
Schrödinger Bridge Flow
for Unpaired Data Translation

Valentin De Bortoli ∗

Google DeepMind
Iryna Korshunova ∗

Google DeepMind
Andriy Mnih

Google DeepMind
Arnaud Doucet

Google DeepMind

Abstract

Mass transport problems arise in many areas of machine learning whereby one
wants to compute a map transporting one distribution to another. Generative
modeling techniques like Generative Adversarial Networks (GANs) and Denoising
Diffusion Models (DDMs) have been successfully adapted to solve such transport
problems, resulting in CycleGAN and Bridge Matching respectively. However,
these methods do not approximate Optimal Transport (OT) maps, which are known
to have desirable properties. Existing techniques approximating OT maps for
high-dimensional data-rich problems, such as DDM-based Rectified Flow and
Schrödinger Bridge procedures, require fully training a DDM-type model at each
iteration, or use mini-batch techniques which can introduce significant errors. We
propose a novel algorithm to compute the Schrödinger Bridge, a dynamic entropy-
regularised version of OT, that eliminates the need to train multiple DDM-like
models. This algorithm corresponds to a discretisation of a flow of path measures,
which we call the Schrödinger Bridge Flow, whose only stationary point is the
Schrödinger Bridge. We demonstrate the performance of our algorithm on a variety
of unpaired data translation tasks.

1 Introduction

The problem of finding a map to transport one probability distribution to another one has numerous
applications in machine learning. In particular, it is at the core of generative modeling where the idea
is to transform a noise distribution into the data distribution, and is also central to transfer learning
tasks such as image-to-image translation. For discrete probability distributions, it is possible to
compute the Optimal Transport (OT) map but this is computationally expensive (Peyré et al., 2019).
By showing that an entropy-regularised version of OT, the Entropic OT (EOT), could be computed
much more efficiently using the Sinkhorn algorithm, Cuturi (2013) has enabled transport ideas to
be used in numerous applications (Ge et al., 2021; Zhou et al., 2022). However, the computational
complexity of Sinkhorn algorithm is quadratic in the sample size, which makes its application to very
large datasets impractical. Mini-batch versions have been proposed, see e.g. (Genevay et al., 2018),
but tend to introduce significant errors in high dimensions (Sommerfeld et al., 2019).

In the context of generative modeling, Denoising Diffusion Models (DDMs) (Song et al., 2021a; Ho
et al., 2020) have shown impressive performance in a variety of domains. DDMs define a forward
process progressively noising the data, and sample generation is achieved by approximating the time-
reversal of this diffusion. In order to leverage the iterative refinement properties of DDMs in the OT
setting, methods exploiting the equivalence between the static versions of (E)OT and their dynamic
counterparts (Benamou and Brenier, 2000; Léonard, 2014) have been developed. A procedure to
approximate the dynamic OT is considered by Liu et al. (2023b), while techniques to approximate the
dynamic equivalent to EOT, the Schrödinger Bridge (SB), have been proposed in (De Bortoli et al.,
2021; Vargas et al., 2021; Chen et al., 2022; Peluchetti, 2023; Shi et al., 2023). These techniques are

∗Equal contribution.

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024).

expensive however, as they require training multiple DDM-type models. Mini-batch versions of OT
and Sinkhorn (Pooladian et al., 2023; Tong et al., 2024b) combined with bridge or flow matching
have also been proposed to approximate the OT path and SB, but they optimise a minibatch OT
objective that can introduce significant errors in high dimensions: the error in Wasserstein-1 distance
is of order O(B−1/(2d)), where d is the dimension of the problem and B the minibatch size, see
(Sommerfeld et al., 2019, Corollary 1).

In this paper, we propose a novel approach to computing the SB. Similarly to Iterative Markovian
Fitting (IMF) and its practical implementation, Diffusion Schrödinger Bridge Matching (DSBM)
(Shi et al., 2023; Peluchetti, 2023), it leverages the fact that the SB is the only Markov process with
prescribed marginals at the endpoints which is in the reciprocal class of the Brownian motion, i.e. it
has the same bridge as the Brownian motion (Léonard, 2014); see Section 2 for more details on
Markov processes and the reciprocal class. Compared to DSBM, our approach is easier to implement
as it does not require caching samples, alternating between optimising two different losses, and,
optionally, uses one neural network instead of two. In Section 3, we start by introducing a flow of
path measures whose time-discretisation yields a family of algorithms called α-IMF and presented
in Section 4. Notably, we show that α-IMF converges to the Schrödinger Bridge for any α ∈ (0, 1].
Additionally, for a special value of the discretisation stepsize α = 1, we recover the IMF procedure
(Peluchetti, 2023; Shi et al., 2023), while α < 1 corresponds to online versions of IMF. We implement
a parametric version of the α-IMF as an online DSBM procedure, called α-DSBM. We illustrate the
efficiency of our approach in unpaired image-to-image translation settings in Section 6.

Notation. We denote the space of path measures by P(C), i.e. P(C) = P(C([0, 1],Rd)), where
C([0, 1],Rd) is the space of continuous functions from [0, 1] to Rd. The subset of Markov path mea-
sures associated with a diffusion of the form dXt = vt(Xt)dt+ σtdBt, with σ, v locally Lipschitz,
is denotedM. For Q induced by (

√
εBt)t∈[0,1], with ε > 0 and (Bt)t≥0 a d-dimensional Brownian

motion, the reciprocal class of Q is denotedR(Q), see Definition 2.1. For any P ∈ P(C), we denote
by Pt its marginal distribution at time t, Ps,t the joint distribution at times s, t, Ps|t the conditional
distribution at time s given the state at time t, and P|0,1 ∈ P(C) the distribution of the path on time
interval (0, 1) given its endpoints; e.g. Q|0,1 is a scaled Brownian bridge. Unless specified otherwise,
all gradient operators∇ are w.r.t. the variable xt with time index t. Given probability spaces (X,X)
and (Y,Y), a Markov kernel K : X×Y → [0, 1], and a probability measure µ defined on X , we write
µK for the probability measure on Y such that for any A ∈ Y we have µK(A) =

∫
X
K(x,A)dµ(x).

In particular, for any joint distribution Π0,1 over Rd × Rd, we denote the mixture of bridges mea-
sure as Π = Π0,1P|0,1 ∈ P(C), which is short for Π(·) =

∫
Rd×Rd P|0,1(·|x0, x1)dΠ0,1(x0, x1).

Finally, we define the Kullback–Leibler (KL) divergence between two probability measures
π0, π1 ∈ P(X) as KL(π0|π1) =

∫
X
log((dπ0/dπ1)(x))dπ0(x) if π0 is absolutely continuous w.r.t. π1

and KL(π0|π1) = +∞ otherwise.

2 Optimal Transport and Schrödinger Bridge

Unpaired Transfer and Optimal Transport. Given unpaired data samples from π0 and π1, where
π0, π1 are two distributions on Rd, we are interested in designing a transport map from π0 to π1. This
corresponds to an unpaired data transfer task. We can formulate this problem as finding a distribution
Π on Rd × Rd with marginals Π0 = π0 and Π1 = π1 so that if X0 ∼ π0 then X1|X0 ∼ Π1|0(·|X0)
satisfies X1 ∼ π1. Among an infinite number of such so-called coupling distributions Π, we are here
interested in finding the Entropic Optimal Transport (EOT) coupling Π⋆ defined as

Π⋆ = argminΠ∈P(Rd×Rd)

{∫
Rd×Rd

1

2
∥x− y∥2dΠ(x, y)− εH(Π) ; Π0 = π0, Π1 = π1

}
, (1)

where H(Π) is the differential entropy of Π and ε > 0 is a regularisation hyperparameter (Peyré et al.,
2019). For ε = 0, we recover the standard OT.

In order to leverage the recent advances in generative modeling, and in particular the concept of
iterative refinement central to DDMs, we turn to a dynamic formulation of EOT known as the
Schrödinger Bridge problem (Léonard, 2014). It is defined as follows: find P⋆ ∈ P(C) such that

P⋆ = argminP∈P(C){KL(P|Q) ; P0 = π0, P1 = π1}, (2)

2

with Q ∈ P(C) induced by a scaled d-dimensional Brownian motion (
√
εBt)t∈[0,1]. The term

dynamic here refers to the fact that (2) is defined on path measures, i.e. on (stochastic) processes, in
contrast to the static problem (1) which is defined on measures on the space Rd × Rd. In Section 3,
we show that solving (2) is equivalent to optimising the vector field of a stochastic process using
objectives similar to the ones of bridge matching (Peluchetti, 2021; Albergo and Vanden-Eijnden,
2023; Lipman et al., 2023; Liu et al., 2023a). Under mild assumptions, it can be shown that P⋆

0,1 = Π⋆,
see e.g. (Léonard, 2014; Pavon et al., 2021). Hence solving (1) reduces to solving (2). Once we have
found P⋆ associated with (X⋆

t)t∈[0,1], we can sample from P⋆ by first sampling X⋆
0 ∼ π0 and then

sampling the trajectory (X⋆
t)t∈(0,1] which yields (X⋆

0,X
⋆
1) ∼ Π⋆.

Reciprocal and Markov projections. To introduce our methodology, it is necessary to recall the
notions of reciprocal and Markov projections. We refer to Shi et al. (2023) for more details. For
practitioners, a more intuitive explanation of these projections is given in Appendix E.

Definition 2.1 (Reciprocal projection): P ∈ P(C) is in the reciprocal class R(Q) of Q if P =
P0,1Q|0,1. We define the reciprocal projection of P ∈ P(C) as P⋆ = projR(Q)(P) = P0,1Q|0,1. We
will write projR instead of projR(Q) to simplify notation.

In other words, P is in the reciprocal class of Q if the conditional distribution of a path given its
endpoints is identical under P and Q, see (Rœlly, 2013). Sampling from the reciprocal projection of
P can be achieved by sampling a path (Xt)t∈[0,1] from P, keeping only the values of the endpoints,
say X0,X1, and then sampling a new value for the bridge (Xt)t∈(0,1) from Q|0,1.

Definition 2.2 (Markov projection): Assume that Q is induced by (
√
εBt)t∈[0,1] for ε > 0. Then,

when it is well-defined, for any P ∈ R(Q), the Markovian projection M = projM(P) ∈M is the
path measure induced by the diffusion (X⋆

t)t∈[0,1] with for any t ∈ [0, 1]

dX⋆
t = v⋆t (X

⋆
t)dt+

√
εdBt, v⋆t (xt) =

(
EP1|t [X1 |Xt = xt]− xt

)
/(1− t), X⋆

0 ∼ P0.

In practice, implementing a Markovian projection requires solving a regression problem to approx-
imate EP1|t [X1 | Xt = xt], similar to the one appearing in bridge matching and flow matching.
One key property of the Markovian projection is that Mt = Pt for all t ∈ [0, 1], i.e. the Markovian
projection preserves the marginals; see (Peluchetti, 2021) for instance.

Iterative Markovian Fitting. Leveraging the reciprocal and Markovian projections, Peluchetti
(2023) and Shi et al. (2023) concurrently introduced IMF. Starting from P̂0 = (π0 ⊗ π1)Q|0,1, a
measure where endpoints are sampled independently from π0 and π1 and then interpolated using
a (scaled) Brownian bridge, they define a sequence of path measures (Pn, P̂n)n∈N where Pn =

projM(P̂n) and P̂n+1 = projR(Pn). This ensures that Pn
0 = π0, Pn

1 = π1 for all n, and it
can be shown that the sequence (Pn)n∈N converges to the SB, see (Peluchetti, 2023, Theorem
2). The practical implementation of this algorithm proposed by Shi et al. (2023) is called DSBM.
Implementing DSBM poses challenges, as each Markovian projection requires training a neural
network to approximate the relevant conditional expectations by minimising a bridge matching loss.
Furthermore, in practice, generated model samples are stored in a cache in order to train the next
iterations of DSBM. This introduces additional hyperparameters that require tuning. In Section 3 we
propose α-IMF, an algorithm which can be interpreted as the discretisation of a flow of path measures.
This leads to α-DSBM, an algorithm that is computationally much more efficient than DSBM as it
does not rely on a Markovian projection at each step.

3 Schrödinger Bridge flow

We will now introduce a flow of path measures (Ps)s≥0, and show that the time-discretisation of
this flow with an appropriate stepsize α ∈ (0, 1] yields a family of procedures called α-IMF, which
all converge to the Schrödinger Bridge. While α = 1 yields the classical IMF, α ∈ (0, 1) yields
an incremental version of IMF. In Section 4 we show that α-IMF can be implemented as an online
version of DSBM.

3

3.1 A flow of path measures

Let (Ps, P̂s)s≥0 be a flow of path measures defined for any s ≥ 0 by

P̂0 = (π0 ⊗ π1)Q|0,1, ∂sP̂s = projR(projM(P̂s))− P̂s, Ps = projM(P̂s), (3)

Figure 1: Illustration of the SB Flow
and comparison with IMF. P⋆ is the SB,
(P̂n)n∈N the IMF sequence and (P̂s)s≥0

the flow we consider. See Appendix B
for the analysis of this example.

which we assume is well-defined. Note that for any
s ≥ 0, Ps is Markov while P̂s is in the reciprocal
class of Q. Crucially, the only fixed point of (3) is the
SB. Indeed, let P̄ be a fixed point of (Ps)s≥0 in (3).
Then, we have that P̄ = projR(projM(P̄)). Hence,
we get P̄ = projR(projM(. . . (projR(projM(P̄))) . . .)).
Hence, under mild assumptions, P̄ is a limit point of IMF
and therefore P̄ is the SB P⋆ given by (2), see (Peluchetti,
2023, Theorem 2).

Next, for any α ∈ (0, 1], we define the following discreti-
sation of (3) called α-IMF:

P̂n+1 = (1− α)P̂n + αprojR(projM(P̂n)), (4)

and Pn = projM(P̂n). Note that for any n ∈ N, P̂n ∈
R(Q). This recovers the IMF procedure (Shi et al., 2023;
Peluchetti, 2023) when α = 1. Using the definition of the
sequence (P̂n)n∈N, it is possible to analyse the sequence

(Pn)n∈N using the properties of the KL divergence as well as the Pythagorean identities derived in
(Shi et al., 2023; Peluchetti, 2023). We first introduce some assumptions on the Schrödinger Bridge
problem. We recall that the differential entropy of a probability measure π is given by

H(π) = −
∫
Rd

log((dπ/dLeb)(x))dπ(x),

if π admits a density with respect to the Lebesgue measure and +∞ otherwise. Recall that Q is
associated with (

√
εBt)t∈[0,1] and assume that Q0 = Leb. Let π0, π1 ∈ P(Rd) such that∫

Rd

∥x∥2dπi(x) < +∞, H(πi) < +∞,

for i ∈ {0, 1}. Under these assumptions, we can use the characterisation of the SB as the only path
measure that preserves π0, π1, and is both Markov and in the reciprocal class of Q (see e.g. (Léonard,
2014, Theorem 2.12)). We get the following result.

Theorem 3.1 (Convergence of α-IMF): Let α ∈ (0, 1] and (Pn, P̂n)n∈N defined by (4). Under
mild assumptions, we have that limn→+∞ Pn = P⋆, where P⋆ is the solution of the Schrödinger
Bridge problem (2).

3.2 Discretisation and non-parametric loss

We show here that α-IMF is associated with an incremental version of DSBM for α ∈ (0, 1).

Iterative Markovian Fitting. For any v : [0, 1]× Rd → Rd, we introduce the loss function

L(v,P) =
∫ 1

0

Lt(vt,P)dt =
∫ 1

0

∫
(Rd)3

∥∥∥vt(xt)−
x1 − xt

1− t

∥∥∥2dP0,1(x0, x1)dQt|0,1(xt|x0, x1)dt,

(5)
where we recall that Q is induced by (

√
εBt)t∈[0,1] for some ε > 0. This loss was already considered

in (Peluchetti, 2021; Lipman et al., 2023; Liu et al., 2023a; Liu, 2022; Shi et al., 2023). We also
define the path measure Pv ∈ P(C) associated with

dXt = vt(Xt)dt+
√
εdBt, X0 ∼ π0. (6)

4

Consider first the sequence (vn)n∈N defined by

vn+1 = argminvL(v,Pvn). (7)

Using Definition 2.2, we have that Pvn+1 = projM(projR(Pvn)), which corresponds to Pn+1 in the
IMF sequence. Therefore we have that limn→+∞ Pvn = P⋆ under mild assumptions (Peluchetti,
2023, Theorem 2).

Functional gradient descent. We now introduce a relaxation of (7), where, instead of considering
the argmin, we update the vector field with one gradient step. To define this relaxation, we recall
that for a functional F : F → R, where F is an appropriate function space, its functional derivative
(Courant and Hilbert, 2008) with reference measure µ is denoted ∇µF and is given for any ϕ ∈ F ,
when it exists, by

limγ→0(F (f + γϕ)− F (f))/γ =
∫
⟨∇µF (f)(x), ϕ(x)⟩dµ(x).

Initialised with v0t (x) = (EP̂0
1|t
[X1 | Xt = x] − x)/(1 − t), where P̂0 = (π0 ⊗ π1)Q|0,1, we now

introduce a sequence of vector fields (vn)n∈N. This corresponds to training a bridge matching model
(see e.g. Liu et al. (2023a); Albergo et al. (2023)), giving Pv0 = projM(P̂0). Then for n ∈ N, let

vn+1
t (x) = vnt (x)− δn∇µnLt(v

n
t ,Pvn)(x), (8)

with δn > 0 and µn ∈ P(C). The parameters (δn, µn)n∈N will be made explicit in Proposition 3.2.
We emphasize that, in contrast to the IMF procedure, in the online update (8) we do not need to solve
a Markovian projection problem at every step; instead we simply take a gradient step on the loss (5).

Connection with α-IMF. The following proposition shows that (Pvn)n∈N defined by (8) is
associated with α-IMF defined in (4).

Proposition 3.2 (Non-parametric updates are α-IMF): Let α ∈ (0, 1], (Pn, P̂n)n∈N as in (4),
δn = α and µn = (1− α)P̂n + αprojR(Pn). Then, under mild assumptions, we have Pvn = Pn

for all n ∈ N.

Combining Theorem 3.1 to Proposition 3.2, we get that limn→+∞ Pvn = P⋆, i.e. the non-parametric
procedure converges to the SB.

4 α-Diffusion Schrödinger Bridge Matching

From DSBM to α-DSBM. In Section 3, we introduced α-IMF, a scheme which defines a sequence
of path measures converging to the SB for all α ∈ (0, 1]. For α = 1, this corresponds to the IMF,
whose practical DSBM implementation (Shi et al., 2023) requires repeatedly solving an expensive
minimisation problem (7). In contrast, for α < 1 we are only required to take one (non-parametric)
gradient step to update the vector field, see (8). This suggests the following practical implementation
of α-IMF, called α-DSBM: First, pretrain a bridge matching model so that for t ∈ [0, 1] and x ∈ Rd,
vθt (x) = (EP̂0

1|t
[X1 | Xt = x] − x)/(1 − t), where P̂0 = (π0 ⊗ π1)Q|0,1. Then, perform the

parametric version of the update (8):

θ ← θ−α∇θL(θ,Pθ̄); L(θ,P) =
∫ 1

0

∫
(Rd)3

∥∥∥vθt (xt)−
x1 − xt

1− t

∥∥∥2dP0,1(x0, x1)dQ|0,1(xt|x0, x1)dt,

(9)
where Pθ̄ is a stop-gradient version of Pvθ . In Appendix D.2, we give a theoretical justification
for this parametric equivalent of (5) and (8) by showing that, as α→ 0, the update on the velocity
fields vθ given by (9) corresponds to a direction of descent for the non-parametric loss (8) on
average. Once again, we emphasize that if we replace the gradient step in (9) with the minimisation
θ ← argminθL(θ,Pθ̄), we recover DSBM.

Bidirectional online procedure. As with DSBM, directly implementing (9) leads to error quickly
accumulating, see Appendix I for details. One way to circumvent this error accumulation is-
sue is to consider a bidirectional procedure, in which we train both a forward and a backward

5

model. This is possible because the Markovian projection coincides for forward and back-
ward path measures, see (Shi et al., 2023, Proposition 9). This suggests considering the loss
L(v , v ,P ,P) =

∫ 1

0
Lt(vt , vt ,P ,P)dt, which is an extension of (5), where

Lt(vt , vt ,P ,P) =

∫
(Rd)3

∥∥∥vt (xt)−
x1 − xt

1− t

∥∥∥2dP0,1(x0, x1)dQt|0,1(xt|x0, x1) (10)

+

∫
(Rd)3

∥∥∥v1−t(xt)−
x0 − xt

t

∥∥∥2dP0,1(x0, x1)dQt|0,1(xt|x0, x1).

Similarly to (6), we define Pv ,Pv , associated with (Xt)t∈[0,1] and (Y1−t)t∈[0,1] respectively, which
are defined by forward and backward SDEs

(fwd): dXt = vt (Xt)dt+
√
εdBt, X0 ∼ π0, (bwd): dYt = vt (Yt)dt+

√
εdBt, Y0 ∼ π1. (11)

Similarly to (8), we define non-parametric updates for any n ∈ N, t ∈ [0, 1] and x ∈ Rd

(vn+1,
t (x), vn+1,

t (x)) =
(
vn,t (x), vn,t (x)

)
− δn∇µnLt

(
vn,t (x), vn,t (x),Pvn, ,Pvn,

)
(x).

We have the following proposition which ensures our bidirectional procedure is still valid and that
the results of Proposition 3.2 still hold.

Proposition 4.1 (Bidirectional updates): Let α ∈ (0, 1]. For any n ∈ N, define (Pn, P̂n)n∈N by
(4). Then, under mild assumption and assuming that δn = α and µn = (1− α)P̂n + αprojR(Pn),
we have that for any n ∈ N, Pvn, = Pvn, = Pn.

In Appendix I, we show that in the Gaussian setting the bidirectional procedure (4.1) does not
accumulate error when the vector field is approximated, while the unidirectional one (8) does.

Vector field parameterisation. Contrary to existing procedures (Shi et al., 2023; Peluchetti, 2023;
Liu, 2022), we do not parameterise v and v using two separate networks. Instead, we consider an
additional input s ∈ {0, 1} such that vθ(1, ·) ≈ v and vθ(0, ·) ≈ v . This allows us to substantially
reduce the number of parameters in the model. The conditioning on s in the network is detailed in
Appendix K. Before stating our full algorithm in Algorithm 1, we introduce a batched parametric
version of (10). For ease of notation, we write Interpt for the operation corresponding to sampling
from Qt|0,1, i.e.

Interpt(X0,X1,Z) = (1− t)X0 + tX1 +
√

ε(1− t)tZ. (12)

We are now ready to introduce the batched parametric version of (10). For a given batch of inputs X1:B
0

and X1:B
1 , timesteps t ∼ Unif([0, 1])⊗B , and Xt = Interpt(X0,X1,Z) with Z ∼ N (0, Id)⊗B , we

compute the empirical forward and backward losses as

ℓ (θ; t,X1,Xt) =
1

B

B∑
i=1

∥vθ
(
1, ti,Xi

t

)
−
(
Xi

1 −Xi
t

)
/(1− ti)∥2, (13)

ℓ (θ; t,X0,Xt) =
1

B

B∑
i=1

∥∥∥vθ (0, 1− ti,Xi
t

)
−
(
Xi

0 −Xi
t

)
/ti
∥∥∥2.

We present the resulting α-DSBM in Algorithm 1. Note that in this algorithm, we maintain an
Exponential Moving Average (EMA) of model parameters, as is common in diffusion models (Nichol
and Dhariwal, 2021). During the finetuning stage, when we generate samples to use as model’s
inputs, we then have a choice of sampling using the EMA or non-EMA parameters. At test time,
we always sample using the EMA parameters, as it is known to improve the visual quality (Song
and Ermon, 2020). In Algorithm 1, we specify α ∈ (0, 1] as a stepsize parameter. In practice, we
use Adam (Kingma and Ba, 2015) for optimization, thus the choice of α is implicit and adaptive
throughout the training. To emphasize the importance of the parameter α, we sweep over its value
with an explicit solver SGD in a toy setting, see Appendix K.2. We refer to Appendix K for more
details on our experimental setup.

6

Algorithm 1 α-Diffusion Schrödinger Bridge Matching

1: Input: datasets π0 and π1, entropic regularisation ε, number of pretraining and finetuning steps
Npretraining and Nfinetuning, batch size B and half batch size b = B/2, EMA decay γ, initial
parameters θ and initial EMA parameters θEMA = θ, α ∈ (0, 1]

2: for n ∈ {1, . . . , Npretraining} do
3: Sample (X0,X1) ∼ (π0 ⊗ π1)

⊗B

4: Sample t ∼ Unif([0, 1])⊗B and Z ∼ N (0, Id)⊗B and compute Xt = Interpt(X0,X1,Z)

5: Update θ with a gradient step on 1
2

[
ℓ
(
t1:b,X1:b

1 ,X1:b
t

)
+ ℓ

(
tb+1:B ,Xb+1:B

0 ,Xb+1:B
t

)]
6: Update EMA parameters: θEMA = γθEMA + (1− γ)θ
7: end for
8: for n ∈ {1, . . . , Nfinetuning} do
9: Sample (X0,X1) ∼ (π0 ⊗ π1)

⊗b

10: Sample X̂1 solving forward SDE (11)-(fwd) with vθEMA(1, ·) or vθ(1, ·) starting from X0

11: Sample X̂0 solving backward SDE (11)-(bwd) with vθEMA(0, ·) or vθ(0, ·) starting from X1

12: Sample t ∼ Unif([0, 1])⊗b and Z ∼ N (0, Id)⊗b and compute Xt = Interpt (X̂0,X1,Z)

13: Sample t ∼ Unif([0, 1])⊗b and Z ∼ N (0, Id)⊗b and compute Xt = Interpt (X0, X̂1,Z)
14: Update θ with a gradient step on 1

2 [ℓ (t ,X1,Xt) + ℓ (t ,X0,Xt)] and stepsize α
15: Update EMA parameters: θEMA = γθEMA + (1− γ)θ
16: end for
17: Output: (θ, θEMA) parameters of the finetuned model

5 Related work

Solving Schrödinger Bridge problems. Schrödinger Bridges (Schrödinger, 1932) have been
thoroughly studied through the lens of probability theory (Léonard, 2014) and stochastic control
(Dai Pra, 1991; Chen et al., 2021). They recently found applications in generative modeling and
related fields leveraging recent advances in diffusion models (De Bortoli et al., 2021; Vargas et al.,
2021; Chen et al., 2022). Extensions of these methods to other machine learning problems and
modalities were studied in (Shi et al., 2022; Thornton et al., 2022; Liu et al., 2022; Chen et al., 2023;
Tamir et al., 2023). Shi et al. (2023); Peluchetti (2023) concurrently introduced the DSBM algorithm
which relies on a new procedure called IMF, while the DSB algorithm introduced in (De Bortoli et al.,
2021) is based on the standard Iterative Proportional Fitting (IPF) scheme. Neklyudov et al. (2023a,b);
Liu et al. (2022) generalise DSBM to arbitrary cost functions, albeit at the expense of having to learn
the reciprocal projection which is no longer given by a Brownian bridge. These new methodologies
translate to improved numerics when compared to their IPF counterparts, but they remain reliant on
alternating between the optimisation of two losses. Finally, we note that the Schrödinger Bridge flow
and the α-IMF procedure can be linked to the Sinkhorn flow recently introduced by Karimi et al.
(2024), see Appendix H.1 for a detailed discussion.

Sampling-free methodologies. Sampling-free methodologies have been proposed to solve OT
related objectives. In (Liu et al., 2023a; Somnath et al., 2023; Diefenbacher et al., 2024; Cao et al.,
2024), the authors perform one step of DSBM, i.e. only consider the pretraining stage of our algorithm.
While the obtained bridge might enjoy transport properties, it does not solve an OT problem. In
another line of work, Pooladian et al. (2023); Tong et al. (2024a,b); Eyring et al. (2024) have proposed
simulation-free methods to minimise OT objectives. However, they target not the OT problem, but a
minibatch version of it which coincides with OT only in the limit of infinite batch size, see (Pooladian
et al., 2023, Theorem 4.2). Other sampling-free methods to solve the Schrödinger Bridge problem
include Kim et al. (2024); Gushchin et al. (2024b) both of which rely on adversarial losses to solve
the OT problem. In (De Bortoli et al., 2021; Vargas et al., 2021; Liu et al., 2022; Shi et al., 2023;
Peluchetti, 2023) the adversarial objective is dropped and instead the procedure requires alternating
objectives during training and is not sampling-free. We also highlight the line of work of Korotin
et al. (2024); Gushchin et al. (2024a) in which the Schrödinger Bridge potentials are parameterised
with mixtures of Gaussians, allowing for fast training in small dimensions. Finally, recently Deng
et al. (2024) introduced a variation on Schrödinger Bridge for generative modeling, which while still
not sampling-free, does not require learning a forward process.

7

Figure 2: Evolution of the covariance during online and iterative DSBM finetuning for forward and
backward networks. The finetuning starts after 10K steps of training a bridge matching model. For
the iterative case, we alternate between forward and backward updates with varying frequencies,
i.e. changing after 1K, 2.5K and 5K steps. Left: Gaussian with scalar covariance matrix. Right:
Gaussian with full covariance matrix. We compute the normFrob between C⋆ and its estimate using
Bridge Matching (Base), α-DSBM (Online), and DSBM (Iterative with @xK training steps per model
fit)

6 Experiments

In this section, we illustrate the efficiency of α-DSBM on different tasks. In Section 6.1, we compare
α-DSBM to DSBM in a Gaussian setting where the EOT coupling is tractable and show that α-DSBM
recovers the solution faster than DSBM. In Section 6.2, we illustrate the scalability of our method
through a range of unpaired image translation experiments.

6.1 Gaussian case

We compare α-DSBM to DSBM in the Gaussian setting where π0 = N (0, σ2
0Id), π1 = N (0, σ2

1Id)
and Q is associated with (

√
εBt)t∈[0,1] with

√
ε = 0.5. In this case, the EOT coupling is N (0,Σ⋆),

with Σ⋆ given by

Σ⋆ =

(
σ2
0Id σ2

⋆Id
σ2
⋆Id σ2

1Id

)
, where σ2

⋆ = (1/2)((σ2
0σ

2
1 + ε2)1/2 − ε),

with Id being a d× d identity matrix. We consider d = 50, σ0 = σ1 = 1, resulting in σ2
⋆ ≈ 0.88. To

showcase the robustness of α-DSBM, we consider the initial coupling P0,1, where (X0,X1) ∼ P0,1,
X0 ∼ N (0, Id), X1 = −X0, and let P̂0 = P0,1Q|0,1. In this setting, the base model, i.e. bridge
matching, significantly underestimates the true covariance σ2

⋆ , as shown in Section 6.1. Additionally,
the figure illustrates that online finetuning approaches the true solution faster than the original iterative
DSBM finetuning. For the latter, we can set how often we alternate between updating the forward
and backward networks, and as this frequency increases, the behaviour approaches that of the online
finetuning.

Full covariance Gaussian case. Let π0 = N (µ0,Σ0), π1 = N (µ1,Σ1) with Σi = Id + 1
2ZiZ

⊤
i

for i ∈ {0, 1} and Z0, Z1 independent d × d matrices with unit Gaussian entries. We also set
µ0 = µ1 = 0. We consider the Entropic Optimal Transport (EOT) with regularization σ = 0.5 and
d = 3, given by

Π = N (µ⋆,Σ⋆), Σ⋆ =

(
Σ0 C⋆

C⊤
⋆ Σ1

)
,

with C⋆ = 1
2 [Σ

1/2
0 D⋆Σ

−1/2
0 − σ2Id], with D⋆ = (4Σ

1/2
0 Σ1Σ

1/2
0 + σ4Id)1/2. Let normFrob =

∥A− B∥Fro/∥A∥Fro be the normalized Frobenius distance between matrices A and B. The results
are presented in Section 6.1 and confirm those presented in the original manuscript considering a
diagonal covariance.

8

Figure 3: Left: FID and Mean Squared Distance (MSD) on EMNIST to MNIST translation before
and after finetuning with different values of ε. Right: AFHQ-64 samples after the finetuning. For
both, we use a bidirectional model with online finetuning. More results are in Appendix K.3 and K.4.

6.2 Image datasets

Similarly to Shi et al. (2023), we apply our method to image translation problems, such as MNIST
digits to EMNIST letters (LeCun and Cortes, 2010; Cohen et al., 2017), Wild to Cat domains from
the Animal Faces-HQ (AFHQ) dataset (Choi et al., 2020), downsampled to 64 × 64 and 256 × 256
resolutions and CelebA 64× 64.

The whole training procedure can be framed as a two-stage process: first, we train a base model on the
true data samples, performing bridge matching (Peluchetti, 2021; Albergo and Vanden-Eijnden, 2023;
Lipman et al., 2023; Liu et al., 2023a), and then we finetune this model. We compare models that
combine different vector field parameterisations (two networks vs. one bidirectional net), finetuning
methods (iterative vs. online), and sample generation strategies during the finetuning stage.

Following the established practice (Choi et al., 2020), we evaluate our models using FID (Heusel
et al., 2017) for visual quality, and mean squared distance (MSD) or LPIPS (Zhang et al., 2018) for
alignment. It is important to note that for image translation tasks at hand, FID scores are not ideal,
as FID was designed for natural RGB images, which is not the case for MNIST. It is also not well
suited for small sample sizes as it is the case with AFHQ, where the test set in each domain has fewer
than 500 examples. Thus quantitative results in Table 1 should be interpreted cautiously, and we
recommend a visual inspection of samples to complement these quantitative measures, especially for
the AFHQ models. Samples from the models along with the training and evaluation protocols are
given in Appendix K.

Compared to the iterative DSBM, our online finetuning α-DSBM reduces the number of tunable
hyperparameters, i.e. inner and outer iterations, refresh rate and the size of the cache for storing
generated samples. This simplifies implementation and makes the algorithm more practical. The
primary remaining hyperparameter, the variance of a Brownian motion ε, requires careful tuning as it
influences the trade-off between the visual quality and alignment, as was also observed in Shi et al.
(2023). An appropriate ε needs to balance the two: setting ε too low results in poor visual quality,
while high values of ε cause poorly aligned and oversmoothed samples. Figure 3 illustrates how FID
and MSD metrics vary with ε for the case of MNIST. Additionally, it demonstrates the impact of ε on
the generated samples for the AFHQ-64 model.

We run α-DSBM on CelebA with image size 64× 64 with σ = 2.0. We do not change the training
hyper-parameters compared to AFHQ. Visual results are reported in Figure 5 and Figure 6. In
Figure 5, we show the influence of σ during the pretraining. The visual quality of the transfer is much
lower for σ = 0 than for σ = 2.0. The case σ = 0 corresponds to the first step of Rectified Flow (i.e.
Flow Matching). Given the poor quality of the samples, we do not perform finetuning with σ = 0. In
Figure 6, we compare the visual quality and alignment of DSBM and α-DSBM after 4000 training
steps, corresponding to two outer DSBM iterations. In this case DSBM is trained with a bidirectional
network and both procedures consist of finetuning the pretrained model obtained with σ = 2.0. We
note that the alignment is better in the case of α-DSBM.

9

Method EMNIST→MNIST AFHQ-64 Wild→ Cat

FID MSD FID LPIPS

DSBM* 10.59 0.375 – –

Pretrained two-networks model 6.02 0.564 25.97 0.589
(a) iterative finetuning 5.25±0.15 0.345±0.001 25.41±0.84 0.485±0.003

(b) online finetuning 4.28±0.07 0.368±0.001 28.752±1.191 0.487±0.003

(c) online finetuning without EMA 4.23±0.171 0.361±0.002 32.665±0.647 0.445±0.002

Pretrained bidirectional model 6.33 0.572 29.44 0.584
(d) online finetuning 4.39±0.09 0.387±0.003 26.579±0.434 0.482±0.001

(e) online finetuning without EMA 4.57±0.17 0.369±0.003 30.638±1.023 0.451±0.002

Table 1: Results of image translation between EMNIST and MNIST, and AFHQ 64×64 between
Wild and Cat domains. DSBM* results are from Shi et al. (2023). Our reimplementation of DSBM
corresponds to row (a). For MNIST and AFHQ models, we used ε = 1 and ε = 0.752, respectively.
Each finetuning run was done with 5 random seeds, and we report mean scores ± standard deviation.

(a) Cat→Wild (b) Wild→ Cat

Figure 4: Online DSBM transfer results on AFHQ 256× 256 dataset between Cat and Wild domains.
Top row—initial samples, bottom row—transferred samples.

7 Discussion

In this paper we have introduced α-Diffusion Schrödinger Bridge Matching (α-DSBM), a new
methodology to solve Entropic Optimal Transport problems. α-DSBM is an improved version
of DSBM, which does not require training multiple DDM-type models. We have shown that a
non-parametric version of this method recovers the Schrödinger Bridge (SB). In addition, α-DSBM
is easier to implement than existing SB methodologies while exhibiting similar performance. We
illustrated the efficiency of our algorithm on a variety of unpaired transfer tasks.

While α-DSBM solves one of the most critical limitations of DBSM, namely the alternative optimisa-
tion, several issues remain to be addressed in order for the method to scale comparably to generative
DDMs. In particular, the method is not sampling-free, as during training it requires sampling from
the model from the previous iteration to obtain the training data for the current iteration. While it
seems difficult to derive a completely sampling-free method to solve SB problems without resorting
to the Minibatch OT approximation, there is still room for improvement.

Figure 5: Translation Female → Male on
CelebA. Left: pretraining with σ = 0. Right:
pretraining with σ = 2.0.

Figure 6: Translation Female → Male on
CelebA. Left: output after finetuning with
DSBM. Right: output after α-DSBM finetun-
ing.

10

References
Albergo, M. S., Boffi, N. M., and Vanden-Eijnden, E. (2023). Stochastic interpolants: A unifying

framework for flows and diffusions. arXiv preprint arXiv:2303.08797.

Albergo, M. S. and Vanden-Eijnden, E. (2023). Building normalizing flows with stochastic inter-
polants. International Conference on Learning Representations.

Ambrosio, L., Gigli, N., and Savaré, G. (2008). Gradient Flows in Metric Spaces and in the Space of
Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, second
edition.

Bauschke, H. H. and Kruk, S. G. (2004). Reflection-projection method for convex feasibility problems
with an obtuse cone. Journal of Optimization Theory and Applications, 120(3):503–531.

Benamou, J.-D. and Brenier, Y. (2000). A computational fluid mechanics solution to the Monge–
Kantorovich mass transfer problem. Numerische Mathematik, 84(3):375–393.

Black, K., Janner, M., Du, Y., Kostrikov, I., and Levine, S. (2023). Training diffusion models with
reinforcement learning. arXiv preprint arXiv:2305.13301.

Brekelmans, R. and Neklyudov, K. (2023). On Schrödinger bridge matching and expectation
maximization. In NeurIPS 2023 Workshop Optimal Transport and Machine Learning.

Brock, A., Donahue, J., and Simonyan, K. (2019). Large scale GAN training for high fidelity natural
image synthesis. In International Conference on Learning Representations.

Cao, Z., Wu, X., and Deng, L.-J. (2024). Neural shrödinger bridge matching for pansharpening.
arXiv preprint arXiv:2404.11416.

Chen, T., Liu, G.-H., Tao, M., and Theodorou, E. (2023). Deep momentum multi-marginal
Schrödinger bridge. Advances in Neural Information Processing Systems.

Chen, T., Liu, G.-H., and Theodorou, E. A. (2022). Likelihood training of Schrödinger bridge using
forward-backward SDEs theory. In International Conference on Learning Representations.

Chen, Y., Georgiou, T. T., and Pavon, M. (2021). Optimal transport in systems and control. Annual
Review of Control, Robotics, and Autonomous Systems, 4.

Chen, Y., Goldstein, M., Hua, M., Albergo, M. S., Boffi, N. M., and Vanden-Eijnden, E. (2024).
Probabilistic forecasting with stochastic interpolants and Föllmer processes. arXiv preprint
arXiv:2403.13724.

Choi, Y., Uh, Y., Yoo, J., and Ha, J.-W. (2020). Stargan v2: Diverse image synthesis for multiple
domains. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

Chong, M. J. and Forsyth, D. (2020). Effectively unbiased FID and inception score and where to find
them. In IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Cohen, G., Afshar, S., Tapson, J., and van Schaik, A. (2017). EMNIST: an extension of MNIST to
handwritten letters. arXiv preprint arXiv:1702.05373.

Courant, R. and Hilbert, D. (2008). Methods of Mathematical Physics: Partial Differential Equations.
John Wiley & Sons.

Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in
Neural Information Processing Systems.

Dai Pra, P. (1991). A stochastic control approach to reciprocal diffusion processes. Applied
Mathematics and Optimization, 23(1):313–329.

Daras, G., Dagan, Y., Dimakis, A., and Daskalakis, C. (2023a). Consistent diffusion models: Miti-
gating sampling drift by learning to be consistent. In Advances in Neural Information Processing
Systems.

11

Daras, G., Shah, K., Dagan, Y., Gollakota, A., Dimakis, A., and Klivans, A. (2023b). Ambient
diffusion: Learning clean distributions from corrupted data. In Advances in Neural Information
Processing Systems.

De Bortoli, V., Hutchinson, M., Wirnsberger, P., and Doucet, A. (2024). Target score matching. arXiv
preprint arXiv:2402.08667.

De Bortoli, V., Liu, G.-H., Chen, T., Theodorou, E. A., and Nie, W. (2023). Augmented bridge
matching. arXiv preprint arXiv:2311.06978.

De Bortoli, V., Thornton, J., Heng, J., and Doucet, A. (2021). Diffusion Schrödinger bridge with
applications to score-based generative modeling. In Advances in Neural Information Processing
Systems.

De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., Slabaugh, G., and
Tuytelaars, T. (2021). A continual learning survey: Defying forgetting in classification tasks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(7):3366–3385.

Deng, W., Luo, W., Tan, Y., Biloš, M., Chen, Y., Nevmyvaka, Y., and Chen, R. T. (2024). Variational
Schrödinger diffusion models. arXiv preprint arXiv:2405.04795.

Dhariwal, P. and Nichol, A. Q. (2021). Diffusion models beat GANs on image synthesis. In Advances
in Neural Information Processing Systems.

Diefenbacher, S., Liu, G.-H., Mikuni, V., Nachman, B., and Nie, W. (2024). Improving generative
model-based unfolding with Schrödinger bridges. Physical Review D, 109(7):076011.

Dupuis, P. and Ellis, R. S. (2011). A Weak Convergence Approach to the Theory of Large Deviations.
John Wiley & Sons.

Eyring, L., Klein, D., Uscidda, T., Palla, G., Kilbertus, N., Akata, Z., and Theis, F. (2024). Un-
balancedness in neural Monge maps improves unpaired domain translation. In International
Conference on Learning Representations.

Fan, Y., Watkins, O., Du, Y., Liu, H., Ryu, M., Boutilier, C., Abbeel, P., Ghavamzadeh, M., Lee, K.,
and Lee, K. (2024). Reinforcement learning for fine-tuning text-to-image diffusion models. In
Advances in Neural Information Processing Systems.

Ge, Z., Liu, S., Li, Z., Yoshie, O., and Sun, J. (2021). Ota: Optimal transport assignment for object
detection. In IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Genevay, A., Peyre, G., and Cuturi, M. (2018). Learning generative models with Sinkhorn divergences.
In Artificial Intelligence and Statistics.

Gushchin, N., Kholkin, S., Burnaev, E., and Korotin, A. (2024a). Light and optimal schrödinger
bridge matching. arXiv preprint arXiv:2402.03207.

Gushchin, N., Kolesov, A., Korotin, A., Vetrov, D. P., and Burnaev, E. (2024b). Entropic neural
optimal transport via diffusion processes. In Advances in Neural Information Processing Systems.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. (2017). GANs trained
by a two time-scale update rule converge to a local Nash equilibrium. In Advances in Neural
Information Processing Systems.

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems.

Hoogeboom, E., Heek, J., and Salimans, T. (2023). Simple diffusion: End-to-end diffusion for high
resolution images. In International Conference on Machine Learning.

Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W., et al. (2021). LoRA:
Low-rank adaptation of large language models. In International Conference on Learning Repre-
sentations.

12

Hudson, D. A., Zoran, D., Malinowski, M., Lampinen, A. K., Jaegle, A., McClelland, J. L., Matthey,
L., Hill, F., and Lerchner, A. (2023). Soda: Bottleneck diffusion models for representation learning.
arXiv preprint arXiv:2311.17901.

Karimi, M. R., Hsieh, Y.-P., and Krause, A. (2024). Sinkhorn flow as mirror flow: A continuous-time
framework for generalizing the Sinkhorn algorithm. In International Conference on Artificial
Intelligence and Statistics.

Karras, T., Aittala, M., Aila, T., and Laine, S. (2022). Elucidating the design space of diffusion-based
generative models. In Advances in Neural Information Processing Systems.

Kim, B., Kwon, G., Kim, K., and Ye, J. C. (2024). Unpaired image-to-image translation via neural
schrödinger bridge. In International Conference on Learning Representations.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In International
Conference on Learning Representations.

Korotin, A., Gushchin, N., and Burnaev, E. (2024). Light Schrödinger bridge. In International
Conference on Learning Representations.

LeCun, Y. and Cortes, C. (2010). MNIST handwritten digit database.

Lee, K., Liu, H., Ryu, M., Watkins, O., Du, Y., Boutilier, C., Abbeel, P., Ghavamzadeh, M.,
and Gu, S. S. (2023). Aligning text-to-image models using human feedback. arXiv preprint
arXiv:2302.12192.

Léonard, C. (2014). A survey of the Schrödinger problem and some of its connections with optimal
transport. Discrete & Continuous Dynamical Systems-A, 34(4):1533–1574.

Léonard, C., Rœlly, S., Zambrini, J.-C., et al. (2014). Reciprocal processes. a measure-theoretical
point of view. Probability Surveys, 11:237–269.

Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and Le, M. (2023). Flow matching for
generative modeling. In International Conference on Learning Representations.

Liu, G.-H., Chen, T., So, O., and Theodorou, E. A. (2022). Deep generalized Schrödinger bridge. In
Advances in Neural Information Processing Systems.

Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E. A., Nie, W., and Anandkumar, A. (2023a). I2sb:
image-to-image Schrödinger bridge. In International Conference on Machine Learning.

Liu, Q. (2022). Rectified flow: A marginal preserving approach to optimal transport. arXiv preprint
arXiv:2209.14577.

Liu, X., Gong, C., and Liu, Q. (2023b). Flow straight and fast: Learning to generate and transfer data
with rectified flow. In International Conference on Learning Representations.

Masip, S., Rodriguez, P., Tuytelaars, T., and van de Ven, G. M. (2023). Continual learning of diffusion
models with generative distillation. arXiv preprint arXiv:2311.14028.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533.

Neal, R. M. and Hinton, G. E. (1998). A view of the EM algorithm that justifies incremental, sparse,
and other variants. In Learning in Graphical Models, pages 355–368. Springer.

Neklyudov, K., Brekelmans, R., Severo, D., and Makhzani, A. (2023a). Action matching: Learning
stochastic dynamics from samples. In International Conference on Machine Learning.

Neklyudov, K., Brekelmans, R., Tong, A., Atanackovic, L., Liu, Q., and Makhzani, A. (2023b). A com-
putational framework for solving Wasserstein Lagrangian flows. arXiv preprint arXiv:2310.10649.

Nichol, A. Q. and Dhariwal, P. (2021). Improved denoising diffusion probabilistic models. In
International Conference on Machine Learning.

13

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter, S. (2019). Continual lifelong learning
with neural networks: A review. Neural networks, 113:54–71.

Pavon, M., Trigila, G., and Tabak, E. G. (2021). The data-driven Schrödinger bridge. Communications
on Pure and Applied Mathematics, 74:1545–1573.

Peluchetti, S. (2021). Non-denoising forward-time diffusions. https://openreview.net/forum?
id=oVfIKuhqfC.

Peluchetti, S. (2023). Diffusion bridge mixture transports, Schrödinger bridge problems and genera-
tive modeling. Journal of Machine Learning Research, 24:1–51.

Perez, E., Strub, F., de Vries, H., Dumoulin, V., and Courville, A. C. (2018). Film: Visual reasoning
with a general conditioning layer. In AAAI.

Peyré, G., Cuturi, M., et al. (2019). Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607.

Pooladian, A.-A., Ben-Hamu, H., Domingo-Enrich, C., Amos, B., Lipman, Y., and Chen, R. T. (2023).
Multisample flow matching: Straightening flows with minibatch couplings. In International
Conference on Learning Representations.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Ermon, S., and Finn, C. (2024). Direct
preference optimization: Your language model is secretly a reward model. In Advances in Neural
Information Processing Systems.

Rœlly, S. (2013). Reciprocal processes: a stochastic analysis approach. In Modern Stochastics and
Applications, pages 53–67. Springer.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical
image segmentation. In Navab, N., Hornegger, J., Wells, W. M., and Frangi, A. F., editors, Medical
Image Computing and Computer-Assisted Intervention – MICCAI 2015, pages 234–241, Cham.
Springer International Publishing.

Schrödinger, E. (1932). Sur la théorie relativiste de l’électron et l’interprétation de la mécanique
quantique. Annales de l’Institut Henri Poincaré, 2(4):269–310.

Shi, Y., De Bortoli, V., Campbell, A., and Doucet, A. (2023). Diffusion Schrödinger bridge matching.
In Advances in Neural Information Processing Systems.

Shi, Y., De Bortoli, V., Deligiannidis, G., and Doucet, A. (2022). Conditional simulation using
diffusion Schrödinger bridges. In Uncertainty in Artificial Intelligence.

Smith, J. S., Hsu, Y.-C., Zhang, L., Hua, T., Kira, Z., Shen, Y., and Jin, H. (2023). Continual diffusion:
Continual customization of text-to-image diffusion with c-lora. arXiv preprint arXiv:2304.06027.

Sommerfeld, M., Schrieber, J., Zemel, Y., and Munk, A. (2019). Optimal transport: Fast probabilistic
approximation with exact solvers. Journal of Machine Learning Research, 20(105):1–23.

Somnath, V. R., Pariset, M., Hsieh, Y.-P., Martinez, M. R., Krause, A., and Bunne, C. (2023). Aligned
diffusion Schrödinger bridges. In Uncertainty in Artificial Intelligence.

Song, J., Meng, C., and Ermon, S. (2021a). Denoising diffusion implicit models. In International
Conference on Learning Representations.

Song, Y. and Ermon, S. (2020). Improved techniques for training score-based generative models. In
Advances in Neural Information Processing Systems.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. (2021b). Score-
based generative modeling through stochastic differential equations. In International Conference
on Learning Representations.

Su, X., Song, J., Meng, C., and Ermon, S. (2023). Dual diffusion implicit bridges for image-to-image
translation. In International Conference on Learning Representations.

14

https://openreview.net/forum?id=oVfIKuhqfC
https://openreview.net/forum?id=oVfIKuhqfC

Tamir, E., Trapp, M., and Solin, A. (2023). Transport with support: Data-conditional diffusion
bridges. Transactions on Machine Learning Research.

Thornton, J., Hutchinson, M., Mathieu, E., De Bortoli, V., Teh, Y. W., and Doucet, A. (2022).
Riemannian diffusion Schrödinger bridge. arXiv preprint arXiv:2207.03024.

Tong, A., Fatras, K., Malkin, N., Huguet, G., Zhang, Y., Rector-Brooks, J., Wolf, G., and Bengio,
Y. (2024a). Improving and generalizing flow-based generative models with minibatch optimal
transport. Transactions on Machine Learning Research.

Tong, A., Malkin, N., Fatras, K., Atanackovic, L., Zhang, Y., Huguet, G., Wolf, G., and Bengio,
Y. (2024b). Simulation-free Schrödinger bridges via score and flow matching. In International
Conference on Artificial Intelligence and Statistics.

Vargas, F., Padhy, S., Blessing, D., and Nüsken, N. (2024). Transport meets variational inference:
Controlled Monte Carlo diffusions. In International Conference on Learning Representations.

Vargas, F., Thodoroff, P., Lamacraft, A., and Lawrence, N. (2021). Solving Schrödinger bridges via
maximum likelihood. Entropy, 23(9):1134.

Yang, K., Tao, J., Lyu, J., Ge, C., Chen, J., Li, Q., Shen, W., Zhu, X., and Li, X. (2023). Us-
ing human feedback to fine-tune diffusion models without any reward model. arXiv preprint
arXiv:2311.13231.

Zając, M., Deja, K., Kuzina, A., Tomczak, J. M., Trzciński, T., Shkurti, F., and Miłoś, P. (2023).
Exploring continual learning of diffusion models. arXiv preprint arXiv:2303.15342.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang, O. (2018). The unreasonable effectiveness
of deep features as a perceptual metric. In Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, pages 586–595.

Zhou, T., Wang, W., Konukoglu, E., and Van Gool, L. (2022). Rethinking semantic segmentation:
A prototype view. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition.

15

A Appendix organisation

The supplementary material is organised as follows. First in Appendix B, we analyze an Euclidean
counterpart to the α-IMF sequence identified in Section 3 and the associated flow. In Appendix C, we
show that the Markovian projection can be recovered as the parameterisation of the vector field that
minimises the accumulation of errors, extending the results of Chen et al. (2024). Theoretical results
are gathered in Appendix D. In particular in Appendix D.1 we show that the proposed non-parametric
method coincides with the α-IMF and prove the convergence of the α-IMF. In Appendix D.2, we show
the connection between the non-parametric and the parametric updates. In Appendix E, we provide
more background on DSBM and propose an extension of the DSBM methodology. Consistency losses
similar to (Daras et al., 2023b; De Bortoli et al., 2024) are proposed in Appendix F. Model stitching
procedures are described in Appendix G. We comment on extended related work in Appendix H. In
particular we draw connections with Sinkhorn flows (Karimi et al., 2024), Reinforcement Learning
policies, Expectation-Maximisation schemes following (Brekelmans and Neklyudov, 2023) and
comment on finetuning of diffusion models. In Appendix I, we investigate the accumulation of bias
in a Gaussian setting and compare forward-forward and forward-backward methods. In Appendix J,
we derive the preconditioning of loss following the principles of (Karras et al., 2022) in the case of
bridge matching. Additional results and experimental details are presented in Appendix K.

B Euclidean flow and iterative procedure

In this section, we study a simplified counterpart of the Schrödinger flow and of DSBM in a Euclidean
setting. The goal of this section is to draw some conclusions in the Euclidean case which also remain
true empirically when analyzing the Schrödinger Bridge problem.

We consider the set A1 = {(x, y) ∈ R2 : y ≥ x} and the set A2 = {(x, y) ∈ R2 : y ≤ 0}.
Loosely speaking, one can identify A1 with the reciprocal class R(Q) and A2 with the set of
Markov path measures projM. In that case, we have that for any (x, y) ∈ R2, projA1

((x, y)) =
((x + y)/2, (x + y)/2) if (x, y) /∈ A1 and otherwise, projA1

((x, y)) = (x, y). In addition, we
have that for any (x, y) ∈ R2, projA2

((x, y)) = (x, 0) if (x, y) /∈ A2 and projA2
((x, y)) = (x, y)

otherwise. We consider the following flow (xt, yt)t≥0 given by

∂t(xt, yt) = projA1
(projA2

((xt, yt)))− (xt, yt).

Let (x0, y0) /∈ A1 and (x0, y0) /∈ A2. Denote T the explosion time of (xt, yt), i.e. for any t ≥ T we
have that (xt, yt) =∞, where R2 ∪ {∞} is the one-point compactification of R2. Finally, denote
τ ≤ T such that for any t ∈ [0, τ], (xt, yt) ̸∈ A1 and (xt, yt) ̸∈ A2. Then, we have

∂t(xt, yt) = (−xt/2, xt/2− yt).

Hence, we have that xt = x0 exp[−t/2] for any t ∈ [0, τ] and yt = x0 exp[−t/2] +
(x0 exp[−t/2])2(y0 − x0)/x

2
0. Therefore, we get that τ = T = +∞ and we have that for any

t ≥ 0
xt = x0 exp[−t/2], yt = xt + x2

t (y0 − x0)/x
2
0.

Hence, ((xt, yt))t≥0 converges exponentially fast to (0, 0) with rate 1/2.

We now investigate the rate of convergence of the alternate projection scheme, i.e. the Euclidean
equivalent of DSBM. We define ((xn, yn))n∈N such that for any n ∈ N,

(xn+1, yn+1) = projA1
(projA2

((xn, yn))) = (xn/2, 0).

Hence, we get that xn = x02
−n and therefore ((xn, yn))n∈N converges exponentially fast to (0, 0).

Note that this procedure corresponds to a discretisation of the flow ((xt, yt))n∈N with stepsize α = 1.

More generally, we define for any α ∈ (0, 1], ((xα
n, y

α
n))n∈N such that for any n ∈ N,

(xα
n+1, y

α
n+1) = αprojA1

(projA2
((xα

n, y
α
n))) + (1− α)(xα

n, y
α
n).

Hence, we get that xn = x02
−n and therefore ((xn, yn))n∈N converges exponentially fast to (0, 0).

It can be shown that for any n ∈ N, xα
n = xα

0 (1− α/2)n and in addition, we have that

yαn = (1− α)nyα0 + αxα
0

n−1∑
k=0

(1− α)k(1− α/2)n−k.

16

Therefore, we get that

yn = (1− α)nyα0 + 2(1− (1− α/(2− α))n)(1− α/2)nxα
0 .

We now analyse the complexity of the different discretisations assuming that the cost of discretising
the flow with stepsize α ∈ (0, 1] is Cα. In that case in order to reach the threshold value ε,
i.e. |xα

n| ≤ ε, we get a total cost Cα
n = O(log(1/ε)Cα/ log(1/(1−α/2))), where we have neglected

the terms that do not depend on log(1/ε). Hence, if Cα is constant then the choice α = 1 is the best
possible one in the range α ∈ (0, 1]. Otherwise, one has to consider the ratio Cα/ log(1/(1− α/2)),
where the lower is the better. The flow procedure and the iterative based one are presented in Figure 1.

Based on this simplified Euclidean experiment, we draw some conclusions which also remain true in
our setting, see Appendix K for more experimental details. First, we have that different discretisations
of the flow yield different convergence rates. Large stepsizes incur faster convergence. This suggests
to choose α = 1. However, if the cost of choosing α = 1 is too high then one might turn to alternative
schemes with α ∈ (0, 1) assuming that Cα < C1 in that case. To draw a parallel with our setting,
in the case of DSBM (case α = 1), we need to solve the projection subproblem at each step which
incurs a great cost. On the other hand, one step of the online algorithm only requires sampling once
from the model and performing one gradient step.

C Minimisation of errors and Markovian projection

For a given non-Markovian (stochastic) interpolant process (see definition below), there exist an
infinite number of Markov processes admitting the same marginals (Albergo and Vanden-Eijnden,
2023). In this section, when it is well-defined, we show that the Markovian projection corresponds to
the process which minimises an error measure (defined further) in case one has access to the oracle
of xt 7→ E[X1 |Xt = xt].

Stochastic Interpolant. We first start by recalling the framework of Albergo and Vanden-Eijnden
(2023). Consider a coupling Π between π0 and π1, one builds a (stochastic) flow between π0 and π1

using the following interpolation procedure

Xt = Interpt(X0,X1,Z) = αtX0 + βtX1 + γtZ, (X0,X1) ∼ Π, Z ∼ N (0, Id),

where α1 = β0 = γ0 = γ1 = 0 and α0 = β1 = 1. This defines a non-Markovian process. We denote
by πt the induced unconditional distribution of Xt. Let us now consider the Markov process (Xε

t)
given by

dXε
t = E

[
α̇tX0 + β̇tX1 + (γ̇t − ε2t/(2γt))Z |Xt = Xε

t

]
+ εtdBt, Xε

0 ∼ π0, (14)

where (Bt)t∈[0,1] is a d-dimensional Brownian motion and εt is an additional hyperparameter. It can
then be shown that (Xε

t)t∈[0,1] satisfies that Xε
t ∼ πt for all t ∈ [0, 1]; see e.g. (Albergo et al., 2023,

Theorem 2.8, Corollary 2.10). Hence (Xε
t)t∈[0,1] is a (stochastic) flow mapping π0 onto π1. Note

that (Xε
t)t∈[0,1] in (14) can be rewritten as

dXε
t = (α̇t/αt)X

ε
t +E

[
(β̇t − βtα̇t/αt)X1 + (γ̇t − γtα̇t/αt − ε2t/(2γt))Z |Xt = Xε

t

]
+ εtdBt.

(15)

In the specific case where αt = 1− t, βt = t and γt = σ0

√
t(1− t) then (15) becomes

Xt = Interpt(X0,X1,Z) = (1− t)X0 + tX1 + σ0

√
t(1− t)Z.

This corresponds to the marginal distribution of the bridge associated with (σ0Bt)t∈[0,1]. In this case,
(15) becomes

dXε
t = E [(X1 −Xt)/(1− t)|Xt = Xε

t] dt+
√
2σ0dBt

for ε2t = (2γt)(γ̇t − γtα̇t/αt) = 2σ2
0 . In Proposition C.1, we will show that this choice of (εt)t∈[0,1]

is optimal in some sense.

Consider (X̂ε
t)t∈[0,1] given by

dX̂ε
t = (α̇t/αt)X̂

ε
t+(β̇t−βtα̇t/αt)E[X1 |Xt = X̂ε

t]+(γ̇t−γtα̇t/αt−ε2t/(2γt))Ẑ(t, X̂ε
t)+εtdBt,

17

with X̂ε
0 ∼ π0 and where Ẑ(t, x) is an approximation of E[Z|Xt = x]. We have the following result.

Proposition C.1 (Optimality and stochastic interpolant): Denote Pε, respectively P̂ε the path
measures associated with (Xε

t)t∈[0,1] and (X̂t)t∈[0,1] respectively. Consider ℓ(ε) = KL(Pε|P̂ε).
Let ε⋆ = argminεℓ(ε). Then we have

(ε⋆t)
2 = 2γtγ̇t − 2γ2

t α̇t/αt.

In particular, if αt = t, βt = 1− t and γt = σ0

√
t(1− t), then εt =

√
2σ0. The value (ε⋆t)t∈[0,1]

corresponds to Markovian projection when it is well defined.

Proof. We have that for any

KL(Pε|P̂ε) =

∫ 1

0

1

ε2t
(γ̇t − γtα̇t/αt − ε2t/(2γt))

2E[∆t]dt,

where ∆t = ∥Ẑ(t,Xε
t) − E[Z | Xt = Xε

t]∥2 and the expectation is w.r.t. Pε. We have that
KL(Pε|P̂ε) = 0 if ε = ε⋆, which concludes the proof.

Proposition C.1 is related to (Chen et al., 2024, Section 3.4). Therein it is noticed that, in the case
of Augmented Bridge matching (De Bortoli et al., 2023), the choice of εt does not affect the joint
distribution of (Xε

0,X
ε
1). The authors then select (εt) so as to minimise an approximation error. They

show that, in that case, they recover the Föllmer process.

We now show that Proposition C.1 can be further strengthened to establish that ε⋆ is also the optimal
value if we interpolate between πs and π1, or π0 and πs, for any s ∈ [0, 1] and πs the distribution
of Xs. Consider in this context for any s, t ∈ [0, 1] with t ≥ s, γt/γs ≥ αt ≥ αs the following
interpolation model.

Xt = (αt/αs)Xs + (βt − αtβs/αs)X1 +
√
γ2
t − α2

tγ
2
s/α

2
sZ, (16)

where Xs ∼ πs, X1 ∼ π1 and Z ∼ N (0, Id). Assume that αt = 1−t, βt = t and γt = σ0

√
t(1− t)

for any t ∈ [0, 1] then (16) corresponds to the Brownian bridge associated with (σ0Bt)t∈[0,1] with
endpoints Xs at time s and X1 at time 1. We have the following proposition.

Proposition C.2 (Stochastic interpolant with intermediate time points): Define (Xε
t,s)t∈[s,1]

given by

dXε
t,s = (α̇t/αt)X

ε
t,s + E

[
(β̇t − βtα̇t/αt)X1 |Xt = Xε

t,s

]
(17)

+ E
[
(γ̇t,s − γt,sα̇t/αt − ε2t,s/(2γt,s))Z |Xt = Xε

t,s

]
+ εt,sdBt, Xε

s,s ∼ πs,

with γt,s =
√
γ2
t − α2

tγ
2
s/α

2
s . Then for any t ∈ [s, 1], Xε

t,s and Xt defined by (16) have the same
distribution.

Proof. We let s ∈ [0, 1] and X1,Xs ∈ Rd. From (16), we have directly that for any t ∈ [s, 1]

dXt = [(α̇t/αs)Xs + (β̇t − α̇tβs/αs)X1 + γ̇t,sZ]dt,

where Z ∼ N (0, Id). In addition, rearranging (16), we also have that

Xs = (αs/αt)Xt − (αsβt/αt − βs)X1 − γt,s(αs/αt)Z.

Hence, by combining these two expressions, we get that

dXt = [(α̇t/αt)Xt + (β̇t − α̇tβt/αs)X1 + (γ̇t,s − γt,s(α̇t/αt))Z]dt.

It follows that (Xt,s)t∈[s,1] given by

dXt,s = (α̇t/αt)Xt,s + (β̇t − βtα̇t/αt)E[X1 |Xt = Xt,s]

+ (γ̇t,s − γt,sα̇t/αt)E[Z |Xt = Xt,s], Xs,s ∼ πs,

is such that for any t ∈ [s, 1] the same distribution as Xt defined by (16). Then, we conclude similarly
to (Albergo et al., 2023, Theorem 2.8, Corollary 2.10).

18

We now consider the following approximate version of (17)

dX̂ε
t,s = (α̇t/αt)X̂

ε
t,s + (β̇t − βtα̇t/αt)E

[
X1 |Xt = X̂ε

t,s

]
+ (γ̇t,s − γt,sα̇t/αt − ε2t,s/(2γt,s))Ẑ(t,X

ε
t,s) + εt,sdBt, Xε

s,s ∼ πs,

Similarly to Proposition C.1 we consider the best choice of ε to minimise the interpolation cost.

Proposition C.3 (Optimality and stochastic interpolant): Let s ∈ [0, 1]. Denote Pε, respectively
P̂ε, the path measure associated with (Xε

t,s)t∈[0,1], respectively (X̂t,s)t∈[0,1]. Consider ℓ(ε) =

KL(Pε|P̂ε). Let ε⋆ = argminεℓ(ε). Then we have

(ε⋆t)
2 = 2γtγ̇t − 2γ2

t α̇t/αt.

In particular, ε⋆ does not depend on s ∈ [0, 1] and for every s1, s2 ∈ [0, 1] with s1 ≤ s2, we have
that (Xε

t,s1)t∈[s2,1] and (Xε
t,s2)t∈[s2,1] coincide.

Proof. Similarly to Proposition C.1, we get first that for any s, t ∈ [0, 1] with s ≤ t

ε⋆t,s = 2γt,sγ̇t,s − 2γ2
t,sα̇t/αt. (18)

Second, we have that for any s, t ∈ [0, 1] with s ≤ t

2γ̇t,sγt,s = γ̇2
t,s = 2γ̇tγt − 2α̇tαtγ

2
s/α

2
s. (19)

Third, we have that
γ2
t,sα̇t/αt = γ2

t α̇t/αt − α̇tαtγ
2
s/α

2
s. (20)

Combining (18), (19) and (20), we can conclude.

D Theoretical results

In this section, we prove the main theoretical results of the paper. In Appendix D.1, we first prove
the convergence of the α-IMF sequence, i.e. we prove Theorem 3.1. Second, we show that the
non-parametric updates (8) correspond to the α-IMF sequence, i.e. we prove Proposition 3.2. In
Appendix D.2, we link the non-parametric updates to the parametric updates.

D.1 Non-parametric sequence and convergence

Let Q ∈ P(C) be associated with (
√
εBt)t∈[0,1], where (Bt)t∈[0,1] is a d-dimensional Brownian

motion and ε > 0. In this section, we abuse notation and denote P(C) the set of path measures which
are not necessarily probability path measures. In particular, we will consider Q ∈ P(C) associated
with (

√
εBt)t∈[0,1] with Q0 = Leb. In that case, the Kullback–Leibler divergence is still well-defined

and we refer to (Léonard, 2014) for more details. We recall that we have defined (Pn, P̂n)n∈N for
any n ∈ N and α ∈ (0, 1] by

Pn = projM(P̂n), P̂n+1 = (1− α)P̂n + αprojR(projM(P̂n)).

In addition, for any n ∈ N, t ∈ [0, 1) and x ∈ Rd we have defined

vn+1
t (x) = vnt (x)− δn∇µnLt(v

n
t ,Pvn)(x),

where

Lt(vt,P) =
1

2

∫
(Rd)3

∥∥∥vt(xt)−
x1 − xt

1− t

∥∥∥2dP0,1(x0, x1)dQt|0,1(xt|x0, x1) (21)

=
1

2

∫
(Rd)3

∥∥∥vt(xt)−
x1 − xt

1− t

∥∥∥2dprojR(P)1,t.

We define (Pvn)n∈N associated with (27), where for any suitable vector field v, Pv is associated with

dXt = vt(Xt)dt+
√
εdBt,

19

where (Bt)t∈[0,1] is a d-dimensional Brownian motion.

In order to rigorously prove Proposition D.1 detailed further, we introduceP2(C), such that P ∈ P2(C)
if P ∈ P(C) and for ∫

(Rd)2
{∥x0∥2 + ∥x1∥2}dP0,1(x0, x1) < +∞.

Note that if P ∈ P2(C) then we have that for any t ∈ [0, 1]∫
Rd

∥xt∥2dprojR(P)t < +∞.

In addition, we recall that ϕ ∈ L2(µ) for µ ∈ P(Rd) if ϕ : Rd → Rd and∫
Rd

∥ϕ(x)∥2dµ(x) < +∞.

Finally, we define
A2 = {(ϕ,P) : P ∈ P2(C), ϕ ∈ L2(P)}.

Then for any t ∈ [0, 1), we define Lt : A2 → R given for any (v,P) ∈ A2 by (21).

Proposition D.1 (Non-parametric updates are α-IMF): Let α ∈ (0, 1], (Pn, P̂n)n∈N as in (4),
δn = α and µn = (1 − α)P̂n + αprojR(Pn). Assume that for any n ∈ N, Pvn is well-defined.
Then, for any n ∈ N, Pvn = Pn.

Proof. First, we have that for any t ∈ [0, 1), v,P ∈ A2 and ϕ ∈ L2(Pt) we have

Lt(vt + εϕ,P) = Lt(vt,P) + ε

∫
(Rd)3
⟨ϕ(xt), vt(xt)− x1−x1

1−t ⟩dP0,1(x0, x1)dQt|0,1(xt|x0, x1)

+ (ε2/2)

∫
(Rd)3

∥ϕ(xt)∥2dP0,1(x0, x1)dQt|0,1(xt|x0, x1)

= Lt(vt,P) + ε

∫
(Rd)2
⟨ϕ(xt), vt(xt)

−
(∫

Rd

x1dprojR(P)1|t(x1|xt)− xt

)
/(1− t)⟩dprojR(P)t(xt)

+ (ε2/2)

∫
Rd

∥ϕ(xt)∥2projR(P)t(xt).

Hence, we have that

∇µLt(vt,Pv)(xt) = (vt(xt)−
(
EprojR(P)[X1 |Xt = xt]− xt

)
/(1− t))(dprojR(Pv)t/dµt)(xt).

(22)
Assume that for some n ∈ N we have that for any t ∈ [0, 1) and xt ∈ Rd, we have vkt (xt) =(
EP̂k [X1 |Xt = xt]− xt

)
/(1− t). We are going to show that for any t ∈ [0, 1) and xt ∈ Rd, we

have vn+1
t (xt) =

(
EP̂n+1 [X1 |Xt = xt]− xt

)
/(1− t). For any t ∈ [0, 1) and xt ∈ Rd, we denote

δ̄nt (xt) = δn(dprojR(Pn)t/dµ
n
t)(xt).

Since we have that δn = α and µn = (1 − α)P̂n + αprojR(Pn), we obtain for any t ∈ [0, 1] and
xt ∈ Rd

δ̄nt (xt) = α(dprojR(Pn)t/d((1− α)P̂n
t + αprojR(Pn)t)(xt), (23)

so that
1− δ̄nt (xt) = (1− α)(dP̂n

t /d((1− α)P̂n
t + αprojR(Pn)t)(xt). (24)

20

Therefore, combining (8) with (23), (24), (22), we get that for any t ∈ [0, 1) and xt ∈ Rd

vn+1
t (xt) = (1− δ̄nt (xt))v

n
t (xt)

+ δ̄nt (xt)
(
EprojR(Pn)[X1 |Xt = xt]− xt

)
/(1− t)

= (1− δ̄nt (xt))
(
EP̂n [X1 |Xt = xt]− xt

)
/(1− t)

+ δ̄nt (xt)
(
EprojR(Pn)[X1 |Xt = xt]− xt

)
/(1− t)

= (1− δ̄nt (xt))

(∫
Rd

x1dP̂n
1|t(x1|xt)− xt

)
/(1− t)

+ δ̄nt (xt)

(∫
Rd

x1dprojR(Pn)1|t(x1|xt)− xt

)
/(1− t)

=

∫
Rd

(x1 − xt)/(1− t)d[(1− δ̄nt (xt))P̂n
1|t + δ̄nt (xt)projR(Pn)1|t](x1|xt)

=

∫
Rd

x1d[(1− α)P̂n + αprojR(Pn)]1|t(x1|xt).

Hence, we have that for any t ∈ [0, 1) and xt ∈ Rd, vn+1
t (xt) =

(
EP̂n+1 [X1 |Xt = xt]− xt

)
/(1−

t). Since, for any t ∈ [0, 1) and xt ∈ Rd, v0t (xt) =
(
EP̂0 [X1 |Xt = xt]− xt

/
(1− t) by definition,

we get that for any n ∈ N, t ∈ [0, 1) and xt ∈ Rd, vnt (xt) =
(
EP̂n [X1 |Xt = xt]− xt

)
/(1 − t).

Using, Definition 2.2, we get that Pvn = projM(P̂n), which concludes the proof.

Before stating our convergence theorem, we show the following result which is a direct consequence
of (Léonard, 2014, Theorem 2.12) and (Léonard et al., 2014, Theorem 2.14). We recall that the
differential entropy of a probability measure π is given by

H(π) = −
∫
Rd

log((dπ/dLeb)(x))dπ(x),

if π admits a density with respect to the Lebesgue measure and +∞ otherwise.

Lemma D.2 (Characterisation of Schrödinger Bridge): Recall that Q is associated with
(
√
εBt)t∈[0,1] and assume that Q0 = Leb. Let π0, π1 ∈ P(Rd) such that∫

Rd

∥x∥2dπi(x) < +∞, H(πi) < +∞,

for i ∈ {0, 1}. Let P⋆ such that P⋆ is Markov, P⋆ ∈ R(Q), P⋆
0 = π0 and P⋆

1 = π1. Then P⋆ is the
Schrödinger Bridge, i.e. the unique solution to (2).

Proof. First, we have that Q0,1 is equivalent to Leb⊗Leb. Indeed, we have that for any x0, x1 ∈ Rd

(dQ0,1/d(Leb⊗ Leb))(x0, x1) = (2πε)−d/2 exp[−∥x0 − x1∥2/(2ε)].

Similarly, we have that for any t ∈ (0, 1) and xt ∈ Rd, Q0,1|t(·|xt) is equivalent to Leb ⊗ Leb.
Indeed, we have that for any t ∈ (0, 1) and x0, xt, x1 ∈ Rd

(dQ0,1|t(·|xt)/d(Leb⊗ Leb))(x0, x1) = (2πεt)−d/2 exp[−∥x0 − xt∥2/(2εt)]
× (2πε(1− t))−d/2 exp[−∥xt − x1∥2/(2ε(1− t))].

Hence, for any t ∈ (0, 1) and xt ∈ Rd, Q0,1|t(·|xt) is equivalent to Q0,1. Since P⋆ is Markov and
P⋆ ∈ R(Q) we get that there exist φ◦

0 and φ⋆
1 which are Lebesgue measurable such that for any

ω ∈ C we have that
(dP⋆/dQ)(ω) = φ◦

0(ω0)φ
⋆
1(ω1). (25)

Second we verify that the conditions (i)-(vii) of (Léonard, 2014, Theorem 2.12) are satisfied. First,
Q is Markov and hence (i) is satisfied. Then, (ii) is satisfied since for any t ∈ (0, 1) and xt ∈ Rd,

21

Q0,1|t(·|xt) is equivalent to Q0,1. We have that Q0 = Q1 = Leb and (iii) is satisfied. We have that
for any x0, x1 ∈ Rd

(dQ0,1/d(Leb⊗ Leb))(x0, x1) = (2πε)−d/2 exp[−∥x0 − x1∥2/(2ε)]
≥ (2πε)−d/2 exp[−∥x0∥2/ε− ∥x1∥2/ε].

Hence, (iv) is satisfied and we let A : Rd → R+ be given for any x ∈ Rd by A(x) = ∥x∥2/ε. In
addition, we have that for any x0, x1 ∈ Rd∫

(Rd)2
exp[−∥x0∥2/ε− ∥x1∥2/ε]dQ0,1(x0, x1) < +∞.

Hence, (v) is satisfied and we let B : Rd → R+ given for any x ∈ Rd by B(x) = ∥x∥2/ε. By
assumption (vi) and (vii) are satisfied. We conclude the proof upon using (Léonard, 2014, Theorem
2.12-(b)) and (25).

We are now ready to state our main convergence result.

Proposition D.3 (Convergence of α-IMF): Let α ∈ (0, 1] and (Pn, P̂n)n∈N defined by (4). Under
mild assumptions, we have that limn→+∞ Pn = P⋆, where P⋆ is the solution of the Schrödinger
Bridge problem (2).

Proof. Using the convexity of the Kullback–Leibler divergence with respect to its first argument
(see e.g. (Dupuis and Ellis, 2011)), the data processing inequality (see e.g. (Ambrosio et al., 2008,
Lemma 9.4.5)), the fact that the Schrödinger Bridge is Markov and in the reciprocal class of Q (see
e.g. (Léonard, 2014, Theorem 2.12) and (Léonard et al., 2014, Theorem 3.2)), and the Pythagorean
theorem for the Markovian projection (Shi et al., 2023, Lemma 6), we have that for any n ∈ N

KL(P̂n+1|P⋆) = KL((1− α)P̂n + αprojR(projM(P̂n))|P⋆)

≤ (1− α)KL(P̂n|P⋆) + αKL(projR(projM(P̂n))|P⋆)

≤ (1− α)KL(P̂n|P⋆) + αKL(projM(P̂n)0,1|P⋆
0,1)

≤ (1− α)KL(P̂n|P⋆) + αKL(projM(P̂n)|P⋆)

≤ (1− α)KL(P̂n|P⋆) + αKL(P̂n|P⋆)− αKL(P̂n|projM(P̂n)). (26)
Therefore, we get that

αKL(P̂n|projM(P̂n)) ≤ KL(P̂n|P⋆)−KL(P̂n+1|P⋆).

Hence, it follows that ∑
n∈N

KL(P̂n|projM(P̂n)) ≤ 2KL(P̂0|P⋆) < +∞.

So we obtain limn→+∞ KL(P̂n|projM(P̂n)) = 0. In addition, using (26) we have that
KL(P̂n|P⋆) ≤ KL(P̂0|P⋆) < +∞ for all n ∈ N. Using (Shi et al., 2023, Lemma 6), we also
get that KL(projM(P̂n)|P⋆) ≤ KL(P̂0|P⋆) < +∞ for any n ∈ N. Hence both the sequences
(P̂n)n∈N and (Pn)n∈N = (projM(P̂n))n∈N are relatively compact in P(C). Let P̄ ∈ P(C) be an
adherent point to the sequence (P̂n)n∈N and φ : N→ N increasing such that limn→+∞ Pφ(n) = P̄.
Similarly, let ϕ : N→ N increasing such that (ϕ(n))n∈N is a subsequence of (φ(n))n∈N such that
limn→+∞ projM(P̂n) = P̄′, with P̄′ and adherent point to the sequence (projM(P̂n))n∈N. Using
the lower semi-continuity of the Kullback-Leibler divergence in both arguments (Dupuis and Ellis,
2011), we get that

KL(P̄|P̄′) ≤ lim inf
n→+∞

KL(P̂ϕ(n)|projM(P̂ϕ(n))) = 0.

Since the set of Markov measures and the set of reciprocal measures w.r.t. Q are both closed, we have
that P̄ is Markov and in the reciprocal class of Q. Since we also have that P̄0 = π0 and P̄1 = π1, we
get that P̄ = P⋆ using Appendix D.1. Since every adherent point of (P̂n)n∈N is P⋆, we have that
limn→+∞ P̂n = P⋆. Similarly, using that limn→+∞ KL(P̂n|projM(P̂n)) = 0 and again the lower
semi-continuity of the Kullback–Leibler divergence in both arguments, we get that every adherent
point of (projM(P̂n))n∈N is P⋆. Hence, we have that limn→+∞ Pn = P⋆, which concludes the
proof.

22

D.2 From parametric to non-parametric.

In this section, we show that the parametric updates considered in (9) are a preconditioned version of
the non-parametric updates considered in (8). We first recall the non-parametric loss

L(v,P) =
∫ 1

0

Lt(vt,P)dt =
1

2

∫ 1

0

∫
(Rd)2

∥∥∥vt(xt)−
x1 − xt

1− t

∥∥∥2dprojR(P)t,1(xt, x1)dt

and the parametric loss

L(θ,P) =
1

2

∫ 1

0

∫
Rd×Rd

∥∥∥vθt (xt)−
x1 − xt

1− t

∥∥∥2dprojR(Q)(P)t,1(xt, x1)dt.

The non-parametric sequence (vn)n∈N is given by (27), i.e. we have for any n ∈ N, t ∈ [0, 1] and
x ∈ Rd

vn+1
t (x) = vnt (x)− δn∇µnLt(v

n
t ,Pvn)(x). (27)

Similarly the sequence of parametric updates is given for any n ∈ N, t ∈ [0, 1] and x ∈ Rd by

θn+1 = θn − α∇θL(θn,Pθ̄n).

We recall that Pθ̄n is a stop gradient version of Pvθ̄n . We are going to show that on average the
parametric algorithm yields a direction of descent for the non-parametric loss. We assume that the set
of parameters Θ is an open subset of Rp for some p ∈ N. For any t ∈ [0, 1] and x ∈ Rd we assume
that θ 7→ vθt (x) is twice continuously differentiable and denote Dθv

θ
t (x) ∈ Rd×p its Jacobian and

D2
θv

θ
t (x) its Hessian. For any θ ∈ Θ, we denote

hθ = ∇θL(θ,Pθ̄).

We show the following result.

Proposition D.4 (Velocity field parametric update): Assume that there exists C > 0 such that
for any θ ∈ Θ and x ∈ Rd ∫ 1

0

(1− s)D2
θv

θ−αshθ
s (x)(hθ, hθ)ds < C, (28)

where hθ = ∇θL(θ,Pθ̄). We have that for any n ∈ N, t ∈ [0, 1) and x ∈ Rd

v
θn+1

t (x) = vθnt (x)

− αDθv
θn
t (x)

∫ 1

0

∫
Rd

Dθv
θ
s(x̃)

⊤∇µnLs(v
θn ,Pvθn)(x̃)dµ

n
s (x̃)ds+ o(α),

where µn = (1− α)Pn + αPvθn .

Proof. First, we have that for any µ ∈ P(C)

∇θL(θ,Pθ̄) =

∫ 1

0

∫
Rd

Dθv
θ
s(xs)

⊤(vθs(xs)− (x1 − xs)/(1− s))dprojR(Pθ̄)s,1(xs, x1)ds.

Therefore, using (22), we get that

∇θL(θ,Pθ̄) =

∫ 1

0

∫
Rd

Dθv
θ
s(xs)

⊤∇µLs(v
θ
s ,Pθ̄)(xs)dµs(xs)ds.

Let θ ∈ Θ and denote θ′ = θ − α∇θL(θ,Pθ̄). Using a Taylor expansion, we get that for any θ ∈ Θ,
we have that

vθ
′

t (x) = vθt (x)− αDθv
θ
t (x)

∫ 1

0

∫
Rd

Dθv
θ
s(xs)

⊤∇µLs(v
θ
s ,Pθ̄)(xs)dµs(xs)ds

+ α2

∫ 1

0

(1− s)D2
θv

θ−αshθ
s (x)(hθ, hθ)ds.

23

Since the functional gradient is not applied on the second coordinate, we can drop the stop gradient
operator and therefore we have for any θ ∈ Θ

vθ
′

t (x) = vθt (x)− αDθv
θ
t (x)

∫ 1

0

∫
Rd

Dθv
θ
s(xs)

⊤∇µLs(v
θ
s ,Pvθ)(xs)dµs(xs)ds

+ α2

∫ 1

0

(1− s)D2
θv

θ−αshθ
s (x)(hθ, hθ)ds.

Combining this result with (28), we conclude the proof.

The corresponding update on the velocity field is given for any n ∈ N, t ∈ [0, 1] and x ∈ Rd by

dnt (x) = −αDθv
θn
t (x)

∫ 1

0

∫
Rd

Dθv
θ
s(x̃)

⊤∇µnLs(v
θn ,Pvθn)(x̃)dµ

n
s (x̃) + o(α).

We immediately have the following corollary.

Proposition D.5 (Parametric direction of descent): For any n ∈ N, if∫ 1

0

∫
Rd

Dθv
θ
s(x̃)

⊤∇µnLs(v
θn ,Pvθn)(x̃)dµ

n
s (x̃) ̸= 0,

then we have

lim
α→0

∫ 1

0

∫
Rd

⟨∇µnLt(v
θn ,Pvθn)(x), d

n
t (x)⟩dµn

t (x) ≤ 0.

E Background material on DSBM and extensions

In this section we recall some basics on Markovian and reciprocal projections in Appendix E.1. We
explain the link between the concept of iterative refinement and Schrödinger Bridges in Appendix E.2.
Then, we briefly present Diffusion Schrödinger Bridge Matching (DSBM) (Shi et al., 2023) in
Appendix E.3 and propose some new extensions in Appendix E.4.

E.1 Markov and reciprocal projections in practice

In this section, we recall the definition of the reciprocal and Markov projection. We provide more
details on how these different projections can be performed and illustrate them on simple examples.

Markov projection. First, we recall the definition of the Markovian projection.

Definition E.1 (Markov projection): Assume that Q is induced by (
√
εBt)t∈[0,1] for ε > 0. Then,

when it is well-defined, for any P ∈ R(Q), the Markovian projection M = projM(P) ∈M is the
path measure induced by the diffusion

dX⋆
t = v⋆t (X

⋆
t)dt+

√
εdBt, v⋆t (xt) =

(
EP1|t [X1 |Xt = xt]− xt

)
/(1− t), X⋆

0 ∼ P0.

In Figure 7 and Figure 8, we illustrate the effect of the Markovian projection, following the example
of (Liu, 2022). We consider two distributions π0 and π1 such that

π0 =
1

2
N ([−2,−2], Id) + 1

2
N ([−2, 2], Id), π1 =

1

2
N ([2,−2], Id) + 1

2
N ([2, 2], Id).

In Figure 7, we display samples from the distributions π0 and π1 as well as trajectories from the
path measure P = (π0 ⊗ π1)Q|0,1. Practically, this means that we sample X0 ∼ π0 and X1 ∼ π1

independently and then consider a Brownian bridge between X0 and X1. The SDE associated with
the Brownian bridge with scale ε > 0 is given for any t ∈ [0, 1] by

dXt = (X1 −Xt)/(1− t)dt+
√
εdBt. (29)

Note that the measure P = (π0 ⊗ π1)Q|0,1 is in the reciprocal class, i.e. P ∈ R(Q).

24

Figure 7: Samples from the original distributions π0 (left) and π1 (right) are shown in red, while
sample paths from P = (π0 ⊗ π1)Q|0,1 are shown in blue.

Next in Figure 8, we display samples from the distributions π0 and π1 as well as trajectories from
the path measure P⋆ = projM(P). Note that in Figure 8, contrary to Figure 7, we observe less
crossings between the trajectories. Indeed in the limit case where ε→ 0 the Markov measures P⋆ is
an ODE with regular coefficients and therefore admits a unique solution for every starting point in
the space so no crossing is possible. In particular, note that most of the trajectories starting from the
upper-left Gaussian end at the upper-right Gaussian. Similarly, most of the trajectories starting from
the lower-left Gaussian end at the lower-right Gaussian.

o
Figure 8: Samples from the original distributions are shown in red, while sample paths from
M = projM(P) are shown in blue.

In practice, computing the Markov projection involves finding the optimal drift v⋆t . This optimal drift
is the minimizer of a regression problem, see (Shi et al., 2023) for more details. Hence, computing
the Markovian projection requires training a neural network to define a vector field.

Reciprocal projection. First, we recall the definition the reciprocal projection.

Definition E.2 (Reciprocal projection): P ∈ P(C) is in the reciprocal class R(Q) of Q if P =
P0,1Q|0,1. We define the reciprocal projection of P ∈ P(C) as P⋆ = projR(Q)(P) = P0,1Q|0,1. We
will write projR instead of projR(Q) to simplify notation.

To sample from P⋆ = projR(P), we only need to sample (X0,X1) ∼ P0,1 and then to sample from
the Brownian bridge conditioned on (X0,X1). This means that in order to sample X⋆

t ∼ P⋆
t , we

only need to sample (X0,X1) ∼ P0,1 and then compute

Xt = (1− t)X0 + tX1 +
√
εt(1− t)Z, (30)

25

with Z ∼ N (0, Id). In particular, sampling from P⋆ = projR(P) does not require training any neural
network. However, in practice, in order to obtain samples (X0,X1) ∼ P, we have that P is associated
with an SDE and therefore obtaining (X0,X1) requires unrolling the SDE associated with P. In
Algorithm 1, the measure P is associated with an SDE with parametric drift vθ.

In Figure 9, we continue our study of the example of (Liu, 2022) that we used to explain the concept
of Markovian projection. We consider the path measure M obtained as the Markov projection of
P = (π0 ⊗ π1)Q|0,1. In Figure 9, we display samples from the distributions π0 and π1 as well as
trajectories from the path measure P⋆ = M0,1Q|0,1. In order to sample from P⋆ we first sample
(X0,X1) ∼ M0,1. This involves unrolling the SDE associated with M. Once we have access to
samples (X0,X1), we draw trajectories from the Brownian bridge following the SDE (29). We can
also sample from any time t without having to unroll the SDE (29) by simply sampling from (30).
This is what is done in Algorithm 1.

Figure 9: Samples from the original distributions are shown in red, while sample paths from
P⋆ = projR(M) are shown in blue.

E.2 Iterative refinement and Schrödinger Bridge

The Schrödinger Bridge problem (2) can be solved leveraging techniques from diffusion models and
bridge matching. De Bortoli et al. (2021); Vargas et al. (2021) consider an alternating projection
algorithm, corresponding to a dynamic version of the celebrated Sinkhorn algorithm. Peluchetti
(2023); Shi et al. (2023) introduce the Iterative Markovian Fitting procedure which corresponds to
perform an alternating projection algorithm on the class of Markov processes and the reciprocal class
of the Brownian motion. It can be shown that the solution of this iterative algorithm converges to the
Schrödinger Bridge under mild assumptions, see (Peluchetti, 2023; Shi et al., 2023). We highlight that
in the case where ε→ 0 then DSBM is equivalent to the Rectified Flow algorithm (Liu et al., 2023b).
One of the main limitation of those previously introduced procedures which provably converge to
the solution of the Schrödinger Bridge problem is that they rely on these expensive iterative solvers
and requires to consider two networks, one parameterising the forward process π0 → π1 and one
parameterising the backward π1 → π0.

E.3 Diffusion Schrödinger Bridge Matching

Diffusion Schrödinger Bridge Matching corresponds to the practical implementation of the Iterative
Markovian Fitting procedure proposed in Shi et al. (2023); Peluchetti (2023). The IMF procedure
alternates between projecting on the Markov classM and the reciprocal classRQ. In what follows,
we denote Mn+1 = P2n+1 ∈ M and Πn = P2n ∈ R(Q). We also recall that Q is a (rescaled)
Brownian motion associated with (σ0Bt)t∈[0,1] and that therefore sampling from Q|0,1(·|x0, x1)
corresponds to sampling from

dXt = (x1 −Xt)/(1− t)dt+ σ0dBt, X0 = x0.

We recall that the main computational bottleneck of the DSBM lies in the approximation of the
Markovian projection. Indeed, using (Shi et al., 2023, Definition 1, Proposition 2), we have that

26

M⋆ = projM(Π) is associated with the process

dXt = (EΠ[X1 |Xt]−Xt)/(1− t)dt+ σ0dBt X0 ∼ π0.

We also have using (Shi et al., 2023, Proposition 2) that M⋆ can be approximated using Mθ⋆

given by

dXt = vθ⋆(t,Xt)dt+ σ0dBt, X0 ∼ π0, (31)

θ⋆ = argminθ∈Θ

∫ 1

0

EΠt,1
[∥(X1 −Xt)/(1− t)− vθ(t,Xt)∥2]dt, (32)

where {vθ : θ ∈ Θ} is a parametric family of functions, usually given by a neural network.

Hence, since we can approximate projR(Q)(M) and projM(Π) we can approximate the IMF proce-
dure. This is the DSBM algorithm introduced in Shi et al. (2023); Peluchetti (2023). We describe the
first few iterations. Let Π0 = Π0

0,1Q|0,1 where Π0
0 = π0, Π0

1 = π1. Learn M1 ≈ projM(Π0) given
by (31) with vθ⋆ given by (32). Next, sample from Π1 = projR(Q)(M1) = M1

0,1Q|0,1 by sampling
from M1

0,1 and reconstructing the bridge Q|0,1. Upon iterating the previous procedure, we obtain
a sequence (Πn,Mn+1)n∈N. To mitigate the bias accumulation problem caused by approximating
only the forward process, we alternate between a forward Markovian projection and a backward
Markovian projection. We give more details on the advantage of using a forward-backward parame-
terisation instead of a forward-forward in Appendix I. This procedure is valid using (Shi et al., 2023,
Proposition 9). The optimal backward process is approximated with

dYt = vϕ⋆(1− t,Yt)dt+ σ0dBt, Y0 ∼ π1, (33)

ϕ⋆ = argminϕ∈Φ

∫ 1

0

EΠ0,t
[∥(X0 −Xt)/t− vϕ(t,Xt)∥2]dt. (34)

We recall the full DSBM algorithm in Algorithm 2.

Algorithm 2 Diffusion Schrödinger Bridge Matching

1: Input: Joint distribution Π0
0,1, tractable bridge Q|0,1, number of outer iterations N ∈ N.

2: Let Π0 = Π0
0,1Q|0,1.

3: for n ∈ {0, . . . , N − 1} do
4: Learn vϕ⋆ using (34) with Π = Π2n.
5: Let M2n+1 be given by (33).
6: Let Π2n+1 = M2n+1

0,1 Q|0,1.
7: Learn vθ⋆ using (5) with Π = Π2n+1.
8: Let M2n+2 be given by (31).
9: Let Π2n+2 = M2n+2

0,1 Q|0,1.
10: end for
11: Output: vθ⋆ , vϕ⋆

E.4 A Reflection-projection extension

First, we consider a reflection-projection method similar to the one investigated in Bauschke and
Kruk (2004). We recall that the DSBM algorithm is associated with a sequence (Pn)n∈N such that
for any n ∈ N

Pn+1/2 = projM(Pn), Pn+1 = projR(Q)(Pn+1/2).

In a reflection-projection scheme, one of the projection is replaced by a reflection. As noted in
Bauschke and Kruk (2004), this can yield faster convergence rates in practice. We consider the
sequence (Pn)n∈N such that for any n ∈ N

Pn+1/2 = projM(Pn), Pn+1 = projR(Q)(2Pn+1/2 − Pn). (35)

In what follows, we make the assumption that 2Pn+1/2 − Pn is a probability measure, even though it
is not clear if this path measure is non-negative. However, even by making this strong assumption,
we show that we can recover DSBM in Algorithm 4. By considering a relaxation of the reflection-
projection scheme.

27

First, note that for any n ∈ N, Pn
|0 is Markov, see De Bortoli et al. (2023) for instance. Hence, we

assume that Pn is associated with

dXn
t = vnt,0(Xt,X0)dt+ σ0dBt, X0 ∼ π0. (36)

Estimating Pn+1. First, we compute vn+1
t,0 assuming that we can sample from Pn and Pn+1/2.

Since Pn+1 is in the reciprocal class, we have that Pn+1 is associated with

dXt = (EPn+1
1|0,t

[X1 |Xt,X0]−Xt)/(1− t)dt+ σ0dBt.

We refer to De Bortoli et al. (2023) for a proof of this fact. Hence, using (35), we have that

vn+1
t,0 = argminv

∫ 1

0

∫
Rd×Rd×Rd

∥vt,0(t, xt, x0)− (x1 − xt)/(1− t)∥2dPn+1
0,t,1(x0, xt, x1)

= argminv2

∫ 1

0

∫
Rd×Rd×Rd

∥vt,0(t, xt, x0)− (x1 − xt)/(1− t)∥2dPn+1/2
0,1 dQt|0,1(xt|x0, x1)

−
∫ 1

0

∫
Rd×Rd×Rd

∥vt,0(t, xt, x0)− (x1 − xt)/(1− t)∥2dPn
0,1dQt|0,1(xt|x0, x1).

(37)

Next, we turn to the estimation of Pn+3/2.

Estimating Pn+3/2. Next, we assume that for any n ∈ N, Pn+1/2 is associated with

dXn
t = vnt (Xt)dt+ σ0dBt, X0 ∼ π0.

Using (36), we have that vn+1
t is given by

vn+1
t = argminv

∫ 1

0

∫
Rd×Rd

∥vt(t, xt)− vn+1
t,0 (t, xt, x0)∥2dPn+1

0,t (x0, xt).

We note also that using (Shi et al., 2023, Proposition 2) and the fact Pn is in the reciprocal class of Q,
we also have that

vn+1
t = argminv2

∫ 1

0

∫
Rd×Rd×Rd

∥vt(t, xt)− (x1 − xt)/(1− t)∥2dPn+1/2
0,1 dQt|0,1(xt|x0, x1)

−
∫ 1

0

∫
Rd×Rd×Rd

∥vt(t, xt)− (x1 − xt)/(1− t)∥2dPn
0,1dQt|0,1(xt|x0, x1).

(38)

Hence, assuming that we can sample from Pn and Pn+1/2 then we can estimate vn+1
t,0 and vn+1

t ,
i.e. sample from Pn+1 and Pn+3/2. Note that the losses (37) and (38) only differ by the conditioning
with respect to the initial condition x0 and therefore the optimisation can be conducted in parallel.
We are now able to propose the following projection-reflection algorithm, see Algorithm 3.

28

Algorithm 3 Reflection Diffusion Schrödinger Bridge Matching

1: Input: Vector field and conditional vector field v0t and v0t,0, noise level σ0 and associated bridge
Q|0,1, number of outer iterations N ∈ N, batch size B

2: for n ∈ {0, . . . , N − 1} do
3: while not converged do
4: Sample X1:B

0 ∼ π⊗B
0

5: Sample X1:B
1 using dX1:B

t = vnt (X
1:B
t)dt+ σ0dBt

6: Sample X̂1:B
1 using dX̂1:B

t = vnt,0(X̂
1:B
t ,X1:B

0)dt+ σ0dBt

7: L =
∫ 1

0
[
∑B

k=1 ∥vt(Xk
t)−

Xk
1−Xk

t

1−t ∥
2 − (1/2)

∑B
k=1 ∥vt(Xk

t)−
Xk

1−Xk
t

1−t ∥
2]dt

8: L0 =
∫ 1

0
[
∑B

k=1 ∥vt,0(Xk
t ,X

k
0)−

Xk
1−Xk

t

1−t ∥
2− (1/2)

∑B
k=1 ∥vt,0(Xk

t ,X
k
0)−

Xk
1−Xk

t

1−t ∥
2]dt

9: vn+1
t = Gradientstep(L)

10: vn+1
t,0 = Gradientstep(L0)

11: end while
12: end for
13: Output: vN+1

t , vN+1
t,0

Note that in Algorithm 3 we only consider the optimisation of a forward process but similarly
to Algorithm 2, one can construct a forward backward extension to alleviate some of the bias
accumulation problems. Finally, we can interpolate between DSBM and this new reflection algorithm
and DSBM by introducing an hyperparameter α ≥ 0 and consider the following extension given in
Algorithm 4

Algorithm 4 Reflection Diffusion Schrödinger Bridge Matching

1: Input: Vector field and conditional vector field v0t and v0t,0, noise level σ0 and associated bridge
Q|0,1, number of outer iterations N ∈ N, batch size B

2: for n ∈ {0, . . . , N − 1} do
3: while not converged do
4: Sample X1:B

0 ∼ π⊗B
0

5: Sample X1:B
1 using dX1:B

t = vnt (X
1:B
t)dt+ σ0dBt

6: Sample X̂1:B
1 using dX̂1:B

t = vnt,0(X̂
1:B
t ,X1:B

0)dt+ σ0dBt

7: L =
∫ 1

0
[
∑B

k=1 ∥vt(Xk
t)−

Xk
1−Xk

t

1−t ∥
2 − α

∑B
k=1 ∥vt(Xk

t)−
Xk

1−Xk
t

1−t ∥
2]dt

8: L0 =
∫ 1

0
[
∑B

k=1 ∥vt,0(Xk
t ,X

k
0)−

Xk
1−Xk

t

1−t ∥
2 − α

∑B
k=1 ∥vt,0(Xk

t ,X
k
0)−

Xk
1−Xk

t

1−t ∥
2]dt

9: vn+1
t = Gradientstep(L)

10: vn+1
t,0 = Gradientstep(L0)

11: end while
12: end for
13: Output: vN+1

t , vN+1
t,0

Using different values of α ≥ 0 in Algorithm 4, we recover different existing algorithms. If α = 1, we
recover DSBM Shi et al. (2023). Finally, if α = 1/2, we recover the reflection algorithm Algorithm 3.

F Consistency in Schrödinger Bridge

The idea of training both the forward and the backward jointly was mentioned in (Shi et al., 2023,
Section G). However, it was still assumed that, while being trained jointly, the forward and backward
vector fields were obtained using an argmin operation, see (Shi et al., 2023, Equation (43), (44)). In
addition, in (Shi et al., 2023, Section G) a consistency loss was proposed in order to enforce that
the forward and backward processes match, see (Shi et al., 2023, Equation (49)). In this section, we
leverage new results from Daras et al. (2023a); De Bortoli et al. (2024) in order to enforce the internal
consistency of the model.

29

First, note that for any (Xt)t∈[0,1] associated with P ∈ R(Q) we have for any 0 ≤ t0 ≤ t ≤ t1 ≤ 1
that

Xt =
t− t0
t1 − t0

Xt1 +
t1 − t

t1 − t0
Xt0 + σt0,t,t1Z, Z ∼ N (0, Id),

where

σt0,t,t1 =

√
(t− t0)(t1 − t)

t1 − t0
.

Let pt be the density of Xt with respect to the Lebesgue measure, we have that for any 0 ≤ t0 ≤ t ≤
t1 ≤ 1 and xt ∈ Rd

pt(xt) =

∫
Rd×Rd

(2πσ2
t0,t,t1)

−d/2 exp

(
−
∥xt − t−t0

t1−t0
xt1 − t1−t

t1−t0
xt0∥2

2σ2
t0,t,t1

)
pt0(xt0)pt1(xt1)dxt0dxt1 .

Using the change of variable xt0 → xt0 + xt and xt1 → xt1 + xt we get that for any 0 ≤ t0 ≤ t ≤
t1 ≤ 1 and xt ∈ Rd

∇ log pt(xt) =

∫
Rd×Rd

{∇ log pt0(xt0) +∇ log pt1(xt1)}pt0,t1|t(xt0 , xt1 |xt)dxt. (39)

This identity for the score has already been presented in a bridge matching context in (De Bortoli
et al., 2024, Section 3.3). Let P ∈ R(Q) then we have that projM(P) is such that for any t ∈
[0, 1], projM(P)t = Pt, see (Shi et al., 2023, Proposition 2). We have that for any t ∈ [0, 1],
vt (x) + v1−t(x) = σ2

0∇ log pt(x). Combining this result and (39), this suggests considering the
following consistency loss

ℓcons,(t0,t,t1)(θ) = E[∥vθ(t, 1,Xt) + vθ(1− t, 0,Xt) (40)

− vθ(t0, 1,Xt)− vθ(1− t0, 0,Xt0)− vθ(t1, 1,Xt1)− vθ(1− t1, 0,Xt1)∥2].
Similarly to (13), we can consider an empirical version of (40).

G Model stitching

In Algorithm 1, the finetuning stage requires a pretrained bridge matching model interpolating
between π0 and π1 (lines 2-7). However, for large datasets with complex distributions π0 and π1, e.g.
ImageNet, training this bridge model from scratch can be computationally expensive. To improve
efficiency, we can leverage existing diffusion models targeting π0 and π1. Specifically, we assume
access to generative models transferring between N (0, Id) and π0, and between N (0, Id) and π1. In
the rest of this section, we show how one can adapt Algorithm 1 to this setting. We then comment on
the link between the proposed algorithm and Dual Diffusion Implicit Bridges (Su et al., 2023).

Setting. For simplicity, assume that we have two pretrained diffusion models for π0 and π1. We
describe our procedure for π0. Consider a forward process of the form Xt = X0 + σtZ, with
Z ∼ N (0, Id), where σt is a hyperparameter. Note that we could have considered an interpolant of
the form Xt = αtX0 + σtZ instead, see Song et al. (2021a) for instance.

We assume that the model Xt = X0 + σtZ is associated with the forward diffusion model

dXt = gtdBt, (41)

where we assume that gt ≥ 0 for all t ∈ [0, 1]. Note that we have that for any t ∈ [0, 1], σ2
t =

∫ t

0
g2sds.

In particular, we have that for any s, t ∈ [0, 1] with s ≤ t

Xt = Xs +
√
σ2
t − σ2

sZ, Z ∼ N (0, Id).

Our goal is to solve the following Entropic Optimal Transport problem

Π⋆ = argminΠ∈P(R2d)

{∫
Rd×Rd

c(x, y)dΠ(x, y)− εH(Π) ; Π0 = π0, Π1 = π1

}
, (42)

where ε > 0 is some entropic regularisation. We assume that ε > 0 is fixed and assume that there
exists t′ ∈ [0, 1] such that σ2

t′ = ε/2. We now consider a dynamic version of (42) with

P⋆ = argminP∈P(C){KL(P|Q) ; P0 = π0, Pt′ = π1}, (43)

30

where Q is associated with (Xt)t∈[0,t′] (41). Note that contrary to the setting presented in the main
paper, here we do not consider the integration between time 0 and 1 but between time 0 and t′. It can
be shown that for any t ∈ [0, t′], (Xt)t∈[0,t′] associated with Qt|0,t′ is given by

Xt = Interpt(X0,Xt′ ,Z) =

(
1− σ2

t

σ2
t′

)
X0 +

σ2
t

σ2
t′
Xt′ + σt

√
1− σ2

t

σ2
t′
Z, Z ∼ N (0, Id).

Solving (43) is equivalent to solving (42). We now propose an algorithm to solve (43). It corresponds
to the finetuning stage of Algorithm 1 with a specific initialisation, similar to DSBM-IPF in Shi et al.
(2023).

By vϕ, we denote a DDM model associated with π1:

dXt = vϕ(t,Xt)dt+ gtdBt, X0 ∼ N (0, Id), X1 ∼ π1. (44)

Similarly, vθ denotes a diffusion model associated with π0:

dYt = vθ(t,Yt)dt+ gtdBt, Y0 ∼ N (0, Id), Y1 ∼ π0 (45)

In analogy to Equation (11), the two equations above correspond to the forward and backward SDEs.

For a given batch of inputs X1:B
0 and X1:B

1 , timesteps t ∼ Unif([0, t′])⊗B , and interpolations Xt
and Xt , we compute the empirical forward and backward losses as the following modification of
Equation (13):

ℓ (ϕ; t,X1,Xt) =
1

B

B∑
i=1

∥∥∥vϕ (ti,X i
t

)
−
(
Xi

1 −X i
t

)
/σi

t

∥∥∥2,
ℓ (θ; t,X0,Xt) =

1

B

B∑
i=1

∥vθ
(
ti,X i

t

)
−
(
Xi

0 −X i
t

)
/
√

σ2
t′ − σ2

ti)∥
2.

Algorithm 5 corresponds to an online version of DSBM-IPF (Shi et al., 2023) with the initialisation
given by two generative models. In Algorithm 5, we finetune the trained vector fields to solve the
interpolation task. At inference time, the SDE associated with vector field vθ interpolates between
π1 → π0, while the SDE associated with the vector field vϕ interpolates between π0 → π1.

Algorithm 5 α-Diffusion Schrödinger Bridge Matching for DDM finetuning

1: Input: datasets π0 and π1, number finetuning steps Nfinetuning, batch size B, DDM parameters
ϕ and θ.

2: for n ∈ {1, . . . , Nfinetuning} do
3: Sample (X0,X1) ∼ (π0 ⊗ π1)

⊗B , t ∼ Unif([0, 1]), Z1:B ∼ N (0, Id)⊗B

4: Sample X̂t′ by solving (44) starting from X0

5: Sample X̂t′ by solving (45) starting from X1

6: Sample t ∼ Unif([0, t′])⊗B , Z ∼ N (0, Id)⊗B , and compute Xt = Interpt (X0, X̂t′ ,Z)

7: Sample t ∼ Unif([0, t′])⊗B , Z ∼ N (0, Id)⊗B , and compute Xt = Interpt (X1, X̂t′ ,Z)
8: Update θ with gradient step on ℓ (θ; t ,X0,Xt)
9: Update ϕ with gradient step on ℓ (ϕ; t ,X1,Xt)

10: end for
11: Output: θ, ϕ parameters of the finetuned models

Our model stitching approach is related to Dual Diffusion Implicit Bridges (DDIB) (Su et al., 2023),
which uses pretrained diffusion models, but without further finetuning. As highlighted in Shi et al.
(2023), DDIB is inferior to DSBM in terms of quality and alignement of the samples.

31

H Extended related work

We highlight links between our proposed flow and Sinkhorn flows in Appendix H.1. We draw
connection between our practical approach and Reinforcement Learning in Appendix H.2. We
discuss how α-IMF is related to (incremental) Expectation-Maximisation in Appendix H.3. Finally,
we discuss how our algorithm can be seen as an instance of continual learning in Appendix H.5.

H.1 Links with Sinkhorn flow

In this section, we discuss the links between our approach and the Sinkhorn flow introduced by
Karimi et al. (2024). We start by recalling how Sinkhorn flows are defined and then discuss how they
are related to our approach.

γ-Sinkhorn and Sinkhorn flows. We first consider the static EOT problem and recall the Sinkhorn
procedure, also called Iterative Proportional Fitting. We define a sequence of coupling (Π̄n,Πn)n∈N,
i.e. for any n ∈ N, Πn ∈ P(Rd × Rd). We let Π0 = Q0,1 and we consider for any n ∈ N,

Πn = argmin{KL(Π | Π̄n) : Π ∈ P(Rd × Rd), Π0 = π0}, (46)

Π̄n+1 = argmin{KL(Π | Πn) : Π ∈ P(Rd × Rd), Π1 = π1},

In Karimi et al. (2024), the authors generalise (46) by introducing an extra hyperparameter γ ∈ (0, 1]
and defining

Πn = argmin{KL(Π | Π̄n) : Π ∈ P(Rd × Rd), Π1 = π1}, (47)

Π̄n+1 = argmin{γKL(Π | Πn) + (1− γ)KL(Π | Π̄n) : Π ∈ P(Rd × Rd), Π0 = π0},

Using (Karimi et al., 2024, Lemma 2), we have that for any γ ∈ (0, 1], any n ∈ N and any x0, x1 ∈ Rd

(dΠ̄n/dQ0,1)(x0, x1) = exp[fn
γ (x0) + gnγ (x1)], (48)

with f0
γ = g0γ = 0 and for any n ∈ N, γ ∈ (0, 1] and x1 ∈ Rd

gn+1
γ (x1) = gnγ (x1)− γ log(dΠ̄n

1/dπ1)(x1). (49)

In addition, using (Karimi et al., 2024, Equation (9)) we have that for any n ∈ N, γ ∈ (0, 1] and
x0 ∈ Rd

fn
γ (x0) = − log

(∫
Rd

exp[gnγ (x1)− (1/(2ε))∥x0 − x1∥2]dπ1(x1)

)
.

When letting γ → 0, (48) and (49) suggest to consider for any s ≥ 0, x0, x1 ∈ Rd

(dΠ̄s/dQ0,1)(x0, x1) = exp[fs(x0) + gs(x1)], Πs = argmin{KL(Π | Π̄s) : Π, Π1 = π1},

where for any s ≥ 0, x1 ∈ Rd

∂sg
s(x1) = − log(dΠ̄s

1/dπ1)(x1), ∂sf
s(x0) =

∫
Rd

log(dΠ̄s
1/dπ1)(x1)dΠ̄

s(x1|x0).

Comparison with Schrödinger Bridge flows. In order to compare our approach with the one of
Karimi et al. (2024), we start by rewriting the γ-Sinkhorn algorithm defined by (47). To do so, we
introduce the projection on the measures with fixed marginal.

Definition H.1 (Projection on marginals): Let Π ∈ P(Rd × Rd) and π0 ∈ P(Rd), we define
proj0,π0

(Π) as follows

proj0,π0
(Π) = argmin{KL(Π̃ | Π) : Π̃ ∈ P(Rd × Rd), Π̃0 = π0}.

Similarly, for any Π ∈ P(Rd × Rd) and π1 ∈ P(Rd), we define proj1,π1
(Π) as follows

proj1,π1
(Π) = argmin{KL(Π̃ | Π) : Π̃ ∈ P(Rd × Rd), Π̃1 = π1}.

32

γ-Sinkhorn γ-IMF

Loss function KL(Π |proj1,π1
(Π̃))

∫ 1

0
EprojR(Q)(P)[∥vt(Xt)− X1−Xt

1−t ∥
2]dt

regularisation KL(Π |Π̃)
∫ 1

0

∫
Rd ∥ft(xt)− f̃t(xt)∥2dµt(xt)dt

Update Implicit Explicit
Table 2: Comparison between γ-Sinkhorn and γ-IMF.

With these definitions, we have that for any n ∈ N, Π̄n+1 = proj0,π0
(proj1,π1

(Π̄n)), with (Π̄n)n∈N
the original Sinkhorn sequence defined by (46). Similarly, we have that the original Iterative
Markovian Fitting (IMF) sequence (P̂n)n∈N as defined in (4) with α = 1 satisfies for any n ∈ N,
P̂n+1 = projR(Q)(projM(Pn)). The analogy between the Sinkhorn iterates and the IMF sequence
was already highlighted in Shi et al. (2023); Peluchetti (2023) and further studied in Brekelmans and
Neklyudov (2023). We know show that similarly, we can draw an analogy between the sequences
defined in (4) with α ∈ (0, 1) and the sequences obtained in γ-Sinkhorn. To do so, we start by
introducing for any Π, Π̃ ∈ P(Rd × Rd)

LIPF(Π, Π̃) = KL(Π |proj1,π1
(Π̃)), RIPF(Π, Π̃) = KL(Π |Π̃).

With this notation, we can now rewrite (47) for any n ∈ N as

Π̄n+1 = argmin{LIPF(Π, Π̄n) + ((1− γ)/γ)RIPF(Π, Π̄n) : Π ∈ P(Rd × Rd), Π0 = π0}.

Now, we are going to see that (50) is linked with the discretisation of the path measure flow described
in (4). Recall that for any suitable v, we define the path measure Pv associated with

dXt = vt(Xt)dt+
√
εdBt, X0 ∼ π0.

We define

L(v,P) =
∫ 1

0

L(vt,P)dt =
∫ 1

0

∫
Rd×Rd

∥∥∥vt(xt)−
x1 − xt

1− t

∥∥∥2dprojR(Q)(P)t,1(xt, x1)ds.

Similarly, for any µ ∈ P(C), we define

Rµ(Pv,Pṽ) =

∫ 1

0

∫
Rd

∥vt(xt)− ṽt(xt)∥2dµt(xt)dt.

Next, we define the sequence of path measures (P̄n)n∈N such that for any n ∈ N

P̄n+1 = argmin{L(P, P̄n) + (1/α)Rµn(Π, P̄n) : P = Pv, for some v}. (50)

Now, if we denote (vn)n∈N the sequence such that for any n ∈ N, P̄n = Pvn then we have that for
any n ∈ N, t ∈ [0, 1] and x ∈ Rd

vn+1
t (x) = vnt (x)− δ∇µnLt(v

n+1, P̄n)(x). (51)

Recall that (Pn)n∈N given by (4) is associated with (vn)n∈N such that for any n ∈ N, t ∈ [0, 1] and
x ∈ Rd

vn+1
t (x) = vnt (x)− δ∇n

µLt(v
n,Pn)t(x), (52)

see Proposition 3.2. Therefore, the only difference between (52) and (51) is that (52) is an explicit
update whereas (51) is an implicit update. We summarise the differences between γ-Sinkhorn and
the discretisation we introduce in Table 2.

H.2 Links with Reinforcement Learning

In this section, we draw some connection between Algorithm 1 and self-play in Reinforcement
Learning. In particular, we introduce a generalisation of Algorithm 1 which uses the concept of
replay buffer commonly used in Reinforcement learning, see Mnih et al. (2015) for instance.

We first present a generalisation of Algorithm 1 called Replay Buffer Diffusion Schrödinger Bridge
Matching Algorithm 6. We define a buffer B as a collection of samples {(Xk

0 ,X
k
1)}Nk=1, where

33

N ∈ N is the size of the buffer equipped with two functions Add and Sample. We have that
Add : Ω ×

⊔
k∈N(R2d)k × (R2d)N → (R2d)N , where Ω is a probability space. In practice Add

takes a random number (the function can be stochastic), any number of proposed samples as well
as the current buffer. As an output Add returns the updated buffer. We also define Sample :
Ω × N × (R2d)N →

⊔
k∈N(R2d)k. This function takes a random number (the function can be

stochastic), a natural number k representing the number of samples to return as well as the current
buffer. As an output Sample returns a batch of k samples from the buffer.

Algorithm 6 Replay Buffer Diffusion Schrödinger Bridge Matching

1: Input: π0, π1, ε (entropic regularisation), Npretraining (number of pretraining steps), Nfinetuning

(number of finetuning steps), B (batch size), γ (EMA parameter), θ (initial parameters), Bfwd

(forward buffer), Bbwd (backward buffer)
2: θ̄ = θ
3: for n ∈ {0, . . . , Npretraining} do
4: Sample (X1:B

0 ,X1:B
1) ∼ (π0 ⊗ π1)

⊗B , t ∼ Unif([0, 1]), Z1:B ∼ N (0, Id)⊗B

5: Compute X1:B
t = Interpt(X

1:B
0 ,X1:B

1 ,Z1:B) using (12)
6: Update θ with gradient step on ℓBt , θ̄ = (1− γ)θ̄ + γθ
7: end for
8: for n ∈ {0, . . . , Nfinetuning} do
9: if n ≡ 0[nrefresh] then

10: Sample (X̂1:B
0 , Ŷ1:B

0) ∼ (π0 ⊗ π1)
⊗B , t ∼ Unif([0, 1]), Z1:B ∼ N (0, Id)⊗B

11: Sample (X1:B
1 ,Y1:B

1) using (11) with initialisation (X̂1:B
0 , Ŷ1:B

0)

12: Bfwd = Add((X̂1:B
0 ,X1:B

1),Bfwd)

13: Bbwd = Add((YB
1 , Ŷ1:B

0),Bbwd)
14: end if
15: (X̂1:B

0 ,X1:B
1) = Sample(B,Bfwd)

16: (Y1:B
1 , Ŷ1:B

0) = Sample(B,Bbwd)

17: Compute X1:B
t = Interpt(X̂

1:B
0 ,X1:B

1 ,Z1:B) using (12)
18: Compute Y1:B

1−t = Interpt(Y
1:B
1 , Ŷ1:B

0 ,Z1:B) using (12)
19: Update θ with gradient step on ℓBt , θ̄ = (1− γ)θ̄ + γθ
20: end for
21: Output: (θ, θ̄) parameters of the finetuned model

In Algorithm 6, we allow for more flexibility than the online procedure by leveraging the concept of
replay buffer originally introduced in Reinforcement Learning Mnih et al. (2015). The concept of
replay buffer has been used previously in Schrödinger Bridge works, with the notion of cache where
every nrefresh steps a cache is emptied and filled with new samples. If nrefresh = 1, N = B for both
Bfwd and Bfwd we have that for any ω ∈ Ω and (X1:B

0 ,X1:B
1) ∈ (R2d)B

Add(ω, (X1:B
0 ,X1:B

1),B) = (X1:B
0 ,X1:B

1),

Sample(ω,B, (X1:B
0 ,X1:B

1)) = (X1:B
0 ,X1:B

1).

This means that the Add simply fills the buffer with the new samples while Sample just return the
whole current buffer. In that case we recover Algorithm 1. For more general update rules, the replay
buffers Bfwd and Bbwd allow us to collect previous samples and therefore to keep a memory of the
past experiences. In future work, we plan to investigate popular choice in experience replay and their
impact on the performance of Algorithm 6.

H.3 Links with Expectation Maximisation

In this section, we make a connection between DSBM and the Expectation Maximisation (EM) algo-
rithm, and show that the discretisation of the Schrödinger Flow proposed in Algorithm 1 corresponds
to some incremental version of an idealised algorithm, as discussed in Neal and Hinton (1998). We
would like to emphasize that the link between the EM algorithm and Diffusion Schrödinger Bridge
based methodologies was already highlighted by Vargas et al. (2024); Brekelmans and Neklyudov
(2023). Below, we follow the framework of Brekelmans and Neklyudov (2023) and recall the
following definitions.

34

Definition H.2 (Projections and maximisations): Let A be a subset of P(C). Then, for any
P ∈ P(C), when it is well-defined, we define its E-projection on A as P⋆ = argminQ∈AKL(Q | P).
Similarly, for any P ∈ P(C), when it is well-defined, we define its M-projection on A as P⋆ =
argminQ∈AKL(P | Q).

In Brekelmans and Neklyudov (2023), the authors choose M-projection because this corresponds to
the Maximisation step in an EM algorithm while the E-projection corresponds to the expectation step
in the EM algorithm. In Brekelmans and Neklyudov (2023), the authors highlight that the Iterative
Proportional Fitting procedure is a Expectation-Expectation procedure, i.e. the alternating projections
are both E-projections. In contrast, the Iterative Markovian Fitting procedure is a Maximisation-
Maximisation procedure, i.e. the alternating projections are both M-projections. In particular, we can
define the following sequence of path measures (Pn)n∈N, where for any n ∈ N we have

Pn+1/2 = argminP∈projM
KL(Pn |P), Pn+1 = argminP∈R(Q)KL(Pn+1/2 |P).

In addition, we have that

Pn+1/2 = Pvn+1
⋆

, vn+1
⋆ = argminvL(v,Pn), Pn+1 = argminP∈R(Q)KL(Pvn+1

⋆
| P),

since we have that Pn = Pvn
⋆ . Hence, our online procedure Algorithm 1, which corresponds to the

discretisation of the flow of path measures (3) can be rewritten as

Pn+1/2 = Pvn+1
⋆

, vn+1
⋆ = Gradientstep(L(v,Pn), Pn+1 = argminP∈R(Q)KL(Pvn+1

⋆
| P).

Therefore, our proposed algorithm can be seen as an incremental version of the Maximisation-
Maximisation algorithm associated with DSBM instead of an incremental version of the Expectation-
Maximisation algorithm discussed in (Neal and Hinton, 1998).

H.4 Links with finetuning of diffusion models

Algorithm 1 can be seen as a method to finetune bridge matching. Finetuning of diffusion models and
flow matching procedures is an active research area. Most of the existing methodologies optimise for
an external cost after a pretraining phase. These procedures rely on Reinforcement Learning strategies
(Lee et al., 2023; Black et al., 2023; Fan et al., 2024). Recently Direct Preference optimisation (DPO)
(Rafailov et al., 2024) has been applied to the finetuning of diffusion models in (Yang et al., 2023;
Rafailov et al., 2024). Our approach departs from these works as the objective we minimise is
given by the EOT cost. However all of these approaches involve some level of self-play, i.e. are not
simulation free.

H.5 Links with continual learning

Continual learning develops techniques to train models when the dataset changes during the training,
usually to solve different tasks De Lange et al. (2021); Parisi et al. (2019); Zając et al. (2023). In
the context of diffusion models, continual learning has been investigated in Masip et al. (2023);
Zając et al. (2023); Smith et al. (2023). In (Masip et al., 2023), the authors consider a weighted loss
between a diffusion model loss and a distillation loss which ensures some consistency between the
model being trained and the previous task model. Similarly to our approach this distillation loss is not
simulation-free but, contrary to our loss, the clean samples are not obtained by unrolling the diffusion
model but by applying a one-step prediction operator. In (Zając et al., 2023), consider different replay
buffer techniques to train continual diffusion models and observe that experience replay with a small
coefficient can bring improvements. Finally, in (Smith et al., 2023), the authors consider the continual
training of a text-to-image diffusion model with LoRA (Hu et al., 2021).

I Forward-Forward, Forward-Backward and accumulation of error

In this section, we investigate how error accumulates in the context of DSBM. In practice, we observe
similar conclusions in the case of the online version of DSBM. We compare two methods: one which
only trains a forward model and one which trains a forward and a backward model.

35

In what follows, we assume that π0 = π1 = N (0, Id), we also assume that Q is associated with
(
√
2Bt)t∈[0,1]. We recall that for any t ∈ [0, 1], we have that

Xt = (1− t)X0 + tX1 +
√

2t(1− t)Z, Z ∼ N (0, Id).

We are going to consider to approximate schemes to implement IMF.

Forward-forward. First, we consider the following sequence of path measures (Pn)n∈N. We set
P0 = (π0 ⊗ π1)Q|0,1. For any n ∈ N, we define P2n+2 = P2n+1

0,1 Q|0,1, i.e. P2n+2 = projR(P2n+1).
In addition, we define P2n+1 = projε,M(P2n) such that P2n+1 is associated with (Xt)t∈[0,1] where
for any t ∈ [0, 1]

dXt = {(EP2n
1|t
[X1 |Xt]−Xt)/(1− t) + εXt}dt+

√
2dBt, X0 ∼ π0, (53)

with ε ∈ R. Recall that if we define P̄2n+1 = projM(P2n) we have that for any t ∈ [0, 1], P̄2n+1 is
associated with (Xt)t∈[0,1] where for any t ∈ [0, 1]

dXt = (EP2n
1|t
[X1 |Xt]−Xt)/(1− t)dt+

√
2dBt.

Hence, projε,M corresponds to making an error of order x 7→ εx on the estimated velocity field.
Doing so, we now longer have that for any n ∈ N, Pn

1 = π1. In what follows, we are going to show
how the error accumulates for the sequence Pn

0,1.

Before stating Proposition I.1, we introduce f : R4 → R such that for any c0,0, c1,1, c0,1 > 0 and
t ∈ [0, 1]

f(c0,0, c1,1, c0,1, t) = [−(1− t)c0,0 + tc1,1 + (1− 2t)c0,1 − 2t]

/[(1− t)2c0,0 + t2c1,1 + 2t(1− t)c0,1 + 2t(1− t)].

We define F (c0,0, c1,1, c0,1, ε, t) = 2
∫ t

0
f(c0,0, c1,1, c0,1, s)ds+ 2εt. Finally, we define

fcov(c0,0, c1,1, c0,1, ε) = exp[12F (c0,0, c1,1, c0,1, ε, 1)],

as well as

fvar(c0,0, c1,1, c0,1, ε) = exp[12F (c0,0, c1,1, c0,1, ε, 1)](1 + 2

∫ 1

0

exp[−F (c0,0, c1,1, c0,1, ε, s)]ds).

Proposition I.1 (Forward-Forward updates): For any n ∈ N, we have that P2n+1
0,1 =

N (0,Σn+1Id) where

Σn+1 =

(
Id cn+1

0,1 Id

cn+1
0,1 Id cn+1

1,1 Id

)
,

and for any n ∈ N

cn+1
1,1 = fvar(1, c

n
1,1, c

n
0,1, ε),

cn+1
0,1 = fcov(1, c

n
1,1, c

n
0,1, ε).

Proof. Let P = (P0,1)Q|0,1 where P0,1 is a Gaussian random variable with zero mean and covariance
matrix Σ ∈ R2d×2d such that

Σ =

(
Id c0,1Id

c0,1Id c1,1Id

)
,

where Id is the d-dimensional identity matrix and we assume that c0,1, c1,1 > 0. We denote
P⋆ = projε,M(P). We have that P1|t is a Gaussian random variable with zero mean. We now compute
its covariance matrix. First, we have that

E[XtX
⊤
1] = (1− t)E[X0X

⊤
1] + tE[X1X

⊤
1] = [(1− t)c0,1 + tc1,1]Id.

36

We also have that

E[XtX
⊤
t] = (1− t)2E[X0X

⊤
0] + t(1− t)(E[X1X

⊤
0] + E[X1X

⊤
0]) + t2E[X1X

⊤
1] + 2t(1− t)Id

= [(1− t)2 + t2c1,1 + 2t(1− t)c0,1 + 2t(1− t)]Id

= [1− t2 + t2c1,1 + 2t(1− t)c0,1]Id.

Therefore, we get that for any t ∈ [0, 1] and xt ∈ Rd

EP1|t [X1 |Xt = xt] = ([(1− t)c0,1 + tc1,1]/[1− t2 + t2c1,1 + 2t(1− t)c0,1])xt.

Hence, we have that for any t ∈ [0, 1] and xt ∈ Rd

EP1|t [X1 |Xt = xt]− xt = ([(1− t)c0,1 + tc1,1]/[1− t2 + t2c1,1 + 2t(1− t)c0,1]− 1)xt

= ([(1− t)c0,1 + tc1,1 − 1 + t2 − t2c1,1 − 2t(1− t)c0,1]/[1− t2 + t2c1,1 + 2t(1− t)c0,1])xt

= ([(1− t)(1− 2t)c0,1 + t(1− t)c1,1 − 1 + t2]/[1− t2 + t2c1,1 + 2t(1− t)c0,1])xt

= (1− t)([(1− 2t)c0,1 + tc1,1 − 1− t]/[1− t2 + t2c1,1 + 2t(1− t)c0,1])xt.

So it follows that

(EP1|t [X1 |Xt = xt]− xt)/(1− t)

= ([(1− 2t)c0,1 + tc1,1 − 1− t]/[1− t2 + t2c1,1 + 2t(1− t)c0,1])xt. (54)

Note that if we set c0,1 = c2 and c1,1 = 1, we recover (Shi et al., 2023, Lemma 13) with σ = 2.
Denote P⋆ = projε,M(P). Combining (54) and (53) we get that P⋆ is associated with (Xt)t∈[0,1] such
that for any t ∈ [0, 1] we have

dXt = {([(1− 2t)c0,1 + tc1,1 − 1− t]/[1− t2 + t2c1,1 + 2t(1− t)c0,1]) + ε}Xtdt+
√
2dBt.

Hence, we get that

Xt = exp[12G(t, c0,1, c1,1, ε)]X0+
(
2

∫ t

0

exp[−G(s, c0,1, c1,1, ε)]ds exp[G(t, c0,1, c1,1, ε)]
)1/2

Z,

where Z ∼ N (0, Id) is independent from X0 and for any t ∈ [0, 1], c0,1, c1,1, ε > 0 we have

G(t, c0,1, c1,1, ε) = 2

∫ t

0

[(1− 2t)c0,1 + tc1,1 − 1− t]/[1− t2 + t2c1,1 + 2t(1− t)c0,1]dt+ 2εt.

In addition, we define

gcov(c0,1, c1,1, ε) = exp[G(1, c0,1, c1,1, ε)],

gvar(c0,1, c1,1, ε) = exp[G(1, c0,1, c1,1, ε)]
(
1 + 2

∫ 1

0

exp[−G(t, c0,1, c1,1, ε)]dt
)
.

Hence, we have that

E[X0X
⊤
1] = gcov(c0,1, c1,1, ε)Id, E[X1X

⊤
1] = gvar(c0,1, c1,1, ε)Id.

Therefore, since for any n ∈ N, we have that P2n+1 = projε,M(P2n) and P2n+2 = P2n+1
0,1 Q|0,1, we

define (cn0,1, c
n
1,1)n∈N such that for any n ∈ N

EP2n [X0X
⊤
1] = cn0,1Id, EP2n [X1X

⊤
1] = cn1,1Id.

Note that for any n ∈ N, we have that

EP2n+1 [X0X
⊤
1] = cn+1

0,1 Id, EP2n+1 [X1X
⊤
1] = cn+1

1,1 Id.

Since P0 = (π0 ⊗ π1)Q|0,1 we get that c00,1 = 0 and c1,1 = 1. We have that for any n ∈ N

cn+1
0,1 = gcov(c

n
0,1, c

n
1,1, ε), cn+1

1,1 = gvar(c
n
1,1, c

n
1,1, ε),

which concludes the proof.

37

Forward-backward. Next, we consider the following sequences of path measures (Pn,)n∈N and
(Pn,)n∈N. We set P0, = P0, = (π0⊗π1)Q|0,1. For any n ∈ N, we define P2n+2, = P2n+1,

0,1 Q|0,1

and P2n+2, = P2n+1,
0,1 Q|0,1, i.e. P2n+2, = projR(P2n+1,) and P2n+2, = projR(P2n+1,). In

addition, we define P2n+1, = projε,M(P2n,) such that for any t ∈ [0, 1], P2n+1, is associated with
(Xt)t∈[0,1] where

dXt = {(EP2n,
1|t

[X1 |Xt]−Xt)/(1− t) + εXt}dt+
√
2dBt, X0 ∼ π0,

with ε ∈ R. Similarly, we define P2n+1, = projε,M(P2n,) such that for any t ∈ [0, 1], P2n+1, is
associated with (Y1−t)t∈[0,1] where

dYt = {(EP2n,
0|t

[X0 |Yt]−Yt)/(1− t) + εYt}dt+
√
2dBt, Y0 ∼ π1.

Proposition I.2 (Forward-Backward updates): For any n ∈ N, we have that P2n+1,
0,1 =

N (0,Σn+1, Id) and P2n+1,
0,1 = N (0,Σn+1, Id) where

Σn+1, =

(
Id cn+1,

0,1 Id

cn+1,
0,1 Id cn+1,

1,1 Id

)
, Σn+1, =

(
cn+1,
0,0 Id cn+1,

0,1 Id

cn+1,
0,1 Id Id

)
,

and for any n ∈ N

cn+1,
1,1 = fvar(c

n,
0,0 , 1, c

n,
0,1 , ε),

cn+1,
0,1 = fcov(c

n,
0,0 , 1, c

n,
0,1 , ε),

cn+1,
0,0 = fvar(1, c

n,
1,1 , c

n,
0,1 , ε),

cn+1,
0,1 = fcov(1, c

n,
1,1 , c

n,
0,1 , ε).

The proof is similar to the one of Proposition I.1.

Proof. Let P = (P0,1)Q|0,1 where P0,1 is a Gaussian random variable with zero mean and covariance
matrix Σ ∈ R2d×2d such that

Σ =

(
c0,0Id c0,1Id
c0,1Id Id

)
,

where Id is the d-dimensional identity matrix and c0,1, c0,0 > 0. We denote P⋆ = projε,M(P). We
have that P1|t is a Gaussian random variable with zero mean. We now compute its covariance matrix.
First, we have that

E[XtX
⊤
1] = (1− t)E[X0X

⊤
1] + tE[X1X

⊤
1] = [(1− t)c0,1 + t]Id.

We also have that

E[XtX
⊤
t] = (1− t)2E[X0X

⊤
0] + t(1− t)(E[X1X

⊤
0] + E[X1X

⊤
0]) + t2E[X1X

⊤
1] + 2t(1− t)Id

= [(1− t)2c0,0 + t2 + 2t(1− t)c0,1 + 2t(1− t)]Id

= [2t− t2 + (1− t)2c0,0 + 2t(1− t)c0,1]Id.

Therefore, we get that for any t ∈ [0, 1] and xt ∈ Rd

EP1|t [X1 |Xt = xt] = ([(1− t)c0,1 + t]/[2t− t2 + (1− t)2c0,0 + 2t(1− t)c0,1])xt.

Hence, we have that for any t ∈ [0, 1] and xt ∈ Rd

EP1|t [X1 |Xt = xt]− xt = ([(1− t)c0,1 + t]/[2t− t2 + (1− t)2c0,0 + 2t(1− t)c0,1]− 1)xt

= ([(1− t)c0,1 + t− 2t+ t2 − (1− t)2c0,0 − 2t(1− t)c0,1]

/[2t− t2 + (1− t)2c0,0 + 2t(1− t)c0,1])xt

= ([(1− t)(1− 2t)c0,1 − (1− t)2c0,0 − t(1− t)]/[2t− t2 + (1− t)2c0,0 + 2t(1− t)c0,1])xt

= (1− t)([(1− 2t)c0,1 − (1− t)c0,0 − t]/[2t− t2 + (1− t)2c0,0 + 2t(1− t)c0,1])xt.

38

Finally, we have that for any t ∈ [0, 1] and xt ∈ Rd

(EP1|t [X1 |Xt = xt]− xt)/(1− t)

= ([(1− 2t)c0,1 − (1− t)c0,0 − t]/[2t− t2 + (1− t)2c0,0 + 2t(1− t)c0,1])xt. (55)

Note that if we set c0,1 = c2 and c0,0 = 1, we recover (Shi et al., 2023, Lemma 13) with σ = 2.
Denote P⋆ = projε,M(P). Combining (55) and (53) we get that P⋆ is associated with (Xt)t∈[0,1] such
that for any t ∈ [0, 1] we have

dXt = {([(1−2t)c0,1−(1−t)c0,0−t]/[2t−t2+(1−t)2c0,0+2t(1−t)c0,1])+ε}Xtdt+
√
2dBt.

Hence, we get that

Xt = exp[12H(t, c0,1, c0,0, ε)]X0+(2

∫ t

0

exp[−H(s, c0,1, c0,0, ε)]ds exp[H(t, c0,1, c0,0, ε)])
1/2Z,

where Z ∼ N (0, Id) is independent from X0 and for any t ∈ [0, 1], c0,1, c1,1, ε > 0 we have

H(t, c0,1, c0,0, ε) = 2

∫ t

0

[(1−2t)c0,1−(1−t)c0,0−t]/[2t−t2+(1−t)2c0,0+2t(1−t)c0,1]dt+2εt.

In addition, we define

gcov(c0,1, c0,0, ε) = exp[12H(1, c0,1, c0,0, ε)],

gvar(c0,1, c0,0, ε) = exp[H(1, c0,1, c0,0, ε)]
(
1 + 2

∫ 1

0

exp[−H(t, c0,1, c0,0, ε)]dt
)
.

Hence, we have that

E[X0X
⊤
1] = gcov(c0,1, c0,0, ε)Id, E[X1X

⊤
1] = gvar(c0,1, c0,0, ε)Id. (56)

Remember that P0, = P0, = (π0 ⊗ π1)Q|0,1. In addition, for any n ∈ N, we have
P2n+2, = P2n+1,

0,1 Q|0,1 and P2n+2, = P2n+1,
0,1 Q|0,1, i.e. P2n+2, = projR(P2n+1,) and

P2n+2, = projR(P2n+1,). In addition, we also have P2n+1, = projε,M(P2n,) and P2n+1, =
projε,M(P2n,). We also define (cn,0,1 , c

n,
1,1)n∈N such that for any n ∈ N

EP2n, [X0X
⊤
1] = cn,0,1Id, EP2n, [X1X

⊤
1] = cn,1,1Id.

Finally, we define (cn,0,1 , c
n,
1,1)n∈N such that for any n ∈ N

EP2n, [X0X
⊤
1] = cn,0,1Id, EP2n, [X0X

⊤
0] = cn,0,0Id.

Using this definition and (56) we get that for any n ∈ N

cn+1,
0,1 = gcov(c

n,
0,1 , c

n,
0,0 , ε), cn+1,

1,1 = gvar(c
n,
0,1 , c

n,
0,0 , ε),

cn+1,
0,1 = gcov(c

n,
0,1 , c

n,
1,1 , ε), cn+1,

0,0 = gvar(c
n,
0,1 , c

n,
1,1 , ε).

In addition, we have that cn,0,1 = cn,0,1 = 0 and c0,1,1 = c0,0,0 = 1. This concludes the proof.

Error accumulation. In Proposition I.1 and Proposition I.2, we derive the sequences corresponding
to the evolution of the variance and the covariance throughout the DSBM iterations in forward-
forward mode or forward-backward mode. In what follows, we showcase the behavior of these
sequences for different values of ε > 0. We recall that ε corresponds to the error made in the Markov
projection, i.e. projM is replaced by projε,M in the forward-forward mode and projM is replaced
by projε,M and projε,M in the forward-backward mode. First, if we consider the perfect scenario,
i.e. ε = 0, then we observe that both the forward-forward mode and the forward-backward mode
satisfy that EP2n [X1X

⊤
1] = Id, see Figure 10 and Figure 11. Additionally, we can show that in the

perfect scenario, i.e. ε = 0, then both the forward-forward mode and the forward-backward mode
satisfy that limn→+∞ EP2n [X1X

⊤
0] = (

√
2 − 1)Id, see Figure 10 and Figure 11. However, as ε

increases the behavior between the forward-forward sequence and the forward-backward sequence
significantly differs. More precisely, the error explodes as ε increases along the DSBM iteration
for the forward-forward mode. On the contrary, in the forward-backward mode, the error remains
bounded along the DSBM iterations, see Figure 10 and Figure 11.

39

Figure 10: Evolution of (∥EP2n [X1X
⊤
1] − Id∥)n∈N in log-space along DSBM iterations (x-axis).

Different curves correspond to different values of ε, i.e. the larger ε the larger the error in the
Markovian projection. Left: evolution in the forward-forward mode. Right: evolution in the forward-
backward mode.

Figure 11: Evolution of (∥EP2n [X1X
⊤
0] − Id∥)n∈N in log-space along DSBM iterations (x-axis).

Different curves correspond to different values of ε, i.e. the larger ε the larger the error in the
Markovian projection. Left: evolution in the forward-forward mode. Right: evolution in the forward-
backward mode.

J Preconditioning of the loss function

In this section, we provide details on the scaling of the loss function we implement when training our
online version of DSBM. We adapt the method of (Karras et al., 2022, Appendix B.2) to the case of
bridge matching. We only present our derivations in the case of the forward training of the online
version of DSBM, i.e. (9). The preconditioning of the loss described in this setting can be readily
extended to the forward-backward loss we consider in practice, i.e. the parametric version of (10).

We consider the following objective function for any t ∈ [0, 1]

ℓt = λtEP[∥cotnnθt (citXt) + cstXt − X1−Xt

1−t ∥
2]. (57)

We also define for any t ∈ [0, 1] and xt ∈ Rd, vθt (xt) = cotnn
θ
t (c

i
txt) + cstxt. Hence, cit is an

input scaling function, cot is an output scaling function and cst is a skip-connection function. During
the training of the online version of DSBM, P will be given by Pn, where Pn = Pvθn , where
the sequence (θn)n∈N is given by (9). Here, we apply the principles of Karras et al. (2022) to
the case where P = (π0 ⊗ π1)Q|0,1, i.e. at initialisation of the sequence. In what follows, we
assume that Eπ0

[∥X0∥2] = Eπ1
[∥X1∥2] = d. Note that our considerations can be generalised to

Eπ0
[∥X0∥2] = σ2

0d and Eπ1
[∥X1∥2] = σ2

1d. We also have that

Xt = (1− t)X0 + tX1 +
√

εt(1− t)Z, Z ∼ N (0, Id). (58)

Using (58), we have that for any t ∈ [0, 1]

EPt
[∥Xt∥2] = (1− t)2Eπ0

[∥X0∥2] + t2Eπ1
[∥X1∥2] + εt(1− t)d

= [(1− t)2 + t2 + εt(1− t)]d.

We set cit so that E[∥citXt∥2] = d for every t ∈ [0, 1]. Hence, we have that for any t ∈ [0, 1]

cit = 1/
√

(1− t)2 + t2 + εt(1− t).

40

Figure 12: From left to right ((cit)
2)t∈[0,1], (cst)t∈[0,1] and ((cot)

2)t∈[0,1] for different values of
ε ∈ [0, 10].

Next, we rewrite (57). For any t ∈ [0, 1] we have that

ℓt = λtEP[∥cotnnθt (citXt) + cstXt − X1−Xt

1−t ∥
2]

= (cot)
2λtEP[∥nnθt (citXt)− [−cstXt +

X1−Xt

1−t]/cot∥2]

= (cot)
2λtEP[∥nnθt (citXt)− [

X1−(1+cst (1−t))Xt

1−t]/cot∥2]

Hence, we get that for any t ∈ [0, 1], Tt = [
X1−(1+cst (1−t))Xt

1−t]/cot is the target of the network in the
regression loss. We are going to fix cot and cst such that i) E[∥Tt∥2] = d, ii) cot is as small as possible
in order not to minimise the error propagation made by the neural network. Using (58), we have that
for any t ∈ [0, 1]

EP1,t
[∥X1 − (1 + cst (1− t))Xt∥2] = (1 + cst (1− t))2EPt

[∥Xt∥2] + Eπ1
[∥X1∥2]

− 2(1 + cst (1− t))EP1,t
[⟨Xt,X1⟩]

= (1 + cst (1− t))2EPt
[∥Xt∥2] + d− 2(1 + cst (1− t))td

Hence, we get that for any t ∈ [0, 1]

(cot)
2 = ((1 + cst (1− t))2EPt

[∥Xt∥2]/d+ 1− 2(1 + cst (1− t))t)/(1− t)2.

We now minimise (cot)
2 with respect to (1 + cst (1− t)). We get that

1 + cst (1− t) = t/(EPt [∥Xt∥2]/d).

Hence, we get that cst = t/[(1− t)((1− t)2 + t2 + εt(1− t))]− 1/(1− t). With that choice, we get
that for any t ∈ [0, 1]

(cot)
2 = (1− t2/((1− t)2 + t2 + εt(1− t)))/(1− t)2.

In Karras et al. (2022), the weighting function λt is set so that the weight in front of the regression
loss is equal to one for all times t ∈ [0, 1]. Hence, Karras et al. (2022) suggests to set λt = 1/(cot)

2.
However, in practice we observe better results by letting λt = 1. This means that the effective weight
is given by 1/(cot)

2. Therefore, for any t ∈ [0, 1] we have

(cit)
2 = (1 + (ε− 2)t(1− t))−1,

cst = ((ε− 2)t− 1)/(1 + (ε− 2)t(1− t)),

(cot)
2 = (1 + t+ (ε− 2)t(1− t))/(1− t).

K Experimental details

In this section, we delve deeper into the specifics of each experiment, implementation details, and
share additional results.

We consider two ways of parameterising the vector fields: as in DSBM, we can use two separate
neural networks to approximate the forward and backward vector fields, or we can use a single neural
network that is conditioned on the direction. In the latter case, we do the conditioning in a similar
fashion to how DDM’s neural networks, U-Nets or MLPs, are conditioned on time embeddings.
After all, if we work with continuous time variables t ∈ [0, 1], then the direction signal s ∈ {0, 1}

41

can be thought of as a target time. Thus, we perform the same initial transformations on t and s,
i.e. computing sinusoidal embeddings followed by a 2-layer MLP, and use the concatenated outputs
in adaptive group normalisation layers (Dhariwal and Nichol, 2021; Hudson et al., 2023; Perez et al.,
2018).

To optimise our networks, we use Adam (Kingma and Ba, 2015) with β = (0.9, 0.999), and we
modify the gradients to keep their global norm below 1.0. We re-initialise the optimiser’s state when
the finetuning phase starts.

All image samples in the paper are generated using EMA parameters as it has been known to increase
the visual quality of resulting images (Song and Ermon, 2020). Sampling is also the integral part of
DSBM’s finetuning stage, both iterative and online. Here, we have two options: sample with EMA or
non-EMA parameters. The non-EMA sampling might be easier to implement, while EMA sampling
results in a more stable training and slightly better quality, e.g. see AFHQ samples in Figure 23 and
Figure 24 for comparison.

For every model used in the paper, we provide hyperparameters in Table 3.

2D Gaussian MNIST AFHQ-64 AFHQ-256

Channels/hidden units 256 256 64 128 128
Depth 3 3 2 4 4
Channels multiple n/a n/a 1, 2, 2 1,2,3,4 1, 1, 2, 2, 3, 4
Heads n/a n/a n/a 4 4
Heads channels n/a n/a n/a 64 64
Attention resolution n/a n/a n/a 32, 16, 8 32, 16, 8
Dropout 0.0 0.0 0.1 0.0 0.0
Batch size 128 256 128 128 128
Pretraining iterations 50K 10K 100K 100K 100K
Finetuning iterations 150K 40K 150K 20K 20K
Pretraining learning rate 1e-4 1e-4 1e-4 2e-4 2e-4
Finetuning learning rate 1e-5 1e-4 1e-4 2e-4 2e-4
Pretraining warmup steps n/a n/a n/a 5K 5K
EMA decay n/a n/a 0.999 0.999 0.999
Parameters count 133.4K 371K 8.8M 194.4M 226.7M

Table 3: Hyper-parameters for each model. Note that for 2-networks models, the architectural
hyper-parameters describe only one of the two identical networks. Approximate parameters counts
are given for bidirectional networks, except for the Gaussian case, where we only experimented with
a 2-networks model.

K.1 2D Experiments

In addition to the experiments presented in the main text, we test our models in the simplest 2D data
settings used in Tong et al. (2024a) and Shi et al. (2023). Note, that low-dimensional datasets might
not be the ideal showcase for α-DSBM given that one can successfully employ less computationally
demanding techniques based on minibatch-OT methods (Tong et al., 2024b).

The results of our bidirectional model finetuned with online updates are given in Table 4. During
finetuning, we generate samples using 100 Euler–Maruyama steps to solve the forward and backward
SDEs. At test time, we solve the forward probability flow ODE (PF-ODE) given by:

dXt =
1

2

[
vθ(1, t,Xt)− vθ(0, 1− t,Xt)

]
dt, X0 ∼ π0. (59)

To evaluate model fit, we compute 2-Wasserstein distance between the true and generated samples
(generated with 20 Euler steps). Additionally, we estimate path energy as a measure of trajectory
simplicity: EX0∼π0 [

∫ 1

0
∥vθ(t,Xt)∥2dt] where vθ(t,Xt) is the drift of PF-ODE in (59), and the

integral is approximated using 100 steps. We have made a deliberate effort to closely replicate
the experimental setup of Shi et al. (2023) to ensure the comparability of our results. However, as

42

illustrated in Figure 13, 2-Wasserstein distance can be very noisy even with 10K samples in the test
set. To mitigate this variance, we averaged the 2-Wasserstein distance across five random sets of 10K
samples per run, and then averaged these results across multiple runs. Despite these measures, we
recommend a future redesign of these 2D experiments to facilitate more robust comparisons between
methods.

Method 2-Wasserstein Path energy

N → moons N → scurve N → 8gaussians moons→ 8gaussians N →moons N →scurve N →8gaussians moons→ 8gaussians

DSBM-IMF* 0.144±0.024 0.145±0.037 0.338±0.091 0.838±0.098 1.580±0.036 2.092±0.053 14.81±0.255 41.00±1.495
OT-CFM (Tong et al., 2024a)* 0.111±0.005 0.102±0.013 0.253±0.040 0.716±0.187 1.178±0.020 1.577±0.036 15.10±0.215 30.50±0.626

α-DSBM 0.168 ±0.011 0.213±0.031 0.292±0.047 1.374±0.286 1.439 ±0.024 2.052 ±0.025 15.038±0.150 37.626±0.590

Table 4: 2-Wasserstein distance and path energy for the 2D experiments. We report means ±1
standard deviations across 5 random seeds. DSBM-IMF* and OT-CFM* results are copied from Shi
et al. (2023).

Figure 13: A histogram of 2-Wasserstein distances for the ‘moons→ 8gaussians’ task. These distances
are calculated between 10K samples from a finetuned α-DSBM model and 8gaussians distribution,
with both sets generated using 100 different random seeds. The wide spread of scores indicates that
2-Wasserstein distance, even computed on 10K samples, may not be an ideal metric for evaluating
model fit in this context.

K.2 Gaussian data

To parameterise the forward and backward drifts, we use a 2-layer MLP network with 256 hidden
units. To process time variables, we compute sinusoidal time embeddings, followed by a 2-layer MLP
with 256 hidden units and 50 output units. The resulting time embeddings are then concatenated with
Xt, so the drift networks receive 100-dimensional input vectors.

For iterative DSBM finetuning, we perform 40K steps with varying number of outer iterations, i.e.
when we switch between training the forward and the backward networks. Alternating every 5K
steps, corresponds to 8 outer DSBM iteration. Similarly, changing the direction every 1K steps, leads
to 40 outer iterations.

We do not have a cache dataloader like in the original DSBM implementation2, thus we generate
training samples on the fly by sampling either from the forward or the backward network. For this
simple task, we also do not use EMA.

During training and evaluation, we use Euler–Maruyama method with 100 equidistant time steps
between 0 and 1. The covariance is evaluated using 10K samples.

Additional comparison α-DSBM vs OT bridge-matching. We consider the scalar Gaussian
setting. We highlight the dependence of OT bridge matching (256/16/8) on the batch size, as the
mini-batch OT coupling can be far from the true OT coupling as the batch size decreases. All
experiments are run with similar compute and architecture/training hyperparameters, see Table 5.

Ablation of the hyperparameter α. Instead of letting α be determined by Adam and adaptive for
α-DSBM, we explicitly set it by using Stochastic Gradient Descent (SGD) with learning parameter
α; see Figure 14. We also ran online α-DSBM with α = 10−1 but the training diverges in this case.

2https://github.com/yuyang-shi/dsbm-pytorch

43

https://github.com/yuyang-shi/dsbm-pytorch

Table 5: Comparison of OT methods
Method Covariance
Optimal 0.882
α-DSBM 0.890
Bridge Matching 0.491
OT Bridge Matching (256) 0.853
Bridge Matching (16) 0.840
Bridge Matching (8) 0.824

Figure 14: normFrob between C⋆ and its estimate for α-DSBM with different values of α.

K.3 MNIST↔ EMNIST transfer

We closely follow the setup of Shi et al. (2023) and De Bortoli et al. (2021), and train the models to
transfer between 10 EMNIST letters, A-E and a-e, and 10 MNIST digits (CC BY-ND 4.0 license).
We use the same U-Net architecture with hyperparameters given in Table 3.

For DSBM finetuning, we perform 30 outer iterations, i.e. alternating between training the forward
and the backward networks, while at each outer iteration a network is trained for 5000 steps. We do
not have a cache dataloader and generate training samples on the fly by sampling either from the
forward or the backward network with EMA parameters.

During training and evaluation, we use Euler–Maruyama method with 30 equidistant time steps
between 0 and 1. For evaluation, we compute FID based on the whole MNIST training set of 60000
examples and a set of 4000 samples that were initialised from each test image in the EMNIST dataset.
MSD is computed between 4000 initial EMNIST test examples and their corresponding MNIST
samples.

In Figures 15–18, we provide forward and backward samples, i.e. EMNIST→MNIST and MNIST
→ EMNIST, from models that differ in parameterisation, finetuning methods, and sampling strategy.
For all the models above, we used ε = 1. Figure 19 illustrated the behaviour of the samples when we
sweep over the ε hyperparameter.

Pretraining a bidirectional model on 4 v3 TPUs takes 1 hour, while the online finetuning stage
requires 4 hours on 16 v3 TPUs. The number of pretraining and finetuning steps is chosen to match
the experimental setup of Shi et al. (2023).

K.4 AFHQ: Cat↔Wild

We consider the problem of image translation between Cat and Wild domains of AFHQ (Choi
et al. (2020); CC BY-NC 4.0 DEED licence) as introduced by Shi et al. (2023). Each domain has
approximately 5000 samples in the training set, and around 500 samples in the test set. We resize the
original 512 × 512 images to 64×64 or 256×256 resolutions.

44

(a) Initial EMNIST letters (b) Bridge matching:
FID=6.02, MSD=0.564

(c) Bridge matching
+ DSBM finetuning:
FID=5.25, MSD=0.345

(d) Bridge matching
+ online finetuning:
FID=4.28, MSD=0.368

Figure 15: EMNIST to MNIST transfer with a 2-networks model.

(a) Initial EMNIST letters (b) Bridge matching:
FID=6.33, MSD=0.572

(c) Bridge matching
+ online non-EMA
finetuning:
FID=4.57, MSD=0.369

(d) Bridge matching
+ online finetuning:
FID=4.39, MSD=0.387

Figure 16: EMNIST to MNIST transfer with a bidirectional model.

(a) Initial MNIST digits (b) Bridge matching:
FID=7.50, MSD=0.553

(c) Bridge matching
+ DSBM finetuning:
FID=3.56, MSD=0.330

(d) Bridge matching
+ online finetuning:
FID=3.67, MSD=0.357

Figure 17: MNIST to EMNIST transfer with a 2-networks model.

45

(a) Initial MNIST digits (b) Bridge matching:
FID=7.97, MSD=0.572

(c) Bridge matching
+ online non-EMA
finetuning:
FID=4.16, MSD=0.370

(d) Bridge matching
+ online finetuning:
FID=3.97, MSD=0.392

Figure 18: MNIST to EMNIST transfer with a bidirectional model.

Our U-Net (Ronneberger et al., 2015) implementation is based on Ho et al. (2020) with a few im-
provements suggested in Dhariwal and Nichol (2021); Song et al. (2021b) such as rescaling of skip
connections by 1/

√
2, using residual blocks from BigGAN (Brock et al., 2019), and convolution-based

up- and downsampling. Hyperparameters are given in Table 3. Compared to the straightforward
parameterisation of the vector fields, we obtained slightly better results using EDM precondition-
ing Karras et al. (2022), which we derive in Appendix J for the case of bridge matching. During
training, we use horizontal flips as a way to augment the data.

During training and evaluation, we use Euler–Maruyama method with 100 equidistant time steps
between 0 and 1. When evaluating the quality of Cat→Wild transfer, we compute FID based on the
whole training set of 4576 examples in the Wild domain and a set of 480 samples that were initialised
from test images in the Cat domain. LPIPS and MSD are computed between 480 initial Cat images
and Wild samples from the model. The same procedure is followed when evaluating in the reverse
direction from Wild to Cat. Given that train, and especially the test sets are small, the quantitative
results for AFHQ are likely unreliable (Chong and Forsyth, 2020). In Figure 22 we provide samples
from the models finetuned either with an iterative or an online method. While their FID scores are
different, the samples look similar between the two models.

As we discussed in the main text, hyperparameter ε trades off the visual quality and alignment of
the samples in the resulting transfer models. In Figure 20, we provide AFHQ 64 × 64 samples for
pretrained and finetuned models with different values of ε. In addition to its relation to EOT, from
a DDM perspective, ε can be seen as the controlling factor of the noise schedule. As observed by
Hoogeboom et al. (2023), noise schedules should be adjusted for different image sizes by shifting the
noise schedule of some reference resolution where it is proven to be successful. In our case, if we find
a good value of ε for 64 × 64 images, then a shifted ε for the 256 × 256 resolution can be computed
as ε256 = ε64

(
256
64

)2
. Thus, if we choose

√
ε = 0.75 for AFHQ-64, then for AFHQ-256, we can

expect
√
ε = 3.0 to also work well. Samples from an AFHQ-256 model trained with

√
ε = 3.0 are

given in Figure 27.

On 16 v3 TPUs, the bidirectional base and finetuned AFHQ-64 models take 4 and 14 hours to train,
respectively. For AFHQ-256, the base model trains for 15 hours, and finetuning takes an additional 37
hours. While we did not experiment with varying pretraining and fine-tuning iterations, these training
times suggest that a longer pretraining stage followed by fewer fine-tuning steps may be desirable.

46

(a) Base model (b) Finetuned model

Figure 19: MNIST samples transferred from EMNIST letter inputs (top row) using base (pretrained)
and fine-tuned models for different values of ε. Low noise values result in poor sample quality,
particularly in the base model, which finetuning cannot fully rectify. Conversely, excessively high ε
restricts information passing from the inputs to the outputs, leading to poor alignment. Additionally,
high ε increases blurriness due to increased noise levels, thus requiring more denoising steps.

47

(a) Base model (b) Finetuned model

Figure 20: AFHQ 64 × 64 Wild→ Cat transfer results for different values of
√
ε in a bidirectional

model before and after online finetuning. Low values of ε lead to poor sample quality in both base
and finetuned models. Excessively high ε values impede information passing from the inputs to the
outputs, resulting in poor alignment. High values of ε also increase blurriness due to noisier SDE
trajectories, thus requiring more denoising steps during sampling.

48

(a) Base model (b) Finetuned model

Figure 21: AFHQ 64 × 64 Wild→ Cat transfer results for varying number of function evaluations
(equivalent to time discretisation steps in the Euler-Maruyama method) in a bidirectional model with√
ε = 0.75, both before and after online finetuning. Post-finetuning, clearer images are achievable

with fewer steps. This observation aligns with findings from Rectified Flows (Liu et al., 2023b).

49

(a) Iterative finetuning: Cat → Wild.
FID=27.76, LPIPS=0.503, MSD=0.093

(b) Iterative finetuning: Wild → Cat.
FID=25.24, LPIPS=0.483, MSD=0.094

(c) Online finetuning: Cat → Wild.
FID=32.12, LPIPS=0.503, MSD=0.097

(d) Online finetuning: Wild → Cat.
FID=27.32, LPIPS=0.485, MSD=0.116

Figure 22: Samples and metrics from a 2-networks model architecture finetuned with DSBM’s
iterative procedure vs online finetuning. Within each two rows, initial and transferred samples are on
the top and bottom respectively.

50

(a) Forward: Cat → Wild (b) Backward: Wild → Cat

Figure 23: Uncurated samples for AFHQ 64 × 64 transfer in a bidirectional model with online
finetuning with non-EMA sampling and

√
ε = 0.75. Within each two rows, initial and transferred

samples are on the top and bottom respectively.

51

(a) Forward: Cat → Wild (b) Backward: Wild → Cat

Figure 24: Uncurated samples for AFHQ 64 × 64 transfer in a bidirectional model with online
finetuning and

√
ε = 0.75. Within each two rows, initial and transferred samples are on the top and

bottom respectively.

52

(a) Forward: Cat → Wild with inputs from Wild. (b) Backward: Wild → Cat with inputs from Cat.

Figure 25: Samples for AFHQ 64 × 64 transfer in bidirectional models with online finetuning and
different values of ε. The models are only trained on Cat and Wild domains, π0 and π1, respectively.
Thus, in the forward direction the models expect Cat samples as inputs at t = 0, and transfer them to
the Wild domain at t = 1. The reverse transfer holds in the backward direction. Here, we test the
models’ behaviour when inputs do not come from the same distribution as during training: we feed
Wild samples in the forward direction, and Cat samples in the backward, which is the opposite from
what the models expect. Ideally, the model should leave these inputs unchanged, which it does to
varying degrees depending on ε, variance of the Gaussian noise. As we increase ε, less information
can pass from the input to the output, thus making them less alike.

53

(a) Forward: Cat → Wild with inputs from Dog. (b) Backward: Wild → Cat with inputs from Dog.

Figure 26: Samples for AFHQ 64 × 64 transfer in a bidirectional model with online finetuning and√
ε = 2.0. The model is only trained on Cat and Wild domains, π0 and π1, respectively. Thus, in the

forward direction the model expects Cat samples as inputs at t = 0, and transfers them to the Wild
domain at t = 1. The reverse holds in the backward direction. Notably, the model generalises well to
the unseen AFHQ Dog domain, often producing high-quality translations. These results come from a
model with

√
ε = 2.0, which is higher than our chosen default value of

√
ε = 0.75. Higher noise

allows the model to better deal with out-of-distribution inputs.

54

(a) Forward: Cat → Wild (b) Backward: Wild → Cat

Figure 27: Uncurated samples for AFHQ 256 × 256 transfer in a bidirectional model with online
finetuning and

√
ε = 3. Within each two rows, initial and transferred samples are on the top and

bottom respectively.

55

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: our main theoretical and experimental contributions are claimed in the abstract
and demonstrated in the paper. We summarize our main contributions hereafter. Theoreti-
cally, we identify a new family of sequence of path measures related to the IMF algorithm,
called α-IMF. We show that these sequences correspond to non-parametric updates. We then
introduce a parametric update that corresponds to an online version of the DSBM algorithm.
We show that our procedure retains the favorable properties of DSBM while not requiring
the expensive repeated inner minimisation procedure of DSBM.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are addressed in the discussion section. The main limitation of
our algorithm is that it is not a sampling free methodology. In future work, we would like to
see how to mitigate the fact that our algorithm depends on some self-play.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theoretical results are proven in the supplementary material, see Ap-
pendix D.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Full experimental details are provided in Appendix K.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Due to IP restrictions, we cannot share the codebase used for this paper.
However, we plan to release some notebooks in order to reproduce experiments in a small
scale setting.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimiser, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Full experimental details are provided in Appendix K.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

56

Justification: All metrics are computed using multiple random seeds and error bars are
provided.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Full details on the compute requirements are given in Appendix K.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: After careful review of the NeurIPS Code of Ethics, we can ensure that the
research presented in this paper conforms with the Code of Ethics in every respect. Indeed,
we see no immediate safety, security, discrimination, surveillance, deception, harassment,
environment, human rights or bias and fairness concerns to our work. In addition, we release
details and documentation regarding the datasets and models used. We disclose essential
details for reproducibility and have ensured that our work is legally compliant.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper addresses the problem of unpaired dataset translation and proposes
an improvement to the DSBM methodology. As the current paper is mostly theoretical
and methodological we do not see immediate societal impact of this work and therefore
do not discuss these issues. However, we acknowledge that large scale implementation of
our algorithm might suffer from the same societal biases as generative models. We hope to
address the limitations of such models when turning to more experimental work.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have referenced the license of the datasets we use and cite the original
papers that produced the code packages and datasets that we use in that paper.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

57

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

58

	Introduction
	Optimal Transport and Schrödinger Bridge
	Schrödinger Bridge flow
	A flow of path measures
	Discretisation and non-parametric loss

	-Diffusion Schrödinger Bridge Matching
	Related work
	Experiments
	Gaussian case
	Image datasets

	Discussion
	Appendix organisation
	Euclidean flow and iterative procedure
	Minimisation of errors and Markovian projection
	Theoretical results
	Non-parametric sequence and convergence
	From parametric to non-parametric.

	Background material on DSBM and extensions
	Markov and reciprocal projections in practice
	Iterative refinement and Schrödinger Bridge
	Diffusion Schrödinger Bridge Matching
	A Reflection-projection extension

	Consistency in Schrödinger Bridge
	Model stitching
	Extended related work
	Links with Sinkhorn flow
	Links with Reinforcement Learning
	Links with Expectation Maximisation
	Links with finetuning of diffusion models
	Links with continual learning

	Forward-Forward, Forward-Backward and accumulation of error
	Preconditioning of the loss function
	Experimental details
	2D Experiments
	Gaussian data
	MNIST EMNIST transfer
	AFHQ: Cat Wild

