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ABSTRACT

Crowdsourcing typically collects multiple noisy labels for each instance and then
aggregates these labels to infer its unknown true label. We discover that miscal-
ibration, an important issue in supervised learning, also frequently arises in label
aggregation. Miscalibration prevents existing label aggregation methods from as-
signing accurate confidence when inferring aggregated labels. However, in down-
stream tasks of label aggregation, both the aggregated labels and their associ-
ated confidence are equally significant. To address this issue, we formally define
confidence calibration for crowdsourcing and propose a novel Label Distribution
Learning-based Confidence Calibration (LDLCC) method in this paper. Specif-
ically, to mitigate the impact of noisy labels, we first identify high-confidence
instances and sharpen their label distributions based on the results of label ag-
gregation. Subsequently, to avoid the overconfidence caused by the translation
invariance of softmax, we train a regression network to learn the label distribution
of each instance. Finally, to obtain the calibrated confidence of each aggregated la-
bel, we normalize the learned distribution from the regression network and take its
maximum value. Extensive experimental results indicate that LDLCC can serve as
a universal post-processing method to calibrate the confidence of each aggregated
label, and thus further enhance the performance of downstream tasks.

1 INTRODUCTION

Crowdsourcing provides an efficient and economical approach to obtaining large-scale annotated
data, catering to the needs of data-hungry models in supervised learning (Jiang et al., 2022; Zhang,
2022). However, due to the poor expertise, the labels collected from crowd workers are noisy (Li
et al., 2020). To mitigate the impact of noisy labels, crowdsourcing introduces a mechanism called
repeated labeling (Sheng et al., 2008). Repeated labeling ensures that each instance is annotated by
different workers to obtain multiple noisy labels. Subsequently, label aggregation is performed to
aggregate these noisy labels to infer its unknown true label.

Currently, a large number of label aggregation methods have been proposed (Dawid & Skene, 1979;
Sheng et al., 2019; Ying et al., 2024; Zhang et al., 2025). These methods primarily focus on improv-
ing the accuracy of aggregated labels, gradually narrowing the gap between aggregated labels and
the unknown true labels. However, despite the effectiveness of these label aggregation methods, the
labels they aggregate still inherently contain a certain degree of noise (Li et al., 2023a). This fact has
driven the development of downstream tasks of label aggregation, such as noise correction (Zhang
et al., 2018) and learning from noisy labels (Karim et al., 2022). For these downstream tasks, pro-
viding only aggregated labels is often insufficient, the confidence of each aggregated label is equally
significant. Here, the confidence reflects how “close” or “far” an instance is to its aggregated label
(e.g., 0.99 or 0.01). For example, in noise correction, if the confidence of an aggregated label is low,
we usually tend to identify the corresponding instance as a noisy one. Conversely, if the confidence
is high, we usually tend to identify the corresponding instance as a clean one.

Unfortunately, we discover that miscalibration frequently arises in label aggregation methods. Here,
miscalibration refers to a mismatch between the confidence and the correctness of aggregated labels
inferred by a label aggregation method. Take Majority Voting (MV) as an example (Sheng et al.,
2008). If an instance x receives only three labels and the values of them are (c1, c1, c2), MV will
infer the aggregated label of x as c1 with a confidence value of 0.67. However, due to the presence
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of noisy labels, the correctness of x belonging to c1 varies considerably from 0.67. Considering the
miscalibration, it is essential to perform confidence calibration for label aggregation methods.

Although many calibration methods have been proposed in supervised learning, they typically rely
on true labels (Guo et al., 2017; Mukhoti et al., 2020). However, in the crowdsourcing scenario we
focus on, true labels of instances are unknown, and only aggregated labels are available. This makes
calibration methods from supervised learning unreliable. To address this issue, we formally define
confidence calibration for crowdsourcing in this paper. Subsequently, inspired by label distribution
learning (Xu & Geng, 2019; Lu et al., 2023), we propose a novel Label Distribution Learning-based
Confidence Calibration (LDLCC) method. Specifically, LDLCC first identifies high-confidence in-
stances from all instances and sharpens their label distributions to mitigate the impact of noisy labels.
Then, LDLCC trains a regression network to learn the label distribution of each instance to avoid
the overconfidence caused by the translation invariance of softmax. Finally, LDLCC normalizes the
learned distribution from the network and takes its maximum value to obtain the calibrated confi-
dence of each aggregated label. In summary, the main contributions of this paper are as follows:

• We provide a formal definition of confidence calibration for crowdsourcing, which clarifies
the differences from calibration in supervised learning and maximizes the utilization of
information in crowdsourcing scenarios.

• We design a strategy to identify high-confidence instances based on the results of label ag-
gregation. By sharpening the label distributions of high-confidence instances, we mitigate
the impact of noisy labels.

• We propose a method called LDLCC to calibrate the confidence of aggregated labels. By
training a regression network to learn the label distribution of each instance, we avoid the
overconfidence caused by the softmax.

• We conduct extensive experiments to verify the effectiveness of our LDLCC. The results
show that LDLCC can serve as a universal post-processing method to calibrate the confi-
dence of each aggregated label.

2 RELATED WORK

Label Aggregation. Label aggregation methods can be divided into one-stage and two-stage
methods. One-stage methods directly use crowd labels to train neural networks, and the predic-
tions of the trained networks can serve as aggregated labels (Rodrigues & Pereira, 2018; Chen et al.,
2020; Li et al., 2023b). The simplest two-stage method is Majority Voting (MV), which assigns
the class with the highest vote count as the aggregated label (Sheng et al., 2008). Subsequently,
numerous variants of MV have been proposed to improve its performance (Li & Yu, 2014; Tian
et al., 2019; Chen et al., 2022). Another classic two-stage method is DS (Dawid & Skene, 1979),
which optimizes the confusion matrices of workers and the aggregated labels of instances using the
Expectation-Maximization (EM) algorithm. Raykar et al. (2010) and Kim & Ghahramani (2012)
are Bayesian versions of DS, designed for binary and multi-class tasks, respectively. Recently, sev-
eral methods based on the idea of nearest neighbors have been proposed (Jiang et al., 2022; Ying
et al., 2024; Zhang et al., 2024; 2025). By leveraging information from neighboring instances or
neighboring workers, these methods have improved the performance of label aggregation. However,
neither one-stage nor two-stage methods directly address the issue of miscalibration.

Downstream Tasks of Label Aggregation. Noise correction and learning from noisy labels are
two common downstream tasks of label aggregation. In noise correction, instances are usually
divided into a clean set and a noisy set based on the confidence of the aggregated labels (Zhang et al.,
2018; Xu et al., 2021). One or more models are then trained on the clean set to correct the instances
in the noisy set (Li et al., 2023c; Su et al., 2026). Learning from noisy labels can be broadly divided
into loss correction and example selection (Zong et al., 2024). Loss correction aims to correct
the loss by estimating the noise transition matrix and adjusting the labels or weights of instances
(Goldberger & Ben-Reuven, 2017; Shu et al., 2019). Example selection aims to identify clean
instances from datasets and then perform semi-supervised learning by treating remaining instances
as unlabeled instances (Huang et al., 2019; Karim et al., 2022). For the above methods, both the
aggregated labels and their confidence play a vital role.
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Calibration in Supervised Learning. In supervised learning, methods to address the issue of
network miscalibration can be broadly divided into three categories (Tao et al., 2023b). The first
category is post-hoc calibration methods, such as Histogram Binning (Zadrozny & Elkan, 2001) and
Temperature Scaling (Guo et al., 2017), which adjust model predictions after training based on a
held-out validation set. The second category is regularization-based calibration methods, such as
Label Smoothing (Müller et al., 2019) and Weight Decay (Tao et al., 2023a), which achieve calibra-
tion by regularizing the input and target of networks, or directly ensembling different networks. The
third category is loss-based calibration methods, such as Maximum Mean Calibration Error (Kumar
et al., 2018) and Focal Loss (Mukhoti et al., 2020), which add a calibration term to the training loss
or replace the training loss with other loss functions. Almost all these three categories of methods
rely on true labels. However, true labels are unknown in crowdsourcing, which makes the above
calibration methods cannot be directly applied to crowdsourcing.

3 PROBLEM FORMULATION

Considering a crowdsourcing task with X as the attribute space and Y as the label space, we define
a crowdsourced dataset as D = {(xi,Li)}Ni=1. Here, xi ∈ X is the i-th instance in D, which can
be expressed as {xim}Mm=1. M is the dimension of attributes, and xim denotes the attribute value
of xi on the m-th attribute Am. Li is the multiple noisy label set of xi, which can be expressed as
{lir}Rr=1. R is the number of workers and lir denotes the label of xi annotated by the r-th worker
ur. lir takes a value from a fixed set {−1, c1, . . . , cq, . . . , cQ}, where Q is the number of classes.
cq ∈ Y denotes the q-th class and −1 indicates that ur has not annotated xi. yi ∈ Y is the true label
of xi, which is unknown in crowdsourcing scenarios.

Label Aggregation. A label aggregation method can be expressed as f : D → Y . Given a crowd-
sourced dataset D, the label aggregation method f first estimates a label distribution Pi over the
label space Y for each instance xi. Subsequently, f determines the aggregated label ŷi based on Pi.
Typically, ŷi is the class with the highest probability in Pi, and thus the associated confidence of ŷi
is p̂i = maxPi. Existing label aggregation methods focus only on minimizing the error between
ŷi and yi, neglecting the accuracy of p̂i, which ultimately leads to miscalibration. However, both
ŷi and p̂i serve as inputs for downstream tasks of label aggregation and play important roles. Con-
sidering that inaccurate p̂i will harm the performance of downstream tasks, we propose confidence
calibration for crowdsourcing in this paper.

Confidence Calibration. We define confidence calibration as a downstream task of label ag-
gregation as well, but it is performed prior to noise correction and learning from noisy labels.
Once label aggregation is completed, the crowdsourced dataset D can be converted to D̂ =
{(xi,Pi, ŷi, p̂i)}Ni=1, which is used as the input for confidence calibration. Referring to the defi-
nition of network calibration in supervised learning (Guo et al., 2017), confidence calibration aims
to ensure that the calibrated confidence p̃i accurately represents the true probability of the aggregated
label ŷi being correct. Formally, the perfectly calibrated confidence satisfies:

P (ŷi = yi | p̃i = p) = p, ∀p ∈ (0, 1] (1)

Similarly, we apply the Expected Calibration Error (ECE) to evaluate the performance of confidence
calibration. Given the calibrated confidence p̃i, we define the ECE as:

ECE = Ep̃i
|P (ŷi = yi | p̃i)− p̃i|. (2)

In reality, the probability P (ŷi = yi | p̃i) cannot be accurately estimated due to the finite instances
in D̂. Therefore, an approximation of ECE is introduced. Specifically, we can separate all instances
into T bins {Bt}Tt=1, where Bt contains all the instances whose calibrated confidence p̃i ∈ ( t−1

T , t
T ].

Subsequently, we can calculate the average confidence p̄t =
1

|Bt|
∑

xi∈Bt
p̃i and the accuracy at =

1
|Bt|

∑
xi∈Bt

I(ŷi = yi) for each bin Bt. Here, I(·) is the indicator function, which returns 1 if the
condition is true and 0 otherwise. Finally, the approximated ECE can be calculated as follows:

ECE =

T∑
t=1

|Bt|
N

|at − p̄t| , (3)
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where |Bt| is the number of instances in Bt. It is worth noting that the approximated ECE can only
be used in experiments and cannot be applied to designing confidence calibration methods because
the true label yi is unknown.

Differences and Challenges. According to the definition of confidence calibration, we can see
that it is different from calibration in supervised learning. The input of calibration in supervised
learning is D = {(xi, yi)}Ni=1, while the input of confidence calibration for crowdsourcing is D̂ =
{(xi,Pi, ŷi, p̂i)}Ni=1. This difference poses significant challenges to the confidence calibration of
crowdsourcing. On the one hand, the true label yi is unknown in crowdsourcing, which makes it
difficult to directly apply the existing calibration methods in supervised learning into crowdsourcing.
On the other hand, the label distribution Pi is impacted by the noisy labels and the aggregated label
ŷi is determined by Pi. These uncertainties and couplings increase the difficulty of confidence
calibration in crowdsourcing. Additionally, there is another work worth comparing. Zong et al.
(2024) directly apply calibration to learning from noisy labels, and their conclusion supports our
claim that confidence calibration is essential for downstream tasks of label aggregation. However,
the input provided for calibration in Zong et al. (2024) is D̂ = {(xi, ŷi)}Ni=1, which still fails to fully
utilize the information in crowdsourcing.

4 THE PROPOSED METHOD
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(b) Case 2

Figure 1: Underlying idea of LDLCC.

In this section, we provide a detailed descrip-
tion of our proposed LDLCC. Inspired by the
label distribution learning, LDLCC tries to cal-
ibrate the confidence by learning the label dis-
tributions of all instances. Its underlying idea
is illustrated in Figure 1. LDLCC divides in-
stances into two cases based on their label dis-
tribution. When Case 1 shown in Figure 1(a)
is satisfied, there is no other probability term
in the label distribution Pi close to p̂i, indicat-
ing that the corresponding aggregated label has
no confusing classes. At this point, the corre-

sponding instance typically does not contain ambiguous attributes, and label aggregation should be
more confident. Conversely, when Case 2 shown in Figure 1(b) is satisfied, there exist other prob-
ability terms in Pi close to p̂i, indicating that the corresponding aggregated label has confusing
classes. At this point, the corresponding instance typically contains ambiguous attributes, and label
aggregation should not be overly confident. LDLCC integrates the above analysis and calibrates
confidence through two steps: label distribution refinement and label distribution learning.

4.1 LABEL DISTRIBUTION REFINEMENT

This step is primarily designed for high-confidence instances that satisfy Case 1. Considering that
the aggregated label of high-confidence instances does not have confusing classes, the probability
terms other than p̂i in Pi should be 0. When non-zero probability terms appear, they are more
likely to be caused by noisy labels. Therefore, LDLCC refines the label distributions of these high-
confidence instances through sharpening to mitigate the impact of noisy labels. The key problem
in this step is how to identify high-confidence instances that satisfy Case 1. Inspired by confident
learning (Northcutt et al., 2021), LDLCC first calculates the average confidence µcq for each class
cq as follows:

µcq =

∑N
i=1 I(ŷi = cq)p̂i∑N
i=1 I(ŷi = cq)

. (4)

Then, LDLCC identifies high-confidence instances Xh that satisfy Case 1 as follows:

Xh = {xi | p̂i ≥ µŷi
, for i = 1, 2, . . . , N}. (5)

4
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True label Correct aggregated label

NeighboringNoisy  aggregated label

Figure 2: The illustration of eliminating falsely
high-confidence instances using neighbors.

By this way, LDLCC filters out instances with
confidence exceeding the average confidence
in each class. However, revisiting the exam-
ple we provided in the introduction using MV,
apart from the aggregated labels not containing
confusing classes, there is another scenario that
could lead to high confidence. If an instance has
received only a small number of crowd labels,
the label probability Pi may be unreliable, re-
sulting in a high p̂i. Therefore, the current Xh

is not sufficiently convincing. To further elim-
inate those falsely high-confidence instances,
LDLCC finds the neighbors for each instance

in Xh over the attribute space X . The illustration of this process is shown in Figure 2. Falsely
high-confidence instances, although achieving high confidence in the case of receiving only a small
number of crowd labels, may have an aggregated label that differs from those of other neighbors in
Xh. Therefore, LDLCC queries neighbors for each instance in Xh and eliminates instance whose
aggregated label differ from those of its neighbors.

According to the manifold hypothesis (Narayanan & Mitter, 2010), the local geometric structure of
the data can be measured using Euclidean distance. Therefore, LDLCC does not make additional
assumptions about X and directly calculates the Euclidean distance between each pair of instances
xi and xj in Xh as follows:

dij =

√√√√ M∑
m=1

(xim − xjm)
2
. (6)

Equation (6) requires all attributes to be numerical, so we need to perform one-hot encoding on the
nominal attributes before inputting D̂ into LDLCC. Then, LDLCC sorts the distances and finds the
K nearest neighbors Ni for each instance xi in Xh. Subsequently, LDLCC compares the aggregated
labels of xi and its neighbors Ni as follows:

s(xi,Ni) =

{
1 if ∃xj ∈ Ni such that ŷi ̸= ŷj
0 otherwise

. (7)

Here, s(xi,Ni) = 1 indicates that the aggregated label of xi differs from the aggregated labels of
its neighbors in Xh. Therefore, LDLCC further updates Xh as follows:

Xh = {xi | s(xi,Ni) = 0, for i = 1, 2, . . . , |Xh|}. (8)

Finally, LDLCC treats the instances in Xh as high-confidence instances that satisfy Case 1. To
mitigate the impact of noisy labels, LDLCC sharpens the label distribution Pi = {Piq}Qq=1 of
xi ∈ Xh as follows:

Piq =

{
1 if ŷi = cq
0 otherwise

. (9)

4.2 LABEL DISTRIBUTION LEARNING

This step primarily addresses the problem of how to calibrate the confidence of aggregated labels.
Inspired by the label distribution learning (Xu & Geng, 2019; Lu et al., 2023), we argue that Pi

reflects the degree of membership of xi to each class. Based on this argument, even when Pi satisfies
Case 2, learning the mapping from the attribute space X to the confusing classes can effectively help
p̂i mitigate overconfidence. Therefore, LDLCC captures the mapping relationship from X to Y by
label distribution learning.

According to Zong et al. (2024), one key reason for network overconfidence is the translation in-
variance of softmax. Therefore, as shown in Figure 3, LDLCC constructs a regression task instead
of a classification task in label distribution learning to avoid using the softmax function. Specifi-
cally, LDLCC takes all instances in D̂ as input and uses their label distributions as targets to train a
regression network. If an instance is identified as high-confidence in the first step, LDLCC uses its
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Figure 3: The illustration of label distribution learning.

refined label distribution; otherwise, it adopts the label distribution derived from label aggregation.
The regression network g : X → Y is trained using the mean squared error (MSE) loss as follows:

LMSE =
1

N

N∑
i=1

∥Pi − oi∥22 , (10)

where oi is the logit of xi output by g. Considering that Pi is impacted by noisy labels, Pi can be
expressed as follows:

Pi = P t
i + ϵ, ϵ ∼ N (0, σ2I), (11)

where P t
i is the true label distribution of xi and ϵ is the noise term. Then, the MSE loss can be

derived as follows:

LMSE = E
[
∥P − o∥22

]
= E

[∥∥P t + ϵ− o
∥∥2
2

]
= E

[∥∥P t − o
∥∥2
2

]
+ 2E

[
(P t − o)T ϵ

]
+ E

[
∥ϵ∥22

]. (12)

Here, E
[
∥ϵ∥22

]
= Qσ2. Because ϵ is independent of P t and o so that E

[
(P t − o)T ϵ

]
= 0.

Therefore, Equation (12) can be simplified as follows:

LMSE = E
[∥∥P t − o

∥∥2
2

]
+Qσ2. (13)

From Equation (13), we can see that the effect of noise on the MSE loss is a fixed constant, which
means that the MSE loss is relatively robust to noise. Therefore, the MSE loss can be used to learn
the mapping relationship from X to Y as accurately as possible. Ultimately, LDLCC obtain the
calibrated confidence of ŷi as follows:

p̃i = max
oi

∥oi∥1
. (14)

In addition to the above details, due to the limited pages, the whole learning process of LDLCC and
its time complexity analysis are provided in Appendix A.

5 EXPERIMENTS

In this paper, we define confidence calibration for crowdsourcing and propose the LDLCC method.
Therefore, to validate the contributions of this paper, we need to answer the following questions:

• Q1: Do existing label aggregation methods suffer from miscalibration issues?

• Q2: Can LDLCC effectively calibrate the confidence for label aggregation methods?

• Q3: Is LDLCC better suited for crowdsourcing compared to existing calibration methods?

• Q4: Can LDLCC further improve the performance of downstream tasks?

This section presents our experimental setup, results, and analysis centered around these questions.
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Figure 4: Aggregation accuracy (%) and ECE of MV, IWMV, CL, MNLDP, LAGNN, KFNN, and
ELDP on Music dataset.

5.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on three widely-used real-world datasets: Music, LabelMe,
and Income. All these datasets are collected through Amazon Mechanical Turk (AMT). Among
them, Music contains 700 instances, 31 numeric attributes, and 10 classes. It is annotated by 44
workers, resulting in a total of 2946 crowd labels. LabelMe contains 1000 instances, 512 numeric
attributes, and 8 classes. It is annotated by 59 workers, resulting in a total of 2547 crowd labels.
Income contains 600 instances, 10 nominal attributes, and 2 classes. It is annotated by 67 workers,
resulting in a total of 6000 crowd labels. Considering the requirements of Equation (6), before
feeding the datasets into LDLCC, we apply numeric encoding to nominal attributes using scikit-
learn’s LabelEncoder, followed by standardizing all attributes with scikit-learn’s StandardScaler.

Baseline Methods. The label aggregation methods used in our experiments include MV (Sheng
et al., 2008), Iterative Weighted Majority Voting (IWMV) (Li & Yu, 2014), Crowd Layer (CL) (Ro-
drigues & Pereira, 2018), Multiple Noisy Label Distribution Propagation (MNLDP) (Jiang et al.,
2022), Label Aggregation with Graph Neural Networks (LAGNN) (Ying et al., 2024), K-Free Near-
est Neighbor (KFNN) (Zhang et al., 2024), and Enhanced Label Distribution Propagation (ELDP)
(Zhang et al., 2025). For MV, we utilize the implementation provided by the Crowd Environment
and its Knowledge Analysis (CEKA) platform (Zhang et al., 2015). The implementations of IWMV,
MNLDP, LAGNN, KFNN, and ELDP are sourced from their respective authors. Both CL and our
proposed LDLCC are implemented in Python. All parameter settings of baseline methods are con-
sistent with those specified in their original papers. For our proposed LDLCC, we set the number
of nearest neighbors K = 3. In addition, the regression network g in LDLCC is implemented as a
simple four-layer dense neural network. The first hidden layer consists of 64 units, while the second
hidden layer has 128 units, both using the ReLU activation function. MSE is employed as the loss
function, and the Adam optimizer with a learning rate of 0.001 is used for training. The network is
trained for 1000 epochs. To ensure a fair comparison, the same architecture for g are adopted as the
backbone network for CL.

Metrics. To assess calibration performance, we use ECE as the evaluation metric in this paper,
with the number of bins T set to 10. To mitigate the effects of randomness in experiments, each
method is executed 10 times on each dataset, and the average results are reported.

5.2 EXPERIMENTAL RESULTS.

Experimental Results for Q1. We compare the performance of each label aggregation method
on each dataset in terms of aggregation accuracy and ECE. Here, aggregation accuracy is calculated
as the ratio of the number of correctly aggregated labels to the total number of instances. ECE is
calculated by Equation (3). Due to the limited pages, the results on the dataset Music are presented
in Figure 4, while the results for the other two datasets are provided in Appendix B. As shown in
Figure 4, compared to the simplest MV method, all more advanced methods achieve higher aggre-
gation accuracy. However, except for IWMV, these advanced methods result in worse ECE. This
observation suggests that while more advanced label aggregation methods enhance aggregation ac-
curacy, they often degrade confidence calibration performance. These findings reveal that existing
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Table 1: ECE comparisons of seven label aggregation methods before and after using our proposed
LDLCC on three datasets.

Dataset MV IWMV CL MNLDP LAGNN KFNN ELDP
ORI LDLCC ORI LDLCC ORI LDLCC ORI LDLCC ORI LDLCC ORI LDLCC ORI LDLCC

Music 0.1263 0.1113 • 0.0874 0.0930 0.2384 0.0956 • 0.2946 0.2258 • 0.2395 0.2643 ◦ 0.5312 0.4192 • 0.4182 0.3146 •
LabelMe 0.1078 0.0756 • 0.0983 0.0678 • 0.2017 0.1173 • 0.1840 0.1193 • 0.2174 0.1851 • 0.3638 0.2113 • 0.2988 0.1388 •
Income 0.0402 0.0499 ◦ 0.0883 0.0776 • 0.2488 0.1099 • 0.0429 0.0402 0.1994 0.0961 • 0.0773 0.0755 0.0289 0.0374 ◦
Average 0.0914 0.0790 0.0913 0.0795 0.2296 0.1076 0.1739 0.1284 0.2188 0.1818 0.3241 0.2353 0.2486 0.1636

label aggregation methods suffer from miscalibration issues, which highlights the importance and
necessity of performing confidence calibration in our work.

Experimental Results for Q2. We compare the ECE performance of each label aggregation
method before and after using LDLCC on all three datasets. The results are shown in Table 1.
Here, the symbols • and ◦ in the table denote the ECE has a statistically significant improvement
or degradation using LDLCC with a corrected paired two-tailed t-test with the significance level α
= 0.05 (Nadeau & Bengio, 2003), respectively. From the results shown in Table 1, we can summa-
rize the following highlights: i) On dataset Music, LDLCC reduces the ECE of all baseline methods
except for IWMV and LAGNN. On dataset LabelMe, LDLCC reduces the ECE of all baseline meth-
ods. On dataset Income, LDLCC reduces the ECE of all baseline methods except for MV and ELDP.
LDLCC significantly reduces the ECE in 15 cases, failing in 3 cases. ii) The average ECE of the
baseline methods before using LDLCC is as follows: MV (0.0914), IWMV (0.0913), CL (0.2296),
MNLDP (0.1739), LAGNN (0.2188), KFNN (0.3241), and ELDP (0.2486). After using LDLCC,
the average ECE of the baseline methods decreases to MV (0.0790), IWMV (0.0795), CL (0.1076),
MNLDP (0.1284), LAGNN (0.1818), KFNN (0.2353), and ELDP (0.1636). LDLCC effectively re-
duces the average ECE of all baseline methods. These experimental results validate the effectiveness
of our LDLCC in calibrating the confidence for existing label aggregation methods.

Experimental Results for Q3. We compare the performance of our proposed LDLCC with ex-
isting calibration methods in supervised learning. As discussed above, existing calibration methods
in supervised learning can be divided into three categories. We compare LDLCC with the most
representative method from each category, and their specific details are as follows:

• For post-hoc calibration, we use Temperature Scaling (Guo et al., 2017) as the baseline and
set the temperature parameter to 3.

• For regularization-based calibration, we use Label Smoothing (Müller et al., 2019) as the
baseline and set the smoothing factor to 0.1.

• For loss-based calibration, we use Focal Loss (Mukhoti et al., 2020) as the baseline and set
the focal factor to 3.

Here, for Temperature Scaling (TS), since there is no validation set, we empirically set the tempera-
ture parameter to 3 to avoid overconfidence in the results. For Label Smoothing (LS) and Focal Loss
(FL), we use the suggested parameter settings in their original papers. For fairness, all these methods
use the same backbone network g from LDLCC. Except for FL, all methods adopt the cross-entropy
loss as the training loss. As the true labels are unavailable, we use aggregated labels as the target
labels. Based on these settings, we fix the label aggregation method as MV and the dataset as Music
for the experiments. The results are shown in Figure 5. From it, we can observe that, apart from our
proposed LDLCC, none of these calibration methods can further reduce the ECE of MV. These re-
sults indicate that our proposed LDLCC is more suitable for crowdsourcing compared to calibration
methods in supervised learning.

Experimental Results for Q4. We implement the latest Confidence Learning-based Noise Cor-
rection (CLNC) (Su et al., 2026) method as the downstream task to verify the effectiveness of con-
fidence calibration. CLNC is used to correct the aggregated labels of MV both before and after
confidence calibration by LDLCC on dataset Music. The noise ratios of CLNC are shown in Figure
6. Here, the noise ratio is calculated as 1 minus the aggregation accuracy. From the results shown
in Figure 6, it can be observed that, after confidence calibration by LDLCC, the noise ratio of MV
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Figure 8: ECE comparisons of LDLCC and its
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can be further reduced by CLNC. These results indicate that our LDLCC can effectively improve
the performance of downstream tasks after label aggregation.

5.3 DISCUSSION AND ANALYSIS

From the answers to the four questions above, it is evident that the motivation for defining confidence
calibration in crowdsourcing is justified, and the proposed LDLCC method is effective. Now, we
provide further analysis to demonstrate other underlying characteristics of LDLCC.

Calibration Analysis. To observe the calibration behavior of LDLCC in a more fine-grained man-
ner, we visualize the total error, defined as |Bt||at− p̄t|, in each bin Bt of ECE. For the experiments,
we still fix the label aggregation method as MV and the dataset as Music. The results are presented
in Figure 7. It can be observed that LDLCC tends to prioritize calibrating bins with higher confi-
dence. This indicates that, after calibration by LDLCC, higher calibrated confidence become more
accurate. However, it is worth noting that Figure 7 also highlights a limitation of LDLCC: low
confidence calibrated by LDLCC may be inaccurate.

Ablation Study. To investigate the effectiveness of the two steps in LDLCC, we conduct an abla-
tion study based on MV and the Music dataset. Specifically, we implement two variants of LDLCC:
LDLCC-1 removes the whole label distribution refinement step from LDLCC, and LDLCC-2 re-
moves the whole label distribution learning step from LDLCC. The results are shown in Figure 8. It
can be observed from Figure 8 that each step is crucial to the effectiveness of LDLCC. Removing
either the label distribution refinement step or the label distribution learning step will degrade the
calibration performance of LDLCC, making it perform worse than the original MV.

6 CONCLUSION

In this paper, we define the confidence calibration for crowdsourcing and propose a novel Label
Distribution Learning-based Confidence Calibration (LDLCC) method. LDLCC identifies the high-
confidence instances and refines their label distributions to mitigate the impact of noisy labels. Sub-
sequently, LDLCC calibrates the confidence by label distribution learning. Experimental results
demonstrate the effectiveness and other underlying characteristics of LDLCC.

However, as an initial method for confidence calibration in crowdsourcing, the current LDLCC still
has some limitations. For example, it tends to prioritize calibrating bins with higher confidence. In
the future, we will work toward further improving the performance of LDLCC in this direction.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We submit the code and datasets as supplementary materials, and the details of dataset preprocessing
and algorithm implementation are provided in the main text. Once our paper is accepted, we will
make the code and datasets publicly available on GitHub.
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Appendix A The whole learning process and time complexity analysis

Algorithm 1 The learning process of LDLCC

Input: Aggregated dataset D̂ = {xi,Pi, ŷi, p̂i}Ni=1
Parameter: The number of nearest neighbors K
Output: Calibrated dataset D̃ = {xi,Pi, ŷi, p̃i}Ni=1

1: for q = 1 to Q do
2: Calculate µcq for cq by Equation (4).
3: end for
4: Identify high-confidence instances Xh by Equation (5).
5: for i = 1 to |Xh| do
6: for j = 1 to |Xh| do
7: Calculate dij for xi and xj by Equation (6).
8: end for
9: Sort the distances and query K neighbors Ni for xi.

10: Calculate s(xi,Ni) for xi by Equation (7).
11: end for
12: for i = 1 to |Xh| do
13: if s(xi,Ni) = 0 then
14: Sharpen Pi for xi by Equation (9).
15: else
16: Remove xi from Xh.
17: end if
18: end for
19: Train the regression network g by Equation (10).
20: for i = 1 to N do
21: Obtain p̃i for xi by Equation (14).
22: end for
23: return D̃ = {xi,Pi, ŷi, p̃i}Ni=1

In summary, the complete learning process of LDLCC is shown in Algorithm 1. In Algorithm 1,
lines 1-3 calculate the average confidence µcq for each class cq and their time complexity is O(NQ).
Line 4 identifies high-confidence instances Xh and its time complexity is O(N). Lines 6-8 calculate
the distances between xi and each instance xj in Xh and their time complexity is O(NM). Line
9 sorts the distances and queries the neighbors Ni for xi and its time complexity is O(N logN).
Line 10 compares the aggregated labels of xi and its neighbors Ni and its time complexity is O(K).
Due to K ≪ N , the time complexity of lines 6-10 is O(N(M + logN)). Therefore, the time
complexity of lines 5-11 is O(N2(M + logN)). Lines 12-18 refine the label distribution for high-
confidence instances and their time complexity is O(NQ). Let O(t1) and O(t2) denote the training
and test time complexity of g, respectively. Line 19 trains g and its time complexity is O(t1).
Line 20-22 obtain the calibrated confidence for each instance in D̂ and their time complexity is
O(N(t2 + Q)). Considering only the highest-order terms, the overall time complexity of LDLCC
is O(N2(M + logN) + t1 +N(t2 +Q)).
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Appendix B Experimental results on datasets LabelMe and Income
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Figure 9: Aggregation accuracy (%) and ECE of MV, IWMV, CL, MNLDP, LAGNN, KFNN, and
ELDP on datasets LabelMe and Income.
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