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ABSTRACT

Tensors are a fundamental data structure for many scientific contexts, such as time
series analysis, materials science, and physics, among many others. Improving our
ability to produce and handle tensors is essential to efficiently address problems in
these domains. In this paper, we show how to exploit the underlying symmetries
of functions that map tensors to tensors. More concretely, we develop universally
expressive equivariant machine learning architectures on tensors that exploit that,
in many cases, these tensor functions are equivariant with respect to the diagonal
action of the orthogonal, Lorentz, and/or symplectic groups. We showcase our
results on three problems coming from material science, theoretical computer
science, and time series analysis. For time series, we combine our method with
the increasingly popular path signatures approach, which is also invariant with re-
spect to reparameterizations. Our numerical experiments show that our equivariant
models perform better than corresponding non-equivariant baselines.

1 INTRODUCTION

Tensors are fundamental mathematical objects that appear in a broad spectrum of domains (Ballard
& Kolda, 2025; Landsberg, 2012). In the natural sciences, tensor-valued data are used to express
polarizations (Melrose & Stoneham, 1977), permeabilities (Durlofsky, 1991), and stresses (Levitas
et al., 2019), for example. Theoretical computer science studies several problems related to tensors,
including factorization or decomposition of tensors (Rabanser et al., 2017), and planted tensor models
(Hopkins et al., 2016). For time series analysis, the path signature introduced in Chen (1957; 1958)
transforms path data into a sequence of tensors, enabling methods to process time series data that are
invariant with respect to reparameterizations (Bonnier et al., 2019; Pfeffer et al., 2019; Tóth, 2025).
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In physics, tensors are not just a multidimensional array of numbers. Tensors also have specific
transformation properties under changes of coordinates, so any function of a tensor should obey
certain transformation rules. These rules can be expressed as invariances or equivariances with respect
to group actions. In this work, we show how to parameterize machine learning models that learn
tensors and implement these symmetries, and we demonstrate that imposing them improves the
learning performance on a variety of problems. The relevant symmetries are given by classical Lie
groups acting diagonally on tensors. The groups we study arise naturally in physics and other settings,
including the orthogonal group O(d) (which typically appears in coordinate transformations), the
indefinite orthogonal group O(s, k − s) (which includes the Lorentz group, a fundamental group for
special relativity), and the symplectic group Sp(d) (the underlying group in much of classical and
quantum mechanics).

We apply the methods to problems in time series prediction, materials science, and theoretical com-
puter science. Our equivariant learned models outperform prior static methods and non-equivariant
learned models in almost all cases.

Our Contributions. We provide a generic recipe to define equivariant machine learning models
mapping from tensors to tensors. To this end, we give explicit parameterizations for polynomials (Sec.
3) and analytic functions with globally convergent Taylor series (Sec. 4) from tuples of tensor inputs
to tensor outputs that are equivariant with respect to the orthogonal (Sec. 3), indefinite orthogonal
(which includes Lorentz), and symplectic groups (Sec. 4). This generalizes the existing results of
Villar et al. (2021) and leverages the tensor invariant theory (Appleby et al., 1987; Jeffreys, 1973;
Roe Goodman, 2009) into a format useful for machine learning frameworks. On first reading and for
those primarily interested in practical applications, we suggest focusing on Corollary 1 in Section 3
from which our experiments follow.

In Section 5 we consider three disparate applications. For materials science, we use our machine
learning model on tensors to learn the relationship between second-order stress and strain tensors of
an O(d)-isotropic neo-Hookean hyperelastic material (Garanger et al., 2024). For time series, we
focus on their representation via path signatures, which are sequences of tensors of growing order
(Chen, 1958; Lyons et al., 2007). These tensors can be used for any downstream learning tasks. Here,
we consider the problem of estimating the path signature from only a few sampled points on the
path. Finally, from theoretical computer science we consider the problem of sparse vector estimation.
Given a vector space Rn and a random orthonormal basis of a subspace Rd that contains a sparse
vector v0 for d ≪ n, can we recover v0? The problem has roots in dictionary learning (Spielman
et al., 2012) and tensor PCA, it is closely related to the spiked tensor model (Montanari & Richard,
2014), and has several applications (Qu et al., 2020).

Related work. Many recent theoretical and applied efforts have focused on the implementation of
symmetries and other structural constraints in the design of machine learning models. This is the
case of graph neural networks Scarselli et al. (2008); Maron et al. (2019), geometric deep learning
Bronstein et al. (2021); Weiler et al. (2021), and AI for science Zhang et al. (2023). The goal is to
design a hypothesis class of functions with good inductive bias that is aligned with the theoretical
framework of the physical, mathematical, or algorithmic objects it aims to represent. This includes
respecting coordinate freedoms (Villar et al., 2023a), conservation laws (Alet et al., 2021), or internal
symmetries (e.g. in the implicit neural representations framework (Lim et al., 2023)). Symmetries
have also been used to provide interpretability to learned data representations (Suau et al., 2023;
Gupta et al., 2023). Mathematically, it has been shown that imposing symmetries can improve the
generalization error and sample complexity of machine learning models (Elesedy, 2021b; Wang et al.,
2021b; Elesedy, 2021a; Bietti et al., 2021; Petrache & Trivedi, 2024; Tahmasebi & Jegelka, 2023;
Huang et al., 2024).

A variety of methods can be used for implementing invariances or equivariances, including group
convolutions (Cohen & Welling, 2016; 2017; Wang et al., 2021a), irreducible representations (Fuchs
et al., 2020; Kondor, 2018; Weiler et al., 2018; Cohen et al., 2018; Weiler & Cesa, 2019; Simeon
& De Fabritiis, 2023), constraints on optimization (Finzi et al., 2021), canonicalization (Kaba et al.,
2023), and invariant theory (Gripaios et al., 2021; Haddadin, 2022; Villar et al., 2021; Blum-Smith &
Villar, 2023; Villar et al., 2023b; Blum-Smith et al., 2025). This work is closer to the line of research
that constructs explicit equivariant functions from invariant features.
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Closest to us is the work of Kunisky, Moore, and Wein on tensor cumulants (Kunisky et al., 2024);
and the works parameterizing equivariant tensor functions using Clebsch–Gordan methods and
spherical harmonics, including e3nn (Geiger & Smidt, 2022), escnn (Cesa et al., 2022), and the
recent work of Domina et al. (2025). In Kunisky et al. (2024), it is shown that O(d)-invariant
polynomials on symmetric tensors can be turned into O(d)-invariant polynomials over general tensors
by symmetrizing over O(d). They do not consider learning applications, tensors of different orders or
parities, nor indefinite orthogonal groups or the symplectic group.

The works in Geiger & Smidt (2022); Cesa et al. (2022); Domina et al. (2025) implement equivariant
machine learning models on tensors using representation theory. To do so they decompose tensors
into irreducible representations and use Schur’s lemma to parameterize the equivariant linear maps. If
the orders of the intermediate tensor layers are large enough, then these models can parameterize
polynomial equivariant functions of arbitrary degree (and are universal in a Stone-Weierstrass sense).
The method we introduce here also parameterizes equivariant tensor polynomials of arbitrary degree,
but does so using invariant theory results instead of irreducible representations. Our parameterization
for the invariant and equivariant functions does not require the computation of the Clebsch–Gordan
coefficients. The Clebsch–Gordan–based methods in Geiger & Smidt (2022); Cesa et al. (2022);
Domina et al. (2025) are specific for SO(d) and O(d) for d = 2, 3, whereas our method applies to other
groups as well. We remark that those methods are more memory efficient than our general formulation
in Theorems 1 and 2, but they are comparable to our Corollaries 1 and 3 (which require the inputs
to be vectors but are applicable to O(d), the Lorentz group, the symplectic group). In summary,
the computational and approximation power should be equivalent, however, the parameterization is
different and the mathematical techniques used to arrive at the parameterization are also different.

Another related work Pearce-Crump (2023) characterizes neural networks that are O(d), SO(d), and
Sp(d) equivariant, but only for the case of functions whose input is a tensor power of Rn and whose
output is a tensor power of Rn. Finally, some other works use outer products and contractions of
Cartesian tensors to capture higher order interactions, such as HotPP (Wang et al., 2024), GI-Net
(Gregory et al., 2025), and Vector Neurons (Deng et al., 2021). These models build higher order
tensors in a point cloud or image setting, while our method exploits shortcuts depending on the type
of input to build efficient models.

2 DEFINITIONS

To simplify the exposition, we start by focusing on the case of the orthogonal group before extending
the result to the indefinite orthogonal and symplectic groups. We consider the orthogonal group O(d),
the group of isometries of Euclidean space Rd that fix the origin. It acts on vectors and pseudovectors
v ∈ Rd in the following way:

g · v = det(M(g))
1−p
2 M(g) v, (1)

where g ∈ O(d), M(g) ∈ Rd×d is the standard matrix representation of g (i.e. M(g)⊤ M(g) = Id,
where Id is the identity matrix), and p ∈ {−1,+1} is the parity of v. If p = +1 we obtain the
standard O(d) action on Rd vectors. If p = −1 we obtain the O(d) action on what in physics are
known as pseudovectors. For a common pseudovector, consider a rotating Ferris wheel with angular
velocity whose direction is given by the right-hand rule. A reflection of the wheel, which will have
det(M(g)) = −1 in (1), does not change the direction of rotation or angular velocity.
Definition 1 (k(p)-tensors). We define the space of 1(p)-tensors to be Rd equipped with the action
O(d) defined by (1). If vi is a 1(pi)-tensor for i = 1, . . . , k, then a := v1 ⊗ . . .⊗ vk ∈ (Rd)⊗k is a
rank-1 k(p)-tensor, where p =

∏k
i=1 pi and the action of O(d) is the diagonal action:

g · (v1 ⊗ . . .⊗ vk) = (g · v1)⊗ . . .⊗ (g · vk) . (2)
This definition generalizes to higher rank k(p)-tensors by linearity (see (5) below). The space of
k(p)-tensors in d dimensions is denoted Tk

(
Rd, p

)
. We will write + or − for p when it is clear; for

example, T1
(
Rd,−

)
is the space of pseudovectors and T1

(
Rd,+

)
is the space of vectors.

Definition 2 (Einstein summation notation). Suppose that a is a k(p)-tensor. Let [a]i1,...,ik denote
the (i1, . . . , ik)-th entry of a, where i1, . . . , ik range from 1 to d. The Einstein summation notation is
used to represent tensor products1 where repeated indices are summed over. In each product, a given

1We will identify vectors with co-vectors in the usual way and will not distinguish lower vs upper scripts.
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index can appear either exactly once, in which case it appears in the result, or exactly twice, in which
case it is summed over and does not appear in the result.

For example, in Einstein summation notation, the product of two 2(+)-tensors (i.e., the matrix product
ab of two d× d matrices a and b) is written as

[a b]i,j = [a]i,ℓ [b]ℓ,j :=

d∑
ℓ=1

[a]i,ℓ [b]ℓ,j . (3)

Using Einstein summation notation, the action of g ∈ O(d) on rank-1 tensors can be extended to
general tensors by linearity by expressing b ∈ Tk

(
Rd, p

)
as a linear combination of (rank-1) standard

basis tensors ei1,...,ik = ei1 ⊗ · · · ⊗ eik , where [ei]i = 1 and [ei]j = 0 for i ̸= j

[g · b]i1,...,ik = [b]j1,...,jk [g · (ej1 ⊗ · · · ⊗ ejk)]i1,...,ik = [b]j1,...,jk [g · ej1 ]i1 · · · [g · ejk ]ik . (4)

Note that the action (1) on a k(p)-tensor b can be written as

[g · b]i1,...,ik = det(M(g))
1−p
2 [b]j1,...,jk [M(g)]i1,j1 · · · [M(g)]ik,jk (5)

for all g ∈ O(d). For example, in this notation a 2(+)-tensor has the transformation property [g ·b]i,j =
[b]k,ℓ [M(g)]i,k [M(g)]j,ℓ, which, in normal matrix notation, is written as g · b = M(g) bM(g)⊤.

When multiple tensors are combined, and all their indices appear in the result, we refer to that as the
tensor product or outer product. When indices are summed over, we refer to that as the contraction or
scalar product. We will further focus on a specific case of multiple tensor contractions that we will
refer to as a k-contraction.
Definition 3 (Outer product of tensors). Given a ∈ Tk

(
Rd, p

)
and b ∈ Tk′

(
Rd, p′

)
, the outer product,

denoted a⊗ b, is a tensor in Tk+k′
(
Rd, p p′

)
defined as [a⊗ b]i1,...,ik+k′ = [a]i1,...,ik [b]ik+1,...,ik+k′ .

We write a⊗k to denote the outer product of a with itself k times and use the convention for k = 0
that a⊗0 ⊗ b = b.
Definition 4 (k-contraction). Given a tensor a ∈ T2k+k′

(
Rd, p

)
, the k-contraction of a, denoted

ιk(a), is the k′(p)-tensor that contracts the 2k first indices as follows (in Einstein summation):

[ιk(a)]j1,...,jk′ := [a]i1,...,ik,i1,...,ik,j1,...,jk′ . (6)

For instance, if a = u ⊗ v ⊗ x ⊗ y ⊗ z ∈ T4+1

(
Rd, p

)
then ι1(a) = ⟨u, x⟩⟨v, y⟩z, where ⟨u, x⟩

denotes the standard inner product between u and x. Since k(p)-tensors are elements of the vector
space (Rd)⊗k, tensor addition and scalar multiplication are defined in the usual way. The final
operation on tensors is the permutation of the indices.
Definition 5 (Permutations of tensor indices). Given a ∈ Tk

(
Rd, p

)
and permutation σ ∈ Sk, the

permutation of tensor indices of a by σ, denoted aσ , is defined by

[aσ]i1,...,ik := [a]iσ−1(1),...,iσ−1(k)
. (7)

Definition 6 (Invariant and equivariant functions). We say that f : Tk
(
Rd, p

)
→ Tk′

(
Rd, p′

)
is

O(d)-invariant if
f(g · a) = f(a), for all g ∈ O(d). (8)

We say that f : Tk
(
Rd, p

)
→ Tk′

(
Rd, p′

)
is O(d)-equivariant if

f(g · a) = g · f(a), for all g ∈ O(d). (9)

If f were instead a function with multiple inputs, then the same group element g would act on all
inputs simultaneously.
Definition 7 (Isotropic tensors). We say that a tensor a ∈ Tk

(
Rd, p

)
is O(d)-isotropic if g · a = a,

for all g ∈ O(d).

There are two special tensors, the Kronecker delta, and the Levi-Civita symbol. These tensors are
O(d)-isotropic and, as we will show in Appendix C, we can construct all O(d)-isotropic tensors
using only Kronecker deltas and Levi-Civita symbols.
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Definition 8 (Kronecker delta). The Kronecker delta, δ, is the O(d)-isotropic 2(+)-tensor satisfying
[δ]ij = 1 if i = j and 0 otherwise. When considered as a matrix, it is the identity matrix Id.
Definition 9 (Levi-Civita symbol). The Levi-Civita symbol, ϵ, in dimension d ≥ 2 is the O(d)-
isotropic d(−)-tensor such that [ϵ]i1,...,id = 0 if any two of the i1, . . . , id are equal, [ϵ]i1,...,id = +1 if
i1, . . . , id is an even permutation of 1, . . . , d, and [ϵ]i1,...,id = −1 if i1, . . . , id is an odd permutation
of 1, . . . , d. For example, when d = 2 this is simply the matrix

[
0 1
−1 0

]
.

3 O(d)-EQUIVARIANT POLYNOMIAL FUNCTIONS

In this section, we characterize the O(d)-equivariant polynomial functions mapping multiple tensor
inputs to tensor outputs. On first reading and for those primarily interested in practical applications,
we advise focusing on Corollary 1 and Example 1 below.

In what follows we consider functions of n input tensors of orders ki and parities pi for i =
1, . . . , n, and fixed dimension d. This space is expressed by the cartesian product

∏n
i=1 Tki

(
Rd, pi

)
=

(Tk1

(
Rd, p1

)
, . . . , Tkn

(
Rd, pn

)
). For many practical applications all inputs are of the same type, but

we write the theory in this generality to allow for functions that take, for example, 1(+)-tensor
positions and 2(+)-tensor stresses as inputs.

The theorem below states that every O(d)-equivariant polynomial from tensors to tensors can be
written as a combination of tensor products of the inputs with isotropic tensors followed by Einstein-
summation contractions. Each term in the right-hand-side of (10) should be viewed as combining
r of the input tensors with the tensor product, then mapping them to the appropriate output with a
linear map. Since a linear map between tensors can always be written as a tensor product followed
by a sequence of contractions (Dimitrienko, 2013, Theorem 5.1), the linear map is implemented by
the tensor cℓ1,...,ℓr . However, since the function is also O(d)-equivariant, the tensor cℓ1,...,ℓr must be
O(d)-isotropic. The theorem states all the tensor equivariant polynomials can be expressed this way.

Theorem 1. Let f :
∏n

i=1 Tki

(
Rd, pi

)
→ Tk′

(
Rd, p′

)
be an O(d)-equivariant polynomial function

of degree at most R. Then we may write f as follows:

f(a1, . . . , an) =

R∑
r=0

∑
1≤ℓ1≤···≤ℓr≤n

ιkℓ1,...,ℓr
(aℓ1 ⊗ . . .⊗ aℓr ⊗ cℓ1,...,ℓr ) (10)

where cℓ1,...,ℓr is an O(d)-isotropic (kℓ1,...,ℓr + k′)(pℓ1,...,ℓr p′)-tensor with order and parity chosen
to be consistent with the output’s (kℓ1,...,ℓr =

∑r
q=1 kℓq and pℓ1,...,ℓr =

∏r
q=1 pℓq ).

The proof of Theorem 1 is given in Appendix B. The result is a clean theoretical characterization of
O(d)-equivariant polynomial tensor functions with arbitrary order tensor inputs. However, computing
large polynomials with all possible O(d)-isotropic tensors is impractical. One option is considering
low-degree polynomials as in Example 2 in the Appendix. Alternatively, in many applications we
only need a function that has 1(+)-tensors (i.e. vectors) as input and a k(+)-tensor as output, and the
problem takes on a form more amenable to computation.

The condition that cℓ1,...,ℓr in Theorem 1 is O(d)-isotropic is quite restrictive. Lemma 3 in Appendix
C, taken from Jeffreys (1973), shows that all isotropic tensors can be constructed from the Kronecker
delta δ (Definition 8) and the Levi-Civita symbol (Definition 9).

The following corollary says that when the inputs of the O(d)-equivariant function are vectors, and
the output is a tensor, we can write the function as a linear combination of tensor products of the input
vectors and Kronecker deltas (and permutations of them), and the coefficients are scalar functions
that only depend on the pairwise inner products of the input vectors. The proof is in Appendix C.
Corollary 1. Let f :

∏n
i=1 T1

(
Rd,+

)
→ Tk′

(
Rd,+

)
be an O(d)-equivariant polynomial function.

Then, we may write it as

f(v1, . . . , vn) =

⌊ k′
2 ⌋∑

t=0

∑
σ∈Sk′

∑
1≤J1≤...≤Jk′−2t≤n

qt,σ,J

(
(⟨vi, vj⟩)ni,j=1

)(
vJ1

⊗ . . .⊗ vJk′−2t
⊗ δ⊗t

)σ
,

(11)
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where J = (J1, . . . , Jk′−2t) are indices of the input tensors, and the function qt,σ,J which depends
on the tuple (t, σ, J) is a polynomial of the inner products of the input vectors.

The second factor is a permutation of the outer product of t Kronecker deltas and k′ − 2t of the input
vectors v1, . . . , vn, possibly with repeats. The first sum is over the possible numbers of Kronecker
deltas 0 to ⌊k′

2 ⌋, where ⌊·⌋ is the floor function. The second sum is over the possible permutations
of the k′ axes, which is smaller than Sk′ when t > 0 due to the symmetries of δ⊗t as discussed in
Appendix D. The third sum is over choosing k′ − 2t vectors from v1 to vn, allowing repeated vectors.
See Figure 1 for an example. Directly evaluating the function f(v1, . . . , vn) defined in (11) has
computational complexity O

(
k′!nk′

(
Qdn2 + dk

′
))

operations, where Q is the maximum number
of operations needed to evaluate the polynomials qt,σ,J . Thus, evaluating f is only practical for small
values of k′; however, since k′ is the rank of the output tensor, k′ ∈ {1, 2, 3, 4} already captures
many cases of practical interest.
Remark 1. Note that Corollary 1 characterizes polynomial functions, but if we allow the qt,σ,J to be
more general (e.g. in the class of continuous or smooth functions), then we obtain a parameterization
of a larger class of O(d)-equivariant functions. In the experiments in Section 5, we set the qt,σ,J to
be learnable multi-layer perceptrons (MLPs). We are unsure if a characterization of this sort can be
stated for all continuous O(d)-equivariant functions. However, by the Stone–Weierstrass theorem any
continuous function can be approximated by a polynomial function to arbitrary accuracy on any fixed
compact set, so constructing an architecture that can represent equivariant polynomial functions is
sufficient to approximately represent equivariant continuous functions (see Yarotsky (2022)).

The following example shows how to express a given equivariant polynomial in terms of invariant
functions and tensors. A longer example appears in Appendix E.
Example 1. Let f : T1

(
Rd,+

)
→ T2

(
Rd,+

)
be an O(d)-equivariant polynomial of degree at most

2. By Theorem 1, we can write f in the form

f(a) = ι0
(
a⊗0 ⊗ c0

)
+ ι1

(
a⊗1 ⊗ c1

)
+ ι2

(
a⊗2 ⊗ c2

)
, (12)

where cr is an O(d)-isotropic (r + 2)(+)-tensor for r = 0, 1, 2. Lemma 3 characterizes such isotropic
tensors, c0 = β0δ, c1 = 0 is trivial, and c2 is a linear combination of (δ⊗2)σ for σ ∈ G4 =
{σ1, σ2, σ3} where σ1 := (1, 2, 3, 4), σ2 = (1, 3, 2, 4), σ3 = (1, 3, 4, 2), See Appendix D for the
definition of G4 (109).

Thus the final term ι2
(
a⊗2 ⊗ c2

)
is

ι2
(
a⊗2 ⊗

(
β1(δ

⊗2)σ1 + β2(δ
⊗2)σ2 + β3(δ

⊗2)σ3
))

= β1⟨a, a⟩δ + β2a⊗ a+ β3a⊗ a, (13)

where the terms associated with β2 and β3 are the same due to the symmetry of a⊗2. We conclude

f(a) = β0δ + β1⟨a, a⟩δ + β2a⊗ a, (14)

for some scalars β0, β1, and β2.

When the input and output are both symmetric 2(+)-tensors, we get another useful corollary.

Corollary 2. Let f : T sym
2 (Rd,+) → T sym

2 (Rd,+) be an O(d)-equivariant function. Then there
exists a function f̃ : Rd×d

diag → Rd×d
diag of diagonal matrices that is permutation equivariant such

that for all A ∈ T sym
2 (Rd,+), f(A) = Q

(
f̃(Λ)

)
Q⊤, where A = QΛQ⊤ is the eigenvalue

decomposition.

In other words, an O(d)-equivariant function of symmetric matrices can be reduced to a permutation-
equivariant function of the eigenvalues. The proof is given in Appendix F.

4 GENERALIZATIONS TO OTHER GROUPS

The results regarding O(d)-equivariant tensor maps from Section 3 are a particular case of a more
general result involving algebraic groups, such as the Lorentz and symplectic groups we cover here.
We work the full generalization in Appendix G where we give all the details of the proofs.
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Figure 1: Illustration of the method from Corollary 1 with 4 input vectors in R3 and a 2(+)-tensor output.
The tensor product of inputs includes all 16 possible tensor products of ordered pairs of input vectors, plus the
isotropic Kronecker delta, labeled id. The coefficients qt,σ,J shown here use σ = (), the identity permutation in
Sk′ .

Recall that O(d) is the subgroup of linear transformations preserving the Euclidean inner product.
However, in some contexts, we might be interested in preserving other bilinear products on Rd, such
as the Minkowski inner product

⟨u, v⟩s := u⊤Is,d−sv,

where Is,d−s :=

(
Is

−Id−s

)
, or, for d even, the symplectic product

⟨u, v⟩symp := u⊤Jdv

where Jd :=

(
Id/2

−Id/2

)
. The subgroups of linear maps preserving these bilinear products give

respectively the indefinite orthogonal group (which is the linear part of the Lorentz group when d = 4
and s ∈ {1, 3}) given by

O(s, d− s) := {g ∈ GL(Rd) | g⊤Is,d−sg = Is,d−s}, (15)

and, when d is even, the symplectic group given by

Sp(d) := {g ∈ GL(Rd) | g⊤Jdg = Jd}. (16)

For any of these groups G, we can consider the modules Tk(Rd, χ) := (Rd)⊗k, where χ : G → R∗

is an algebraic group homomorphism, where the action is given by the linear extension of

g · (v1 ⊗ · · · ⊗ vk) = χ(g)(g · v1)⊗ · · · ⊗ (g · vk). (17)

When G = O(s, d− s), with s ̸= 0, d, we have four possible χ: χ+,+ being always equal to 1, χ+,−
being the sign of the determinant of the bottom-right (d− s)× (d− s) submatrix, χ−,+ being the
sign of the determinant of the top-left s× s submatrix, and χ−,− being the determinant of the matrix.
Hence, we can represent them by (p1, p2), where pi ∈ {−1,+1}. When G = Sp(d), we have that χ
can only be the trivial group-homomorphism. (It follows, for instance, from the representation theory
of simple Lie algebras from (Fulton & Harris, 2013, Part III) and a standard abelianization argument).

Additionally, we have G-equivariant contractions ιGk : T2k+k′(Rd, χ) → Tk′(Rd, χ) given by

ιO
(s,d−s)

k (a) := [a]i1,...,ik,j1,...,jk,ℓ1,...,ℓk′ [Is,d−s]i1,j1 · · · [Is,d−s]ik,jk (18)

and
ι
Sp(d)
k (a) := [a]i1,...,ik,j1,...,jk,ℓ1,...,ℓk′ [Jd]i1,j1 · · · [Jd]ik,jk . (19)

Under these notations, we can state the generalization of Theorem 1 as follows. Recall that an entire
function is a function that is analytic and whose Taylor series converges globally at any point.
Theorem 2. Let G be either O(s, d − s) or Sp(d) and f :

∏n
i=1 Tki

(
Rd, χi

)
→ Tk′

(
Rd, χ′) be a

G-equivariant entire function. Then we may write f as follows:

f(a1, . . . , an) =

∞∑
r=0

∑
1≤ℓ1≤···≤ℓr≤n

ιGkℓ1,...,ℓr
(aℓ1 ⊗ . . .⊗ aℓr ⊗ cℓ1,...,ℓr ) (20)
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dataset size MLP baseline MLP augmented TFENN Ours

n = 5,000 1.586e-4 ± 2.307e-6 2.020e-5 ± 2.141e-7 5.3e-5 4.057e-6 ± 3.458e-7

n = 20,000 4.014e-5 ± 1.476e-6 9.365e-6 ± 1.584e-7 3.0e-5 7.748e-7 ± 2.911e-7

n = 40,000 2.766e-5 ± 8.134e-7 7.516e-6 +- 1.457e-7 1.0e-5 3.310e-6 ± 8.448e-7

Table 1: Test error comparison on the TFENN Garanger et al. (2024) dataset, averaged over 5 trials
with standard deviation given as ±0.xxx. The metric is the squared Frobenius norm of the difference
of the predicted and target 2(+)-tensor, so lower values are better. For each row, the best value is
bolded. The TFENN errors are the results reported in Garanger et al. (2024).

where cℓ1,...,ℓr ∈ Tkℓ1,...,ℓr+k′(Rd, χℓ1,...,ℓr χ
′) is a G-isotropic tensor, i.e., a tensor in

Tkℓ1,...,ℓr+k′(Rd, χℓ1,...,ℓr χ
′) invariant under the action of G; for kℓ1,...,ℓr :=

∑r
q=1 kℓq and

χℓ1,...,ℓr =
∏r

q=1 χℓq .

Using the above theorem and an analogous version of Lemma 3 that characterizes G-isotropic tensors
(see Proposition 7 in Appendix G or (Roe Goodman, 2009, Theorem 5.3.3)), we can then prove the
following corollary, which generalizes Corollary 1.
Corollary 3. Let G be either O(s, d− s) or Sp(d) and f :

∏n
i=1 T1

(
Rd, χ0

)
→ Tk

(
Rd, χ0

)
, with

χ0 the constant map to 1, be a G-equivariant entire function. Then we may write f as follows:

f(v1, . . . , vn) =

⌊ k
2 ⌋∑

t=0

∑
σ∈Sk

∑
1≤J1≤···≤Jk−2t≤n

qt,σ,J

(
(⟨vi, vj⟩G)ni,j=1

) (
vJ1

⊗ . . .⊗ vJk−2t
⊗ θ⊗t

G

)σ
(21)

where ⟨ · , · ⟩G = ⟨ · , · ⟩s and θG = [Is,d−s]i,j if G = O(s, d − s), and ⟨ · , · ⟩G = ⟨ · , · ⟩symp and
θG = [Jd]i,j if G = Sp(d), and qt,σ,J is an entire function that depends on the tuple (t, σ, J) and
whose inputs are all possible inner products between the input vectors and whose output is a scalar.

5 NUMERICAL EXPERIMENTS

With the preceding theory in place, we can build machine learning models to learn equivariant
tensor functions. We use Corollaries 1 and 3 which characterize the O(d)- and Lorentz-equivariant
functions from vectors to tensors, and Corollary 2 which characterizes O(d)-equivariant functions
from symmetric 2(+)-tensors to symmetric 2(+)-tensors.

Stress-Strain Tensors. We consider the problem materials science from Garanger et al. (2024). We
can model an isotropic neo-Hookean hyperelastic material with the equation

W =
λ

2
(log detF )2 − µ log detF +

µ

2

(
tr
(
F⊤F

)
− 3
)
, (22)

where λ, µ are model parameters and F is a random deformation gradient. For the Cauchy-Green
strain tensor C = F⊤F , the second Piola-Kirchoff stress tensor is given by

S =

(
1

2
λ log detC − µ

)
C−1 + µId . (23)

Thus S is a function of C. Both S and C are 2(+)-tensors, and the function is O(d)-equivariant, so we
can parameterize this function by Corollary 2. We enforce permutation equivariance of the function
of the eigenvalues by Maron et al. (2019). We compare our model to an MLP baseline, the MLP
baseline trained on an augmented dataset with 4 random rotations, and the method from Garanger
et al. (2024) which is also equivariant. The results are shown in Table 1. We can see that for all dataset
sizes, our equivariant model performs dramatically better than the other models. See Appendix H for
further model and training details.

Path Signature. Let x : [0, T ] → Rd be a continuous path of bounded variation. The path signature
S(x) is a sequence of tensors S0(x), S1(x), S2(x), . . ., where S0(x) = 1 and Sk(x) for k > 0 is an
k(+)-tensor defined as:

[Sk(x)]i1,...,ik =

∫
t⃗∈∆k([0,T ])

[ẋt1 ]i1 · · · [ẋtk ]ikdt1 · · · dtk , (24)
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Group Discrete (24) MLP (same width) MLP (same # params) MLP augmented Ours

O(d) 1.336 0.255 ± 0.003 0.071 ± 0.001 0.007 0.002
Lorentz 1.489 1.391 ± 0.005 0.450 ± 0.002 0.186 ± 0.002 0.005

Table 2: Path signature test performance averaged over 3 trials with standard deviation
given as ±0.xxx when it is at least 1e-3. The metric for true truncated signature SM (x)

and predicted truncated signature ŜM (x(t1), . . . , x(tn)) is ℓ
(
SM (x), ŜM (x(t1), . . . , x(tn))

)
=

1
M

∑M
k=1

1
dk

∥∥∥Sk(x)− Ŝk(x(t1), . . . , x(tn))
∥∥∥2
F

where ∥·∥F is the Frobenius norm, so lower values
are better. For each row, the best value is bolded.

where ẋti =
dx
dt , ∆k([0, T ]) := {(t1, . . . , tk) ∈ Rm : 0 < t1 < . . . < tk < T} is the k-dimensional

simplex, and the integral is in the sense of a Riemmann-Stieljes integral.

The path signature is a useful object when working with path data because it nicely encodes the
properties of a path (see Lyons et al. (2007)). For example, if x, y are regular paths, then S(x) = S(y)
if and only if x and y are the same up to translation and reparameterization (Chen, 1958). This result
generalizes to non-regular paths (Hambly & Lyons, 2010) and it’s fundamental in reconstructing
paths from signatures (Pfeffer et al., 2019; Rauscher et al., 2025). Furthermore, we can approximate
any function on a path by a linear function on its path signature Chevyrev & Oberhauser (2022).

We will consider the problem of approximating the path signature from a small sample of points
along the path, which if done well allows us to reconstruct the path (see for example (Pfeffer et al.,
2019)). Let P =

{
x : [0, T ] → Rd

}
be a family of paths. Let n ∈ N be fixed and small, and let

0 ≤ t1 < . . . < tn ≤ T also be fixed. Suppose for x ∈ P that we know x(t1), . . . , x(tn), then the
problem is to approximate the truncated signature SM (x) = {Sk(x), 1 ≤ k ≤ M}.

Our baseline for comparison is the discrete version of (24) on the n points. It is not hard to see that
Ŝk(x(t1), . . . , x(tn)) is an O(d)-equivariant function from n input vectors to a k(+)-tensor, so we
can parameterize it with Corollary 1. All the qt,σ J functions are learned as a single, shared MLP.
Further, it is also equivariant under the Lorentz and symplectic groups, making it well-behaved in
more general physical settings. We compare against three baseline MLP methods, one with the same
width as our method, one with the same number of parameters, and one trained on an augmented
dataset with 4 random transformations. Further architecture and training details are in Appendix I.2.

The results are shown in Table 2. We generate paths for both the orthogonal group and the Lorentz
group, see Appendix I.1. The learned methods perform better than the fixed naive methods, and our
method does the best of all. This method would be a viable first step for processing path data for any
downstream learning problem.

Sparse Vector Estimation. We consider the problem of finding a planted sparse vector in a linear
subspace. This problem was introduced in Spielman et al. (2012) in the context of dictionary learning.
The works Hopkins et al. (2016) and Mao & Wein (2022) developed state-of-the-art methods with
theoretical guarantees based on sum-of-squares (SoS). The results in this section suggest (i) the
SoS methods outperform learning-based methods when the (strong) SoS assumptions are met, (ii)
equivariant tensor learning can be used to learn models with good performance when the SoS
assumptions are not met, and (iii) equivariant tensor learning outperforms standard machine learning
models where no structure is imposed.

The problem is defined as follows. Let v ∈ Rn be an (approximately) sparse vector of unit length,
construct v0, . . . , vd−1 ∈ Rn by adding noise to v according to the procedure described in Appendix
J.4, then consider S to be an n × d matrix whose columns form a random orthonormal basis of
span{v0, . . . , vd−1}. The goal is to recover v from S. The SoS methods consider explicit maps
h : (Rd)n → Sd that take the rows of S (denoted by a⊤1 , . . . a

⊤
n ∈ Rd) and output a d× d symmetric

matrix. The estimator for v is the multiplication of S times the top eigenvector of h(a1, . . . , an):

v̂ = S λvec(h(a1, . . . , an)) . (25)

The SoS methods have theoretical guarantees under strict assumptions described in Appendix J.5.
Here we learn a function h from data and we compare the learned model with SoS methods and
non-equivariant learned baselines for settings that do and do not satisfy the theoretical assumptions
(different sampling methods for v0, . . . , vn described in Appendix J.3). Our method uses Corollary 1
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sampling Σ SoS MLP baseline Ours (Diag) Ours

Random 0.610 ± 0.009 0.241 ± 0.019 0.493 ± 0.005 0.938 ± 0.002
Accept/Reject Diagonal 0.448 ± 0.012 0.196 ± 0.011 0.589 ± 0.026 0.465 ± 0.027

Identity 0.606 ± 0.014 0.196 ± 0.008 0.351 ± 0.065 0.190 ± 0.008

Random 0.962 ± 0.002 0.242 ± 0.006 0.917 ± 0.004 0.937 ± 0.002
Bernoulli-Gaussian Diagonal 0.949 ± 0.005 0.205 ± 0.013 0.914 ± 0.006 0.463 ± 0.018

Identity 0.962 ± 0.002 0.196 ± 0.009 0.908 ± 0.006 0.342 ± 0.043

Corrected Random 0.412 ± 0.017 0.239 ± 0.012 0.372 ± 0.011 0.935 ± 0.002
Bernoulli-Gaussian Diagonal 0.288 ± 0.018 0.206 ± 0.003 0.550 ± 0.026 0.460 ± 0.022

Identity 0.412 ± 0.011 0.198 ± 0.005 0.239 ± 0.025 0.197 ± 0.011

Random 0.526 ± 0.020 0.923 ± 0.004 0.437 ± 0.034 0.957 ± 0.001
Bernoulli-Rademacher Diagonal 0.334 ± 0.024 0.864 ± 0.005 0.588 ± 0.011 0.903 ± 0.004

Identity 0.524 ± 0.010 0.845 ± 0.006 0.317 ± 0.046 0.889 ± 0.003

Table 3: Test error comparison on synthetic data averaged over 5 trials (n = 100, d = 5, ϵ = 0.25)
with the standard deviation given by ±0.xxx. The metric ⟨v, v̂⟩2 ranges from 0 to 1 with 1 indicating
the estimate v̂ identical to the true v. For each row, the best value is bolded. The SoS methods
perform best when their assumptions are met, such as identity covariance for the noise vectors, but
perform worse than our learned models when using Random or Diagonal covariances. One exception
to this trend is the Bernoulli-Gaussian sampling. This is likely because in expectation the BG satisfies
the sparsity requirements of SoS by a large margin (see Appendix J.3). By contrast, the Corrected
Bernoulli-Gaussian has lower sparsity and the learned models perform better. Finally, we see that in
all experiments, the baseline MLP generalizes poorly, despite doing well on the training data (Table 7
in Appendix). This is consistent with the claim that enforcing symmetries improves generalization
performance.

to learn h (see Appendix J.2 for an explanation of why this problem is O(d)-equivariant). We also
include a variant which only takes the norms of each vector as input, instead of all the pairwise cross
products. See Appendix J.5 for the details of all models. The results are displayed in Table 3.

6 DISCUSSION

This paper provides a full characterization of polynomial functions from multiple tensor inputs
to tensor outputs that are equivariant with respect to the diagonal action by classical Lie groups,
including the orthogonal group, the symplectic group, and the Lorentz group.

Our main goal is to define equivariant machine learning models. To the best of our knowledge this is
the first work that provides a recipe for equivariant machine learning models for tensors at this level
of generality. We apply the resulting models to time series data, stress and strain tensors, and sparse
vectors. The equivariant models outperform all non-equivariant baseline models, and in the case of
the sparse vector problem, the learned models can operate in settings where theoretical guarantees
have yet to be developed.
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A BASIC PROPERTIES OF O(d) ACTIONS ON TENSORS

In this section, we will show that the basic operations are O(d)-equivariant and linear by direct
computation. We do so explicitly by performing routine computations. However, the universal
property of tensor products, which we use in Appendix G, would give immediate proofs of these
statements.

Proposition 1. The outer product is a O(d)-equivariant bilinear map. In other words, for g ∈ O(d),
a, a′ ∈ Tk

(
Rd, p

)
, b, b′ ∈ Tk′

(
Rd, p′

)
and α, β ∈ R, we have g · (a ⊗ b) = (g · a) ⊗ (g · b),

(αa+ βa′)⊗ b = α(a⊗ b) + β(a′ ⊗ b), and a⊗ (αb+ βb′) = α(a⊗ b) + β(a⊗ b′). In particular,
if c ∈ Tk′

(
Rd, p′

)
is an O(d)-isotropic tensor, then the function mapping

Tk
(
Rd, p

)
→ Tk+k′

(
Rd, pp′

)
by a 7→ a⊗ c (26)

is an O(d)-equivariant linear map.

Proposition 2. The k-contraction ιk : T2k+k′
(
Rd, p

)
→ Tk′

(
Rd, p

)
(def. 4) is an O(d)-equivariant

linear map.

Proposition 3. For fixed σ ∈ Sk, the tensor index permutation mapping Tk
(
Rd, p

)
→ Tk

(
Rd, p

)
by

a 7→ aσ is an O(d)-equivariant linear map.

Proof of Proposition 1. First, we establish equivariance. Let a ∈ Tk
(
Rd, p

)
, b ∈ Tk′

(
Rd, p′

)
, and

g ∈ O(d). We have

[g · (a⊗ b)]j1,...,jk+k′

= det(M(g))
1−p p′

2 [(a⊗ b)]i1,...,ik+k′ [M(g)]j1,i1 · · · [M(g)]jk+k′ ,ik+k′

= det(M(g))
1−p
2 det(M(g))

1−p′
2 [a]i1,...,ik [b]ik+1,...,ik+k′ [M(g)]j1,i1 · · ·

· · · [M(g)]jk,ik [M(g)]jk+1,ik+1
· · · [M(g)]jk+k′ ,ik+k′

=
(
det(M(g))

1−p
2 [a]i1,...,ik [M(g)]j1,i1 · · · [M(g)]jk,ik

)
(
det(M(g))

1−p′
2 [b]ik+1,...,ik+k′ [M(g)]jk+1,ik+1

· · · [M(g)]jk+k′ ,ik+k′

)
= [g · a]j1,...,jk [g · b]jk+1,...,jk+k′

= [g · a⊗ g · b]j1,...,jk+k′ ,

where the second equality uses the fact that

det(M(g))
1−p p′

2 = det(M(g))
1−p
2 det(M(g))

1−p′
2 ,

which is straightforward to verify via a case analysis over possible parameter values (i.e., p, p′ ∈
{+1,−1} and det(M(g)) ∈ {+1,−1}).

Next, we verify linearity. Let a, a′ ∈ Tk
(
Rd, p

)
, b ∈ Tk′

(
Rd, p′

)
, and α, β ∈ R. Then,

[(αa+ βa′)⊗ b]i1,...,ik+k′ = [(αa+ βa′)]i1,...,ik [b]ik+1,...,ik+k′ (27)

= α[a]i1,...,ik [b]ik+1,...,ik+k′ + β[a′]i1,...,ik [b]ik+1,...,ik+k′ (28)

= α[a⊗ b]i1,...,ik+k′ + β[a′ ⊗ b]i1,...,ik+k′ . (29)

The linearity in the second argument follows in the same manner.

Finally, (26) follows immediately from the fact that the bilinear O(d)-equivariance.
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Proof of Proposition 2. To establish equivariance, let a ∈ T2k+k′
(
Rd, p

)
and let g ∈ O(d). Then,

[g · ιk(a)]j1,...,jk′ (30)

= det(M(g))
1−p
2 [a]ℓ1,...,ℓk,ℓ1,...,ℓk,i1,...,ik′ [M(g)]j1,i1 · · · [M(g)]jk′ ,ik′ (31)

= det(M(g))
1−p
2 [a]ℓ1,...,ℓ2k,i1,...,ik′ [δ]ℓ1,ℓk+1

· · · [δ]ℓk,ℓ2k [M(g)]j1,i1 · · · [M(g)]jk′ ,ik′ (32)

= det(M(g))
1−p
2 [a]ℓ1,...,ℓ2k,i1,...,ik′ [M(g)]ℓ1,m1 [M(g)]ℓk+1,m1 · · · (33)

· · · [M(g)]ℓk,mk
[M(g)]ℓ2k,mk

[M(g)]j1,i1 · · · [M(g)]jk′ ,ik′ (34)
= [g · a]m1,...,mk,m1,...,mk,j1,...,jk′ (35)
= [ιk(g · a)]j1,...,jk′ , (36)

where the third equality uses the fact that δ = M(g)M(g)⊤.

Next, to establish linearity, let a, b ∈ T2k+k′
(
Rd, p

)
and let α, β ∈ R. Then,

[ιk(αa+ βb)]j1,...,jk′ = [αa+ βb]i1,...,ik,i1,...,ik,j1,...,jk′ (37)

= α[a]i1,...,ik,i1,...,ik,j1,...,jk′ + β[b]i1,...,ik,i1,...,ik,j1,...,jk′ (38)
= α[ιk(a)]j1,...,jk′ + β[ιk(b)]j1,...,jk′ . (39)

This completes the proof.

Proof of Proposition 3. Fix σ ∈ Sk. To establish equivariance, let a ∈ Tk
(
Rd, p

)
and g ∈ O(d).

Then,

[g · (aσ)]j1,...,jk = det(M(g))
1−p
2 [aσ]i1,...,ik [M(g)]j1,i1 · · · [M(g)]jk,ik (40)

= det(M(g))
1−p
2 [a]iσ−1(1),...,iσ−1(k)

[M(g)]j1,i1 · · · [M(g)]jk,ik (41)

= det(M(g))
1−p
2 [a]iσ−1(1),...,iσ−1(k)

[M(g)]jσ−1(1),iσ−1(1)
· · · [M(g)]jσ−1(k),iσ−1(k)

(42)
= [g · a]jσ−1(1),...,jσ−1(k)

(43)

= [(g · a)σ]j1,...,jk , (44)
(45)

where the third equality holds since we are merely reordering the M(g) components—which is
allowed because they are scalars.

To show linearity, let a, b ∈ Tk
(
Rd, p

)
and α, β ∈ R. We have

[(αa+ βb)
σ
]i1,...,ik = [αa+ βb]iσ−1(1),...,iσ−1(k)

(46)

= α[a]iσ−1(1),...,iσ−1(k)
+ β[b]iσ−1(1),...,iσ−1(k)

(47)

= α[aσ]i1,...,ik + β[bσ]i1,...,ik . (48)

B PROOF OF THEOREM 1

The main idea of the proof of Theorem 1 is to write out the polynomial f in a way that takes
advantage of the tensor operations of Section 2, then show that each term must be O(d)-equivariant
(Lemmas 1 and 2). We then use a group averaging argument to show that cℓ1,...,ℓr can be written as
an O(d)-isotropic tensor. We state the lemmas, prove the theorem, then prove the lemmas.
Lemma 1. Let f :

∏n
i=1 Tki

(
Rd, pi

)
→ Tk′

(
Rd, p′

)
be a polynomial map of degree R, and write

f(a1, . . . , an) =

R∑
r=0

fr(a1, . . . , an),

where fr :
∏n

i=1 Tki

(
Rd, pi

)
→ Tk′

(
Rd, p′

)
is homogeneous degree r polynomial. If f is O(d)-

equivariant, then each fr is O(d)-equivariant.
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Lemma 2. Let fr :
∏n

i=1 Tki

(
Rd, pi

)
→ Tk′

(
Rd, p′

)
be a homogeneous polynomial of degree r.

Then, we can write fr as

fr(a1, . . . , an) =
∑

1≤ℓ1≤...≤ℓr≤n

fℓ1,...,ℓr (aℓ1 , . . . , aℓr ), (49)

where fℓ1,...,ℓr :
∏r

i=1 Tkℓi

(
Rd, pℓi

)
→ Tk′

(
Rd, p′

)
is the composition of the map

r∏
i=1

Tkℓi

(
Rd, pℓi

)
→ T∑r

i=1 kℓi

(
Rd,

r∏
i=1

pℓi

)
(50)

(aℓ1 , . . . , aℓr ) 7→ aℓ1 ⊗ . . .⊗ aℓr (51)

with a linear map T∑r
i=1 kℓi

(
Rd,

∏r
i=1 pℓi

)
→ Tk′

(
Rd, p′

)
.

Moreover, if fr is O(d)-equivariant, then so are the fℓ1,...,ℓr .
Remark 2. Note that Lemma 2 is nothing more than the decomposition of fr as a sum of multiho-
mogeneous maps in the inputs a1, . . . , an.

Proof of Theorem 1. Combining Lemmas 1 and 2, we can write f as follows:

f(a1, . . . , an) =

R∑
r=0

∑
1≤ℓ1≤...≤ℓr≤n

fℓ1,...,ℓr (aℓ1 , . . . , aℓr ), (52)

where the fℓ1,...,ℓr is the composition of a linear map Tkℓ1,...,ℓr

(
Rd, pℓ1,...,ℓr

)
→ Tk′

(
Rd, p′

)
with

the map (a1, . . . , aℓ) 7→ aℓ1 ⊗ · · · ⊗ aℓr . Recall that kℓ1,...,ℓr =
∑r

q=1 kℓq and pℓ1,...,ℓr =
∏r

q=1 pℓq .
Moreover, by the lemmas, each fℓ1,...,ℓr is O(d)-equivariant. Hence, without loss of generality, it is
enough to prove the theorem in the special case

f(a1, . . . , an) = λ(aℓ1 ⊗ · · · ⊗ aℓr ), (53)

where λ : T∑r
i=1 kℓi

(
Rd,

∏r
i=1 pℓi

)
→ Tk′

(
Rd, p′

)
is linear.

Now, in coordinates, we can write this map as

[f(a1, . . . , an)]j1,...,jk′ = λi1,...,ikℓ1,...,ℓr
,j1,...,jk′ [aℓ1 ⊗ · · · ⊗ aℓr ]i1,...,ikℓ1,...,ℓr

. (54)

Consider now the tensor c ∈ Tkℓ1,...,ℓr+k′
(
Rd, pℓ1,...,ℓrp

′) given by

[c]i1,...,ikℓ1,...,ℓr
+k′ = λi1,...,ikℓ1,...,ℓr

,ikℓ1,...,ℓr
+1,...,ikℓ1,...,ℓr

+k′ (55)

Then we have that

[f(a1, . . . , an)]j1,...,jk′ = [c]i1,...,ikℓ1,...,ℓr
,j1,...,jk′ [aℓ1 ⊗ · · · ⊗ aℓr ]i1,...,ikℓ1,...,ℓr

(56)

= [aℓ1 ⊗ · · · ⊗ aℓr ⊗ c]i1,...,ikℓ1,...,ℓr
,i1,...,ikℓ1,...,ℓr

,j1,...,jk′ (57)

= [ιkℓ1,...,ℓr
(aℓ1 ⊗ · · · ⊗ aℓr ⊗ c)]j1,...,jk′ , (58)

after using the definition of k-contraction. Hence

f(a1, . . . , an) = ιkℓ1,...,ℓr
(aℓ1 ⊗ · · · ⊗ aℓr ⊗ c). (59)

Since f is O(d)-equivariant, we have that for all g ∈ O(d),

f(a1, . . . , an) = ιkℓ1,...,ℓr
(aℓ1 ⊗ · · · ⊗ aℓr ⊗ g · c). (60)

To see this, we argue as follows:

f(a1, . . . , an) (61)

= f(g · (g−1 · a1), . . . , g · (g−1 · an)) (62)

= g · f((g−1 · a1), . . . , (g−1 · an)) (f O(d)-equivariant) (63)

= g · ιkℓ1,...,ℓr

(
(g−1 · aℓ1)⊗ · · · ⊗ (g−1 · aℓr )⊗ c

)
(64)

= ιkℓ1,...,ℓr

(
g · (g−1 · aℓ1)⊗ · · · ⊗ g · (g−1 · aℓr )⊗ (g · c)

)
(ιkℓ1,...,ℓr

O(d)-equivariant) (65)

= ιkℓ1,...,ℓr
(aℓ1 ⊗ · · · ⊗ aℓr ⊗ (g · c)). (66)
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Hence, by taking the expectation with respect to the Haar probability measure of O(d) and linearity
of contractions, we have that

f(a1, . . . , an) = ιkℓ1,...,ℓr

(
aℓ1 ⊗ · · · ⊗ aℓr ⊗

(
E

g∈O(d)
g · c

))
, (67)

where Eg∈O(d) is the expectation with respect the Haar probability measure of O(d). This holds
because

f(a1, . . . , an) = E
g∈O(d)

f(a1, . . . , an) (68)

= E
g∈O(d)

ιkℓ1,...,ℓr
(aℓ1 ⊗ · · · ⊗ aℓr ⊗ (g · c)) (69)

= ιkℓ1,...,ℓr

(
aℓ1 ⊗ · · · ⊗ aℓr ⊗

(
E

g∈O(d)
g · c

))
. (70)

Now, Eg∈O(d) g · c is an O(d)-isotropic tensor. Hence, we have shown that we can write f in the
desired form.

Proof of Lemma 1. Let t ∈ R, since each fr is homogeneous of degree r, we have

f(t a1, . . . , t an) =

R∑
r=0

fr(t a1, . . . , t an) =

R∑
r=1

trfr(a1, . . . , an).

Let now g ∈ O(d), then, by equivariance of f , we have

R∑
r=0

tr fr(g · a1, . . . , g · an) =
R∑

r=0

tr g · fr(a1, . . . , an), (71)

since
R∑

r=0

tr fr(g · a1, . . . , g · an) = f(t (g · a1), . . . , t (g · an)) (72)

= f(g · t a1, . . . , g · t an) (73)
= g · f(t a1, . . . , t an) (74)

= g ·
R∑

r=0

trfr(a1, . . . , an) (75)

=

R∑
r=0

tr g · fr(a1, . . . , an). (76)

Hence, for all g ∈ O(d), t ∈ R and (a1, . . . , an) ∈
∏n

i=1 Tki

(
Rd, pi

)
, we have that

0 =

R∑
r=0

tr (g · fr(a1, . . . , an)− fr(g · a1, . . . , g · an)). (77)

Now, the only way in which the univariate polynomial in t of degree R is identically zero is if it is
the zero polynomial (cf. (Cox et al., 2015, Chapter 1 §1 Proposition 5)). Therefore for all r ∈ N,
g ∈ O(d) and (a1, . . . , an) ∈

∏n
i=1 Tki

(
Rd, pi

)
,

fr(g · a1, . . . , g · an) = g · fr(a1, . . . , an), (78)

i.e., for each r, fr is O(d)-equivariant, as we wanted to show.

Proof of Lemma 2. First, we will show that if the decomposition exists, each summand is equivariant.
Then, we will show that the decomposition exists.

19



Published as a conference paper at ICLR 2026

Let t1, . . . , tn ∈ R. Then, by the linearity, we have that

fr(t1 a1, . . . , tn an) =
∑

1≤ℓ1≤...≤ℓr≤n

tℓ1 · · · tℓr fℓ1,...,ℓr (aℓ1 , . . . , aℓr ), (79)

since

fr(t1 a1, . . . , tn an) =
∑

1≤ℓ1≤...≤ℓr≤n

fℓ1,...,ℓr (tℓ1 aℓ1 , . . . , tℓr aℓr ) (80)

=
∑

1≤ℓ1≤...≤ℓr≤n

tℓ1 · · · tℓr fℓ1,...,ℓr (aℓ1 , . . . , aℓr ) . (81)

Now, let g ∈ O(d). Then, by the equivariance of fr, we have∑
1≤ℓ1≤...≤ℓr≤n

tℓ1 · · · tℓr fℓ1,...,ℓr (g·aℓ1 , . . . , g·aℓr ) =
∑

1≤ℓ1≤...≤ℓr≤n

tℓ1 · · · tℓr g·fℓ1,...,ℓr (aℓ1 , . . . , aℓr ),

(82)
since ∑

1≤ℓ1≤...≤ℓr≤n

tℓ1 · · · tℓr fℓ1,...,ℓr (g · aℓ1 , . . . , g · aℓr ) (83)

= fr(t1 (g · a1), . . . , tn (g · an)) (84)
= fr(g · t1 a1, . . . , g · tn an) (85)
= g · fr(t1 a1, . . . , tn an) (86)

= g ·

 ∑
1≤ℓ1≤...≤ℓr≤n

tℓ1 · · · tℓr fℓ1,...,ℓr (aℓ1 , . . . , aℓr )

 (87)

=
∑

1≤ℓ1≤...≤ℓr≤n

tℓ1 · · · tℓr g · fℓ1,...,ℓr (aℓ1 , . . . , aℓr ). (88)

Hence, for all g ∈ O(d), t ∈ R and (a1, . . . , an) ∈
∏n

i=1 Tki

(
Rd, pi

)
, we have that

0 =
∑

1≤ℓ1≤...≤ℓr≤n

tℓ1 · · · tℓr [g · fℓ1,...,ℓr (aℓ1 , . . . , aℓr )− fℓ1,...,ℓr (g · aℓ1 , . . . , g · aℓr )]i1,...,ik′
.

(89)
Now, each of these is a polynomial in t1, . . . , tn that vanishes on Rn. Moreover, note that no two
tℓ1 · · · tℓr give the same monomial. Hence, by (Cox et al., 2015, Chapter 1 §1 Proposition 5), all these
polynomials are the zero polynomial, i.e., their coefficients are zero. In this way, we conclude that for
each fℓ1,...,ℓr , and all g ∈ O(d), t ∈ R and (a1, . . . , an) ∈

∏n
i=1 Tki

(
Rd, pi

)
,

fℓ1,...,ℓr (g · aℓ1 , . . . , g · aℓr ) = g · fℓ1,...,ℓr (aℓ1 , . . . , aℓr ), (90)

i.e., each fℓ1,...,ℓr is O(d)-equivariant.

Now, we show how to obtain the decomposition. Recall that fr is homogeneous of degree r. Therefore
each entry of fr(a1, . . . , an) is an homogeneous polynomial of degree r in the [ai]j1,...,jki

, i.e., a
linear combination of products of the form

r∏
q=1

[aℓq ]jq,1,...,jq,kℓq
,

where, without loss of generality, we can assume that ℓ1 ≤ · · · ≤ ℓq . Hence, in coordinates, we have

[fr(a1, . . . , an)]i1,...,ik′

=
∑

1≤ℓ1≤···≤ℓr≤n

λℓ1,...,ℓr;i1,...,ik′ ;j1,1,...,j1,kℓ1
,...,jr,1,...,jr,kℓr

r∏
q=1

[aℓq ]jq,1,...,jq,kℓq
(91)
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And so, we can consider the map fℓ1,...,ℓr given in coordinates by

[fℓ1,...,ℓr (aℓ1 , . . . , aℓr )]i1,...,ik′ := λℓ1,...,ℓr;i1,...,ik′ ;j1,1,...,j1,kℓ1
,...,jr,1,...,jr,kℓr

r∏
q=1

[aℓq ]jq,1,...,jq,kℓq
,

(92)
which, by construction, is the composition of the linear map given by

b 7→ λℓ1,...,ℓr;i1,...,ik′ ;j1,...,j∑r
q=1 kℓq

[b]j1,...,j∑r
q=1 kℓq

,

in coordinates, and (aℓ1 , . . . , aℓr ) 7→ aℓ1 ⊗ · · · ⊗ aℓr . Hence the desired decomposition of fr has
been obtained.

C PROOF OF COROLLARY 1

In this section, we will prove Corollary 1 using the following lemma, which we prove afterward. This
lemma, originally from Pastori, follows from Jeffreys (1973).
Lemma 3 (Characterization of O(d)-isotropic k(p)-tensors). Suppose c ∈ Tk

(
Rd, p

)
is O(d)-

isotropic. Then the following holds:

Case p = +1: Assume p = +1. If k is even, then c can be written in the form

c =
∑
σ∈Sk

ασ

(
δ⊗

k
2

)σ
, for some ασ ∈ R. (93)

Otherwise, if k is odd, then c = 0 is the zero tensor.

Case p = −1: Assume p = −1. If k − d is even and k ≥ d, then c can be written in the form

c =
∑
σ∈Sk

βσ

(
δ⊗

k−d
2 ⊗ ϵ

)σ
(94)

for some βσ ∈ R. Otherwise, if k − d is odd or k < d, then c = 0 is the zero tensor.

Note that in both cases only a subset of the permutations σ ∈ Sk will yield different isotropic tensors
(see Appendix D for a discussion).

Proof of Corollary 1. By Theorem 1 and Lemma 3, we can assume, without loss of generality, it
suffices to consider the special case where f consists of a single term

f(v1, . . . , vn) = ιr

(
vℓ1 ⊗ · · · ⊗ vℓr ⊗

(
δ⊗

r+k′
2

)σ)
, (95)

for some σ ∈ Sr+k′ and r + k′ even. To simplify notation, set t := r+k′

2 .

Now, note that
δ = ei ⊗ ei,

where {e1, . . . , ed} is the canonical basis of Rd. Hence we get

f(v1, . . . , vn) = ιr(vℓ1 ⊗ · · · ⊗ vℓr ⊗ (ei1 ⊗ ei1 ⊗ · · · ⊗ eit ⊗ eit)
σ
) (96)

Let’s write
(ei1 ⊗ ei1 ⊗ · · · ⊗ eit ⊗ eit)

σ
= ej1 ⊗ · · · ⊗ ej2t

where (j1, . . . , j2t) is some permutation of (i1, i1, . . . , it, it) and so, by Einstein notation, we are
still adding over repeated indexes. Then we have that

f(v1, . . . , vn) = ⟨vℓ1 , ej1⟩ · · · ⟨vℓr , ejr ⟩ejr+1 ⊗ · · · ⊗ ej2t . (97)

Now, we can freely rearrange the ⟨vℓ, ej⟩ as they are scalars. There are three cases for each of the
original indices iq: (a) eiq appears in an inner product twice, (b) eiq appears in an inner product once,
or (c) eiq does not appear in an inner product.

In the case (a), we will get
⟨vℓ, ei⟩⟨vℓ′ , ei⟩ = ⟨vℓ, vℓ′⟩.
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In the case (b), we will get
⟨vℓ, ei⟩ei = vℓ.

And, in the case (c), we will get
ei ⊗ ei = δ.

Now, assume that we have α of the case (a), β of the case (b) and γ of the case (c). By permuting
the iq, which does not change the result, we can write for some permutation σ̃ ∈ Sβ+γ and some
permutation J1, . . . , Jr some permutation of ℓ1, . . . , ℓr that

f(v1, . . . , vn) = ⟨vJ1
, ei1⟩⟨vJ2

, ei1⟩ · · · ⟨vJ2α−1
, eiα⟩⟨vJ2α

, eiα⟩(
⟨vJ2α+1

, eiα+1
⟩eiα+1

⊗ · · · ⊗ ⟨vJ2α+β
, eiα+β

⟩eiα+β

⊗eiα+β+1
⊗ eiα+β+1

⊗ · · · ⊗ eiα+β+γ
⊗ eiα+β+γ

)σ̃
= ⟨vJ1

, vJ2
⟩ · · · ⟨vJ2α−1

, vJ2α
⟩
(
vJ2α+1 ⊗ · · · ⊗ v2α+β ⊗ δ⊗γ

)σ̃
.

Hence, the desired claim follows, and we finish the proof.

Proof of Lemma 3. We will prove each case separately. However, note that no matter the value of p, an
O(d)-isotropic tensor is always an SO(d)-isotropic tensor since det(M(g)) = 1 for all g ∈ SO(d).
Now, by (Jeffreys, 1973, Theorem §2) (cf. (Appleby et al., 1987, Eq. (4.10))), any SO(d)-isotropic
tensor z can be written as a linear combination of the form

z =
∑
σ∈Sk

ασ

(
δ⊗

k
2

)σ
+ βσ

(
δ⊗

k−d
2 ⊗ ϵ

)σ
, (98)

where δ is the Kronecker delta (Definition 8), and ϵ is the Levi-Civita symbol (Definition 9), with
the convention that the coefficients ασ and βσ are zero when the expressions δ⊗

k
2 and δ⊗

k−d
2 do not

make sense. More precisely, the ασ = 0 if k is odd, and the βσ = 0 if k − d is odd.

Note that under the SO(d)-action, we don’t need to worry about the parity, and so both δ and ϵ are
SO(d)-invariant. However, for the O(d)-action, the parity matters. Suppose γ ∈ O(d) is a hyperplane
reflection, and let T be an O(d)-isotropic k(−)-tensor. If T̂ is a k(+)-tensor whose components equal
T , then

γ · T̂ = −T̂ . (99)

Likewise, if T is an O(d)-isotropic k(+)-tensor and T̂ is a k(−)-tensor whose components equal T ,
then

γ · T̂ = −T̂ . (100)
Note that being isotropic depends on the parity because it affects the considered action.

Case p = +1: Let z ∈ Tk
(
Rd,+

)
be O(d)-isotropic. In particular, z is also SO(d)-isotropic, and so

we can write it using (98).

Recall that O(d) is generated by all the (hyperplane) reflections. Hence, to show that z is an O(d)-
isotropic, we need only to show that for every (hyperplane) reflection γ ∈ O(d),

γ · z = z.

Now by (99),
γ · δ⊗

k−d
2 ⊗ ϵ = −δ⊗

k−d
2 ⊗ ϵ, (101)

since δ⊗
k−d
2 ⊗ ϵ is an O(d)-isotropic k(−)-tensor. Hence

γ · z = γ ·
∑
σ∈Sk

ασ

(
δ⊗

k
2

)σ
+ βσ

(
δ⊗

k−d
2 ⊗ ϵ

)σ
(102)

=
∑
σ∈Sk

ασ

(
(γ · δ)⊗

k
2

)σ
+ βσ

(
(γ · δ)⊗

k−d
2 ⊗ γ · ϵ

)σ
(103)

=
∑
σ∈Sk

ασ

(
δ⊗

k
2

)σ
− βσ

(
δ⊗

k−d
2 ⊗ ϵ

)σ
(104)

= z − 2
∑
σ∈Sk

βσ

(
δ⊗

k−d
2 ⊗ ϵ

)σ
. (105)
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By assumption, z is O(d)-isotropic, so we conclude that
∑

σ∈Sk
βσ

(
δ⊗

k−d
2 ⊗ ϵ

)σ
= 0 and z has

the desired form.

Case p = −1: We argue as above, but using that for (hyperplane) reflection γ ∈ O(d), we have,
inside Tk

(
Rd,−

)
,

γ · δ⊗ k
2 = −δ⊗

k
2 , (106)

since δ⊗
k
2 is an O(d)-isotropic k(+)-tensor. Hence, using a similar argument to the previous case, we

conclude that
∑

σ∈Sk
ασ

(
δ⊗

k
2

)σ
= 0, so z has the desired form.

D SMALLER PARAMETERIZATION OF O(d)-ISOTROPIC TENSORS

In Lemma 3, the sum does not have to be over all permutations. The reason for this is that the tensors

δ⊗
k
2 and δ⊗

k−d
2 ⊗ ϵ

do not have a trivial stabilizer under the action of Sk. One can easily see the following proposition.
Recall that the stabilizer of a k-tensor ±T in Sk is the following subgroup:

StabSk
(±T ) := {σ ∈ Sk | Tσ = ±T}, (107)

where Tσ = ±T means that either Tσ = T or Tσ = −T . Note that the laxity in the signs comes
from the fact that positive summands and their negative counterparts can be combined.
Proposition 4. Consider the cases:

1. If k is even, StabSk

(
±δ⊗

k
2

)
is generated by the transpositions (1, 2), (3, 4), . . . , (k− 1, k)

and all permutations of the form (i, j)(i + 1, j + 1) with i, j < k odd. In particular,
#StabSk

(
±δ⊗

k
2

)
= (k/2)! 2k/2.

2. If k − d is even, StabSk

(
±δ⊗

k−d
2 ⊗ ϵ

)
is generated by the transpositions

(1, 2), (3, 4), . . . , (k − d− 1, k − d), all permutations of the form (i, j)(i+ 1, j + 1) with
i, j < k − d odd, and all transpositions of the form (i, j) with k − d < i, j. In particular,
#StabSk

(
±δ⊗

k−d
2 ⊗ ϵ

)
= ((k − d)/2)! 2(k−d)/2d!.

Proof. This follows from (Roe Goodman, 2009, Theorem 5.3.4).

Using this proposition, we can write any O(d)-isotropic k(+)-tensor as∑
σ∈Gk

ασ

(
δ⊗

k
2

)σ
(108)

with the ασ real and

Gk =
{
σ ∈ Sk : σ(1) < σ(3) < · · · < σ(k − 1) and for all i ≤ k

2
, σ(2i− 1) < σ(2i)

}
(109)

of size k!
(k/2)!2k/2 ; and any O(d)-isotropic k(−)-tensor as∑

σ∈Hk

βσ

(
δ⊗

k−d
2 ⊗ ϵ

)σ
(110)

with the βσ real and

Hk =
{
σ ∈ Sk : σ(1) < σ(3) < · · · < σ(k − d− 1), for all i ≤ k − d

2
, σ(2i− 1) < σ(2i)

and for all j > k − d, σ(j) < σ(j + 1)
}
.

of size k!

( k−d
2 )!2

k−d
2 d!

.
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E EXAMPLE OF THEOREM 1

In this section, we give a second example of Theorem 1.

Example 2. Let f : T1
(
Rd,+

)
× T2

(
Rd,+

)
→ T2

(
Rd,+

)
be O(d)-equivariant polynomial of

degree at most 2. By Theorem 1 we can write f in the form

f(a1, a2) =

2∑
r=0

∑
1≤ℓ1≤···≤ℓr≤2

ιkℓ1,...,ℓr
(aℓ1 ⊗ . . .⊗ aℓr ⊗ cℓ1,...,ℓr ) , (111)

where cℓ1,...,ℓr is an O(d)-isotropic (kℓ1,...,ℓr + 2)(+)-tensor. By Lemma 3, cℓ1,...,ℓr is nontrivial
only when kℓ1,...,ℓr + 2 is even. Recall that kℓ1,...,ℓr =

∑r
q=1 kℓq . The inputs are a 1(+)-tensor and

2(+)-tensor. The even combinations of 1 and 2 with at most 2 terms are ∅, 2, 1 + 1, 2 + 2 so we have

f(a1, a2) = β0δ + ι2(a2 ⊗ c2) + ι2(a1 ⊗ a1 ⊗ c′2) + ι4(a2 ⊗ a2 ⊗ c3) , (112)

where c2, c
′
2 are O(d)-isotropic 4(+)-tensors and c3 is an O(d)-isotropic 6(+)-tensor. By similar

reasoning to Example 1, we can write

ι2(a2 ⊗ c2) = β1 tr(a2)δ + β2a2 + β3a
⊤
2 (113)

for constants β1, β2, β3 and

ι2(a1 ⊗ a1 ⊗ c′2) = β4⟨a1, a1⟩δ + β5a1 ⊗ a1 , (114)

for constants β4, β5 (there are only two terms due to the symmetry of a1 ⊗ a1). It remains to consider
ι4(a2 ⊗ a2 ⊗ c3). By Lemma 3, we can write

c3 =
∑
σ∈G6

βσ(δ
⊗3)σ , (115)

where |G6| = 6!/(3!23) = 15. In particular, we have

G6 =
{
(1, 2, 3, 4, 5, 6), (1, 2, 3, 5, 4, 6), (1, 2, 3, 5, 6, 4), (1, 3, 2, 4, 5, 6), (1, 3, 2, 5, 4, 6),

(1, 3, 2, 5, 6, 4), (1, 3, 4, 2, 5, 6), (1, 3, 4, 5, 2, 6), (1, 3, 4, 5, 6, 2), (1, 3, 5, 2, 4, 6),

(1, 3, 5, 2, 6, 4), (1, 3, 5, 4, 2, 6), (1, 3, 5, 4, 6, 2), (1, 3, 5, 6, 2, 4), (1, 3, 5, 6, 4, 2)
}
.

(116)

However, due to the symmetry of a2 ⊗ a2, when we compute ι4
(
a2 ⊗ a2(δ

⊗3)σ
)

for σ ∈ G6, there
are only 7 distinct terms

ι4(a2 ⊗ a2 ⊗ c3) =

β6 tr(a2)
2
δ + β7 tr(a2)a2 + β8 tr(a2)a

⊤
2 + β9a

⊤
2 a2 + β10a2a

⊤
2 + β11a2a2 + β12a

⊤
2 a

⊤
2 . (117)

In summary,

f(a1, a2) = β0δ + β1 tr(a2)δ + β2a2 + β3a
⊤
2 + β3⟨a1, a1⟩δ + β4a1 ⊗ a1 + β5 tr(a2)

2
δ

+ β6 tr(a2)a2 + β7 tr(a2)a
⊤
2 + β8a

⊤
2 a2 + β9a2a

⊤
2 + β10a2a2 + β11a

⊤
2 a

⊤
2 , (118)

for some coefficients β0, β1, . . . , β11.

F PROOF OF COROLLARY 2

Before proving Corollary 2, we will state and prove an important lemma. Since this is the setting of
symmetric matrices, we will use familiar notation and concepts from that setting rather than relying
on tensor algebra.

Lemma 4. Let f : Rd×d
sym → Rd×d

sym be an O(d)-equivariant function. Let A ∈ Rd×d
sym, then f(A)A =

Af(A) so they are simultaneously diagonalizable.
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Proof. Let f : Rd×d
sym → Rd×d

sym be an O(d)-equivariant function. First we will show that for all
diagonal matrices D, f(D) is also diagonal. Let D ∈ Rd×d

sym be a diagonal matrix. Let Qi for
i = 1, . . . , d be the orthogonal matrices that are equal to the identity matrix except [Qi]ii = −1.
Since Qi DQ⊤

i = D, we have f(D) = f(Qi DQ⊤
i ) = Qi f(D)Q⊤

i . Now we note that the ith row
and column of Qi f(D)Q⊤

i is equal to the negative ith row and column of f(D), except for the
diagonal elements which are equal:

[
Qi f(D)Q⊤

i

]
ii
= [f(D)]ii. However, f(D) = Qi f(D)Q⊤

i .
Thus we conclude that the off diagonal elements of f(D) must be equal to 0 since this is true for
i = 1, . . . , d. Hence, f(D) is diagonal when D is diagonal.

Now let A ∈ Rd×d
sym, so A is diagonalizable, A = QΛQT . Thus,

f(A)A = f(QΛQ⊤)QΛQ⊤ = Qf(Λ)ΛQ⊤ = QΛ f(Λ)Q⊤ = QΛQ⊤ f(QΛQ⊤) = Af(A) .
(119)

This concludes the proof.

Now we will prove the corollary. Note that since f̃ is a function of diagonal matrices, we could
equivalently think of it as the composition of converting the diagonal matrix to a vector, performing the
function on the vector, then converting back to a diagonal matrix. We will follow this implementation
in the code to avoid storing a large diagonal matrix.

Corollary. Let f : Rd×d
sym → Rd×d

sym be an O(d)-equivariant function. Then there exists a function
f̃ : Rd×d

diag → Rd×d
diag of diagonal matrices that is permutation equivariant such that for all A ∈

T sym
2 (Rd,+), f(A) = Q f̃(Λ)Q⊤, where A = QΛQ⊤ is the eigenvalue decomposition.

Proof. Let f : Rd×d
sym → Rd×d

sym be an O(d)-equivariant function. Let A ∈ Rd×d
sym with eigenvalue

decomposition A = QΛQ⊤. Then by Lemma 4, Q also diagonalizes f(A), that is Q⊤ f(A)Q is
diagonal. Hence Q⊤ f(A)Q = f(Q⊤ AQ) = f(Λ) is also diagonal. Since the input and output are
both diagonal, we can define the function f̃ that is the same as f but restricted to diagonal matrices,
and is therefore f̃ : Rd×d

diag → Rd×d
diag . Thus f(Λ) = f̃(Λ). Therefore Q⊤ f(A)Q = f̃(Λ) implies that

f(A) = Q f̃(Λ)Q⊤.

Finally, we must show that f̃ is permutation equivariant. Let Λ be any diagonal matrix. Since the
permutations of d elements is a subgroup of O(d), we have for any permutation matrix P :

f
(
P ΛP⊤) = P f(Λ)P⊤ (120)

f̃
(
P ΛP⊤) = P f̃(Λ)P⊤ . (121)

Thus f̃ is permutation equivariant for any input, which completes the proof.

G GENERALIZATION TO OTHER LINEAR ALGEBRAIC GROUPS

In this section, we will show how Theorem 1 and Corollary 1 can be extended to the indefinite
orthogonal and the symplectic group as Theorem 2 and Corollary 3.

The main idea to extend Theorem 1 to other groups is to use some form of averaging. On O(d), the
compactness guarantees the existence of a Haar probability measure. However, to apply the same
trick over non-compact groups such as O(s, d− s) and Sp(d), we need to use technical machinery to
imitate the averaging strategy.

First, we introduce some definitions and examples regarding complex and real linear algebraic groups.
The main point will be to establish how to get a compact subgroup over which to average. Basically
the results will generalize to real linear algebraic groups such that their complexifications have a
Zariski-dense compact subgroup. For instance reductive connected complex algebraic groups satisfy
this assumption. Second, we prove a generalization of Theorem 1 for complex linear algebraic groups
with a Zariski-dense compact subgroup acting on complex tensors. Third, we prove a generalization
of Theorem 1 for real linear algebraic groups that are compact or such that their complexification has
a Zariski-dense compact subgroup. Finally, we prove Corollary 3.
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G.1 REDUCTIVE COMPLEX AND REAL LINEAR ALGEBRAIC GROUPS

Recall that a complex linear algebraic group is a subgroup G of GL(V ), where V is a finite-
dimensional complex vector space, such that G is the zero set of some set of complex polynomial
functions over End(V ), the set of (complex) linear maps V → V . Recall also that a rational
G-module of G is a vector space U together with a linear action of G on U such that the map
G× U ∋ (g, x) 7→ g · x ∈ U is polynomial2, and that a G-submodule U0 of U is a vector subspace
U0 ⊆ U such that for all g ∈ G, g · U0 ⊆ U0.
Definition 10. (Roe Goodman, 2009, Def. 3.3.1) A reductive complex linear algebraic group is a
complex linear algebraic group G ⊂ GL(V ) such that every rational G-module U is completely
reducible, i.e., for every G-submodule U0 of U , there is a G-submodule U1 such that U = U0 + U1

and U0 ∩ U1 = 0.
Example 3. Given any finite-dimensional vector space, the classical complex groups GL(V ) and
SL(V ) are reductive complex linear algebraic groups.
Example 4. Given any finite-dimensional vector space V together with a symmetric non-degenerate
bilinear form3 ⟨ · , · ⟩ : V × V → C, the (complex) orthogonal group

O(V, ⟨ · , · ⟩) := {g ∈ GL(V ) | for all v, w ∈ V, ⟨g · v, g · w⟩ = ⟨v, w⟩} (122)

is a reductive complex linear algebraic group. We will pay special attention to the following family of
complex orthogonal groups:

OC(s, d− s) := {g ∈ GL(Cd) | g⊤Is,d−sg = Is,d−s} = O(Cd, ⟨ · , · ⟩s) (123)

where ⟨u, v⟩s := u⊤Is,d−sv. Note that all these groups are isomorphic, satisfying that

OC(s, d− s) =

(
Is

iId−s

)
OC(d, 0)

(
Is

iId−s

)−1

.

Moreover, this is true in general: any two complex orthogonal groups are isomorphic if they are
of the same order—this follows from the fact that all symmetric non-degenerate bilinear forms are
equivalent over the complex numbers.
Example 5. Given any finite-dimensional vector space V together with an anti-symmetric non-
degenerate bilinear form ⟨ · , · ⟩ : V × V → C, the (complex) symplectic group

Sym(V, ⟨ · , · ⟩) := {g ∈ GL(V ) | for all v, w ∈ V, ⟨g · v, g · w⟩ = ⟨v, w⟩} (124)

is a reductive complex linear algebraic group. We will pay special attention to the following special
case:

SpC(d) := {g ∈ GL(Cd) | g⊤Jdg = Jd} = Sp(Cd, ⟨ · , · ⟩symp) (125)

where ⟨u, v⟩symp := u⊤Jdv. Note that any symplectic group of order d is isomorphic to SpC(d)
because any two antisymmetric non-degenerate bilinear forms are equivalent over the complex
numbers.
Example 6. The complex linear algebraic group

H =

{(
1 t

1

)
| t ∈ C

}
is not reductive, since C2 is an H-module that is not completely reducible. Note that C × 0 is the
only H-submodule of C2, so we cannot find a complementary H-submodule.

Recall that a subset X of a set X̃ is Zariski-dense in X̃ if every polynomial function that vanishes
in X vanishes in X̃ , i.e. if every polynomial function that does not vanish on X̃ does not vanish in
X . The following theorem allows us to use the power of averaging for reductive connected complex
linear algebraic groups.

2To be precise, we mean that the map G× U → U is a morphism of algebraic varieties. Choose basis for U
and V , so that we can identify V with Cd and U with Cn. Then, being a morphism between algebraic varieties,
just means that the map G × Cn → Cn is the restriction of a map Cd×d × Cn → Cn that can be written
componentwise as (pl((gi,j)i,j , (uk)k)/(det g)

al)l where each pl is a polynomial in the gi,j and uk and each
al an integer.

3Recall that this means that for all u, v, w ∈ V and t, s ∈ C: (a) ⟨u, v⟩ = ⟨v, u⟩, (b) for all x ∈ V ,
⟨u, x⟩ = 0 if and only if u = 0, and (c) ⟨tu+ sv, w⟩ = t⟨u,w⟩+ s⟨v, w⟩.
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Theorem 3. (Roe Goodman, 2009, Theorem 11.5.1) Let G be a reductive connected complex
algebraic group. Then there exists a Zariski-dense compact subgroup K. More precisely, there is
a subgroup U(G) of G that is Zariski-dense in G and that, with respect to the usual topology4, is
compact.
Remark 3. Note that using this compact subgroup K, we can consider expressions of the form

E
u∈U(G)

u · T

by taking the expectation with respect to the unique Haar probability measure of K. Now, since U(G)
is Zariski-dense in G, we have that the fact that for all u ∈ U(G), u·

(
Eu∈U(G) u · T

)
= Eu∈U(G) u·T

implies that for all g ∈ G,

g ·
(

E
u∈U(G)

u · T
)

= E
u∈U(G)

u · T.

Note that U(G) is not necessarily unique.
Example 7. In GL(Cd), the Zariski-dense compact subgroup is the group of unitary matrices:

U(Cd) := {g ∈ GL(Cd) | g∗g = Id}

where ∗ denotes the conjugate transpose. In SL(Cd), it is the group of special unitary transformations:

SU(Cd) := {g ∈ U(Cd) | det g = 1}.

Example 8. In OC(s, d− s), the Zariski-dense compact subgroup is(
Is

iId−s

)
O(d)

(
Is

iId−s

)−1

.

Note that when s = 0 or s = d, this is the orthogonal group over the reals. Moreover, this does not
follow from Theorem 3 as OC(s, d− s) is not connected.
Example 9. In SpC(d), the Zariski-dense compact subgroup is the so-called compact symplectic
group:

USp(d) := SpC(d) ∩ U(Cd).

Recall that a real linear algebraic group is a subgroup G of GL(V ), where V is a finite-dimensional
real vector space, such that G is the zero set of some set of real polynomial functions over Rd×d.
Similarly, as we did with complex linear algebraic groups, we can talk about rational modules and
about reductive real linear algebraic groups.

However, given a reductive real linear algebraic group we cannot necessarily guarantee the existence
of a Zariski-dense compact subgroup. This means that we cannot apply the averaging trick directly,
but we can do so by passing to the Zariski-dense compact subgroup of the complexification of the
real linear algebraic group.
Definition 11. Let G ⊂ GL(V ) be a real linear algebraic group. The complexification GC of G is
the complex linear algebraic group given by

GC := {g ∈ GL(V C) | for every polynomial f such that f(G) = 0, f(g) = 0} (126)

where V C := V ⊗R C is the complexification of V , i.e., the complex vector space obtained from V
by extending scalars.
Remark 4. In essence, we complexify the underlying real algebraic variety. Group multiplication
preserves its structure as a complex variety as it is given by polynomial functions of the matrix entries.
Definition 12. A real linear algebraic group G is complexly averageable if it’s Zariski-dense in its
complexification and its complexification admits a Zariski-dense compact subgroup closed under
complex conjugation.
Remark 5. Recall that the complexification of Rd is naturally isomorphic to Cd.
Example 10. The complexification of GL(Rd) is GL(Cd), and the complexification of SL(Rd) is
SL(Cd).

4The topology inherited from the Euclidean topology of GL(Cd).
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Example 11. We have that
O(s, d− s)C = OC(s, d− s)

and that
Sp(d)C = SpC(d).

Hence, both the indefinite orthogonal group and symplectic group are complexly averageable. The
symplectic group is connected but the indefinite orthogonal group is not connected. However, it does
have a Zariski-dense compact subgroup (see Example 8).

The following proposition shows that complexly averageable real linear algebraic groups are common.
Proposition 5. Let G ⊂ GL(V ) be a real linear algebraic group. Then: (1) G is Zariski-dense in GC.
(2) If the complexification GC of G is connected and reductive, then G is complexly averageable.

Proof. (1) Let f be a complex polynomial vanishing on G. Then, we can write this polynomial as
f = fr + ifi for some polynomials fr and fi with real coefficients. Now, since f vanishes on G,
then fr and fi vanish also on G—as otherwise there would be g ∈ G such that either fr(g) ̸= 0
or fi(g) ̸= 0, contradicting f(g) = 0. But then, by definition of GC, fr and fi vanish on G and so
f = fr + ifi vanishes on GC. Hence we have just proven that a complex polynomial vanishes on G
if and only if vanishes on GC, i.e., we have proven that G is Zariski-dense in GC.

(2) This follows from Theorem 3.

Example 12. Observe that the Zariski-dense compact subgroups of OC(s, d− s) and SpC(d) that
have been given satisfy that they are closed under the complex conjugation.

G.2 COMPLEX EQUIVARIANT TENSOR MAPS

We will consider vector spaces on which a non-degenerate bilinear form has been chosen.
Definition 13. A self-paired vector space (V, ⟨ · , · ⟩) is a finite-dimensional vector space V together
with a non-degenerate bilinear form ⟨ · , · ⟩ : V × V → C.

Recall the universal property of tensor products of vector spaces, by which multilinear maps V1 ×
· · · × Vk → W can be lifted to linear maps V1 ⊗ · · · ⊗ Vk → W . Using the universal property, we
can see that from a self-paired vector space (V, ⟨ · , · ⟩), we get the family

(V ⊗k, ⟨ · , · ⟩)
of self-paired spaces of tensors, by extending by linearity the expression

⟨v1 ⊗ · · · ⊗ vk, ṽ1 ⊗ · · · ⊗ ṽk⟩ = ⟨v1, ṽ1⟩ · · · ⟨vk, ṽk⟩. (127)

And again, by the universal property, we get a k-contraction

ιk : V ⊗(2k+k′) ∼= V ⊗k ⊗ V ⊗k ⊗ V ⊗k′
→ V ⊗k′

(128)

by extending by linearity, the expression

a⊗ b⊗ c 7→ ⟨a, b⟩c. (129)

Now, in the above setting, let G be a group acting in a structure-preserving way on (V, ⟨ · , · ⟩),
meaning that the action is linear and preserves ⟨ · , · ⟩, i.e., for all g ∈ G, v, ṽ ∈ V , ⟨v, ṽ⟩ = ⟨g ·v, g ·ṽ⟩.
Then, by the universal property, we get that G acts also on (V ⊗k, ⟨ · , · ⟩) by extending linearly the
expression

g(v1 ⊗ · · · ⊗ vk) = χ(g)(gv1)⊗ · · · ⊗ (gvk). (130)
Moreover, by considering all (rational)5 unidimensional representations χ : G → C∗ of G, we get
the following family of self-paired (rational) G-modules:

Tk(V, χ) := (V ⊗k, ⟨ · , · ⟩) (131)

where the action by G is given by

g · T := χ(g)M(g) · T (132)

5Recall that rational means that the homomorphism is given by polynomials.
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in a structure-preserving way. For the sake of distinction, we will denote the k-contraction as

ιGk : T2k+k′(V, χ) → Tk′(V, χ) (133)

in this setting to emphasize the dependence on the group G, as we will be choosing the original ⟨ · , · ⟩
in terms of the group. Using the universal property, we can easily see the following:

Proposition 6. The following statements hold:

(a) The outer product map

Tk(V, χ)× Tk′(V, χ′) → Tk+k′(V, χχ′)

is a G-equivariant bilinear map.

(b) The k-contraction ιGk : T2k+k′(V, χ) → Tk′(V, χ) is a G-equivariant linear map.

(c) For any σ ∈ Sk, the tensor index permutation by σ, Tk(V, χ) → Tk(V, χ) given by
v1 ⊗ · · · ⊗ vk 7→ vσ−1(1) ⊗ · · · ⊗ vσ−1(k), is a G-equivariant linear map.

Finally, recall that a G-isotropic tensor of Tℓ(V, χ) is a G-invariant tensor in Tℓ(V, χ). Further, recall
that an entire function is an analytic function whose Taylor series at any point has an infinite radius
of convergence. We can now state the theorem.

Theorem 4. Let G ⊂ GL(V ) be a reductive connected complex linear algebraic group (or more
generally, a complex linear algebraic group with a Zariski-dense compact subgroup) acting ra-
tionally on an structure-preserving way on a self-paired complex vector space (V, ⟨ · , · ⟩) and
f :
∏n

i=1 Tki
(V, χi) → Tk′(V, χ′) a G-equivariant entire function. Then we may write f as follows:

f(a1, . . . , an) =

∞∑
r=0

∑
1≤ℓ1≤···≤ℓr≤n

ιGkℓ1,...,ℓr
(aℓ1 ⊗ . . .⊗ aℓr ⊗ cℓ1,...,ℓr ) (134)

where cℓ1,...,ℓr ∈ Tkℓ1,...,ℓr+k′(Rd, χℓ1,...,ℓr χ
′) is a G-isotropic tensor for kℓ1,...,ℓr :=

∑r
q=1 kℓq and

χℓ1,...,ℓr =
∏r

q=1 χℓq .

To prove this, we proceed as in the orthogonal case: we reduce to the multihomogeneous case and
then prove the result using averaging over the Zariski-dense compact subgroup.

Lemma 5. Let G ∈ GL(V ) be any subgroup acting linearly on a self-paired complex vector space
(V, ⟨, · , · ⟩) and f :

∏n
i=1 Tki

(V, χi) → Tk′(V, χ′) an entire function. Then, we can write f as

fr(a1, . . . , an) =

∞∑
r=0

∑
1≤ℓ1≤...≤ℓr≤n

fℓ1,...,ℓr (aℓ1 , . . . , aℓr ), (135)

where fℓ1,...,ℓr :
∏r

i=1 Tkℓi
(V, χi) → Tk′(V, χ′) is the composition of the map

r∏
i=1

Tkℓi
(V, χℓi) → T∑r

i=1 kℓi

(
V,

r∏
i=1

χℓi

)
(136)

(aℓ1 , . . . , aℓr ) 7→ aℓ1 ⊗ . . .⊗ aℓr (137)

with a linear map T∑r
i=1 kℓi

(V,
∏r

i=1 χℓi) → Tk′
(
Rd, χ′).

Moreover, for the above decomposition, if f is G-equivariant, then so are the fℓ1,...,ℓr .

Remark 6. Note that we don’t need to assume anything about G in the above lemma.

Proof of Theorem 4. By Lemma 5, we can assume without loss of generality that f is of the form

f(a1, . . . , an) = λ(aℓ1 ⊗ · · · ⊗ aℓr )

for some non-negative integer r, 1 ≤ ℓ1 ≤ · · · ≤ ℓr ≤ r and λ : T∑r
i=1 kℓi

(V,
∏r

i=1 χℓi) →
Tk′(V, χ′) is linear.
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The above map can be written as a linear combination of maps of the form

(a1, . . . , an) 7→

(
r∏

i=1

λi(aℓi)

)
vj1 ⊗ · · · ⊗ vjk′

where the λi are linear and vj ∈ V , due to the universal property—the factor (
∏r

i=1 λi(aℓi)) just
corresponds to a linear map T∑r

i=1 kℓi
(V,
∏r

i=1 χℓi) → C. Moreover,(
r∏

i=1

λi(aℓi)

)
vj1 ⊗· · ·⊗vjk′ = ιG∑r

i=1 kℓi
+k′

(
aℓ1 ⊗ · · · ⊗ aℓr ⊗ c1 ⊗ · · · ⊗ cr ⊗ vj1 ⊗ · · · ⊗ vjk′

)
where the ci ∈ Tki(V, χi) are the unique tensors such that for all aℓi ∈ Tki(V, χi),

λi(aℓi) = ⟨aℓi , ci⟩.

These ci exist, because ⟨ · , · ⟩ is non-degenerate. Hence for some c ∈ T∑r
i=1 kℓi

+k′(V,
∏r

i=1 χiχ
′),

we have
f(a1, . . . , an) = ιG∑r

i=1 kℓi
+k′(aℓ1 ⊗ · · · ⊗ aℓr ⊗ c). (138)

Since f and ιkℓ+k′(·) are G-equivariant, we have that for all g ∈ G and a ∈
∏n

i=1 Tki
(V, χi),

ιkℓ+k′(aℓ1 ⊗ · · · ⊗ aℓr ⊗ cℓ) = f(a1, . . . , an) (139)

= f(g · (g−1 · a1), . . . , g · (g−1 · an)) (140)

= g · f((g−1 · a1), . . . , (g−1 · an)) (141)

= g · ιkℓ+k′
((
g−1 · aℓ1

)
⊗ · · · ⊗ (g−1 · aℓr )⊗ cℓ

)
(142)

= ιkℓ+k′(aℓ1 ⊗ · · · ⊗ aℓr ⊗ (g · cℓ)) . (143)

Finally, G has a Zariski-dense compact subgroup U(G). Hence, averaging over U(G), we can
substitute c by the U(G)-isotropic tensor

E
u∈U(G)

u · c

where the expectation is taken with respect the unique Haar probability measure of U(G). But, since
U(G) is Zariski-dense in G and the action rational, Eu∈U(G) u · c is also G-isotropic, as we wanted
to show.

Proof of Lemma 5. Recall that, since f in entire, we have, by Taylor’s theorem, that

f(a) =

∞∑
r=0

1

r!
Dr

0f(a, . . . , a) (144)

where a = (a1, . . . , an) ∈
∏n

i=1 Tki(V, χi) and Dk
0f : (

∏n
i=1 Tki(V, χi))

k → Tk′(V, χ′) is the
k-multilinear map given by kth order partial derivatives of f at 0. Now, write a = a1 + · · ·+ an as
an abuse of notation for

a = (a1, 0, . . . , 0) + · · ·+ (0, . . . , 0, an).

We will further use this abuse of notation to write ai instead of (0, . . . , 0, ai, 0, . . . , 0). Now, since
Dk

0f is k-multilinear and symmetric, we have that

1

r!
Dr

0f(a, . . . , a) =
∑

1≤ℓ1≤···≤ℓr≤n

1

αℓ1,...,ℓr !
Dr

0f(aℓ1 , . . . , aℓr ) (145)

where αℓ1,...,ℓr ∈ Nr is the vector given by (αℓ1,...,ℓr )i := #{j | ℓj = i} and α! := α1! · · ·αr!.
Note that this terms appears when we reorder (aℓ1 , . . . , aℓr ) so that the subindices are in order.

Summing up, we can write f as (135), with

fℓ1,...,ℓr (a1, . . . , an) =
1

αℓ1,...,ℓr !
Dr

0f(aℓ1 , . . . , aℓr ), (146)
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where this has the desired form by the universal property of tensor products. Now, observe that for
t1, . . . , tn ∈ C and (a1, . . . , an) ∈

∏n
i=1 Tki

(V, χi),
fℓ1,...,ℓr (t1a1, . . . , tnan) = tαℓ1,...,ℓr fℓ1,...,ℓr (a1, . . . , an) (147)

where tαℓ1,...,ℓr := tα1
1 · · · tαn

n . Hence, arguing as in Lemma 2, we have that for any g ∈ G and all
(a1, . . . , an) ∈

∏n
i=1 Tki

(V, χi),
∞∑
r=0

∑
1≤ℓ1≤···≤ℓr≤n

tαℓ1,...,ℓr g · fℓ1,...,ℓr (a1, . . . , an)

=

∞∑
r=0

∑
1≤ℓ1≤···≤ℓr≤n

tαℓ1,...,ℓr fℓ1,...,ℓr (g · a1, . . . , g · an). (148)

Hence, by the uniqueness of coefficients for entire functions functions that are equal6, we conclude
that for any g ∈ G and all (a1, . . . , an) ∈

∏n
i=1 Tki

(V, χi),
g · fℓ1,...,ℓr (a1, . . . , an) = fℓ1,...,ℓr (g · a1, . . . , g · an), (149)

and so that the fℓ1,...,ℓr are G-equivariant.

G.3 REAL EQUIVARIANT TENSOR MAPS (AND PROOF OF THEOREM 2)

All the definitions in the previous subsection can be specialized to the real case. Hence we will have a
self-paired real vector space (V, ⟨ · , · ⟩) on which a group G acts (rationally) in a structure-preserving
way. Then we get the family of (rational) G-modules:

Tk(V, χ) := (V ⊗k, ⟨ · , · ⟩)
where χ : G → R∗ is a one-dimensional (rational) group-homomorphism of G. Together with this
family, we have the k-contractions given by

ιGk : T2k+k′(V, χ) → Tk′(V, χ), (150)
which are G-equivariant linear maps. Then we get a very similar theorem to Theorem 4 from which
Theorem 2 follows.
Theorem 5. Let G ⊂ GL(V ) be either a compact or a complexly averagable real linear algebraic
group acting rationally in a structure-preserving way on a self-paired vector space (V, ⟨ · , · ⟩) and
f :
∏n

i=1 Tki
(V, χi) → Tk′(V, χ′) a G-equivariant entire function. Then we may write f as follows:

f(a1, . . . , an) =

∞∑
r=0

∑
1≤ℓ1≤···≤ℓr≤n

ιGkℓ1,...,ℓr
(aℓ1 ⊗ . . .⊗ aℓr ⊗ cℓ1,...,ℓr ) (151)

where cℓ1,...,ℓr ∈ Tkℓ1,...,ℓr+k′(Rd, χℓ1,...,ℓr χ
′) is a G-isotropic tensor for kℓ1,...,ℓr :=

∑r
q=1 kℓq and

χℓ1,...,ℓr =
∏r

q=1 χℓq .

Proof of Theorem 2. This is just a particular case of Theorem 5 as both O(s, d−s) and Sp(d) are both
real linear algebraic groups and their complexifications have a Zariski-dense compact subgroup.

Proof of Theorem 5. When G is compact, we can just repeat the proof for the orthogonal group.
When G is a linear algebraic group such that its complexification has a Zariski-dense compact
subgroup, we can extend, using the same analytic expression evaluated in the complex tensors,
the G-equivariant map f :

∏n
i=1 Tki(V, χi) → Tk′(V, χ′) to a complex GC-equivariant map fC :∏n

i=1 Tki
(V C, χi) → Tk′(V C, χ′). The map becomes GC-equivariant, because G is Zariski-dense

inside GC by Proposition 5.

But for a ∈
∏n

i=1 Tki(V, χi), we have that

f(a) =
1

2
fC(a) +

1

2
fC(a), (152)

by reality of the input and output. Hence, by linearity, we can change the not necessarily real
cℓ1,...,ℓr by the still G-isotropic and real 1

2cℓ1,...,ℓr +
1
2cℓ1,...,ℓr . The latter is G-isotropic, finishing

the proof.
6The statement is qualitatively different from (Cox et al., 2015, Chapter 1 §1 Proposition 5), but its proof

is similar. We only need to use that a univariate entire function which vanishes in an infinite set with an
accumulation point has to vanish everywhere.
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G.4 PROOF OF COROLLARY 3

The following proposition is needed to prove the above corollary.

Proposition 7. (Roe Goodman, 2009, Theorem 5.3.3) Let G be either O(s, k − s) or Sp(d) and
⟨ · , · ⟩ be the corresponding non-degenerate bilinear form fixed by the usual action of G on Rd, i.e.,
⟨ · , · ⟩s for O(s, k− s) and ⟨ · , · ⟩symp for Sp(d). The subspace of G-isotropic tensors in Tk(Rd, χ0),
where χ0 the constant map to 1, consist only of the zero tensor if k is odd, and it is of the form∑

σ∈Sk

ασ

(
θ
⊗k/2
G

)σ
(153)

with the ασ ∈ R and θG ∈ (Rd)⊗2 the only tensor such that for all v ∈ Rd, ιG1 (v ⊗ θG) = v, if k is
even.

Remark 7. Recall that θG = [Is,d−s]i,j if G = O(s, d− s) and θG = [Jd]i,j if G = Sp(d).

Remark 8. Note that the above sum can be written with less summands using the methods of
Appendix D.

Proof of Corollary 3. By Theorem 2, Proposition 7 and linearity, we can assume, without loss of
generality, that

f(v1, . . . , vn) = ιr+k

(
vℓ1 ⊗ · · · ⊗ vℓr ⊗ θ

r+k′
2

G

)
with 1 ≤ ℓ1 ≤ · · · ≤ ℓr ≤ n and r + k′ even.

Now, the proof is very similar to that of Corollary 1. However, note that now, we write

θ = ei ⊗ ẽi,

where {ei | i ∈ [d]} and {ẽi | i ∈ [d]} are dual basis to each other, i.e., for all i, j, ⟨ei, ẽj⟩ = δi,j .
The reason we have to pick a couple of bases is that the bilinear form is not necessarily an inner
product.

Now, the proof becomes the same as that of Corollary 1, but we have to be careful regarding the ei
and the ẽi. However, after making the pairings for contraction, we get four cases:

1. ⟨v, ej⟩⟨w, ẽj⟩ = ±⟨v, w⟩, where the sign depends on whether ⟨ · , · ⟩ is symmetric or
antisymmetric.

2. ⟨v, ẽj⟩ej = v.

3. ⟨v, ej⟩ẽj = ±v, where the sign depends on whether ⟨ · , · ⟩ is symmetric or antisymmetric.

4. ej ⊗ ẽj = ±θ, where the sign depends on whether ⟨ · , · ⟩ is symmetric or antisymmetric, or∑
j ẽj ⊗ ej = θG.

Now, putting these back together as we did in the proof of Corollary 1 gives the desired statement.

H STRESS-STRAIN TENSOR

H.1 DATA

We use the Neo-Hookean material dataset from Garanger et al. (2024) which can be found here:
https://github.com/kgaranger/TFENN-examples. We used training sets of 5 000,
20 000, and 40 000 samples, and validation and test datasets of 4 000 samples each. Similar to
Garanger et al. (2024), we normalize the data for each model individually during training, then
compare the outputs under the same scaling for an apples-to-apples comparison. For the baseline
model, we shift and scale the data so that the mean and standard deviation of the components are 0
and 1 respectively. For our equivariant model, we scale the matrices so that the mean and standard
deviation of their eigenvalues are 0 and 1 respectively.
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H.2 MODELS AND TRAINING

Our equivariant model takes the input matrix, performs the eigenvalue decomposition, sends the
eigenvalues through a permutation equivariant network, then takes the output and uses the eigenvectors
the reconstruct a matrix. The permutation equivariant network has three hidden layers following
Maron et al. (2019) with a width of 23. We compare against a baseline MLP model which also
uses 3 hidden layers, but has a width of 32 to result in roughly the same number of parameters. We
also compare against the baseline MLP trained on an augmented dataset. For each data point in the
original training dataset, we sample four elements uniformly from O(d) and use them to rotate the
input and output tensors. Thus the resulting dataset is four times the size of the original. Each model
uses the GELU Hendrycks & Gimpel (2023) non-linearity, which we found significantly improves
the accuracy.

Each model is trained with the AdamW Loshchilov & Hutter (2019) optimizer using a cosine
annealing learning rate schedule Smith & Topin (2019) for 1500 epochs and batch size of 256. The
baseline models were trained with learning rate 3e-3 while the equivariant model used 2e-3 when
the dataset had 5 000 samples and 1e-3 otherwise. The experiments were run on a single RTX 6000
Ada GPU.

model parameter count layer width learning rate

MLP Baseline 2 729 32 3e-3
MLP augmented 2 729 32 3e-3

TFENN 2 278 23
Ours 2 278 23 1e-3

Table 4: Parameter count and learning rate for each model. All models use three hidden layers.
Numbers for TFENN are taken from Garanger et al. (2024).

I PATH SIGNATURES

I.1 DATA

For the orthogonal group experiments, we generate paths in d = 3 dimensions using degree 5
polynomials for each coordinate in the domain u ∈ [−1, 1]. The coefficients of the polynomial are
sampled uniformly from [−1, 1]. We calculate the signature tensors numerically using Signax Tong
(2023) with 1000 points from the path and select n = 10 evenly spaced points for the input data. We
truncate the signature to first, second, and third order tensors. For the Lorentz group, we use 3 spatial
dimensions and 1 time dimension for d = 4 total dimensions. The train, validation, and test data sets
each have 1024 trajectories. We normalize the data for each model individually during training, then
compare the outputs under the same scaling for an apples-to-apples comparison.

I.2 MODELS AND TRAINING

Our model calculates the inner products of all pairs of vectors which are then input into an MLP
with three hidden layers with a width of 32 and GeLU nonlinearities Hendrycks & Gimpel (2023).
The output of the model is the coefficients of a linear combination of basis elements specified by
Corollary 1. The baseline models merely input all the vectors into an MLP and directly calculate the
path signature tensors. The baseline models also have three hidden layers and GeLU nonlinearities,
and the same width model has width 32 while the same params model has width 128. For the Lorentz
data set, the same params model has width 116. This information is summarized in Table 5.

We also compare against the baseline MLP trained on an augmented dataset where each data point
has been replaced by four transformed copies of that data point. For the orthogonal group, we can
sample four elements uniformly from the Haar measure of O(d) and use them to rotate the input and
output tensors. Since the Lorentz group is not compact, we instead sample elements from a compact
subgroup in the following way. First we sample a boost vector β⃗ ∈ R3 whose entries βi are from a
truncated normal distribution with mean 0, variance 1, lower bound −1√

3
, and upper bound 1√

3
, which
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ensures
∥∥∥β⃗∥∥∥ ≤ 1. We then construct the pure boost transformation matrix:

Λ(β) =



γ −γβx −γβy −γβz

−γβx 1 + (γ − 1)
β2
x

∥β⃗∥2 (γ − 1)
βxβy

∥β⃗∥2 (γ − 1) βxβz

∥β⃗∥2

−γβy (γ − 1)
βxβy

∥β⃗∥2 1 + (γ − 1)
β2
y

∥β⃗∥2 (γ − 1)
βyβz

∥β⃗∥2

−γβz (γ − 1) βxβz

∥β⃗∥2 (γ − 1)
βyβz

∥β⃗∥2 1 + (γ − 1)
β2
z

∥β⃗∥2

 (154)

=

[
γ −γβ⃗⊤

−γβ⃗ I3 + (γ − 1) ββ⊤

∥β⃗∥2

]
, (155)

where γ = 1√
1−∥β⃗∥2

. See for example Mansuripur (2020) for a derivation of this matrix. Next we

sample an orthogonal matrix Q ∼ O(3) and construct the matrix R(Q) =

[
1 0
0 Q

]
. Finally we sample

B = +1 or −1 from a Bernoulli random variable to make the time inversion matrix T (B) =

[
B 0
0 I3

]
.

Our Lorentz transformation is the product of all these matrices, L = T (B)Λ(β)R(Q). For the
orthogonal group and the Lorentz group, the resulting dataset is four times the size of the original.

data set model parameter count layer width learning rate

Baseline Same Width 4 391 32 5e-3
O(d) Baseline Same Params 42 023 128 1e-3

Baseline Augmented 42 023 128 1e-3
Ours 41 557 32 5e-4

Baseline Same Width 6 196 32 5e-3
Lorentz Baseline Same Params 41 728 116 1e-3

Baseline Augmented 41 728 116 1e-3
Ours 41 557 32 5e-4

Table 5: Parameter count and learning rate for each model. Since all models have the same number of
hidden layers of the same width, the difference in the number of parameters is driven by the different
inputs and outputs of each model.

For training we use the AdamW optimizer Loshchilov & Hutter (2019) with a cosine annealing
learning rate schedule Smith & Topin (2019). To determine the peak learning rate, we held all other
hyperparameters fixed and varied the learning rate. We used a batch size of 32 and trained for 500
epochs. The experiments were run on a single RTX 6000 Ada GPU and took under 10 minutes to
train per model, per trial.

J SPARSE VECTOR ESTIMATION DETAILS

J.1 PROBLEM SETTING

The methods developed in Hopkins et al. (2016) and Mao & Wein (2022) each derive an h function
and prove using sum-of-squares methods that with high probability that the solutions are accurate.
Their proofs hold under particular assumptions, including that for sparsity parameter ε ≤ 1/3,
∥v∥44 ≥ 1

εn and that v0 = v and v1, . . . , vd−1 ∼ N
(
0n,

1
n In
)
.

In our experiments we violate some or all of these assumptions and use data to find the best h
function for these new, unexplored settings. We sample the sparse vector using four different methods:
Accept/Reject (AR), Bernoulli-Gaussian (BG), Corrected Bernoulli-Gaussian (CBG), and Bernoulli-
Rademacher (BR). Only the Accept/Reject method explicitly satisfies ∥v∥44 ≥ 1

εn , the others only
satisfy this condition in expectation. Additionally, we sample v1, . . . , vd−1 ∼ N (0n,Σ) where Σ
can be the identity, a non-identity diagonal covariance, or a random covariance from a Wishart
distribution.
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J.2 EQUIVARIANCE IN SPARSE VECTOR RECOVERY

In this section, we show a sufficient condition for the O(d)-invariance of sparse vector estimation.
We start with a lemma on the equivariance of finding an eigenvector.
Lemma 6. Let b be a 2(+)-tensor and let g ∈ O(d). If u is an eigenvector for eigenvalue λ of
M(g) bM(g)⊤, then M(g)⊤ u is an eigenvector for eigenvalue λ of b.

Proof. Let b be a 2(+)-tensor, let g ∈ O(d), and let λ, u be an eigenvalue, eigenvector pair of
M(g) bM(g)⊤.

(M(g) bM(g)⊤)u = λu ⇒ b(M(g)⊤ u) = λ(M(g)⊤ u) .

Thus M(g)⊤ u is an eigenvector for eigenvalue λ of b.

Proposition 8. Let S ∈ Rn×d with rows a⊤i ∈ Rd so that ai are column vectors. We define
the action of O(d) on S for all g ∈ O(d) as SM(g), and therefore M(g)⊤ ai for the rows. Let
f : Rn×d → Rn, h :

(
Rd
)n → Rd×d symmetric such that f(S) = S λvec(h(a1, . . . , an)) where

λvec(·) returns a normalized eigenvector for the top eigenvalue of the input symmetric matrix. If h is
O(d)-equivariant, then f is O(d)-invariant.

Proof. Let S, h, and f be defined as above. Suppose that h is O(d)-equivariant. Suppose
λvec

(
M(g)⊤ h(a1, . . . , an)M(g)

)
= u, then by lemma 6, up to a sign flip, we have:

λvec
(
M(g)⊤ h(a1, . . . , an)M(g)

)
= u = M(g)⊤ M(g)u = M(g)⊤ λvec(h(a1, . . . , an)) (156)

Thus,
f(g · S) = (g · S)λvec

(
h
(
g−1 · a1, . . . , g−1 · an

))
(157)

= (g · S)λvec
(
g−1 · h(a1, . . . , an)

)
(158)

= SM(g)λvec
(
M(g)⊤ h(a1, . . . , an)M(g)

)
(159)

= SM(g)M(g)⊤ λvec(h(a1, . . . , an)) (160)
= S λvec(h(a1, . . . , an)) (161)
= f(S) . (162)

This completes the proof.

J.3 DATA

First we generate the sparse vectors with one of the following sampling procedures for sparsity
ε ≤ 1/3.

Accept/Reject (A/R). A random vector v0 ∼ N (0n, In) is sampled and normalized to unit ℓ2
length. We accept it if ∥v0∥44 ≥ 1

εn and otherwise reject it. Note that the sparsity of v0 is not explicitly
imposed, but the 4-norm condition suggests that v0 is approximately sparse. The 4-norm condition of
sparsity is used in Hopkins et al. (2016).

Bernoulli-Gaussian (BG) This sampling procedure, considered in Mao & Wein (2022), defines v0
as {

[v0]i = 0 with probability 1− ε

[v0]i ∼ N
(
0, 1

εn

)
with probability ε.

(163)

Note that under this sampling procedure E∥v0∥44 = 3
εn .

Corrected Bernoulli-Gaussian (CBG) We consider a modified version of the Bernoulli-Gaussian
that replaces the values set to exactly 0 in the Bernoulli-Gaussian distribution with values sampled
from a Gaussian with small variance. Under this distribution we have E∥v0∥2 = 1 and E∥v0∥44 = 1

εn .
[v0]i ∼ N

(
0,

1−ε−
√

1
3 (1−ε)(1−3ε)

(1−ε)n

)
with probability 1− ε

[v0]i ∼ N
(
0,

ε+
√

1
3 (1−ε)(1−3ε)

εn

)
with probability ε.

, (164)
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Bernoulli-Rademacher (BR) This sampling procedure, studied in Mao & Wein (2022), defines v0
as

[v0]i =


0 with probability 1− ε
1√
εn

with probability ε
2

−1√
εn

with probability ε
2 .

(165)

Under this distribution we have E∥v0∥2 = 1 and E ∥v0∥44 ≥ 1
εn .

Since the BG, CBG, and BR distributions have E ∥v0∥2 = 1, we also normalize these vectors to unit
ℓ2 length after generating them.

Proposition 9. Let v0 be a Bernoulli-Gaussian vector. Then E
[
∥v0∥22

]
= 1 and E

[
∥v0∥44

]
= 3

εn .

Proof. Let ε ∈ (0, 1] and let v0 be a Bernoulli-Gaussian sparse vector. Thus

E
[
∥v0∥22

]
= E

[
n∑

i=1

[v0]
2
i

]
=

n∑
i=1

E
[
[v0]

2
i

]
. (166)

Thus, we need to find the 2nd moment of an entry of [v0]i, which we will do by first calculating its
moment generating function. If Z is a Bernoulli-Gaussian random variable, then Z = XY where X
and Y are random variables with X ∼ Bern(ε) and Y ∼ N

(
0, 1

εn

)
. Then

E[exp{tXY }] = E[E[exp{tXY }|X]] (167)
= E[exp{tXY }|X = 0]P (X = 0) + E[exp{tXY }|X = 1]P (X = 1) (168)
= E[exp{0}] (1− ε) + εE[exp{tY }] (169)
= (1− ε) + εE[exp{tY }] . (170)

Since E[exp{tY }] is the moment generating function of Y , a Gaussian random variable, we can see
that the 2nd moment of Z is the 2nd moment of Y multiplied by ε. Then

n∑
i=1

E
[
[v0]

2
i

]
=

n∑
i=1

ε

(
1

εn

)
=

n∑
i=1

1

n
= 1 . (171)

Now, for the sparsity condition, we have

E
[
∥v0∥44

]
=

n∑
i=1

E
[
[v0]

4
i

]
=

n∑
i=1

ε

(
3

(
1

εn

)2
)

=

n∑
i=1

3

εn2
=

3

εn
. (172)

This follows because our previous analysis shows that the 4th moment of an entry of [v0]i is
3σ4 = 3

(
1
εn

)2
. This completes the proof.

Proposition 10. Let v0 be a Corrected Bernoulli-Gaussian vector. Then E
[
∥v0∥22

]
= 1 and

E
[
∥v0∥44

]
= 1

εn .

Proof. Let ε ∈
(
0, 1

3

]
and let v0 ∈ Rn be a Corrected Bernoulli-Gaussian sparse vector. Thus

E
[
∥v0∥22

]
= E

[
n∑

i=1

[v0]
2
i

]
=

n∑
i=1

E
[
[v0]

2
i

]
. (173)

Thus, we need to find the 2nd moment of an entry of [v0]i, which we will do by first calculating
its moment-generating function. If Z is a Corrected Bernoulli-Gaussian random variable, then
Z = XY +(1−X)W where X,Y, and W are random variables with X ∼ Bern(ε), Y ∼ N

(
0, ε+q

εn

)
,

and W ∼ N
(
0, 1−ε−q

n(1−ε)

)
where q =

√
1
3 (1− ε)(1− 3ε). Then

E[exp{t(XY + (1−X)W )}] = E[E[exp{t(XY + (1−X)W )}|X]] (174)
= E[exp{tW}|X = 0]P (X = 0) + E[exp{tY }|X = 1]P (X = 1)

(175)
= (1− ε)E[exp{tW}] + εE[exp{tY }] (176)
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Since E[exp{tW}] is the moment generating function of W and E[exp{tY }] is the moment generat-
ing function of Y , we can immediately get the moments of Z. Then

n∑
i=1

E
[
[v0]

2
i

]
=

n∑
i=1

ε

(
ε+ q

nε

)
+ (1− ε)

(
1− ε− q

n(1− ε)

)
=

n∑
i=1

ε+ q + 1− ε− q

n
= 1 . (177)

For the sparsity condition, we use the same result above but now for the 4th moment

E
[
∥v0∥44

]
=

n∑
i=1

E
[
[v0]

4
i

]
(178)

=

n∑
i=1

ε

(
3

(
ε+ q

nε

)2
)

+ (1− ε)

(
3

(
1− ε− q

n(1− ε)

)2
)

(179)

=

n∑
i=1

(
3ε+ (1− 3ε)

n2ε

)
(180)

=
1

nε
. (181)

This completes the proof.

Proposition 11. Let v0 be a Bernoulli-Rademacher vector. Then E
[
∥v0∥22

]
= 1 and E

[
∥v0∥44

]
= 1

εn .

Proof. Let ϵ ∈ (0, 1] and let v0 be a Bernoulli-Rademacher sparse vector. Thus

E
[
∥v0∥22

]
= E

[
n∑

i=1

[v0]
2
i

]
(182)

=

n∑
i=1

E
[
[v0]

2
i

]
(183)

=

n∑
i=1

(1− ϵ)(0)2 +
ϵ

2

(
1√
ϵn

)2

+
ϵ

2

(
−1√
ϵn

)2

(184)

=

n∑
i=1

ϵ

ϵn
(185)

= 1 . (186)

We also have

E
[
∥v0∥44

]
= E

[
n∑

i=1

[v0]
4
i

]
(187)

=

n∑
i=1

E
[
[v0]

4
i

]
(188)

=

n∑
i=1

(1− ϵ)(0)4 +
ϵ

2

(
1√
ϵn

)4

+
ϵ

2

(
−1√
ϵn

)4

(189)

=

n∑
i=1

ϵ

ϵ2n2
(190)

=
1

ϵn
. (191)

This completes the proof.
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J.4 CONSTRUCTION OF OBSERVED SUBSPACE

Next, we generate the noise vectors that determine the rest of the subspace. For a particular experiment
trial, we generate a covariance matrix that is either the identity matrix, a diagonal matrix, or a random
symmetric positive definite matrix. The diagonal matrix has diagonal entries [Σ]i,i ∼ Unif

(
1
2 ,

3
2

)
. For

the random covariance matrix, first we generate an n× n matrix M with entries [M ]i,j ∼ N (0, 1),
then set Σ = M M⊤ + 0.00001 In. We then generate the noise vectors v1, . . . , vd−1 ∼ N (0,Σ).

Finally, we use the following algorithm to get a random orthonormal basis of span{v0, . . . , vd−1}. Let
B be the matrix with columns v0, . . . , vd−1, and sample an orthogonal matrix O from O(d). Multiply
BO and take the Q-R factorization, then Q is a random orthonormal basis of span{v0, . . . , vd−1}.
We prove this below with the additional assumption that the v0, . . . , vd−1 are linearly independent,
which is reasonable given that d ≪ n and we are generating these vectors randomly.
Proposition 12. Let n ≥ d, and let B be the n× d matrix with v0, . . . , vd−1 as the columns. Assume
that v0, . . . , vd−1 are linearly independent, so rank B = d. Let O be a d× d orthogonal matrix and
QR = BO be a Q-R factorization of BO. Then the columns of Q form an orthonormal basis of
span{v0, . . . , vd−1}.

Proof. The Q-R factorization gives us that the columns of Q are orthonormal. Thus we just have to
show that span{v0, . . . , vd−1} = span{Q0, . . . , Qd−1}
Let a ∈ span{v0, . . . , vd−1}, so for some α0, . . . , αd−1 we have a = α0v0 + . . .+ αd−1vd−1. Let
α ∈ Rd be the vector of these coefficients, and then we have,

a = B α = BOO⊤α = QRO⊤α = Qα̂ . (192)

Thus α̂ ∈ Rd is a vector of coefficients, so a ∈ span{Q0, . . . , Qd−1}. Therefore,
span{v0, . . . , vd−1} ⊆ span{Q0, . . . , Qd−1}.

Now let b ∈ span{Q0, . . . , Qd−1}, so for some β0, . . . , βd−1 we have b = β0Q0 + . . .+ βd−1Qd−1.
Let β ∈ Rd be a vector of the coefficients β0, . . . , βd−1. Now, since rank B = d, rank BO = d, so
in the Q-R factorization, the upper triangular R has positive diagonal entries, so it is invertible [Horn
& Johnson (1990), Theorem 2.1.14]. Then we have,

b = Qβ = QRR−1 β = BOR−1 β = Bβ̂ . (193)

Thus β̂ ∈ Rd is a vector of coefficients, so b ∈ span{v0, . . . , vd−1}. Therefore,
span{Q0, . . . , Qd−1} ⊆ span{v0, . . . , vd−1} which completes the proof.

J.5 MODELS

The h function given in Hopkins et al. (2016) is

h(a1, . . . , an) :=

n∑
i=1

(
∥ai∥22 −

d

n

)
aia

⊤
i , (194)

and given in Mao & Wein (2022) is

h(a1, . . . , an) :=

n∑
i=1

(
∥ai∥22 −

d− 1

n

)
aia

⊤
i − 3

n
In . (195)

Note that equations (194) and (195) are O(d)-equivariant and a special case of Corollary 1 since they
define a sum of outer products of the inputs with coefficients that are polynomial functions of inner
products of the inputs.

In comparison to these fixed methods, we propose two machine learning-based models defined using
the results of Section 3. The first model parametrizes

h(a1, . . . , an) =

 n∑
i=1

n∑
j=i

qi,j

(
(⟨aℓ, am⟩)nℓ,m=1

)1
2

(
aia

⊤
j + aja

⊤
i

)+ qI

(
(⟨aℓ, am⟩)nℓ,m=1

)
Id .

(196)
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The Diag variant of our model only uses the norms of ai as input and aia
⊤
i as the basis elements to

be more comparable to (194) and (195):

h(a1, . . . , an) =

[
n∑
i

qi

((
∥aℓ∥22

)n
ℓ=1

)
aia

⊤
i

]
+ qI

((
∥aℓ∥22

)n
ℓ=1

)
Id , (197)

where qi,j , qi, and qI are O(d)-invariant scalar functions. The form of equation (196) follows from
Corollary 1 as shown in Appendix J.6. By averaging the general form of a matrix valued O(d)-
equivariant function with its transpose, we obtain the form of any O(d)-equivariant polynomial
function that outputs a symmetric matrix. Equation (197) follows the scheme of (196) but only
includes inner and outer products of the same vectors to be more directly comparable to (194) and
(195). Corollary 1 specifies that qi,j , qi, and qI should be polynomials, but we will approximate them
with dense neural networks. The networks themselves are multi-layer perceptrons (MLP) with 2
hidden layers, width of 128, and ReLU activation functions.

To demonstrate the benefits of equivariance, we also implement a non-equivariant baseline model
(BL) which takes as input the nd components of S and outputs the d+

(
d
2

)
components of a symmetric

d× d matrix. This is implemented as a multi-layer perceptron with 2 hidden layers, width of 128,
and ReLU activation functions.

J.6 DERIVATION OF (196)

In the following, we derive the general form of an O(d)-equivariant function h : (Rd)n → Sd stated
in (196) from Corollary 1.

First, we use Corollary 1 to write the arbitrary form of an O(d)-equivariant function g : (Rd)n →
Rd×d that takes values in the space of d× d matrices that are not necessarily symmetric. Given the
general form of g, it follows that

h =
1

2
(g + g⊤) (198)

is the general form of an O(d)-equivariant function h : (Rd)n → Sd.

In the notation of Corollary 1, we seek an O(d)-equivariant function g :
(
T1(Rd,+)

)n → T2(Rd,+).
From Corollary 1 with k′ = 2, it follows that g can be written in the form

g(v1, . . . , vn) =

1∑
t=0

∑
σ∈S2

∑
1≤J1≤···≤J2−2t≤n

qt,σ,J
(
(⟨vi, vj⟩)ni,j=1

) (
vJ1

⊗ · · · ⊗ vJ2−2t
⊗ δ⊗t

)σ
.

(199)
Expanding the sum of the t = 0 and t = 1 terms, we have

g(v1, . . . , vn) =

∑
σ∈S2

∑
1≤J1≤J2≤n

q0,σ,J
(
(⟨vi, vj⟩)ni,j=1

)
(vJ1

⊗ vJ2
)
σ


+
∑
σ∈S2

q1,σ
(
(⟨vi, vj⟩)ni,j=1

)
δσ. (200)

The set of permutation S2 consists of (1, 2) and (2, 1). Using the fact that (u ⊗ v)(1,2) = u ⊗ v,
(u⊗ v)(2,1) = v ⊗ u, and δσ = δ for all σ ∈ S2, we can write the above expression as

g(v1, . . . , vn) =

n∑
J1=1

n∑
J2=1

q0,J
(
(⟨vi, vj⟩)ni,j=1

)
(vJ1 ⊗ vJ2) + q1

(
(⟨vi, vj⟩)ni,j=1

)
δ , (201)

where the double sum over J1 and J2 accounts for both the sum over J1 ≤ J2 and the sum over the
permutations in S2. Next, we swap to standard matrix and vector notation as well as more simple
indices to make the equations clearer for readers who are primarily interested in the application. Thus
u⊗ v ⇒ uv⊤, δ ⇒ Id and J1, J2, i, j become i, j, ℓ,m, and we have

g(v1, . . . , vn) =

n∑
i=1

n∑
j=1

qi,j
(
(⟨aℓ, am⟩)nℓ,m=1

)
aia

⊤
j + qI

(
(⟨aℓ, am⟩)nℓ,m=1

)
Id . (202)

Finally, setting h = 1
2 (g + g⊤) gives the desired form of h stated in (196).
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J.7 TRAINING DETAILS

The train dataset had 5 000 vectors and the validation and test datasets had 500 vectors. For training
our models, we used 1 − ⟨v̂, v0⟩2 as the loss function. We used the Adam optimizer Kingma &
Ba (2017) with an exponential decay rate of 0.999. We used a batch size of 100 and trained until
the validation error had not improved for 20 epochs. See Table 6 for the learning rate and number
of parameters for each model. We did a small exploration to find these hyper-parameters. These
hyper-parameters seemed to work well, but it is always possible that better ones could be found with
more exploration.

model parameter count learning rate

Baseline 99 087 1e-3
Ours (Diag) 58 981 5e-4

Ours 1 331 131 3e-4

Table 6: Parameter count and learning rate for each model. Since all models have the same number of
hidden layers of the same width, the difference in the number of parameters is driven by the different
inputs and outputs of each model.

The experiments were run on a single RTX 6000 Ada GPU and took 18 hours.

sampling Σ SOS-I SOS-II MLP SVH-Diag SVH
Random 0.610 ± 0.011 0.610 ± 0.011 0.647 ± 0.177 0.768 ± 0.045 0.966 ± 0.001

A/R Diagonal 0.444 ± 0.012 0.444 ± 0.012 0.561 ± 0.262 0.698 ± 0.034 0.755 ± 0.057
Identity 0.611 ± 0.002 0.611 ± 0.002 0.494 ± 0.285 0.622 ± 0.201 0.647 ± 0.289
Random 0.963 ± 0.001 0.963 ± 0.001 0.783 ± 0.090 0.970 ± 0.003 0.965 ± 0.002

BG Diagonal 0.949 ± 0.002 0.949 ± 0.002 0.672 ± 0.260 0.974 ± 0.004 0.775 ± 0.078
Identity 0.963 ± 0.000 0.963 ± 0.000 0.681 ± 0.241 0.966 ± 0.004 0.999 ± 0.001
Random 0.409 ± 0.005 0.409 ± 0.005 0.836 ± 0.149 0.490 ± 0.089 0.965 ± 0.002

CBG Diagonal 0.292 ± 0.005 0.292 ± 0.005 0.835 ± 0.150 0.597 ± 0.027 0.722 ± 0.013
Identity 0.418 ± 0.006 0.418 ± 0.006 0.558 ± 0.216 0.368 ± 0.119 0.750 ± 0.288
Random 0.523 ± 0.006 0.523 ± 0.006 0.975 ± 0.005 0.669 ± 0.150 0.970 ± 0.002

BR Diagonal 0.340 ± 0.010 0.340 ± 0.010 0.943 ± 0.008 0.701 ± 0.041 0.913 ± 0.002
Identity 0.526 ± 0.005 0.526 ± 0.005 0.949 ± 0.006 0.570 ± 0.199 0.898 ± 0.001

Table 7: Train error comparison of different methods under different sampling schemes for v0 and
different covariances for v1, . . . , vd−1. The metric is ⟨v0, v̂⟩2, which ranges from 0 to 1 with values
closer to 1, meaning that the vectors are closer. For each row, the best value is bolded. For these
experiments, n = 100, d = 5, ϵ = 0.25, and the results were averaged over 5 trials with the standard
deviation given by ±0.xxx.
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