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Abstract
Most real-world graphs exhibit a hierarchical
structure, which is often overlooked by existing
graph generation methods. In this work, we intro-
duce HiGen, a Hierarchical Graph Generative
Network to address the limitations of existing
generative models by incorporating community
structures and cross-level interactions. This ap-
proach involves generating graphs in a coarse-
to-fine manner, where graph generation at each
level is conditioned on a higher level (lower res-
olution) graph. The generation of communities
at lower levels is performed in parallel, followed
by the prediction of cross-edges between commu-
nities using a separate model. This parallelized
approach enables high scalability. To capture hi-
erarchical relations, our model allows each node
at a given level to depend not only on its neigh-
bouring nodes but also on its corresponding super-
node at the higher level. Furthermore, we address
the generation of integer-valued edge weights of
the hierarchical structure by modeling the output
distribution of edges using a multinomial distri-
bution. We show that multinomial distribution
can be factorized successively, enabling the au-
toregressive generation of each community. This
property makes the proposed architecture well-
suited for generating graphs with integer-valued
edge weights. Furthermore, by breaking down
the graph generation process into the generation
of multiple small partitions that are conditionally
independent of each other, HiGen reduces its sen-
sitivity to a predefined initial ordering of nodes.
Empirical studies demonstrate that the proposed
generative model captures both local and global
properties of graphs and achieves state-of-the-art
performance in terms of graph quality on various
benchmark graph datasets.

1. Background
A graph G = (V, E) is a collection of nodes (vertices)
V and edges E with corresponding sizes n = |V| and
m = |E| and an adjacency matrix Aπ for the node or-
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Figure 1: (a) A sample hierarchical graph with 2 levels is shown. Communities
are shown in different colors and the weight of a node and the weight of an edge
in a higher level, represent the sum of the edges in the corresponding community
and bipartite, respectively. Node size and edge width indicate their weights. (b)
The matrix shows corresponding adjacency of the graph G2 matrix where each of
its sub-graphs corresponds to a block in the adjacency matrix, communities are
shown in different colors and bipartites are colored in gray. (c) Decomposition of
multinomial distribution as a recursive stick-breaking process where at each iteration,
first a fraction of the remaining weights wm is allocated to the m-th row (the m-th
node in the sub-graph) and then this fraction vm is distributed among that row of
lower triangular adjacency matrix, Â. (d) Parallel generation of communities. (e)
Parallel prediction of bipartites. Shadowed lines are the augmented edges representing
candidate edges at each step.

dering π. The node set can be partitioned into c commu-
nities (a.k.a. cluster or modules) using a graph partition-
ing function F : V → {1, ..., c}, where each cluster of
nodes forms a sub-graph denoted by Ci = (V(Ci), E(Ci))
with adjacency matrix Ai. The cross-links between neigh-
boring communities form a bipartite graph, denoted by
Bij = (V(Ci), V(Cj), E(Bij)) with adjacency matrix Aij .
Each community is aggregated to a super-node and each
bipartite corresponds to a super-edge linking neighboring
communities, which induces a coarser graph at the higher
(a.k.a. parent) level. Herein, the levels are indexed by
superscripts. Formally, each community at level l, Cl

i , is
mapped to a node at the higher level graph, also called its
parent node, vl−1

i := Pa(Cl
i) and each bipartite at level l

is represented by an edge in the higher level, also called its
parent edge, el−1

i = Pa(Bl
ij) = (vl−1

i , vl−1
j ). The weights

of the self edges and the weights of the cross-edges in the
parent level are determined by the sum of the weights of
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the edges within their corresponding community and bi-
partite, respectively. Therefore, the edges in the induced
graphs at the higher levels have integer-valued weights:
wl−1

ii =
∑

e∈E(Cl
i)
we and wl−1

ij =
∑

e∈E(Bl
ij)

we, more-
over sum of all edge weights remains constant in all levels
so w0 :=

∑
e∈E(Gl) we = |E|, ∀ l ∈ [0, ..., L].

This clustering process continues recursively in a bottom-up
approach until a single node graph G0 is obtained, producing
a hierarchical graph, defined by the set of graphs in all levels
of abstractions, HG := {G0, ....,GL−1,GL}. This forms a
dendrogram tree with G0 being the root and GL being the
final graph that is generated at the leaf level. An HG is
visualized in figure 1a.

2. Hierarchical Graph Generation
In graph generative networks, the objective is to learn
a generative model, p(G) given a set of training graphs.
Given a particular node ordering π, and a hierarchical graph
HG := {G0, ....,GL−1,GL}, produced by recursively ap-
plying a graph partitioning function, F , we can factorize
the generative model using the chain rule of probability as:

p({GL,GL−1, ...,G0}, π) =
L∏

l=0

p(Gl, π | Gl−1)× p(G0)

In other words, the generative process involves specifying
the probability of the graph at each level conditioned on its
parent level graph in the hierarchy.

Based on the partitioned structure within each level of HG,
and since the integer-valued weights of the edges in each
level can be modeled by a multinomial distribution, the con-
ditional generative probability p(Gl | Gl−1) can be decom-
posed into the conditional probability of its communities
and bipartite graphs as:

p(Gl | Gl−1) =
∏

p(Cl
i | Gl−1)×

∏
p(Bl

ij | Gl−1)

∼
∏

i ∈ V(Gl−1)

Mu([we]e ∈ Cl
i
| wl−1

ii ,θl
ii)×∏

(i,j)∈ E(Gl−1)

Mu([we]e ∈ Bl
ij
| wl−1

ij ,θl
ij)

where {θl
ij [e] ∈ [0, 1], s.t. 1Tθl

ij =

1 | ∀ (i, j) ∈ E(Gl−1)} are the multinomial model
parameters. Refer to Appendix A for the proof.

Therefore, given the parent graph at a higher level, the
generation of graph at its subsequent level can be reduced
to generation of its partition and bipartite sub-graphs. As
illustrated in figure, this decomposition enables parallel
generation of the communities in each level which can be
followed by predicting all bipartite sub-graphs in that level
at one pass. Each of these sub-graphs corresponds to a block

in the adjacency matrix, as visualized in figure 1b, so the
proposed hierarchical model generates adjacency matrix in a
blocks-wise fashion and constructs the final graph topology.

2.1. Community Generation

As derived in theorem A.3 (refer to appendix A), the edge
weights within each community can be jointly modeled us-
ing a multinomial distribution. Our objective is to model
the generative probability of communities in each level as
an autoregressive process. To accomplish this, we need to
factorize the multinomial distribution accordingly. Inspired
by GRAN (Liao et al., 2019), a community can be gen-
erated efficiently by generating one node at a time. This
requires decomposing the generative probability of edges
in a group-wise form, where the candidate edges between
the t-th node and the already generated graph are grouped
together. In other words, this model completes the lower
triangle adjacency matrix one row at a time conditioned on
the already generated sub-graph and the parent-level graph.
The following theorem formally derives this decomposition
for multinomial distributions.

Theorem 2.1. For a random counting vector w ∈ ZE
+

with a multinomial distribution Mu(w | w,θ), let’s split
it into M disjoint groups w = [u1, ...,uM ] where um ∈
ZEm
+ ,

∑M
m=1 Em = E, and also split the probability

vector accordingly as θ = [θ1, ...,θM ]. Additionally, let’s
define sum of all variables in the m-th group by a random
count variable vm :=

∑Em

e=1 um,e. Then, the multinomial
distribution can be factorized as a chain of binomial and
multinomial distributions:

Mu(w = [u1, ...,uM ]| w,θ = [θ1, ...,θM ])

=

M∏
m=1

Bi(vm | w −
∑
i<m

vi, ηvm) Mu(um | vm,λm),

where: ηvm =
1T θm

1−
∑

i<m 1T θi
, λm =

θm
1T θm

. (1)

Here, the probability of binomial, ηvm , is the fraction of the
remaining probability mass that is allocated to vm, i.e. the
sum of all weights in the m-th group. The vector parameter
λm is the normalized multinomial probabilities of all count
variables in the m-th group. Intuitively, this decomposition
of multinomial distribution can be viewed as a recursive
stick-breaking process where at each step, first a binomial
distribution is used to determine how much probability mass
to allocate to the current group, and a multinomial distri-
bution is used to distribute that probability mass among
the variables in the group. The resulting distribution is
equivalent to the original multinomial distribution.

Proof. Refer to appendix A.1 for the proof.
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Let Ĉl
i,t denote an already generated sub-graph, at the t-

th step, augmented with the set of candidate edges, from
the new node, vt(Cl

i), to its preceding node denoted by
Êt(Ĉl

i,t) := {(t, j) | j < t}. We collect the weights of these
edges in the random vector ut := [we]e ∈ Êt(Ĉl

i,t)
(that is

the t-th row of the lower triangle of adjacency matrix Âl
i),

where the sum of the candidate edge weights is vt. Based
on theorem 2.1, the probability of ut can be characterized
by the product of a binomial and a multinomial distribution.
This process is illustrated in figure 1c. We further increase
the expressiveness of the generative network by extending
this probability to a mixture model with K mixtures:

p(ut) =

K∑
k=1

βl
kBi(vt|wl−1

ii −
∑
i<t

vi, η
l
t,k)Mu(ut |vt,λl

t,k)

(2)

λl
t,k = softmax

(
MLPl

θ

( [
∆hÊt(Ĉl

i,t)
|| hPa(Cl

i)

] ))
[k, :]

ηlt,k = sigmoid
(
MLPl

η

( [
pool(hĈl

i,t
) || hPa(Cl

i)

] ))
[k]

βl = softmax
(
MLPl

β

( [
pool(hĈl

i,t
) || hPa(Cl

i)

] ))
Where ∆hÊt(Ĉl

i,t)
is a |Êt(Ĉl

i,t)| × dh dimensional ma-
trix, consisting of the set of edge features {∆h(t,s) :=

ht − hs | ∀ (t, s) ∈ Êt(Ĉl
i,t)} , hĈl

i,t
is a t × dh ma-

trix of node features in the augmented community graph.
The mixture weights are denoted by βl. Here, the node
features are learned by GNN models and the graph level
representation is obtained by the addpool() aggregation
function. In order to produce K × |Et(Cl

i)| dimensional
matrix of multinomial probabilities, the MLPl

θ() network
acts at the edge level, while MLPl

ηv() and MLPl
β() act at

the graph level to produce the binomial probabilities and K
dimensional arrays for K mixture models, respectively. All
of these MLP networks are built by two hidden layers with
ReLU() activation functions.

During the generation process of each community Cl
i , the

node features of its parent node hPa(Cl
i)

are used as the
context. This context is concatenated to the node and edge
feature matrices using the operation

[
x || y

]
, which con-

catenates vector y to each row of matrix x. The purpose
of this context is to enrich the node and edge features by
capturing long-range interactions and encoding the global
structure of the graph, which is important for generating
local components.

2.2. Bipartite Generation

Once all the communities in level l are generated, the edges
of all bipartite graphs at that level can be predicted simul-
taneously. An augmented graph Ĝl composed of all the
communities, {Cl

i ∀i ∈ V(Gl−1)}, and the candidate edges

of all bipartites, {Bl
ij ∀(i, j) ∈ E(Gl−1)}, is used as the

input of a GNN to obtain node and edge features. We simi-
larly extend the multinomial distribution of a bipartite, in (7),
using a mixture model to express its generative probability:

p(w := Ê(Bl
ij)) =

K∑
k=1

βl
kMu(w | wl−1

ij ,θl
ij,k)

θl
ij,k = softmax

(
MLPl

θ(
[
∆hÊ(Bl

ij)
||∆hPa(Bl

ij)

]
)
)
[k, :]

βl = softmax
(
MLPl

β

( [
pool(∆hÊ(Bl

ij)
) || ∆hPa(Bl

ij)

] ))
where the random vector w := [we]e ∈ Ê(Bl

ij)
is the set

of weights of all candidate edges in bipartite Bl
ij and

∆hPa(Bl
ij)

are the parent edge features of the bipartite.

Node Feature Encoding: To encode node features, we
extend GraphGPS proposed by Rampášek et al. (2022).
GraphGPS combines local message-passing with global
attention mechanism and uses positional and structural en-
coding for nodes and edges to construct a more expressive
and a scalable graph transformer (GT) (Dwivedi & Bresson,
2020). To apply GraphGPS on augmented graphs, we use
distinct initial edge features to distinguish augmented (can-
didate) edges from real edges. Furthermore, for bipartite
generation, the attention scores in the Transformers of the
augmented graph Ĝl are masked to restrict attention only to
connected communities. The details of model architecture
are provided in appendix C.

3. Experiments
In our empirical studies, we compare the proposed hier-
archical graph generative network against state-of-the-art
autoregressive models: GRAN and GraphRNN models, dif-
fusion models: DiGress (Vignac et al., 2022) and GDSS
(Jo et al., 2022) and a GAN-based model: SPECTRE (Mar-
tinkus et al., 2022), on a range of synthetics and real datasets
of various sizes.

Datasets: We used 4 different benchmark graph datasets:
(1) the synthetic Stochastic Block Model (SBM) dataset con-
sisting of 200 graphs with 2-5 communities each with 20-40
nodes, used in a previous work (Martinkus et al., 2022); (2)
the Protein including 918 protein graphs, each has 100 to
500 nodes representing amino acids that are linked if they
are closer than 6 Angstroms (Dobson & Doig, 2003), (3)
the Enzyme that has 587 protein graphs of 10-125 nodes,
representing protein tertiary structures of the enzymes from
the BRENDA database (Schomburg et al., 2004) and (4) the
Ego dataset containing 757 3-hop ego networks with 50-300
nodes extracted from the CiteSeer dataset, where nodes rep-
resent documents and edges represent citation relationships
(Sen et al., 2008).
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Table 1: Comparison of generation metrics on benchmark datasets. The baseline results for SBM and Protein
graphs are obtained from (Martinkus et al., 2022; Vignac et al., 2022), and the results for enzyme graphs
(except for GRAN, which we implemented) are obtained from (Jo et al., 2022), while we implemented them
for Ego. "-": not applicable due to resource issue or not reported in the reference papers. Metrics: We
follow (Liao et al., 2019) and compute maximum mean discrepancy (MMD) of four different graph statistics
between the ground truth and generated graph. Here we adopt total variation (TV) distance as the kernel for
computing evaluation metrics except for the enzyme dataset where we use a Gaussian EMD kernel to be
consistent with the results reported in (Jo et al., 2022). Refer to Appendix D for detailed explanation.

Stochastic block model Protein
Model Deg. ↓ Clus. ↓ Orbit↓ Spec. ↓ Deg. ↓ Clus. ↓ Orbit↓ Spec. ↓

Training set 0.0008 0.0332 0.0255 0.0063 0.0003 0.0068 0.0032 0.0009
GraphRNN 0.0055 0.0584 0.0785 0.0065 0.0040 0.1475 0.5851 0.0152
GRAN 0.0113 0.0553 0.0540 0.0054 0.0479 0.1234 0.3458 0.0125
SPECTRE 0.0015 0.0521 0.0412 0.0056 0.0056 0.0843 0.0267 0.0052
DiGress 0.0013 0.0498 0.0433 - - - - -
HiGen-m 0.0017 0.0503 0.0604 0.0068 0.0041 0.109 0.0472 0.0061
HiGen 0.0019 0.0498 0.0352 0.0046 0.0012 0.0435 0.0234 0.0025

Enzyme Ego
Model Deg. ↓ Clus. ↓ Orbit ↓ Deg. ↓ Clus. ↓ Orbit ↓ Spec. ↓

Training set 0.0011 0.0025 3.7e-4 2.2e-4 0.010 0.012 1.4e-3
GraphRNN 0.017 0.062 0.046 0.024 0.34 0.14 0.089
GRAN 0.054 0.087 0.033 0.032 0.17 0.026 0.046
GDSS 0.026 0.061 0.009 - - - -
HiGen-m 0.027 0.157 1.2e-3 0.011 0.063 0.021 0.013
HiGen 0.012 0.038 7.2e-4 1.9e-3 0.049 0.029 0.004

(a) (b)

(c) (d)

Figure 2: Samples from HiGen. a) SBM, b) Protein, c) Enzyme
and d) Ego. Communities are distinguished with different colors
and both levels are depicted.

Graph Partitioning Different algorithms approach the
problem of graph partitioning (clustering) using various
clustering quality functions. For example, the Louvain algo-
rithm (Blondel et al., 2008) starts with each node as its com-
munity and then repeatedly merges communities based on
the highest increase in modularity until no further improve-
ment can be made. This heuristic algorithm is computation-
ally efficient and scalable to large graphs for community
detection. As the modularity metric is based on the graph
structure, it is well-suited for our problem. Therefore, we
employed the Louvain algorithm to hierarchically cluster
the graph datasets in our experiments and then spliced out
the intermediate levels to achieve HGs with uniform depth
of L = 2.

Model Architecture In the experiments, the GNN models
consist of 8 layers of GraphGPS layers (Rampášek et al.,
2022). The input node feature of GNNs is augmented with
positional and structural encoding, where the first 8 eigen-
vectors corresponding to the smallest non-zero eigenvalues
of the Laplacian and diagonal of the random-walk matrix up
to 8-steps are used. Each level has its own GNN and output
models. The details of the model architecture are presented
in Appendix C and D.

We conducted experiments using the proposed hierarchical
graph generative network (HiGen) model with two variants
for the output distribution of the leaf edges: 1) HiGen: the
probability of the community edges’ weights at the leaf
level are modeled by mixture of Bernoulli, using sigmoid()

activation in equation 2, since the leaf levels in our exper-
iments have binary edges weights, while higher levels use
mixture of multinomials. 2)HiGen-m: the model uses a
mixture of multinomial distributions (2) to describe the out-
put distribution for all levels. In this case, we observed that
modeling the probability parameters of edge weights of the
leaf level, denoted as λt,k in (2), by a multi-hot activation
function, defined as σ(z)i := sigmoid(zi)/

∑K
j=1 sigmoid(zj)

where σ : RK → (K − 1)-simplex, provided slightly better
performance than the standard softmax() function. How-
ever, for both HiGen and HiGen-m, the probabilities of the
integer-valued edges at the higher levels are still modeled
by the standard softmax() function.

For training, HiGen models used the Adam optimizer
(Kingma & Ba, 2014) with a learning rate of 5e-4 and its
default settings of β1 = 0.9, β2 = 0.999 and ϵ=1e-8.

The performance metrics of the proposed HiGen models are
reported in Table 1, with generated graph samples presented
in Figure 2. The results demonstrate that HiGen effectively
captures graph statistics and achieves state-of-the-art on
all the benchmarks graphs across various generation met-
rics. This improvement in both local and global proper-
ties of the generated graphs highlights the effectiveness of
the hierarchical graph generation approach, which models
communities and cross-community interactions separately.
Graph samples generated by the HiGen models, as well as
the experimental evaluation of different node ordering and
partitioning functions, are presented in Appendix E.3.
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A. Probability Distribution of Communities and Bipartites
Theorem A.1. Given a graph G and an ordering π, assuming there is a deterministic function that provides the corresponding
high-level graphs in a hierarchical order as {GL,GL−1, ...,G0}, then:

p(G = GL, π) = p({GL,GL−1, ...,G0}, π) = p(GL, π | {GL−1, ...,G0}) ... p(G1, π | G0) p(G0)

=

L∏
l=0

p(Gl, π | Gl−1)× p(G0) (3)

Proof. The factorization is derived by applying the chain rule of probability and last equality holds as the graphs at the
coarser levels are produced by a partitioning function acting on the finer level graphs. Overall, this hierarchical generative
model exhibits a Markovian structure.

Lemma A.2. Given the sum of counting variables in the groups, the groups are independent and each of them has
multinomial distribution:

p(w = [u1, ...,uM ]|{v1, ..., vM}) =
M∏

m=1

Mu(vm, λm)

where: λm =
θm

1T θm

Here, probability vector (parameter) λm is the normalized multinomial probabilities of the counting variables in the m-th
group.

Proof.

p(w|{v1, ..., vM}) = p(w)

p({v1, ..., vM})
I(v1 = 1T u1, ..., vM = 1T uM )

=

w!∏E
i=1 wi!

∏E
i=1 θi

wi

w!∏M
i=1 vi!

∏M
i=1 αi

vi
I(v1 = 1T u1, ..., vM = 1T uM )

=

w!∏E
i=1 wi!

θw1
1 ...θwE

E

w!∏M
i=1 vi!

(1T θ1)v1 ...(1T θM )vM

=
v1!∏E1

i=1 u1,i!

E1∏
i=1

λ1,i
u1,i × ...× vM !∏EM

i=1 uM,i!

E1∏
i=1

λM,i
uM,i

= Mu(v1, λ1)× ...× Mu(vM , λM )

Theorem A.3. Let the random vector w := [we]e ∈ E(Gl) denote the set of weights of all edges of Gl such that their sum is
w0 = 1T w. The joint probability of w can be described by a multinomial distribution: w ∼ Mu(w | w0,θ

l). By observing
that the sum of edge weights within each community Cl

i and bipartite graph Bl
ij are determined by the weights of their parent

edges in the higher level, wl−1
ii and wl−1

ij respectively, we can establish that these components are conditionally independent
and each of them follow a multinomial distribution:

p(Gl | Gl−1) ∼
∏

i ∈ V(Gl−1)

Mu([we]e ∈ Cl
i
| wl−1

ii ,θl
ii)×

∏
(i,j)∈ E(Gl−1)

Mu([we]e ∈ Bl
ij
| wl−1

ij ,θl
ij) (4)

where {θl
ij [e] ∈ [0, 1], s.t. 1Tθl

ij = 1 | ∀ (i, j) ∈ E(Gl−1)} are the multinomial model parameters.
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Proof. In a hierarchical graph, the edges has non-negative integer valued weights while the sum of all the edges in community
Cl
i and bipartite graph Bl

ij are determined by their corresponding edges in the parent graph, i.e. wl−1
ii and wl−1

ij respectively.
Let the random vector w := [we]e ∈ E(Gl) denote the set of weights of all edges of Gl such that w0 = 1T w, its joint
probability can be described as a multinomial distribution:

w ∼ Mu(w | w0,θ
l) =

w0!∏|E(Gl)|
e=1 w[e]!

|E(Gl)|∏
e=1

(θl[e])
w[e]

, (5)

where {θl[e] ∈ [0, 1], s.t. 1Tθl = 1} are the parameters of the multinomial distribution.1 Therefore, based on lemma A.2
these components are conditionally independent and each of them has a multinomial distribution:

p(Gl | Gl−1) ∼
∏

i ∈ V(Gl−1)

Mu([we]e ∈ Cl
i
| wl−1

ii ,θl
ii)×

∏
(i,j)∈ E(Gl−1)

Mu([we]e ∈ Bl
ij
| wl−1

ij ,θl
ij)

where {θl
ij [e] ∈ [0, 1], s.t. 1Tθl

ij = 1 | ∀ (i, j) ∈ E(Gl−1)} are the parameters of the model.

Therefore, the log-likelihood of Gl can be decomposed as the log-likelihood of its sub-structures:

log pϕl(Gl | Gl−1) =
∑

i∈VGl−1

log pϕl(Cl
i | Gl−1) +

∑
(i,j)∈EGl−1

log pϕl(Bl
ij | Gl−1) (6)

Bipartite distribution: Let’s denote the set of weights of all candidate edges of the bipartite Bl
ij by a random vector

w := [we]e ∈ E(Bl
ij)

, its probability can be described as

w ∼ Mu(w | wl−1
ij ,θl

ij) =
wl−1

ij !∏|E(Bl
ij)|

e=1 w[e]!

|E(Bl
ij)|∏

e=1

(θl
ij [e])

w[e]
(7)

where {θl
ij [e] | θl

ij [e] ≥ 0,
∑

θl
ij [e] = 1} are the parameter of the distribution, and the multinomial coefficient n!∏

w[e]! is

the number of ways to distribute the total weight wl−1
ij =

∑|E(Bl
ij)|

e=1 w[e] into all candidate edges of Bl
ij .

Community distribution: Similarly, the probability distribution of the set of candidate edges for each community can be
modeled jointly by a multinomial distribution but as our objective is to model the generative probability of communities in
each level as an autoregressive process we are interested to decomposed this probability distribution accordingly.

Lemma A.4. A random counting vector w ∈ ZE
+ with a multinomial distribution can be recursively decomposed into a

sequence of binomial distributions as follows:

Mu(w1, ...,wE | w, [θ1, ..., θE ]) =
E∏

e=1

Bi(we | w −
∑

i<e
wi, θ̂e), (8)

where: θ̂e =
θe

1−
∑

i<e θi

This decomposition is known as a stick-breaking process, where θ̂e is the fraction of the remaining probabilities we take
away every time and allocate to the e-th component (Linderman et al., 2015).

This lemma enable us to model the generation of a community as an edge-by-edge autoregressive process, similar to existing
algorithms such as GraphRNN (You et al., 2018) or DeepGMG (Li et al., 2018) with O(|VC |2) generation steps.

1It is analogous to the random trial of putting n balls into k boxes, where the joint probability of the number of balls in all the boxes
follows the multinomial distribution.
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A.1. Proof of Theorem 2.1

For a random counting vector w ∈ ZE
+ with multinomial distribution Mu(w,θ), let’s split it into M disjoint groups

w = [u1, ...,uM ] where um ∈ ZEm
+ ,

∑M
m=1 Em = E, and also split the probability vector as θ = [θ1, ...,θM ].

Additionally, let’s define sum of all weights in m-th group by a random variable vm :=
∑Em

e=1 um,e.

Lemma A.5. Sum of the weights in the groups, um ∈ ZEm
+ ,

∑M
m=1 Em = E has multinomial distribution:

p({v1, ..., vM}) = Mu(w, [α1, ..., αM ])

where: αm =
∑

θm[i]. (9)

In the other words, the multinomial distribution is preserved when its counting variables are combined (Siegrist, 2017).

Theorem A.6. Given the aforementioned grouping of counts variables, the multinomial distribution can be modeled as a
chain of binomials and multinomials:

Mu(w,θ = [θ1, ...,θM ]) =

M∏
m=1

Bi(w −
∑
i<m

vi, ηvm) Mu(vm, λm), (10)

where: ηvm =
1T θm

1−
∑

i<m 1T θi
, λm =

θm
1T θm

Proof. Since sum of the weights of the groups, vm, are functions of the weights in the group:

p(w) = p(w, {v1, ..., vM}) = p(w|{v1, ..., vM})p({v1, ..., vM})

According to lemma A.5, sum of the weights of the groups is a multinomial and by lemma A.4, it can be decomposed to a
sequence of binomials:

p({v1, ..., vM}) = Mu(w, [α1, ..., αM ]) =

M∏
m=1

Bi(w −
∑

i<m
vi, η̂m),

where: αm = 1T θm, η̂e =
αe

1−
∑

i<e αm

Also based on lemma A.2, given the sum of the wights of all groups, the groups are independent and has multinomial
distribution:

p(w|{v1, ..., vM}) =
M∏

m=1

Mu(vm, λm)

where: λm =
θm

1T θm

B. Discussion
The GRAN model can generate graphs one block of nodes at a time in an autoregressive fashion where the block size is
fixed and nodes are assigned to blocks based on an ordering. However, the model’s performance deteriorates as the block
size increases, since adjacent nodes in an ordering may not be relevant and may belong to different clusters. Additionally,
intra-block connections are not modeled separately. In contrast, our proposed method generates blocks of nodes within each
community that have strong relationships and then predicts the cross-links between communities using a separate model. As
a result, this approach enables the model to capture both local relationships between nodes within a community and global
relationships across communities, resulting in improved expressiveness of the graph generative model.

The proposed hierarchical model allows for highly parallelizable training and generation. Specifically, let nc be the size of
the largest graph cluster, then, it only requires O(nc log n) sequential steps to generate a graph of size n.
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Node ordering sensitivity The predefined ordering of dimensions can be crucial for training autoregressive (AR) models
(Vinyals et al., 2015), and this sensitivity to node orderings is particularly pronounced in autoregressive graph generative
model (Liao et al., 2019; Chen et al., 2021). However, in the proposed approach, the graph generation process is divided
into the generation of multiple small partitions, performed sequentially across the levels, rather than generating the entire
graph by a single AR model. Therefore, given an ordering for the parent level, the graph generation depends only on the
permutation of the nodes within the graph communities rather than the node ordering of the entire graph. In other words, the
proposed method is invariant to a large portion of possible node permutations, and therefore the set of distinctive adjacency
matrices is much smaller in HiGen. For example, the node ordering π1 = [v1, v2, v3, v4] with clusters VG1 = {v1, v2} and
VG2 = {v3, v4} has a similar hierarchical graph as π2 = [v1, v3, v2, v4], since the node ordering within the communities
is preserved at all levels. Formally, let {Cl

i ∀i ∈ VGl−1} be the set of communities at level l produced by a deterministic
partitioning function, where nl

i = |V(Cl
i)| denotes the size of each partition. The upper bound on the number of distinct

node orderings in an HG generated by the proposed process is then reduced to
∏L

l=1

∏
i n

l
i!.

2

C. Graph Neural Network (GNN) architectures
To overcome limitations in the sparse message passing mechanism, Graph Transformers (GTs) (Dwivedi & Bresson, 2020)
have emerged as a recent solution. One key advantage of GTs is the ability for nodes to attend to all other nodes in a graph,
known as global attention, which addresses issues such as over-smoothing, over-squashing, and expressiveness bounds
Rampášek et al. (2022). GraphGPS provide a recipe for creating a more expressive and scalable graph transformer by
making a hybrid message-passing graph neural networks (MPNN)+Transformer architecture. Additionally, recent GNN
models propose to address the limitation of standard MPNNs in detecting simple substructures by adding features that they
cannot capture on their own, such as the number of cycles. A framework for selecting and categorizing different types of
positional and structural encodings, including local, global, and relative is provided in (Rampášek et al., 2022). Positional
encodings, such as eigenvectors of the adjacency or Laplacian matrices, aim to indicate the spatial position of a node within
a graph, so nodes that are close to each other within a graph or subgraph should have similar positional encodings. On
the other hand, structural encodings, such as degree of a node, number of k-cycles a node belong to or the diagonal of the
m-steps random-walk matrix, aim to represent the structure of graphs or subgraphs, so nodes that share similar subgraphs or
similar graphs should have similar structural encodings.

In order to encode the node features of the augmented graphs in our model, we customized GraphGPS in various ways.
We incorporated distinct initial edge features to distinguish augmented (candidate) edges from real edges. Furthermore,
for bipartite generation, we apply a mask on the attention scores of the transformers of the augmented graph Ĝl to restrict
attention only to connected communities. Specifically, the i-th row of the attention mask matrix is equal to 1 only for the
index of the nodes that belong to the same community or the nodes of the neighboring communities that are linked by a
bipartite, and 0 (i.e., no attention to those positions) otherwise.

The time and memory complexity of GraphGPS can be reduced to O(n+m) per layer by using linear Transformers such
as Performer (Choromanski et al., 2020) for global graph attention, while they can be as high quadratic in the number of
nodes if the original Transformer architecture is employed. Since our datasets are composed of graphs smaller than 1000
nodes, we leverage the original Transformer architecture.

D. Experimental details
Metrics To evaluate the graph generative models, we adopt the approach proposed in (Liu et al., 2019; Liao et al., 2019),
which compares the distributions of four different graph statistics between the ground truth and generated graphs: (1)
degree distributions, (2) clustering coefficient distributions, (3) the number of occurrences of all orbits with four nodes,
and (4) the spectra of the graphs by computing the eigenvalues of the normalized graph Laplacian. The first three metrics
capture local graph statistics, while the spectra represents global structure. The maximum mean discrepancy (MMD) score
over these statistics are used as the metrics. While Liu et al. (2019) computed MMD scores using the computationally
expensive Gaussian earth mover’s distance (EMD) kernel, Liao et al. (2019) proposed using the total variation (TV) distance
as an alternative measure. TV distance is much faster and still consistent with the Gaussian EMD kernel. Most recently,

2It is worth noting that all node permutations do not result in distinctive adjacency matrices due to the automorphism property of
graphs (Liao et al., 2019; Chen et al., 2021). Therefore, the number of node permutations provides an upper bound rather than an exact
count.



HiGen: Hierarchical Graph Generative Networks

O’Bray et al. (2021) suggested using other efficient kernels such as an RBF kernel, or a Laplacian kernel, or a linear kernel.
Additionally, Thompson et al. (2022) proposed new evaluation metrics for comparing graph sets using a random-GNN
approach where GNNs are employed to extract meaningful graph features. However, in this work, we follow the experimental
setup and evaluation metrics of (Liao et al., 2019), except for the enzyme dataset where we use a Gaussian EMD kernel
to be consistent with the results reported in (Jo et al., 2022). GNN-based performance metrics of HiGen model are also
reported in appendix E.3.

Datasets: For the benchmark datasetst, graph sizes, denoted as Ddataset = (|V|max, |V|avg, |E|max, |E|avg), are:
Dprotein = (500, 258, 1575, 646), DEgo = (399, 144, 1062, 332), DPoint−Cloud = (5.03k, 1.4k, 10.9k, 3k),

Before training the models, we applied Louvain algorithm to obtain hierarchical graph structures for all of datasets and then
trimmed out the intermediate levels to achieve uniform depth of L = 2. In case of HG s with varying heights, empty graphs
can be added at the root levels of those HGs with lower heights to avoid sampling them during training. An 80%-20% split
was randomly created for training and testing and 20% of the training data was used for validation purposes.

Model Architecture: In our experiments, the GraphGPS models consisted of 8 layers, while each level of hierarchical
model has its own GNN parameters. The input node features were augmented with positional and structural encodings,
which included the first 8 eigenvectors corresponding to the smallest non-zero eigenvalues of the Laplacian matrices and the
diagonal of the random-walk matrix up to 8 steps. We leverage the original Transformer architecture for all detests except
Point Cloud dataset which use Performer. The hidden dimensions were set to 64 for the Protein, Ego, and Point Cloud
datasets, and 128 for the Stochastic Block Model and Enzyme datasets. The number of mixtures was set to K=20.

In comparison, the GRAN models utilized 7 layers of GNNs with hidden dimensions of 128 for the Stochastic Block Model,
Ego, and Enzyme datasets, 256 for the Point Cloud dataset, and 512 for the Protein dataset. Despite having smaller model
sizes, HiGen achieved better performance than GRAN.

For training, the HiGen models used the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 5e-4 and default
settings for β1 (0.9), β2 (0.999), and ϵ (1e-8).

The experiments for the Enzyme and Stochastic Block Model datasets were conducted on a MacBook Air with an M2
processor and 16GB RAM, while the rest of the datasets were trained using an NVIDIA L4 Tensor Core GPU with 24GB
RAM as an accelerator.

E. Additional Results
Table 2 presents the results of various metrics for HiGen models on all benchmark datasets. The structural statistics are
evaluated using the Total Variation kernel as the Maximum Mean Discrepancy (MMD) metric.

In addition, the table includes the average of random-GNN-based metrics (Thompson et al., 2022) over 10 random Graph
Isomorphism Network (GIN) initializations. The reported metrics are MMD with RBF kernel (GNN MMD), the harmonic
mean of improved precision+recall (GNN F1 PR) and harmonic mean of density+coverage (GNN F1 PR).

E.1. Point Cloud

We also evaluated HiGen on the Point Cloud dataset, which consists of 41 simulated 3D point clouds of household
objects.This dataset consists of large graphs of approximately 1.4k nodes on average with maximum of over 5k nodes. In
this dataset, each point is mapped to a node in a graph, and edges are connecting the k-nearest neighbors based on Euclidean
distance in 3D space (Neumann et al., 2013).

However, due to the quadratic growth of the number of candidate edges in the augmented graph Ĝl – the graph composed of
all the communities and the candidate edges of all bipartites used in section 2.2 for bipartite generation – memory limitations
can arise when dealing with large graphs in the point cloud dataset. To address this issue, we can sample sub-graphs and
generate one (or a subset of) bipartites at a time to fit the available memory. In our experimental study, we generated
bipartites sequentially, sorting them based on the index of their parent edges in the parent level. In this case, the augmented
graph Ĝl used for obtaining the node features of Bl

ij consists of all the communities {Cl
k ∀k ≤ max(i, j)} and all the

bipartites {Bl
mn ∀(m,n) ≤ (i, j)}, augmented with the candidate edges of Bl

ij . This model is denoted by HiGen-s in table
3.
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Table 2: Various graph generative perfoprmance metrics for HiGen models on all benchmark datasets.

Model Deg. ↓ Clus. ↓ Orbit↓ Spec. ↓ GNN MMD ↓ GNN F1 PR ↑ GNN F1 DC ↑

Enzyme
HiGen-m 6.61e-03 2.65e-02 2.15e-03 8.75e-03 2.15e-02 9.70e-01 8.97e-01
HiGen 2.31e-03 2.08e-02 1.51e-03 9.56e-03 1.80e-02 9.78e-01 9.83e-01

Protein
HiGen-m 0.0041 0.109 0.0472 0.0061 6.71e-02 9.79e-01 9.85e-01
HiGen 0.0012 0.0435 0.0234 0.0025 6.71e-02 9.79e-01 9.85e-01

Stochastic block model
HiGen-m 0.0017 0.0503 0.0604 0.0068 1.54e-01 9.12e-01 0.83
HiGen 0.0019 0.0498 0.0352 0.0046 4.32e-02 9.86e-01 1.07

Ego
HiGen-m 0.011 0.063 0.021 0.013 4.20e-02 0.87 0.68
HiGen 1.9e-3 0.049 0.029 0.004 5.20e-02 0.88 0.69

The GraphGPS models that was used for this experiment have employed Performer (Choromanski et al., 2020) which offers
linear time and memory complexity. The results in Table 3 highlights the performance improvement of HiGen-s in both
local and global properties of the generated graphs.

Table 3: Comparison of generation metrics on benchmark 3D point cloud. The baseline results are obtained from (Liao et al., 2019).

3D Point Cloud
Model Deg. ↓ Clus. ↓ Orbit↓ Spec. ↓

Erdos-Renyi 3.1e-01 1.22 1.27 4.26e-02
GRAN 1.75e-02 5.1e-01 2.1e-01 7.45e-03
HiGen-s 3.48e-02 2.82e-01 3.45e-02 5.46e-03

An alternative approach is to sub-sample a large graph such that each augmented sub-graph consists of a bipartite Bl
ij and its

corresponding pair of communities Cl
i, Cl

j . This approach allows for parallel generation of bipartite sub-graphs but does not
consider the connectivity between neighboring bipartites.

E.2. Ablation studies

In this section, two ablation studies were conducted to evaluate the sensitivity of HiGen with different node orderings and
graph partitioning functions.

Node Ordering In our experimental study, the nodes in the communities of all levels are ordered using breadth first
search (BFS) node ordering while the BFS queue are sorted by the total weight of edges between a node in the queue
and predecessor nodes plus its self-edge. To compare the sensitivity of the proposed generative model against GRAN, we
trained the models with default node ordering and random node ordering. The performance results, presented in Table 4,
confirm that the proposed model is significantly less sensitive to the node ordering whereas the performance of GRAN drops
considerably with non-optimal orderings.

Different Graph Partitioning In this experimental study, we evaluated the performance of HiGen using different graph
partitioning functions. Firstly, to assess the sensitivity of the hierarchical generative model to random initialization in the
Louvain algorithm, we conducted the HiGen experiment three times with different random seeds on the Enzyme dataset. The
average and standard deviation of performance metrics are reported in Table 5 which demonstrate that HiGen consistently
achieves almost similar performance across different random initializations.

Additionally, we explored spectral clustering (SC), which is a relaxed formulation of k-min-cut partitioning (Shi & Malik,
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Table 4: Ablation study on node ordering. Baseline HiGen used the BFS ordering and baseline GRAN used DFS ordering. π1, π2 and π3 are default, random and π3 node
ordering, respectively. Total variation kernel is used as MMD metrics of structural statistics. Also, the average of random-GNN-based metrics aver 10 random GIN initialization
are reported for MMD with RBF kernel (GNN MMD), the harmonic mean of improved precision+recall (GNN F1 PR) and harmonic mean of density+coverage (GNN F1 PR).

Enzyme
Model Deg. ↓ Clus. ↓ Orbit↓ Spec. ↓ GNN MMD ↓ GNN F1 PR ↑ GNN F1 DC ↑

GRAN 8.45e-03 2.62e-02 3.46e-02 2.11e-02 6.63e-02 9.50e-01 8.32e-01
GRAN (π1) 1.75e-02 2.89e-02 3.78e-02 2.03e-02 6.51e-02 8.24e-01 6.69e-01
GRAN (π2) 3.90e-02 3.24e-02 3.81e-02 2.38e-02 1.26e-01 8.31e-01 6.72e-01

HiGen 2.31e-03 2.08e-02 1.51e-03 9.56e-03 1.80e-02 9.78e-01 9.83e-01
HiGen (π1) 1.83e-03 2.21e-02 6.75e-04 7.08e-03 1.78e-02 9.84-01 9.77e-01
HiGen (π2) 3.31e-03 2.34e-02 2.06e-03 9.10e-03 2.04e-02 9.47-01 8.81e-01
HiGen (π3) 1.34e-03 2.13e-02 6.94e-04 6.56e-03 1.90e-02 9.61e-01 9.74e-01

2000), as an alternative partitioning method. To determine the number of clusters, we applied SC to partition the graphs over
a range of 0.7

√
n ≤ k ≤ 1.3

√
n, where n represents the number of nodes in the graph. We computed the modularity score

of each partition and selected the value of k that yielded the maximum score.

The results presented in Table 5 demonstrate the robustness of HiGen against different graph partitioning functions.

Table 5: Multiple initialization of Louvain partitioning algorithm and also min-cut partitioning

Enzyme
Model Deg. ↓ Clus. ↓ Orbit↓ Spec. ↓ GNN MMD ↓ GNN F1 PR ↑ GNN F1 DC ↑

HiGen 2.64e-03±4.7e-4 2.09e-02±4.0e-4 7.46e-04±4.4e-4 1.74e-02±1.5e-3 2.00e-02±3.1e-3 .98±4.6e-3 .96±1.0e-2

HiGen (SC) 2.24e-03 2.10e-02 5.59e-04 8.30e-03 2.00e-02 .98 .94 ,

E.3. Graph Samples

Generated hierarchical graphs sampled from HiGen models are presented in this section.
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Figure 3: Samples from HiGen trained on Protein and SBM. Communities are distinguished with different colors and both levels are depicted. The samples for GRAN and
SPECRE are obtained from (Martinkus et al., 2022).
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Figure 4: Samples from HiGen trained on Protein and SBM. Communities are distinguished with different colors and both levels are depicted.
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3D Point Cloud
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Figure 5: Samples from HiGen trained on 3D Point Cloud. Communities are distinguished with different colors and both levels are depicted. The samples for GRAN are obtained
from (Liao et al., 2019).


