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ABSTRACT

Although Multimodal Large Language Models (MLLMs) have demonstrated re-
markable capabilities across diverse tasks, they encounter numerous challenges in
terms of reasoning efficiency, such as large model size, overthinking, and com-
promised accuracy in lightweight scenarios. However, research on the reason-
ing capabilities of lightweight MLLMs is quite lacking. To this end, we pro-
pose Tiny-R1V, a novel lightweight 3B model that achieves faster inference and
higher accuracy via a two-stage optimization, while unifying multimodal reason-
ing across multiple tasks and using fewer tokens. In the first stage, Tiny-R1V
introduces Length-Informed Relative Policy Optimization (LIPO), a novel rein-
forcement learning method, to train each reasoning model. The LIPO is designed
to dynamically adjusts advantages of responses within groups, that is, by prior-
itizing concise yet high-quality responses to encourage the generation of shorter
and more accurate response. In the second stage, we propose Adaptive Model
Merging (AMM), a training-free model merging method that merges multiple
specialist models into a unified architecture. Specifically, AMM adaptively ad-
justs the weights of task vectors and robustly optimizes the merged vectors via
a novel gradient projection regularization loss function, thus mitigating redun-
dant conflicts between them. Extensive evaluations on ten widely-used reasoning
benchmarks covering mathematics, structured data (charts, tables, documents),
OCR, and general capabilities showcase the superior performance of Tiny-R1V,
enabling lightweight models to excel in diverse multimodal reasoning tasks.

1 INTRODUCTION

Multimodal Large Language Models (MLLM) (Bai et al.||2025; Hurst et al.,2024; Team et al., 2023;
Yao et al} 2024b) have shown powerful capabilities in the extensive application across different
tasks. However, MLLMs still encounter several challenges in terms of reasoning ability. On the
one hand, the improvement of the models’ reasoning ability is constrained by scaling laws (Kaplan
et al.| 2020), making it impossible to significantly boost model reasoning performance with smaller
parameters. On the other hand, they also confront issues such as large-scale training costs and the
balance in the joint training of different reasoning tasks.

The recent success of Reinforcement Learning (RL) in Large Language Models(LLMs), such as
Kimi-K1.5 (Team et al., 2025) and DeepSeek-R1 (Guo et al.,[2025)) have demonstrated its potential
in motivating the models’ long chain-of-thought(CoT) reasoning ability through rule-based Group
Relative Policy Optimization (GRPO) (Shao et al.l [2024), enabling LLMs to handle complex rea-
soning tasks. However, due to long CoT, the existing reasoning models will inevitably incur high
inference costs and suffer from the issue of over-thinking (Sui et al., 2025} (Chen et al., 2024b),
which restricts their deployment in real-time or resource-constrained scenarios. Therefore, to reduce
the redundancy of long-CoT, some efficiency-oriented methods are proposed through pruning (Luo
et al., 2025) or compression (Chen et al., [2024b)), while they fundamentally overlook the potential
for greater gains from shorter reasoning CoT.

Moreover, in the field of traditional vision tasks and LLMs (Akiba et al., 2025} [lharco et al., {2022}
Cheng et al.|[2025)), model merging techniques have emerged as a powerful training-free approach to
combine multiple specialist models into a unified architecture, which retains the capabilities of each
expert model while improving the unified model’s understanding ability. Hence, corresponding
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Figure 1: (a) Two-stage framework for training lightweight MLLMs for unified reasoning tasks. (b)
The average response length of GRPO (Shao et al., [2024)), DAPO (Yu et al., [2025) and LIPO(Ours)
on the training set during the RL training process. (¢) Tiny-R1V achieves the state-of-the-art perfor-
mance on a broad range of multimodal reasoning tasks compared with other open source models.

to the above progress, a critical question emerges: Is it possible to devise a novel paradigm that
empowers lightweight models to achieve efficient and accurate reasoning across diverse tasks?

In this paper, as shown in Figure[T|a), we propose a lightweight 3B model named Tiny-R1V, which
achieves both faster inference speed and more accurate reasoning performance via joint a two-stage
learning framework. In the first stage, for reinforcement learning, we provide large-scale training
data encompassing various tasks such as geometry, chart, table and OCR. For each task, we collect
public datasets containing at least 10k samples to ensure effective post-training via reinforcement
learning. Building upon this, we design a novel Length-Informed Relative Policy Optimization
(LIPO) to dynamically adjust the advantages of responses within the group, which aims to reduce
the advantages of longer responses and increase those of shorter ones among responses that have
approximately equivalent rewards. In this manner, as shown in Figure [T{b), each response is con-
strained within a valid range, while ensuring that the model can output more accurate responses in
the form of concise answers as much as possible.

In the second stage, we propose a novel model merging method, namely Adaptive Model Merging
(AMM), aiming to enhance the optimization of task vectors (i.e., parameter changes between post-
training models and the base model). Specifically, AMM adaptively adjusts the weights of task
vectors through inherent task importance parameters « and dynamic state parameters 3, and robustly
optimizes the merged vectors via the gradient projection regularization loss function. Meanwhile,
AMM enables the integration of multiple MLLMs without requiring additional data for training.
Furthermore, as shown in Figure[Tc), the proposed merging method effectively consolidates inputs
from diverse tasks and outperforms state-of-the-art (SOTA) models trained on mixed training data.
In summary, the main contributions of this work are summarized as follows:

1. We propose a two-stage framework for training lightweight multimodal models for reason-
ing tasks, and then construct Tiny-R1V with only 3B parameters.

2. We introduce Length-Informed Relative Policy Optimization (LIPO), which dynamically
adjusts the inter-group response advantages, minimizing the number of response tokens
while ensuring the accuracy of the answer.

3. We design a novel Adaptive Model Merging (AMM) , which not only retains the unique
advantages of each model, but also reduces the redundant interference between models
during the model merge process.

4. Extensive experiments on ten MLLM reasoning benchmarks derived from four different
tasks demonstrate the superiority of our proposed Tiny-R1V.
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2 RELATED WORK

2.1 REINFORCEMENT LEARNING FOR MLLMS REASONING CAPABILITY

Reinforcement learning(RL) (Cao et al.| 2024)) has been proven to be a key technology for enhanc-
ing the reasoning capabilities of LLMs. Early research mainly focused on Reinforcement Learning
from Human Feedback (RLHF) (Bai et al., 2022 |Yu et al. [2024b). However, RLHF’s reliance on
high-quality manual annotations limits its scalability in larger-scale scenarios. DeepSeek-R1 (Guo
et al., 2025) propose a minimalist rule-based reward function, which can provide reliable reward for
reinforcement learning without complex human annotations. Inspired by this, recent studies have
begun to introduce reinforcement learning into the multimodal (Yao et al.| [2025a; 2024a}, [Zhang
et al., 2025a; [Yao et al.l 2025b) domain to boost model performance in complex visual reasoning
tasks. Existing works (Yang et al., 2025} [Liu et al.| |2025) have designed fine-grained rule-based
reward functions from various perspectives, such as answer correctness (Peng et al.| 2025]), reason-
ing chain completeness (Zhang et al., 2025a), and visual consistency (Huang et al., 2025b)), which
effectively improves the accuracy and robustness of MLLMs reasoning capability.

2.2 MODEL MERGING

Model merging (Yang et al., [2024) emerges as a cost-effective and flexible strategy to enable the
integration of capabilities from multiple expert models without additional training. The training-free
weight merging method assumes that all expert models share the same initialization parameters, and
directly applies strategies such as linear interpolation (Wortsman et al., 2022; |[lharco et al., |2022),
sparsification (Yadav et al., 2023} [Yu et al.| 2024a), and low-rank optimization to the parameters
in the weight space (Choi et al.l 2024} |Cheng et al., 2025 Wei et al., 2025; Miyano & Arasel
2025} |[Zhang et al., |2025b) to achieve parameter merging. Meanwhile, inspired by the idea of the
Mixture-of-Experts (MoE) architecture, the dynamic routing merging (Tang et al.| |2024; Mugeeth
et al.,|2023) method dynamically calculates the weights of each expert model based on input samples
during the inference phase and generates combination coefficients in real-time through a lightweight
routing mechanism.

3 METHOD

This section first provides the preliminaries, then introduces the key techniques of the proposed
Tiny-R1V framework, namely Length-Informed Relative Policy Optimization (LIPO) and Adaptive
Model Merging (AMM).

3.1 PRELIMINARIES

The GRPO (Shao et al.l [2024)framework initially leverages a MLLM to initialize both a policy
model 7y and a reference model 7,q. For a given image-text pair (Z, T ), the reference policy model
mo,,4 generates G responses {01, 02, ...,06}. A group-based reward function then computes the
corresponding rewards { Ry, Ra, ..., R}, which are subsequently utilized to estimate the advantage
Ai for each response within the group, A; = (R; — mean ({R:}E0))/std ({R;}S.,). Then, GRPO
employs a clipped objective with a KL penalty term:

Jaerro(0) =E (2 7)~p,
o~ (1Z,T)

15: i —79(0” Z, ;)4, i —”9(01" Z.7) _ A. — BD
n Inln( - (Oi ‘ 7, 7—) iy Chp( - (Oi | T, 7-) ,1—¢ 1 6) i KL (7 0 H ”ref)
(D

WUDI Model Merging. Given a pre-trained base model 6y and P task-specific models {6;}_;, the
task vector for each task ¢ is defined as the parameter difference between the task-specific model and
the base model, 7; = 6; —6y. WUDI-merging (Cheng et al.,2025) aims to minimize the interference
between the merged task vector and each individual task vector, as 7,,,; — 7;; for task ¢ at layer [.
Intuitively, it encourages the merged task vector to retain the key information of each task vector

i=1



Under review as a conference paper at ICLR 2026

£ Math data <image> As shown in the figure, PA and PB are £ Structure data  <imageseachyears themid | | =2 OCR data

tangent to circle O at points A and B, respectively, atlantic league sends a team <image>What service does
and PA = 8. CD is tangent to circle O at point E and to the playoffs. how many ‘ the sign indicate is available
7 intersects PA and PB at points C and D, times has it been the at this location?

richmond kickers future?

respectively. The perimeter of triangle PCD is.

M = \‘

Policy Update

Group Sort |
{0(1)’ L(l)} I UAdapTwe Reward abynamic Advantage

Adjustment A Estimation.
] - (o) =/

-
L] Ref @
{0®, 1} eﬁ%ﬂ%l 0. W A (g2 03)
{R(z)} (2) 2\

~ (R} AN Weighted
-

“opt

= _,| Policy Model |- - o - Group
=@~ Icyn: :h,l {0®,1L®} R‘giw?rs:d . Computation
0. A
] - {R(3).} /iws {(a®)}
{;’ adiff N
0. A
| {R(")} / {\Wa {A(n)}
Length-Informed Relative | {o®), 1™} adj) /N

Policy z‘[:l[‘fpll'onl)zaﬂoh | Comparison Adjustment Weight & Reward 1

Adaptive Ma'rh Table Chart OCR
Model Merging reasonlng T, 7 r'easamng r'ec.somng /
Y Rl ML Rl MLLM - S Sl MLLM L R
|@| @ Fewer tokens !
@ Higher accuracy !

Figure 2: Overview of the proposed Tiny-R1V. Tiny-R1V employs Length-Informed Relative
Policy Optimization (LIPO) and Adaptive Model Merging (AMM). In the first stage, Tiny-R1V
trains three expert models separately using LIPO, which dynamically adjusts the advantages between
groups to minimize the number of response tokens while ensuring the accuracy of the answer. In the
second stage, Tiny-R1V merges the three models using AMM, determines the dynamic weights of
model parameters, and reduces parameter conflicts, resulting in the final Tiny-R1V-3B model.

in its own direction, thereby reducing redundancy and conflict between tasks. For each layer [, the
merged task vector is iteratively refined over A steps using a specialized loss function:

n
1 T2
min £; = — H(Tm,l - Ti,l) (Ti,l) H 2
Tm,t ZZ:; HTi,lHF F
where || - || p denotes the Frobenius (Bottcher & Wenzel, 2008) norm of a matrix.

3.2 LIPO: LENGTH-INFORMED RELATIVE POLICY OPTIMIZATION

To achieve lightweight model reasoning, relieve the problem of overthinking, and favor simple yet
correct responses, we propose Length-Informed Relative Policy Optimization (LIPO), a novel on-
line MLLM reinforcement learning framework. It rewards shorter and correct response through
adaptive reward adjustment and dynamic advantage estimation.

For a given question ¢ € Q and k responses generated by the model O = {0, 0 ... o®},
the length of each response is L = {L(M L) ... LM} a response o* € O is Pareto opti-
mal (Ngatchou et al.| [2005)) if and only if there does not exists any other response o € O such that
at least one of the following conditions holds @Q(0) > Q(o*) or L(0) < L(0*), within the feasible
solution set in the quality-length (Q-L) space F = {(Q(0), L(0)) | 0 € O}.

Adaptive Reward Adjustment. The core motivation is to correct the (J-L imbalance problem of
the traditional reward mechanism, explicitly favoring concise yet high-quality responses while en-
suring meaningful reasoning length. Responses within a group are sorted by length in ascending
order as LY < L®) < ... < L(®_ For a pair of adjacent responses to qualify for reward adjust-
ment, (L(Z R®) and (L(”l) R ’*1)) they must satisfy a trigger condition £(0(¥), 0(i+1)), defined
as (o ),o(”l)) = (|R RW| < n) A (LD — LO > 0) A (L L@ > me). This condition
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encodes three critical constraints:|RY) — R()| < 7 ensures that the difference in reward values
between two adjacent responses is within a certain threshold 7, indicating that their qualities are rel-
atively close. LU+ — L) > 0 and L(Y) > L, ensure that response with appropriate length are
selected through comparison. Based on this trigger condition, we adjust the reward for the shorter
response R(9) as follows:

‘ RO(1+ a) EANLY) < Ly
RY) =R (1+aw) €ALW > Ly 3)
R® otherwise

where, o € (0, 0.2] is a base enhancement factor, and w is a decay term that modulates the enhance-

LW_Lp
LD _Lote
than a threshold L, we apply the full enhancement of « to strongly incentivize such concise out-
puts. For responses whose lengths are longer than Ly, when L") approaches L(*+1) it means that
the shorter response is only slightly shorter than the longer one. At this time, w tends 0, thus re-
ducing the enhancement. In summary, this design achieves a smooth transition between full and
reduced reinforcement, and balance the reward signal and the simplicity of the response.

ment, defined as w(0, 0"t1)) = max (O7 1— ) For responses significantly shorter

Dynamic Advantage Estimation. We propose a dynamic advantage estimation to normalize the
reward by calculating the advantage of each response relative to the ideal length within the group.
The ideal length of each response group is defined as Loy = max(2Lyin, median(L(?))). By tak-
ing the maximum of these two values, Loy ensures that the optimal length is both practical and
representative of the group’s characteristics. Then, the weight w; for each response is computed as:

wi = exp (—4IL0 — Lop) “)

where ¢ is the scaling factor and the weight w; reflects the proximity of each response’s length to the
optimal length L. Responses that are closer to Loy will be assigned higher weights, emphasizing
their importance in the advantage estimation process. The dynamic advantage A(*) is then calculated
using the following set of equations:

(@ _
A0 — M (5)
oq +e€
wiRD . . (R )
where, ug = % is the weighted average of the adjusted rewards, 02, = Z’EGZ (R“fU, 1e)
i€G Tt i€G T

is the weighted variance. This dynamic advantage estimation helps the model better understand the
relative quality of each response within the group, guiding it to generate more optimal answers.

Reward function. Consistent with GRPO, LIPO also adopts rule-based rewards, with exact match-
ing rewards for maths tasks and structured data (table, chart, document) tasks. For OCR tasks, a
more continuous Levenshtein Distance (Yujian & Bol [2007) is utilized, where the reward is calcu-
lated by comparing the edit distance between the response string and the target string.

3.3 AMM: ADAPTIVE MODEL MERGING

During model merging, different tasks have different importance and compatibility. WUDI Merg-
ing (Cheng et al., 2025)) uses fixed weights, which makes it difficult to effectively balance multi-task
performance. We propose a dual-weight adaptive mechanism to achieve refined control of task vec-

. 2
tors by introducing two weight parameters, o and 8. The a;; = % parameter measures
j=1 IT5,LlIF

the inherent importance of tasks based on the norm of the task vector to ensure that key tasks are not
neglected. The 3", parameter is dynamically adjusted based on the current merge state. It is used
to measure the compatibility of tasks with the merge vector and focus on the tasks that match the
current merge result best.

(6)

|(ra! = mso) T3
B/n/ = eX —_ . 2 _ 2
P il

where « is the scaling factor. The calculation of 37, is based on the merged vector T:,L;ll after the

(n — 1)th iteration, so that it will be dynamically adjusted according to the latest state of the merged
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vector. As the iteration proceeds, the merged vector 7, ; gradually converges, and 8/, will also tend
to be stable, thus the merged vector can retain the key information of multiple tasks at the same time.

The original merge loss £; in Eq. 2| only focuses on the compatibility of the merged vector with
each task vector. However different directions in the parameter space have different impacts on
task performance, and a slight change in some parameter directions may significantly affect task
accuracy. Therefore, we design the gradient projection regularization R;', which decomposes the
VLT .
”T"llﬂ‘rgln,l, which represents the
il
update consistent with the direction of the task vector 7; ;. And the orthogonal component VL' —

Ve . . L .
’l[‘r;’l T; .1, which represents the update perpendicular to the direction of the task vector (causing
2 Ti,

gradient V.L}' into two components. The parallel component

[,
task interference). By penalizing the norm of the orthogonal component, the optimization process is
forced to proceed along the direction of the task vector, thus reducing the updates that are harmful
to specific tasks. The penalty term R}* is defined as follows:

P
F=AY
i=1

The algorithm flow is described in detail in Algorithm [I] The optimization of each linear layer
is independent, and the problem can be solved layer by layer in turn by using the gradient descent
method for optimization.

, VL - TiTl ?
VL — ——5—Til 7

R

Algorithm 1 AMM: Adaptive Model Merging

1: Input: Parameters 0; task vectors 7 = {Ti,l}?zl; steps N; learning rate (; regularization
strength ; gradient regularization strength A
Output: Merged parameters 6,,,.
> Initialize with weighted sum (x)
for linear layer [ € {1,--- , ¥} do

Compute g, 219 w?,l = Q4 '5?,1/ Efﬂ(%‘,l '6?,1)9 7'7?1,1 = EZ; w?,l " Tiyl
end for
for linear layer ! € {1,--- , U} do

forne {1,--- ,N} do

> Update dynamic weights (x)

n—1
P
10: Bl = exp (—7 ) swiy = oy B/ i (e BYY)

T2
I (Tm,z - Ti,l)Ti,lHF
11: > Weighted loss + projection regularization (x)

R A A Rl

Il

o epeyl, 2 it iRy =3 3 oo - ST,
13: > Regularized update (%)

4 T =t = (VYR

15:  end for

16: end for

17: > Assemble merged task vectors
18: Ty = {Tmi}1ys Om = 0 + Ty

4 EXPERIMENTS

In this section, we first provide the experiments setup in Sec. [d.1] and then present main results in
Sec[4.2] that demonstrate the effectiveness of Tiny-R1V. In Sec. 4.3] we conduct ablation studies to
evaluate the impact of each design in Tiny-R1V. Sec. [d.4| provides qualitative results of Tiny-R1V.

4.1 EXPERIMENTS SETUP

Implementation. In this work, we adopt Qwen2.5-VL-3B as our base model. Model training is
implemented using the EasyR1 (Yaowei Zheng, 2025) codebase, and the training is executed on 8
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Table 1: Composition of our aggregated dataset from public sources, with their corresponding sizes.

Task Size Datasets
Math 15K Geometry3K (Lu et al.|2021) GeoQA+ (Cao & Xiao][2022) K12 (Meng et al.|[2025) UniGeo (Chen et al.|[2022)
Table Chart 15K TAT-DQA (Zhu et al.[[2022) WTQ (Pasupat & Liang![2015) TabFact (Chen et al.|2019} PlotQA (Methani et al.|2020)
Document TQA (Kembhavi et al.{[2017) ChartGalaxy (L1 et al.{[2025)
OCR 10K TextVQA (Singh et al.||2019) ChromeWriting TextOCR (Singh et al.||2021} OCR-VQA (Mishra et al.!|2019)
All(Mix) 35K -

NVIDIA A800 (40G) GPUs. For the rollout parameters, we set the number of samples per question
to 5 and a probability p of 0.3. Regarding RL-related hyperparameters, we use a global batch size of
128, a rollout batch size of 512, a rollout temperature of 0.7, and a learning rate of 1e-6. For training
data, we collect a broader range of domain-specific data, which is divided into math, structured data
(table, chart, document) and OCR. The datasets used are summarized in Table

Evaluation Benchmark. Our model is evaluated across three key dimensions, multimodal math-
ematical reasoning, multimodal structured data reasoning, and OCR capabilities. For multimodal
mathematical reasoning, we compare detailed performance metrics on the MathVista (MINI) (Lu
et al., [2023), MathVision (Wang et al.| [2024a)), MathVerse (Vision-Only) (Zhang et al.| 2024)), and
WeMath (Strict) (Qiao et al.,[2024) benchmarks. In terms of multimodal structured data reasoning,
evaluations are conducted on ChartQA (Test Average) (Masry et al.,[2022) and CharXiv (Reasoning
Questions) (Wang et al., |2024b)) benchmarks. For OCR capabilities, the model is assessed using the
OCRbench (Liu et al.,[2024) and OCR-Reasoning (Huang et al., |2025a) benchmarks. Additionally,
to verify that the Tiny-R1V model retains general capabilities, we also report its performance on the
MME (Fu et al., 2023) and MMStar (Chen et al., 2024a) benchmarks.

4.2 MAIN RESULTS

To comprehensively evaluate the effectiveness of our proposed Tiny-R1V, we conduct extensive
comparisons across 10 widely used and challenging benchmarks, as illustrated in Table 2]

Individual models. Without using cold start, we apply the data in Table |I| and use LIPO to train
math model, structure model and OCR model, respectively. LIPO yields a substantial enhancement
in the reasoning capabilities of MLLMs. For example, in challenging math benchmarks such as
MathVista and MathVerse, Math Model (with LIPO) achieves +4.2% and +4.6% improvement, re-
spectively. In the challenging reasoning chart understanding benchmark CharXiv, structure Model
(with LIPO) obtains +3.2% improvement. On the OCR-Reasoning task that examines both per-
ception and reasoning capabilities, the three models (with LIPO) improve by +4.4%, +2.3%, and
+1.1%, respectively. It is worth noting that although we do not specifically train a model for general
ability, we also achieve improvement on the general ability benchmarks MME and MMStar, which
shows the generalization ability of LIPO in enhancing reasoning ability across different tasks.

Comparison with other merging methods. We further compare Tiny-R1V with representative
model merging methods. The results show that Tiny-R1V outperforms all the compared merging
methods across the board, achieving the highest average score of 51.6, which is +0.8% higher than
the second-best method namely WUDI Merging, and +4.9% higher than the baseline Task Arith-
metic. This constitutes a notable improvement, signifying that the model achieves a distinct average
enhancement across 10 benchmarks while fully preserving its various reasoning capabilities. This
indicates that our approach effectively merges specialized capabilities, and well alleviates the prob-
lem of unbalanced performance across different tasks that exists in other merging methods.

Comparison with other models. We compare Tiny-R1V with other general MLLMs. With less
training data, our Tiny-R1V outperforms models such as InternVL2.5-2B and VITA-1.5-8B, with an
average performance improvement of +6.7%. It is worth noting that in addition to having reasoning
ability, Tiny-R1V also demonstrates stronger generalization capabilities in different tasks.

4.3 ABLATION STUDY

Response length discussion. The following analysis takes mathematical models as an example to
illustrate the effectiveness of the LIPO method in reducing inference tokens. Table [3|clearly demon-
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Table 2: Capability merging results on Qwen2.5-VL-Instruct (RL post training) across multiple
tasks. The best and second best average results are highlighted in boldface and underlined respec-
tively. * denotes evaluation on official open-source weights using VLMEvalKit (Duan et al.} 2024).

\ Math | Table & Chart &Doc| OCR |  General |
Methods Avg

MathVista MathVision MathVerse WeMath| ChartQA CharXiv . OCR- MME ’ i

(mini) (ful) (O Vision) (Strict) |(testAve)  (RQ) | OCRPN Reaconing| (sum) MMStar
Qwen2.5-VL-3B-Instruct (Bai et al.|2025) |  62.3 21.2 31.2 229 | 840 3.3 | 797 122 ] 2157 559 [47.8
Individual models
Individual Math Model-LIPO (Ours) 66.5 233 35.8 30.7 83.9 32.0 73.5 16.6 2304 585 [50.3
Individual Structure Model-LIPO (Ours)| 61.9 22.0 33.1 23.6 85.8 345 71.6 14.5 2302 587 |494
Individual OCR Model-LIPO (Ours) 57.9 20.0 319 26.3 83.5 304 84.6 133 2254 574 |48.6
Comparison with other merging methods
Task Arithmetic (Ilharco et al.|[2022) 62.3 21.6 28.6 26.6 782 30.1 71.3 12.0 2044  56.6 |46.7
TA+Dare (Yu et al.|[2024a) 62.2 21.8 28.5 26.6 79.6 31.1 76.2 12.3 2034 56.8 |46.8
TIES Merging (Yadav et al.|[2023) 61.6 222 332 284 83.9 31.3 78.0 13.2 2298 58.0 [49.2
TIES+Dare (Yu et al./[2024a) 62.6 23.0 33.6 289 84.0 31.6 78.4 13.2 2312 582 [49.6
TSV Merging (Gargiulo et al.|[2025) 61.5 235 349 30.6 85.0 314 79.6 14.0 2269 595 |50.1
Iso-C Merging (Marczak et al.|[2025) 62.1 222 349 29.5 849 322 80.0 13.3 2286 57.6 |49.8
‘WUDI Merging (Cheng et al.|2025) 63.5 233 37.8 30.3 85.0 324 81.5 15.2 2262 587 |50.8
‘WUDI Merging v2 (Wei et al.||2025) 61.8 234 34.7 314 85.0 322 79.8 15.0 2269 595 |504
Comparison with mixture training
Mixture Training ‘ 64.5 232 342 30.0 ‘ 84.8 32.0 ‘ 82.0 12.8 ‘ 2269 595 ‘50.4
Comparison with other models

SAIL-VL-2B (Dong et al.|[2025) 62.8 17.3 17.4 14.8 82.9 26.1% 83.2 9.5% 2132%  56.7 |44.7
InternVL2.5-2B (Chen et al.||2024c) 51.1 14.0 223 10.8 79.2 213 80.4 8.6 2138 53.7 |41.8
InternVL3-2B (Zhu et al.[2025) 57.0 21.7 24.5 229 80.2 28.3 83.5 10.8 2221  60.7 |46.9
VITA-1.5-8B (Fu et al.|[2025) 65.2* 19.5 234 19.4 81.2* 30.1% 75.2 10.6* | 2280* 60.2 |46.6
Tiny-R1V-3B (Ours) 65.5 23.7 38.0 30.8 853 324 82.5 16.2 2291 59.5 51.6

strates the remarkable balance between the accuracy and response efficiency achieved by our LIPO-
based models. The Qwen2.5-VL-3B model with GRPO consumes average 138.1 tokens to reach
66.1% accuracy on MathVista, whereas our LIPO-enabled Qwen2.5-VL-3B-Instruct and Tiny-R1V-
3B models deliver superior or comparable accuracy (66.5% and 65.5% on MathVista, respectively)
with significantly fewer tokens (83.0 and 84.5 tokens). This trend is even more pronounced on
MathVision, while baseline models using GRPO need 349.7-440.1 tokens to reach 21%-23% accu-
racy, our LIPO models hit 23.7% accuracy with only 114.9-120.2 tokens and the token cost is less
than one-third of that of the former. Compared with existing R1 mathematical reasoning models,
R1-VL-2B (Zhang et al.| [2025a) and VLM-R1-3B (Shen et al., 2025), our models achieve better
reasoning performance using only one-third of the token count. Figure[I{b) presents the average re-
sponse length of GRPO (Guo et al., [2025), DAPO (Yu et al., 2025), and our proposed LIPO during
the RL training process on the training set. As observed from the figure, the number of tokens used
by LIPO gradually decreases throughout the training process, and it achieves a significantly lower
token count compared to both GRPO and DAPO methods. This indicates that LIPO effectively op-
timizes reasoning efficiency by focusing on critical logical steps rather than redundant processes,
shaking the inherent notion that higher accuracy necessitates longer responses.

Table 3: Accuracy and average reasoning response token number of models and methods on different
Mathematica benchmarks. (Acc 1, Avg. Token Length |)

Model Method MathVista MathVision

Acc (%)t Avg. Token| | Acc(%)T  Avg. Token|
Qwen2.5-VL-3B-Instruct - 62.3 87.5 21.2 466.5
Qwen2.5-VL-3B-Instruct(baseline) | GRPO 66.1 138.1 23.0 440.1
R1-VL-2B (Zhang et al.|[2025a) GRPO 52.1 158.8 17.1 383.2
VLM-R1-3B (Shen et al.[[2025) GRPO 62.7 147.3 21.9 349.7
Qwen2.5-VL-3B-Instruct(Ours) LIPO 66.5 83.0(J 55.1) 233 114.9(] 325.2)
Tiny-R1V-3B(Ours) LIPO 65.5 84.5(] 53.6) 23.7 120.2({ 319.9)

Ablation Study of AMM. As shown in Table[d] we conduct ablation studies to test the contribution
of various designs in AMM, including the design of «;;, §;", parameters and gradient projection
regularization. Compared with the Wudi Model Merging baseline, ; ;, (", parameters can improve
the performance by 1.1%. In addition, incorporating the regularization penalty, yields a performance
boost of +0.3%. Finally, the AMM model merging achieves the best score of 65.5% on MathVista,
reflecting the effectiveness of adaptively adjusting each task vector.
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Hyperparameter studies of LIPO. To further evaluate the robustness of LIPO, we conduct exten-
sive hyperparameter studies focusing on two critical parameters, the length threshold L7 and the
reward threshold 7). Table [3]investigates the impact of Ly on model performance across the Math-
Vista and MathVision datasets. Performance peaks at L1 = 120 with 66.5% and 23.3% on the two
datasets, respectively, before gradually declining as Ly increases further. This trend indicates that
L7 = 120 is sufficient to achieve best mathematical reasoning performance, and it also proves that
LIPO is not sensitive to length restrictions and is effective within a suitable range. Table 5] analyzes
the influence of the confidence threshold 5. This shows that a moderate threshold n = 0.2 can
effectively filter responses with similar rewards.

Table 4: Ablation study of Adaptive Model Merging. We  Table 5: The study on the 1, L. We

study the impact of «a; , ﬁ{fl, R; in AMM. study the impact of 77, Ly in LIPO.
Model MathVista ChartQA OCRBench lL r_| MathVista Mat;’ZV 1sion
Qwen2.5-VL-3B-Instruct 623 84.0 79.7 | % 53
Math Model with LIPO 66.5 83.9 73.5 140 66.2 231
Structure Model with LIPO 61.9 85.8 77.6 160 66.1 23.0
OCR Model with LIPO 579 83.5 84.6 0 MathVista MathVision
Wudi Model Merging 63.5 85.0 81.5 0.1 66.2 231
+ 64.9 85.2 81.7 0.2 66.5 233
+ B 65.2 85.3 82.3 0.3 66.1 22.8
+ Rl & Regularized update 65.5 85.3 82.5 04 66.0 228

4.4 QUALITATIVE RESULTS

Question: In the figure below, the area of square (QWM2.5-VL-3B-IIIS1’NC1‘*GRPO )

ABCD is equal to the sum of the area of triangles <think>The area of square ABCD is AB? = 60% = 3600. The area of the square is also the sum of the areas of triangles
ABE DCE. CE =x. Tl i ABE i

ABE and DCE. If AB = 60, then CE = s and 1Lef x. The area of triangle A is . X

3 XABXBE = 2x60X(60 +x), and the area of triangle DCE is 3 XDCXCE = x60xx. Therefore, the total area of

A triangles ABE and DCE is:

1 1
5 X60X(60 +x) +5x60xx = 3600.
Simplifying the left side, we get:
%xeox(so +x) +§x60xx = 30%(60 + x) + 30x = 1800 + 30x + 30x = 1800 + 60x

h Setting this equal to the area of the square, we have:
8 c € \ 1800 + 60x = 3600. Solving for x, we get: 60x = 1800 = x = 30. Thus, CE = 30. </think> \boxed{30} 170tokens )

Correct Answer: 30 Ve
VLM-R1-Qwen2.5VL-3B-Math-0305

Tiny-R1V-3B (O v@v <think>To solve this problem, we need to understand the relationship between the areas of the square and the friangles.
th" k- = urs P The area of square ABCD is given by the formula side?. Since AB = 60, the area of squareABCD is: 60> = 3600 The area
<think> s

1 ) of triangle ABE is half the area of square ABCD because it is half of the square's area. Therefore, the area of triangle
Given that the area of square ABCD is equal to

the sum of the areas of friangles ABE and DCE, ABE is: == = 1800 The area of triangle DCE is also half the area of square ABCD because it is half of the square's
and knowing AB = 60, the total area of the square

area. Therefore, the area of triangle DCE is: @ = 1800 Since the area of square ABCD is the sum of the areas of

is 6072 = 3600. Since the triangles share the triangles ABE and DCE, we can confirm that the areas are correct. Now, we need to find the length of CE. Since
same height, the base CE must be such that the triangle DCE is a right triangle with AB as one of its legs and CE as the other leg, we can use the Pythagorean theorem
area condition holds. Thus, if the total area is to find CE. However, we don't need to calculate CE directly because we already know that the area of triangle DCE is
split equally, CE must be half of AB, confirming CE|| 1800, which is half the area of the square. The area of triangle DCE is%xbasexhzight. Since the base is CE and the
= 30, as it maintains the proportional area balance (| ooy i the side of the square 60, we can set up the equation:

IXCEX60 = 1800 CEX30 = 1800 CE =52 CE = 60
\Therefcre, CE = 60. </think><answer>\boxed{60} </answer> ° 273tokens

N

between the triangles and the square.
</think>
\boxed{30} 84tokens

Figure 3: Qualitative Results of reasoning capability of Qwen2.5-VL-3B-Instruct (Bai et al., [2025)
with GRPO, VLM-R1-Qwen2.5VL-3B-Math-0305 (official open-source weights) (Shen et al.,
20235)) and Tiny-R1V-3B (Ours) on mathematical problems.

Figure [3| demonstrates that Tiny-R1V significantly boosts the model’s reasoning capabilities when
tackling complex mathematical problems. In this example, the model accurately parses the question
and obtains the correct answer, showing strong performance in symbolic reasoning and function
analysis. Meanwhile, Tiny-R1V uses fewer tokens and simpler thinking methods to obtain the cor-
rect results. This proves the superiority of Tiny-R1V in performing lightweight reasoning when
handling complex reasoning tasks.

5 CONCLUSION

In this paper, we propose Tiny-R1V, a novel lightweight 3B model that unifies multi-task, multi-
modal reasoning capabilities while achieving fewer tokens and higher accuracy. Firstly, Tiny-R1V
uses LIPO to adjust the proportion of in-group advantage according to the length of the response, and
trains specialized reasoning models with shorter responses. Then, it uses AMM to adaptively adjust
the weights of task vectors in each model to integrate multiple specialized models into a unified
architecture. We conduct extensive experiments and ablation studies, and the result demonstrate the
superiority of our proposed Tiny-R1V on various reasoning benchmarks.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, large language model (LLM) (Hurst et al., [2024) is only utilized to assist with the
refinement of the English language. No LLMs are employed to generate new innovative ideas, and
the research process is conducted by the researchers (humans). It is worth noting that the robot
image in Figure [T(a) is generated by the Doubao (Gao et all [2025) image generation foundation

model.

B BENCHMARKS

Our model is evaluated across four key categories, multimodal mathematical reasoning, multimodal
structured data reasoning, OCR capabilities and general capabilities.

B.1

B.2

B.3

B.4

MATHEMATICS BENCHMARKS

* MathVista (Lu et al.l 2023) encompasses 6,141 questions spanning diverse domains in-
cluding arithmetic, geometry, algebra, and statistics.

* MathVision (Wang et al.,2024a) is a curated collection of 3,040 high-quality mathematical
problems derived from real-world mathematics competitions.

* MathVerse (Zhang et al.| [2024) comprises 2,612 multimodal mathematical problems, ac-
companied by 15,672 manually annotated test samples. These samples are categorized into
3 primary question types and 12 subcategories, such as plane geometry, solid geometry,
and functions.

* WeMath (Qiao et al., 2024) comprises 6,500 visual mathematical problems, covering 67
hierarchical knowledge concepts and five levels of knowledge granularity. Complex prob-
lems are decomposed into a novel four-dimensional metric to hierarchically evaluate the
inherent issues in the reasoning process of MLLMs.

MULTIMODAL STRUCTURED DATA REASONING BENCHMARKS

e ChartQA (Masry et all 2022) is a large-scale benchmark encompassing 9.6K human-
authored questions alongside 23.1K questions generated from human-written chart sum-
maries.

e CharXiv (Wang et al.l 2024b) involves 2,323 natural, challenging, and diverse charts
sourced from scientific papers. It includes both descriptive questions that assess basic chart
elements and reasoning questions that require synthesizing information from complex vi-
sual elements within the charts.

OCR BENCHMARKS

* OCRbench (Liu et al., [2024) comprises 1,000 question-answer pairs, with all answers
undergoing manual verification and correction, designed to evaluate the OCR capabilities
of MLLMs. It encompasses five components: text recognition, scene text-centered VQA,
document-oriented VQA, key information extraction, and handwritten mathematical ex-
pression recognition.

* OCR-Reasoning (Huang et al., [2025a)) consists of 1,069 manually annotated examples,
covering 6 core reasoning capabilities and 18 practical reasoning tasks within text-rich
visual scenarios. It is specifically designed to systematically evaluate the performance of
MLLMs in reasoning tasks involving text-rich images.

GENERAL BENCHMARKS

* MME (Fu et al.l 2023)) encompasses 14 subtasks, which are designed to measure the per-
ceptual and cognitive capabilities of MLLMs.
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* MMStar (Chen et al.| 2024a)) consists of 1,500 challenging samples meticulously curated
by humans, encompassing 6 core functionalities and 18 detailed tasks, aiming to evaluate
the multi-modal capacities of MLLMs with a carefully balanced and purified selection of
samples.

C PROMPTS

Prompt Template used for Length-Informed Relative Policy Optimization (LIPO).

You FIRST think about the reasoning process as an internal monologue and then
provide the final answer. The reasoning process MUST BE enclosed within </think>
</think> tags. The final answer MUST BE put in \boxed{}.

D INFERENCE TIME

We compare the inference time across different benchmarks on eight A800 40G GPUs. As illustrated
in Table [f] Tiny-R1V-3B (with LIPO) exhibits notable inference speed superiority over Qwen2.5-
VL-3B-Instruct (with GRPO) across all evaluated benchmarks. Tiny-R1V employs fewer tokens
during the inference process, resulting in significantly faster inference on each benchmark.

Table 6: Inference time on different benchmarks

Model | MathVista ChartQA  OCRBench
Qwen2.5-VL-3B-Instruct(GRPO) 1788.4s 977.2s 788.4s
Tiny-R1V-3B(LIPO,Ours) 623.4s 455.4s 318.6s

E MATHEMATICS REASONING CAPABILITIES CASE STUDIES

This section demonstrates the significant enhancement in reasoning capabilities of Tiny-R1V when
addressing complex mathematical reasoning tasks. In these case studies, Tiny-R1V-3B accurately
parses problems and derives correct answers, showcasing its robust proficiency in symbolic reason-
ing, geometric comprehension, and mathematical computation. Meanwhile, Tiny-R1V-3B achieves
correct results using fewer tokens and simpler reasoning approaches, which demonstrate the supe-
riority of its lightweight reasoning in handling complex reasoning tasks. Specifically, mathematical
reasoning tasks require rigorous chain-of-mathematical-thought reasoning. Existing methods (such
as Qwen2.5-VL-3B-Instruct (Bai et al.l [2025), Qwen2.5VL-3B-GRPO (Shao et al., [2024), VLM-
R1-Qwen2.5VL-3B-Math-0305 (Shen et al., 2025) ) tend to employ multi-step complex computa-
tions and numerous equation transformation operations when tackling complex reasoning tasks. In
contrast, our Tiny-R1V-3B can precisely leverage existing mathematical theorems to simplify the
mathematical derivation process (see Case 1 and Case 2 for details). This simplified derivation pro-
cess substantially reduces the token consumption during reasoning while ensuring the correctness
of the reasoning process.

Mathematics Reasoning Capabilities Casel

A
D, E

B C
Question: As shown in the figure, D and E are the points on the edges AB and AC of
AABC, DE | BC,if AD : DB =1.0: 3.0, AE = 2.0, then the length of AC'is ( ).
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Qwen2.5-VL-3B-Instruct Response: To solve for the length of AC, we start by analyzing
the given information and the geometric relationships in the triangle.
1. Identify the coordinates of points A, B, and C':

e Let A= (0,4), B=(0,0),and C = (4,0).
e Since AD : DB = 1 : 3, point D divides AB in the ratio 1:3. Therefore, the
coordinates of D are (0, %) = (0,1).

* Since DE || BC, point E divides AC in the same ratio as D divides AB, which is
1:3. Therefore, the coordinates of E are ( il O) = (1,0).

1+3°
2. Calculate the length of AC":
* he length of AC is the distance from A = (0,4) to C' = (4, 0). Using the distance
formula:

AC = /(4—0)2 + (0—4)2 = /42 + (—4)2 = VI6 + 16 = V32 = 42
Thus, the length of AC is . [Incorrect]

Qwen2.5VL-3B-GRPO Response: <think> Since DF || BC, triangles ADE and ABC
are similar by the AA similarity criterion. Therefore, the ratios of corresponding sides are
equal. Given AD : DB = 1 : 3, we can infer that AD = %AB and DB = %AB. Since
AB = AD + DB = 4 cm, we have AD = 1 cm and DB = 3 cm. Because DFE || BC, the
ratio AD : AB = AE : AC. Given AE = 2 cm, we can set up the proportion:

Ao _Ae 12
AB  AC 4 AC
Thus, the length of AC is 8 cm. </think> [Correct]

VLM-R1-Qwen2.5VL-3B-Math-0305: <think> 1. Given that AD : DB =1 : 3, we
can determine the length of AD and DB. 2. Since AD + DB = AB and AB = 4, we can
write:

— AC =8cm

AD+ DB =4
3. Given AD : DB =1 : 3, we can express AD and DB in terms of a common variable z:
AD =2 and DB =3z
4. Substituting these into the equation AD + DB = 4:
r+3r=4
5. Solving for z:
dr=4 = z=1
6. Therefore, AD = 1 and DB = 3.
Since DE || BC, DE is parallel to BC and DE is half the length of BC because AD :
DB =1:3.
7. Given AE = 2, we can determine the length of AC:"
AC = AE + EC
8. Since DE || BC, EC = DB = 3. 9. Therefore:
AC=AE+EC=2+4+3=5
</think> <answer>5</answer> [Incorrect]

Tiny-R1V-3B Response (Ours): <think> Given that DE || BC, it implies that
AADE ~ AABC by the Basic Proportionality Theorem (or Thales’ theorem). Therefore,
the ratios of corresponding sides are equal. Since AD : DB =1:3, AD : AB =1:4.
Thus, AE : AC =1 : 4. Given AE = 2, wecan find AC as AC =4 x AE =4 x 2 =8.
</think>

Answer: [Correct]
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Mathematics Reasoning Capabilities Case2

Question: As shown in the figure, PA and PB are tangents of ®0, with tangent points A
and B, AC is the diameter of ®O, given that /P = 50.0, then the size of ZACBis ( ).

Qwen2.5-VL-3B-Instruct Response: To solve for the size of ZAC B, we start by analyzing
the given information and the geometric properties of the circle and the tangents.
1. Identify the properties of the tangents and the circle:

* PA and PB are tangents to the circle ®O at points A and B respectively.
» AC is the diameter of the circle.
o /P =50°.

2. Use the property of tangents:

 The tangents drawn from an external point to a circle are equal in length. Therefore,
PA=PB.

* The line segment O A is perpendicular to the tangent P A at the point of tangency
A, 80 ZOAP = 90°.

* Similarly, ZOBP = 90°.
3. Determine the angles in AOAP and AOBP:

* Since ZOAP = 90° and ZOBP = 90°, the sum of the angles in AOAP and
AOBP is 180°.

e Therefore, ZAOP = 180° — ZP = 180° — 50° = 130°.
4. Use the fact that AC' is the diameter:
* Since AC is the diameter, ZABC = 90° (angle in a semicircle).

* Now, consider AOAC. Since OA = OB (both are radii of the circle), AOAC is
isosceles with ZOAC = ZOBA.
* The sum of the angles in AOAC is 180°. Since ZOAC = ZOBA and ZOAP =
90°, we have ZOAC = ZOBA = 180°290° — 450,
* Therefore, LACB = ZOAC+Z0OBA = 45°4+45° = 90°—ZP/2 = 90°—25° =
65°.
Thus, the size of ZAC B is|65° | [Correct]

Qwen2.5VL-3B-GRPO Response: <think>
Since PA and PB are tangents to ©®O from point P, PA = PB. Therefore, APAB is
isosceles with ZP = 50°. The sum of the angles in a triangle is 180°, so we have:

/PAB = /PBA = M = 65°.

Since AC'is a diameter, ZABC' = 90° (angle in a semicircle). Now, ZAC B can be found
by noting that ZACB = 180° — ZCAB — ZABC. Since ZCAB = ZPAB = 65°, we
have:

LZACB = 180° — 65° — 90° = 25°.

</think> [Incorrect]

VLM-R1-Qwen2.5VL-3B-Math-0305: <think> To solve for the size of ZAC B, we start
by noting that PA and PB are tangents to the circle ©®O at points A and B respectively.
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This means that OA and OB are perpendicular to PA and PB respectively. Therefore,
ZOAP = 90° and ZOBP = 90°.

Since AC is the diameter of the circle, ZABC = 90° because any angle inscribed in a
semicircle is a right angle. Now, we need to find ZAC B. We know that /P = 50°, and
since PA and PB are tangents, ZOAP = 90° and ZOBP = 90°. The angle ZAPB is
the external angle to AOAP and AOBP, and it is equal to the sum of the opposite internal
angles, which are ZOAP and ZOBP. Therefore, /APB = 180° — ZOAP — ZOBP =
180° — 90° — 90° = 180° — 180° + 50° = 50°.

Now, we can use the fact that the sum of the angles in AAPB is 180°. So, /BAP +
LABP + ZAPB = 180°. Since ZBAP = ZOAP = 90° and ZABP = ZOBP = 90°,
we have /BAP + /ABP = 180° — ZAPB = 180° — 50° = 130°. Therefore, ZACB =
180° — LABC — ZBAC = 180° — 90° — 40° = 50°.

Thus, the size of ZACBis|40° | </think>

<answer> 40° </answer> [Incorrect]

Tiny-R1V-3B Response (Ours): <think> Since PA and PB are tangents, ZOAP
and ZOBP are both 90°. Thus, ZAOB is supplementary to /P, making it 130°. Since
AC is the diameter, ZAC B is an inscribed angle subtending the same arc, thus ZACB is
half of the central angle, which is 65°. Therefore, ZACB is half of the remaining angle at
the circumference. </think>

Answer: [Correct]

Mathematics Reasoning Capabilities Case3

A B

Question: As shown in the figure, in ©®O with a radius of 5.0, the length of the chord AB is
8.0, then the distance from the center O to the chord ABis ().

Qwen2.5-VL-3B-Instruct Response: To find the distance from the center O to the chord
AB in the circle, we can use the Pythagorean theorem. Here’s the step-by-step solution:
1. Identify the given information:

* The radius of the circle OA = OB = 5.0.
* The length of the chord AB = 8.0.
2. Draw the perpendicular from the center O to the chord AB:

* Let the perpendicular from O to AB intersect AB at point M. Since OM is per-
pendicular to AB, M is the midpoint of AB.

e Therefore, AM = MB = ATB = % =4.0.
3. Form a right triangle OAM:

* In the right triangle OAM, OA is the hypotenuse, AM is one leg, and OM is the
other leg.

* We know OA = 5.0 and AM = 4.0.
* We need to find the length of OM.
4. Apply the Pythagorean theorem:
0A? = OM? + AM?
Substituting the known values:
5.02 = OM? + 4.0°
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25.0 = OM? +16.0
OM? =25.0—16.0

OM? =9.0
OM =+v9.0=3.0
Therefore, the distance from the center O to the chord AB is . [Correct]

Qwen2.5VL-3B-GRPO Response: <think> To find the distance from the center O to the
chord AB, we can use the geometric properties of the circle. Specifically, we can use the
fact that the perpendicular from the center of the circle to a chord bisects the chord. Let’s
denote the distance from the center O to the chord AB as d. The perpendicular from O to
AB will split AB into two equal segments, each of length 4 (since AB = 8).

We can now consider the right triangle O AC' where OC is the distance from the center to
the chord, O A is the radius of the circle, and AC' is half the length of the chord AB. By the
Pythagorean theorem, we have:

OA% =0C? + AC?

Substituting the known values OA = 5 and AC = 4, we get:

52 = d* + 42
25 =d%>+ 16
d?> =25—16
d?>=9
d=v9=3

So, the distance from the center O to the chord AB is 3. </think> [Correct]

VLM-R1-Qwen2.5VL-3B-Math-0305: <think> To find the distance from the center O
to the chord A B, we can use the Pythagorean theorem. Here’s the step-by-step reasoning:
1. Identify the given information:

* The radius of the circle ®O is 5.0.
¢ The length of the chord AB is 8.0.
2. Draw the perpendicular from the center O to the chord AB:

* Let the perpendicular from O to AB intersect AB at point M. Since OM is per-
pendicular to AB, M is the midpoint of AB.

¢ Therefore, AM = MB = ATB = % =4.0.
3. Form a right triangle OM A:

* In the right triangle OM A, O A is the radius of the circle, so OA = 5.0.

» AM is half the length of the chord AB, so AM = 4.0.

e OM is the distance from the center O to the chord AB, which we need to find.
4. Apply the Pythagorean theorem:

* The Pythagorean theorem states that in a right triangle, the square of the hypotenuse
(the side opposite the right angle) is equal to the sum of the squares of the other
two sides.

* In triangle OM A, OA is the hypotenuse, OM is one leg, and AM is the other leg.
o Therefore, OA? = OM? + AM?.

* Substituting the known values, we get 5.02 = OM? + 4.02.

* Simplifying, we get 25.0 = OM? + 16.0.

* Solving for OM?, we get OM? = 25.0 — 16.0 = 9.0.
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« Taking the square root of both sides, we get OM = /9.0 = 3.0.

Therefore, the distance from the center O to the chord AB is 3.0.
</think> <answer>3.0</answer> [Correct]

Tiny-R1V-3B Response (Ours): <think>Given a circle with radius 5 and chord
AB = 8, we can use the right triangle formed by the radius, the perpendicular from the
center to the chord, and half of the chord. The perpendicular bisects AB into two segments
of 4 each, so we use the Pythagorean theorem: 52 = 42 + d2, where d is the distance from
Oto AB. Thus, 25 = 16 + d?,s0d? =9 and d = 3. </think>

Answer: [Correct]

F TABLE, CHART AND DOCUMENT REASONING CAPABILITIES CASE
STUDIES

This section demonstrates a significant improvement in the reasoning capabilities of Tiny-R1V when
tackling table, chart, and document reasoning tasks. In these case studies, Tiny-R1V-3B can accu-
rately parse questions and derive correct answers. Structured data reasoning tasks require both
perception and reasoning capabilities; however, the perception process may consume a large num-
ber of redundant tokens. As the cases below, Tiny-R1V-3B has reduced such redundant perception
processes, thereby achieving a more efficient perception process and a more accurate reasoning
process.

Table, Chart and Document Reasoning Capabilities Capabilities Casel

Commodity-Dependence (UN) Product Differentiation (Rauch 1999)

I Non-Commodity I Differentiated
[ Jcommodity [ Reference Price
[ Jworld Price

19%

22%

8%

70%

81%

Question: What is the name of the chart with the highest percentage for its largest category?

Qwen2.5-VL-3B-Instruct Response: The chart with the highest percentage for its largest
category is the one on the right, which is labeled ”Product Differentiation (Rauch 1999)”.
[Incorrect]

Qwen2.5VL-3B-GRPO Response: <think> Looking at the two pie charts, the left
one shows ”Commodity-Dependence (UN)” with 81% for Commodity and 19% for Non-
Commodity. The right one shows “Product Differentiation (Rauch 1999)” with 70% for
World Price, 22% for Differentiated, and 8% for Reference Price. The chart with the highest
percentage for its largest category is the left one, as it has 81% for Commodity. </think>

‘ Commodity-Dependence (UN) ‘ [Correct]

Tiny-R1V-3B Response (Ours):<think> The chart on the left shows a clear ma-
jority of the category labeled "Commodity” at 81%, indicating it’s the largest segment. The
right chart shows a significant portion for ”World Price” at 70%, but the left chart’s largest
category is more dominant.</think>
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Answer: | Commodity-Dependence (UN) ‘ [Correct]

Table, Chart and Document Reasoning Capabilities Capabilities Case2

@ [ —@— Fused Recall / AP --®--/—m— Camera-only Recall / AP
100

80

60

40

0-15m 15-35m >35m 0-5 5-10 10-20 >20
(a) Object distances (b) Number of radar points

Question: Does increase the number of radar points close the gap between Fused recall and
Camera-only recall?

Qwen2.5-VL-3B-Instruct Response: Yes, increasing the number of radar points generally
closes the gap between Fused Recall and Camera-only Recall. This can be seen in both
graphs:

1. Graph (a): Object Distances

* The Fused Recall/AP line (solid blue) shows a significant improvement as the ob-
ject distance increases.

* The Camera-only Recall/AP line (dashed red) shows a corresponding decrease in
performance.

* As the object distance increases, the gap between the two lines narrows, indicating
that the fused approach performs better.

2. Graph (b): Number of Radar Points

* The Fused Recall/AP line (solid blue) shows a significant improvement as the num-
ber of radar points increases.

* The Camera-only Recall/AP line (dashed red) shows a corresponding decrease in
performance.

* As the number of radar points increases, the gap between the two lines narrows,
indicating that the fused approach performs better.

In both cases, the fused approach (solid lines) consistently outperforms the camera-only

approach (dashed lines) as the number of radar points or object distances increase.
[Correct]

Qwen2.5VL-3B-GRPO Response: <think> The graph shows two lines: one for "Fused
Recall / AP” (solid blue line) and one for "Camera-only Recall / AP” (dotted red line). The
solid blue line starts at 90.1% for 0-15m and decreases to 46.0% for >35m. The dotted red
line starts at 73.4% for 0-15m and decreases to 13.8% for >35m. The gap between the two
lines is significant, especially at shorter distances. As the number of radar points increases
(from 0-5 to >20), the solid blue line (Fused Recall) increases from 33.9% to 89.0%, while
the dotted red line (Camera-only Recall) increases from 27.7% to 60.3%. This indicates
that increasing the number of radar points does indeed help close the gap between the Fused

Recall and Camera-only Recall. </think> [Correct]
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Tiny-R1V-3B Response (Ours): <think> The graphs show that as the number of
radar points increases, the Fused Recall/AP line approaches the Camera-only Recall/AP line,
indicating a closing gap. This suggests that more radar data points improve the recall and
AP metrics, aligning the performance closer to the camera-only results. The percentage in-
creases also support this, showing improvements as the number of points grows.</think>

Answer: [Correct]

Table, Chart and Document Reasoning Capabilities Capabilities Case3

ITEM 6. SELECTED FINANCIAL DATA.

The following selected financial data has been derived from our audited financial statements. This data should be read in conjunction with Item 7-
“Management’s Discussion and Analysi: nancial Condition and Results of Operations™ and our financial statements and related notes thereto included
elsewhere in this Form 10-K. Our historical results are not necessarily indicative of operating results to be expected in the future.

Selected Financial Data
(in thousands, except per share data)
Year Ended September 30,

2019 2018 2017 2016 2015
Income Statement Data
Revenue $ 84590 $§ 63559 § 45390 § 34701 S 25367
Operating income (loss) $ (4590) $ (7.806) $ 2,769 § 1824 § 1,892
Net income (loss) $ (724) § (11807) § 14092 § 1,959 8§ 2,526
Net income (loss) per share—basic $ 0.02) § (033) § 043 § 006 S 0.08
Net income (loss) per share—diluted $ (0.02) § 033) $ 040 8 0.06 S 0.08
Balance Sheet Data
Working capital $ 34082 § 17,221 $ 41342 § 31980 S 24,005
Total assets $ 135897 § 127,150 $ 71,719 § 48385 § 38746
Other borrowings $ 556 $ 810 § $ S
Stockholders’ equity $ 107333 § 95394 § 61408 $ 39485 S 30433

Question: What is the percentage change in working capital from 2018 to 2019?

Qwen2.5-VL-3B-Instruct Response: To calculate the percentage change in working capital
from 2018 to 2019, we use the formula:

New Value — Old Value < 100
Old Value

Percentage Change = (

Given:
» Working capital in 2019: $34, 082
e Working capital in 2018: $17,221
Plugging in the values:

34,082 — 17,221
”) 100

P h e
ercentage Change ( 17,201

16, 861
Percentage Change = (177 221) x 100

Percentage Change ~ 97.48%

So, the percentage change in working capital from 2018 to 2019 is approximately 97.48%.
[Incorrect]

Qwen2.5VL-3B-GRPO Response: <think> To calculate the percentage change in work-
ing capital from 2018 to 2019: Percentage change = (New value - Original value) / Original
value * 100

Working capital in 2018 = $17, 221

Working capital in 2019 = $34, 082

Percentage change = ($34,082 - $17,221) / $17,221 * 100

Percentage change = $16, 861 / $17,221 * 100

Percentage change 97.28%

</think>|97.28% [Incorrect]
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Tiny-R1V-3B Response (Ours): <think> The working capital in 2018 was
$17,221 thousand and in 2019 it was $34,082 thousand. The change is calculated as (34,082
- 17,221) / 17,221 * 100 = 97.9%. This indicates an increase of approximately 97.9% in
working capital from 2018 to 2019.</think>

[Correct]

Answer:

Table, Chart and Document Reasoning Capabilities Capabilities Case4

2019 Annual Report
Management’s Discussion and Analysis of Financial Condition and Results of Operations continued

Consolidated Revenues

(dollars in millions)

Increase/(Decrease)
Years Ended December 31, 2019 2018 2019 vs. 2018
Consumer $ 91,056 $ 89,762 $ 1,294 1.4%
Business 31,443 31,534 (91) (0.3)
Corporate and other 9,812 9,936 (124) (1.2)
Eliminations (443) (369) (74) 201
Consolidated Revenues $ 131,868 $ 130,863 $ 1,005 0.8

Consolidated revenues increased $1.0 billion, or 0.8%, during 2019 compared to 2018, primarily due to an increase in revenues at our
Consumer segment, partially offset by decreases in revenues at our Business segment and Corporate and other.

Revenues for our segments are discussed separately below under the heading “Segment Results of Operations.”

Corporate and other revenues decreased $124 million, or 1.2%, during 2019 compared to 2018, primarily due to a decrease of
$232 million in revenues within Verizon Media.

Consolidated Operating Expenses

(dollars in millions)

Increase/(Decrease)
Years Ended December 31, 2019 2018 2019 vs. 2018
Cost of services $ 3,772 $ 32185 $  (413) (1.3)%
Cost of wireless equipment 22,954 23,323 (369) (1.8)
Selling, general and administrative expense 29,896 31,083 (1,187) (3.8)
Depreciation and amortization expense 16,682 17,403 (721) 4.1
Media goodwill impairment 186 4591 (4,405) 95.9)
C: i Operating $ 101,490 $ 108,585 $ (7,095) (6.5)

Operating expenses for our segments are discussed separately below under the heading “Segment Results of Operations.”

Cost of Services

Cost of services includes the following costs directly attributable to a service: salaries and wages, benefits, materials and supplies,
content costs, contracted services, network access and transport costs, customer provisioning costs, computer systems support,
and costs to support our outsourcing contracts and technical facilities. Aggregate customer care costs, which include billing and
service provisioning, are allocated between Cost of services and Selling, general and administrative expense.

Cost of services decreased $413 million, or 1.3%, during 2019 compared to 2018, primarily due to decreases in network access
costs, a product realignment charge in 2018 (see “Special ltems"), decreases in employee-related costs resulting from the Voluntary
Separation Program and decreases in digital content costs. These decreases were partially offset by increases in rent expense as a
result of adding capacity to the networks to support demand and the adoption of the new lease accounting standard in 2019,
regulatory fees, and costs related to the device protection package offered to our wireless retail postpaid customers.

Cost of Wireless Equipment

Cost of wireless equipment decreased $369 million, or 1.6%, during 2019 compared to 2018, primarily as a result of declines in the
number of wireless devices sold as a result of an elongation of the handset upgrade cycle, partially offset by a shift to higher priced
devices in the mix of wireless devices sold.

Selling, General and Administrative Expense

Selling, general and administrative expense includes salaries and wages and benefits not directly attributable to a service or
product, bad debt charges, taxes other than income taxes, advertising and sales commission costs, call center and information
technology costs, regulatory fees, professional service fees, and rent and utilities for administrative space. Also included is a portion
of the aggregate customer care costs as discussed above in “Cost of Services.”

Selling, general and administrative expense decreased $1.2 billion, or 3.8%, during 2019 compared to 2018, primarily due to
decreases in employee-related costs primarily due to the Voluntary Separation Program, a decrease in severance, pension and
benefits charges (see “Special ltems”), the acquisition and integration related charges in 2018 primarily related to the acquisition of
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Question: What was the average corporate segment revenue and other segment revenue for
2018 and 2019?
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Qwen2.5-VL-3B-Instruct Response: To calculate the average corporate segment revenue
and other segment revenue for 2018 and 2019, we need to follow these steps:

1. Identify the revenue for the corporate and other segment for both years. 2. Calculate the
average of these two values.

From the table:

* Corporate and other revenue for 2019: $9, 812 million
* Corporate and other revenue for 2018: $9, 936 million

Now, we calculate the average:

2019 Revenue + 2018 Revenue

A =
verage 5
9,812+ 9,936
Average = ————
2
19,748
Average = ’T

Average = 9, 874 million dollars

So, the average corporate segment revenue and other segment revenue for 2018 and 2019 is
$9, 874 million. [Correct]

Qwen2.5VL-3B-GRPO Response: <think> To find the average corporate and other seg-
ment revenue for 2018 and 2019, we need to add the revenues for both years and divide by
2. For 2019, the corporate and other segment revenue is $9, 812 million. For 2018, the cor-
porate and other segment revenue is $9, 936 million. Average = (9,812 + 9,936) / 2 Average
=19,748 / 2 Average = $9, 874 million Therefore, the average corporate and other segment

revenue for 2018 and 2019 is $9, 874 million. </think> 9874 [Correct]

Tiny-R1V-3B Response (Ours): <think> To find the average, I'll add the revenues
for both segments in 2018 and 2019, then divide by 2. For Corporate and other, it’s (9,936 +

9,812)/2 = 9874. </think>|9874 [Correct]

G OCR CAPABILITIES CASE STUDIES

This section demonstrates the capability of Tiny-R1V in OCR tasks. In these case studies, Tiny-
R1V-3B can accurately recognize image content and derive correct answers, and exhibits accurate
performance in tasks such as formula recognition, image-based question answering, and character
parsing.

OCR Capabilities Casel

1
arg min 5|\u||2+c > e

Vi,j Ve = Vi
s.t.ul - (Ve; = viy) > 1— €5
€ > 0.

Question: Please write out the expression of the formula in the image using LaTeX format.
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R S
g §||U|| + CV‘ Z €45
Tiny-R1V-3B Response: <think> BIVEIYY Jthink>
st.ul - (v — Vi) > 1 — ¢

€ij 2 0.
1
agmin P40 Y e
Answer: PR [Correct]
S.t. uT o (Vti = th> >1-— €ij
€ij Z 0.

OCR Capabilities Case2

2 Musterious
P\ Patterns

9\ Finding Fractals in Nature

Sarah C, Campbell /3’

Tiny-R1V-3B Response: <think> Sarah C. Campbell </think>
Answer: ‘ Sarah C. Campbell ‘ [Correct]

OCR Capabilities Case3

Question: Which of the following options best matches the image? Here’s some options:
submarine, airplane, ship, chopper.

Tiny-R1V-3B Response: <think> The image depicts a shape that resembles an airplane
with wings and a tail. The dashed lines and the overall structure suggest an aircraft. Among
the given options, the one that best matches the image is an airplane. </think>

Answer: [Correct]
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OCR Capabilities Case4

Question: How many times does the character "e’ appear in the picture? Please output the
exact number without any additional explanation.

Tiny-R1V-3B Response: <think> I need to count the occurrences of the character ’e’
in the given text. I’ll go through each character and count how many times ‘e’ appears.
</think>

Answer: [Correct]

H LIMITATIONS

Due to resource constraints, our experiments are limited to 3B-parameter models. Future work will
explore the integration of MLLMs with larger parameter sizes, multilingual support, and a broader
range of reasoning tasks. By incorporating more advanced chain-of-thought techniques such as think
with images, we aim to enhance its reasoning capabilities on more complex visual-logical reasoning
tasks. Additionally, we plan to filter out low-quality samples using rules during the preprocessing
stage. For evaluation purposes, we intend to develop new benchmarks specifically designed to assess
the reasoning capabilities of MLLM:s.
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