 and top-5 retrieval accuracy on the test dataset. The
optimization process uses the AdamW optimizer with the following hyperparameters: a batch size
of 16, a learning rate of 5.0 × 10−6, a weight decay of 10−4, and a temperature parameter set to
0.07. We fine-tune the models until their validation accuracies converge to certain value. In this
experiment, we omit the text augmentation. Instead, we create a centroid-based dynamic anchor
using the embeddings of augmented images and original text.

More specifically, we begin by loading the pre-trained ImageBind model (Girdhar et al., 2023) and
fine-tune its encoders. For fine-tuning, we employ Low-Rank Adaptation (LoRA) (Hu et al., 2022)
with a rank of 4, resulting in 5.1-5.4 million trainable parameters (depending on chosen modalities)
out of a total of 1.2 billion parameters. For the experiment on AudioSet, we fine-tune the models
on the Balanced train subset of AudioSet, provided in official site. For datasets provided without
train-test split, we randomly split the dataset with 0.8 : 0.2 ratio before finetuning. The results in
Figure 11 and Table 3 show that CENTROBIND outperforms ImageBind even with a strong pretrained
backbone and the image modality. Moreover, CENTROBIND achieves additional gains in bimodal
settings, suggesting it mitigates FABIND ’s inherent limitations across most scenarios. We anticipate
that the performance gap would widen if the backbone were weaker, if the image modality were
excluded, or if additional modalities were introduced. These findings corroborate our analysis of
dynamic anchor binding, highlighting its effectiveness in enhancing multimodal representations.
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(a) Image-text pair: DreamBooth (Ruiz et al.,
2023)
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(b) Image-audio pair: AVE (Tian et al., 2018)
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(c) Image-audio pari: AudioSet (Gemmeke et al.,
2017)
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(d) Image-audio pair: UR-FUNNY (Hasan et al.,
2019)
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(e) Image-text pair: UR-FUNNY (Hasan et al.,
2019)
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(f) Image-audio-text pair: Dream+AVE+AudioSet

Figure 11: We evaluate cross-modal retrieval using the pretrained ImageBind backbone, fine-tuned on
each dataset with both ImageBind and CentroBind. Apart from the image–text pair in the UR-FUNNY
dataset—where performance is identical—CentroBind surpasses ImageBind in every other setting.
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