
Lifelong Formal Modeling Agents – Definitions and Implementation Strategies

Jacques Basaldúa1*

1Lead author of the Jazz platform
Senior Data Scientist @ BBVA AI Factory

Abstract

This paper summarizes the current vision and results of our
research since 2016, the beginning of our Jazz platform
project. We explain the design of Lifelong Formal Modeling
Agents by starting with describing and defining basic ideas
and discussing their importance.
We present a complete architecture built upon these ideas,
summarize our experimental results where available and dis-
cuss how they represent minimum requirements towards
building reliable human understandable AI agency. Finally,
we briefly touch on how these agents could produce more
natural human-computer interfaces.
It should be noted that the definitions presented in this paper
of intelligence, understanding, concept, object, symbol and
other terms are intended for practical implementation and will
not completely align with other academic definitions of the
same terms.

1. Introduction
This paper could be the summary of a 700 pages handbook
on intelligence engineering. Just a short description of each
idea and definition, how it fits the whole design without pre-
cise implementation details. That handbook does not exist as
such, but it could be written some day from our collection of
papers, experimental reports and our private wiki that covers
two decades of AI research starting in game research includ-
ing foundational discussions on Monte-Carlo Tree Search.

Precise implementation details can be found in older pa-
pers (Basaldúa 2020a) or the implementations that have been
released. This includes three different proofs of concept:
JazzARC (Basaldúa 2020b), The Tangle1 and TLSS (Bop
applied to language solving the tasks from Facebook’s bAbI
(Weston et al. 2015) project). The Jazz platform itself con-
tains the final form of ideas that made it into industrial qual-
ity C++ code.2.

This work is too wide and this position paper too short
to properly survey and give attribution to existing published
work on similar ideas. We apologize for its low academic
standards.

*kaalam@kaalam.ai
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://github.com/kaalam
2https://github.com/kaalam/Jazz

2. Code
We focus our research on agents that use code as Knowledge
Representation (KR). Agents run and learn new code by tree
search. Before describing how code is implemented, we start
with short arguments in favor and against code as KR.

Why code?
We can summarize classic arguments in favor of code.

Von Neumann’s take on the Church-Turing Thesis Von
Neumann is, to our knowledge, the first to realize that AI
being possible at all is a direct consequence of two state-
ments: ”The human brain being, just like any living crea-
ture, biomolecular machinery.” aka. there is no ”magic” in-
volved and the Church-Turing Thesis. The implication being
that: up to speed and resources, any computing machine can
be simulated on another. Von Neumann uses the phrase ”the
short code of the central nervous system” to refer to the code
that would emulate the brain on a computer (Von Neumann
1958).

Therefore, if we believe there is no magic involved, code
is enough and we do not know what the necessary minimum
is.

Homoiconicity and classic AI Since McCarthy invented
lisp and, according to Marvin Minsky, before that in the de-
sign of von Neumann’s architecture, there was always the
intention to make computers write their own code. This
made the concept of homoiconicity central in AI oriented
languages. ”A language is homoiconic if a program writ-
ten in it can be manipulated as data using the language.”
Also Winograd’s work on language understanding (Wino-
grad 1980) is about converting informal language into code.
Rather than having a ”We tried and failed.” attitude, we em-
brace a ”Some results were already achieved in times were
transistor counts were lower that today by a factor of hun-
dred million, CPU performance and storage by a million
each, just imagine what we can build today!”

All models are code anyway, why restrict ourselves
Schmidhuber, already wrote ”Let us view a network with a
fixed topology as a computer. Its program is the weight ma-
trix.” over thirty years ago (Schmidhuber 1990). Of course,
everything is code. Therefore, we have two options:



1. Do everything within algebra and end-to-end differenti-
ation, which results in better learning and much less ef-
ficient running. Wait until the convolutional neural net-
work learns to multiply, so to say.

2. Use code, multiply with a single CPU instruction and find
new ways of learning even if they are less efficient based
on ”To a smart agent, you only have to teach something
once.” principles.

Biological inspiration Another way to put is could be:
Code is 3.7 billion years old, at least on Earth. Life is code
and it created the human brain which is our ”baseline imple-
mentation”.

Code and complexity
The main argument against agents built on self learned code
is the size of the space of formal systems.

Tackling combinatorial problems Informally, we can
talk about ”the class of combinatorial problems” as what
we always work with in computer science and AI. Problems
that involve searching immense trees or assigning values to
weight matrices. These problems can be as big as the 170
billion parameters of a large language model, but we can
still tackle them.

What we cannot do is ”brute forcing” them, since they are
too big for that, but we know how to use all sorts of tricks to
tackle them. E.g., using overparameterization to make ”good
enough solutions” so abundant some can be found by gradi-
ent descent.

They are, so to say, the ”bread and butter” of computer
science work.

Tackling formal problems On the contrary, formal prob-
lems generate search spaces so big that the space of combi-
natorial problems becomes a set of measure zero in them. In
the previous case, we mentioned a search space of n ⃗170billion

as immense but doable. Using a formal language we can ex-
press numbers like: that number raised to itself applied it-
self number of times, etc. And if that wasn’t bad enough,
we have to consider the halting problem. If we allow code
to do endless conditional looping or endless conditional re-
cursion, waiting for a program is unfeasible. What we are
doing is some form of reinforcement learning and endlessly
running programs return no information.

The sad truth is we don’t know how to explore the space
of formal problems. It is useless beyond theoretical implica-
tions like Solomonoff induction.

Forward running code Therefore, to make learning code
feasible, we have to run a large amount of ”candidate pro-
grams” and that requires some restriction. In our initial work
(Basaldúa 2020a) programs were sequences of opcodes.
Conditionals were only possible through inhibitory mech-
anisms in a more biologically plausible way.

Now, running code (imperative code) is still a sequence
of opcodes, but it is generated from declarative code by a
process called interrogation (see section 3). We use ”for-
ward running code” to name the whole idea. You can see it

like walking down a tree, different decisions generate differ-
ent code deterministically but, whatever code is generated,
jumping backwards is not allowed. Recursion is possible
through field inheritance, but has a cost and will rarely be
deep.

Opcodes may be kernel bytecode or Bop statements. Bop
is short for Bebop, the language of Jazz.

Bop statements are one of:

• Constants
• Pure functions (from objects to objects)
• Methods: Functions with access to two fields.

Implementation-wise a field is an abstract parent of
both formal fields and semspaces described below. There
is no loss of generality from limiting it to two, since
methods can fork fields building arbitrary binary trees of
fields.

With this setup, learning to code is feasible. It is a tree
search. The search can be very big, depending on the prob-
lem, the domain and how much information the reward and
target (see below) provide. It is a reinforcement learning
problem and can be addressed with RL or DRL methods
such as alphaZero (Silver et al. 2017).

3. Objects, concepts and symbols
An established definition of ”symbol” would be: A mark
used as a conventional representation of an object, function,
or process.

Our definition is:

Definition 1 A symbol is a token that is unique in some field
and represents a concept.

Our approach is –if you need to use that word– symbolic3,
in the sense that our knowledge representation is a sequence
of symbols. Symbols are indices to concepts. For now, con-
cepts include Bop statements. Therefore, they are not lim-
ited to a form of logic, probabilistic reasoning or algebra.
They represent code which is general and includes all that
and much more.

We have to introduce a key idea here: they cannot just rep-
resent objects. We need to represent concepts as something
other than objects.

In modern AI, embeddings are used to represent con-
cepts, images, sentences, etc. This allows using algebra in
high dimensional spaces to define relations between them,
even across different classes (e.g., mapping images to texts).
While this has lead to unprecedented advances, it cannot
possibly define concepts that are unlimited by nature. You
cannot fully represent Germany as a tensor. You could have
an object-Germany in a board game that is a fixed size data
structure, but the real Germany is a concept. As knowledge
representation in an agent, it will always be: subjective, in-
complete and forever updating.

So, let’s start by defining ”object”.

Definition 2 An object is a tuple of tensors.
3And, of course, connectionist. It is connections all the way

down. And why not, neural, it uses deep learning where appro-
priate.



We use the term ”object” to mean any fixed-size data
structure, typically a tuple that can combine different types
of data, including single values.

We need dynamically allocating structures to represent
concepts. We start defining a concept by what it is not.

Definition 3 (Preliminary definition) A concept is a dy-
namic knowledge representation that cannot be represented
as an object. Only the subjective state of a concept at a given
moment in time can be serialized as an object.

This preliminary definition highlights the subjectivity and
temporality of the state of a concept, which is the only thing
an agent can aspire to have.

Usual candidates for such dynamically allocating struc-
tures are graphs/hypergraphs or informal ones like
Wikipedia pages in natural language with a structure. We
will describe concepts by how they work, rather than how
they are stored, but they are trees of sequences of symbols
that can be read as natural language with some peculiarities.
First we need a few more things.

We have already mentioned that in our approach every-
thing runs as code. To explain how, we first need to introduce
the container that maps symbols into Bop statements.

Definition 4 A formal field is a container with the defini-
tions of OpCodes. OpCodes are symbols representing kernel
functions and Bop statements.

Formal fields can be dynamically created by multiple in-
heritance.

The definition of formal field has been simplified since
the original implementations (Basaldúa 2020a). The original
definition included parts related with how to search code.
Now it is only defining how to run it.

Definition 5 A semantic space (semspace for short) is a
container of concepts.

Semspaces map symbols to concepts and are also dynam-
ically created by multiple inheritance. Concepts are code,
but mostly declarative code. Semspaces and formal fields
are similar, they have a common parent, but their function
and also the knowledge they contain is different. An agent’s
knowledge is stored in semspaces.

Code is text
The whole point of this framework is building software that
reliably communicates and leverages knowledge written in
natural language. The mapping of arbitrary code into arbi-
trary symbols allows for the knowledge representation to
be human readable and look like natural language. We say
”look like” because it still is some formal language that is
a subset of true natural language, but is understandable by
humans and can be edited as language.

Figure 1: Facebook’s bAbI engine example

In our PoC with Facebook’s bAbI engine (Weston et al.
2015) –it is a text-adventure type world that generates sce-
narios like the example shown in Figure 1– we have success-
fully managed to compute correct answers based exactly on
the original text mapped into code.

Of course, since the code is arbitrary human written code,
it is just proof that the knowledge representation can be hu-
man friendly. Also, once we have some structure, we can
learn new words and situations very easily.

How concepts work
As mentioned already, a concept is a data structure, identi-
fied by a symbol that is unique within a semspace, that con-
tains declarative code (and possibly some imperative code
that simplifies its operation). It supports both finding what
we want inside it and identifying it in a context. A context
is a semspace created for the purpose of some computation.

Concept interrogation: The chromosome analogy This
analogy is based on chromosomes being the storage of
genes. Each chromosome contains a thousand genes that can
produce ten times that number of different proteins and the
machinery finds the specific bits. We –personally– have no
idea how that biomolecular marvel works, but find it inspi-
rational for the much easier task of building code from the
”genes” stored in a concept.

Definition 6 Interrogation is running declarative code as
imperative. It is finding inside a concept an answer to a
question.

Interrogation is the mechanism for expressing parts of
concepts as imperative code. For now, interrogation is done
through pattern matching. Bear in mind that we are just
defining the framework. Finding the best ways to do each
part is a long term project.

Concept abstracting Concepts are made of other con-
cepts that are made of other concepts, ... The recursion can-
not possibly be infinite since each time it implies a different
semspace. As we recurse, we are traveling back to ancestors
of the semspace up to, possibly, the last ancestor.

Nevertheless, exploring that tree becomes gigantic soon
and is fortunately rarely a good idea. What we mean by
abstracting a concept is somehow replacing it by a place-
holder. There is no actual ”replacement”, it is just a possible
branch in a tree search that will be taken most frequently.
The ”placeholder” is a terminal abstract concept that has
no lower level concepts (is part of a formal field). Concepts
have code that defines how they abstract in a given context.

Concept blending Concepts compose with other con-
cepts. Not just like code does, by executing functions over
the result of other functions, but to form new concepts
that inherit some of their code. E.g., The word ”antifunny”
should be understood even if it has not been seen before.

Understanding language requires grammatical parsing of
concepts. This is called concept blending and is a recur-
sive process that identifies structure based on structures of
structures, a little bit like protein folding. And, again, a tree
search.



4. Putting it all together with examples
Different implementations
In the present section, we detail the implementation that has
been constructed as a proof of concept with the aim of gain-
ing a deeper understanding of the best way to create con-
cepts, fields, and semspaces.

We are putting everything together to show that what we
already described is enough to tackle complex intelligence
engineering architectures. We also show how learning-wise
a tree search is all we need. Once a model is trained, the
contextual knowledge on each decision node is enough to
provide valid decisions with little computation.

It is not our intention at this point to provide a canonical
experimental section accompanied by a comparative analy-
sis with another existing implementation since existing ap-
proaches are not directly comparable.

While we have made significant progress in the imple-
mentation, several aspects require further refinement and op-
timization. We have already described the application to the
ARC challenge and published the complete implementation
in (Basaldúa 2020b).

What are the opcodes So far, we have just mentioned that
opcodes are primitives (constants, functions and methods) or
compositions of opcodes that we call snippets. Snippets can
also be constants, functions and methods, but they are de-
fined from primitives and other snippets. The notion of item
in the original paper is no longer necessary. In the original
implementation items could be evaluated as an intermedi-
ate result. Intermediate reward is now part of the searching
algorithm, not the code.

Primitives can be anything. In the ARC implementation
they are short snippets of numpy code, typically from 3 to
5 lines, that are utilized for extracting or modifying im-
ages. E.g., pic fork on v axis as pics takes an image locates
a vertical axis and returns both sides of the axis as a tuple of
pictures or fails. A complex deterministic algorithm like a
vocoder, which converts a sound wave into a tuple of (pitch,
envelope and aperiodic components) is just a primitive, a
pure function. A model that requires training can also be a
single primitive, a method. Being a method gives it access
to some field to store the model’s parameters. One can con-
struct both types of algorithms, using fundamental building
blocks such as a basic set of linear algebra tools. In our proof
of concept using bAbI, we implemented basic operations on
sets as primitives. All bAbI tasks use a vocabulary of just
141 words. With a set of 19 primitives we can solve all the
questions asked by bAbI and some new questions about the
scenarios generated. We also created scenarios by combin-
ing different bAbI tasks.

Composing tree search by example: Speech to text
To show how more conventional machine learning models
can be implemented and benefit from lifelong learning, we
start describing a very lightweight speech to text pipeline.
For now, we have this and an end-to-end solution still com-
bining some components that are not implemented as Bop
code. The currently implemented vocoder is a refactoring
of World (Morise, Yokomori, and Ozawa 2016) as a fixed

memory C++ function. It can express complex human voice
nuances including singing. This design was SOTA (State
Of The Art) few years ago and is around two orders of
magnitude more computationally efficient than current ap-
proaches, from around a hundred times real time on CPU to
requiring a GPU to be just above real time. Combining both
the efficiency and SOTA performance is a mid-term goal for
our Jazz platform.

Figure 2: A speech to text pipeline
Steps labeled decision correspond to multiple choice (soft-
max) evaluations. A run down the tree starts at the top and
branches at each possible decision until it reaches the fi-
nal evaluation. A run up propagates the result of the eval-
uation back to the weights present at each decision branch.
The vocoder does not have trainable parameters, the Hidden
Markov Model (HMM) and the matcher do. The matcher
compares with phonetic versions of words created by a
phonemizer.

Note that this implementation has some advantages com-
pared with a ”classical” fit/predict model.

• By converting a classification problem into a decision
problem we can approach both learning and predicting as
a tree search. Furthermore, combining MCTS with strong
domain specific priors we can backpropagate evaluation
combined with intermediate knowledge.

• The same framework that optimizes code by trying to
match concepts to an input can be used to build a pipeline
that is not learned as code, since it does not make use of
concepts. It is still a pipeline that learns and predicts at
the same time.

• It can be used as a trained model that does not learn fur-
ther by just running down the tree and picking ”best so
far”.



• It can also be used as a model that further improves.
When the likelihood of the final solution according to
the language model is low, we can invest in computation
trying to improve it. We can also ”give up” when that
computation is not further improving.

• Learning happens in a context. Through inheritance we
can control control the life cycle of the trained models to
fit individuals or groups.

So far, we have not used concepts. This pipeline could be
stored in a concept called ”listen”. Different sound sources
could also be concepts and the whole process could be trig-
gered by text as we see in the next example.

An example with concepts: Text as code
In this example we show how text as code works in our first
implementation. We combine text generated by two differ-
ent bAbI tasks ”Single Supporting Fact” and ”Compound
Coreference”. Then, we introduce an new person, Jabari, not
in bAbI generator’s vocabulary and a question that could not
be generated by the bAbI generator.

Figure 3: Short bAbI example dialog with answers
Output generated by the model is displayed in orange.

Note that generating correct answers, which can be done
by gofai-like ad hoc programming, is not the most important
here. What counts is having a minimalist system that grows
by just doing tree search with minimal branching, one algo-
rithm for everything. This is possible since what is creating
and storing new code are the concepts.

We start with a semspace named sys.agent that contains
the 141 words bAbI generates as symbols to concepts of
which only ten in the current example are primitives: (per-
son, location, to move to, to be at, to be with, then, and, they,
where, who). The rest is defined in terms of primitives. bAbI

includes many synonyms. Using just 19 primitives, all di-
alogs generated by the 20 tasks can be answered correctly.
Our initial semspace named sys.context inherits sys.agent
and sys.interaction, a concept to store I/O.

Concept blending Concept blending is matching sym-
bols coming from a tokenizer to symbols that are keys in
a semspace. This requires finding appropriate solutions to
multiplicity or non existence, including modifying how it
was tokenized. We consider the findings from link grammar
(Sleator and Temperley 1995) and its community influen-
tial to our approach. Mainly: deterministic rules about word
links can be used to completely classify grammatically cor-
rect English from incorrect. We do not use link grammar
for blending to make it more robust to incorrect input. Text
does not always come in correctly spelled and punctuated
complete sentences. Our approach starts local and composes
possibly complex sentences from smaller parts. Patterns are
learnable rather than written by experts. Link grammar is
still a valuable source of local patterns we are planning to
use.

Concepts branch different parts of their content through
pattern matching. Matches evaluate to a real number rather
than (true, false) to represent likelihood. Patterns like [per-
son/to move to/location] are part of the concept to move to.
The different forms like ”moved to” or ”went to” forward
to to move to. This forwarding will in general carry extra
information, like verb tenses, plurals, etc.

In the sentence ”Jabari is talking to Sandra.” we see con-
cept blending finding a possible match between the unknown
word Jabari and the concept person. It outputs some tem-
plate message to inform that it created a new concept that
abstracts as a person. That could also have been a question
asking the user for clarification.

Like the rest, concept blending is a tree search with a lo-
cal evaluation (the patterns) that can be trained from global
evaluation (updating pattern weights from the final value).

Concept abstraction A possible approach to blending
could be using POS (Part Of Speech) for the patterns.
That produces syntactically correct matches, but they may
be meaningless. We could also introspect the candidate
matches to see if somewhere inside them we find relevant
information. As the system grows, we have a lot of informa-
tion. In our example, in ”Mary and John went to the hall-
way.” as blending links Mary, we already know that she is
a person, but also she is currently at the garden and was at
the office before that. That extra information does not help
with blending. Having to search through possibly a lot of
information for matching could easily become inefficient.

Abstraction is a mechanism that defines categories (aka.
placeholders) used in blending that Mary fits. In this case
”Mary is a person.” is not just a fact, but a special kind of re-
lation meaning ”Mary matches the placeholder person.”. She
can also be: a proper noun, a female, a doctor or whatever at
the same time. Abstraction is also used for disambiguating
polysemy since concepts can have many candidate patterns
that express different parts of it. This multiplicity is handled
by blending via tree search.



Abstraction is not only used in blending, it provides in-
formation about Mary, since the categories are, of course,
concepts.

Like everything else, abstraction can be learned and so
can new patterns possibly with new categories.

Concept interrogation Each possible blending match
generates code. In our example, sentences are very simple.
The imperative primitives to move to, to be with, where is,
who is with do not appear together in the same sentence.
Each sentence is fully evaluated by creating a snippet that
runs and is evaluated. The sentences with to move to, to
be with silently connect both the person and the location
through a declarative is at. The coordinating conjunction
and builds a noun phrase. The pronoun they matches it solv-
ing the coreference using sys.interaction to see previous in-
put. The adverb then is implemented to provide a sense of
time in other tasks. In this task, the location would be up-
dated also without it. The sentences with where is, who is
with print the answer using a template checking the loca-
tions that have been previously connected to persons.

In general, the complexity of a sentence is not limited. If
we had written ”Mary and Daniel moved to the office and
later they went to the garden.” as one sentence, blending
would start locally and match the parts. The difference is:
we are parsing a bigger tree rather than two small ones. At
the top level we will have two clauses linked by a coordinat-
ing conjunction. Only one of them can be imperative, that
is a requirement to make it work. If both were imperative,
they could be executed out of sequence. The declarative code
will also run. It is like in a lazy evaluation of a function,
everything that is a dependency runs in the order in which
the coordination requires results, not necessarily the order
in which the words are written.

The platform is efficient at handling branching. Different
alternatives generating different code and results have a part
that is common and a part that is different. Re-using results
avoiding having to recompute them can be done through
caching. The implementation of the class core simplifies it.

5. A pragmatic approach to engineering
intelligence

Definition 7 Intelligence is conversion into form. Form (as
in formal) is unambiguous definition. In our case, just an-
other word for code.

Defining intelligence sounds like invading many other
academic fields. The reason why we do it is because con-
verting non formal (data and natural language) into formal
(model and code) is the key ingredient of AI. We could in-
vent a new word for it like ”formalizing”. But, it happens to
be exactly:

• What IQ tests measure: The capacity of finding a model
that explains some given examples and applying it to new
ones.

• What is meant by: ”Intelligence is building models.”
• by: ”Intelligence is finding patterns.”
• or by: ”Intelligence is problem solving.”.

We already have a word for that, intelligence, we don’t
need a new one.

That has been said long time ago by McCarthy: ”The in-
telligence, if any, of the advice taker will not be embodied
in the immediate deduction routine. This intelligence will
be embodied in the procedures which choose the lists of
premises to which the immediate deduction routine is to be
applied.” (McCarthy 1960)

We can pretend defining intelligence is ”one hundred No-
bel prizes away” or we can just do it so that we can engineer
it.

It is important to exactly point out where it is: In the step
of building code (or fitting models) to the data to obtain a
formal model which we can run on new data and evaluate.

The next definition, also possibly controversial, was al-
ready argued in the original formal fields paper:

Definition 8 Understanding is being able to successfully
run and evaluate code in order to optimize it.

Basically, the only thing computers natively understand is
function optimization. When we convert chess into function
optimization, they ”understand” chess as a result of optimiz-
ing the function that plays chess. And they provide evidence
of understanding by the actions they take, which is enough
for an engineer, maybe not for a philosopher.

It makes sense to have a specific definition for comput-
ers that is different than for humans (although some say:
”This doesn’t run.” as a synonym of ”I don’t understand it.”).
Agents need to use a precisely defined ”I don’t understand.”
in dialogs with humans. The question may need clarification,
maybe it is just misspelled, etc. Originally, this was called
”understanding within a field”. The field part is just one way
of doing it. It is not really necessary and makes it less clear.

Armed with these definitions, we can describe what
agents are doing:

Agents are searching candidate knowledge representa-
tions of data to fit some function (see section 5) and from
those they understand (i.e. those which run and can be
evaluated) they optimize and find out the result of the best
representation. All this subject to resource limitations. The
results are possibly used in the context of another computa-
tion.

6. Agency and learning
Agency
What we build, rather than models that have fit/predict
modes are lifelong agents. Lifelong has nothing to do with
living computation, self reproduction or anything like that, it
is just about running for unlimited time without exhausting
its resource allocation. It uses resources to do computation
and gets more as a reward for useful output. The agent is per-
sisted, built from scratch or the good parts of other agents,
can be stopped and edited/fixed/updated.

It has:

• An I/O pipeline to communicate data, targets and out-
put. A target can be a constant that represents some ob-
jective like the ”observed Y” in supervised learning or
the ”correct solution to an example” in the ARC (Chollet



2019) challenge. It is code, so it can be a constant or a
function.

• An event callback that provides computation as a result
of data coming in or just time passing

• Knowledge representations: Semspaces
• A computational budget, a cost function (a proxy that

estimates the computational cost in advance which is
used for practical reasons instead of the actual cost) and a
reward for its output in the same units that can possibly
be negative.

• A metric that is a proxy function of the expected reward
and has no cost to evaluate on intermediate results.

Learning
Now that we have precisely defined what part intelligence
is, and that our agents are lifelong, we see that learning does
not play the same role as in models that are fit/predict.

In AI learning is –and this in not controversial, unlike
how the word is often used for humans– not acquiring more
knowledge, but improving at a task. Acquiring more knowl-
edge is so trivial for software it doesn’t even need a name
(try inserting rows in a database).

We want to highlight that once an agent is proficient at
a set of tasks, learning becomes less important. The most
useful models in production –say Google translate– do not
learn at all and are occasionally replaced by better models
learned offline. In this case, an agent that applies intelligence
converting questions made by humans over a domain, say
geography, is converting them into form (using intelligence
to interpret the question in natural language, clarifying it if
necessary) and answering them. It is useful without learning
(becoming more efficient at the same or a new task). It can
also update its geographical knowledge without that being
learning in the computer sense.

Differentiable learning vs. lifelong learning End-to-end
differentiable learning (aka. deep learning):

• Is the most efficient way known to learn huge datasets,
especially from scratch.

• Is the most efficient way known to fit gigantic models.
• Is best at most problems, especially those problems in

which a structure in the form of a lower dimensional
manifold exists.

Why not use DL all the way? The answer is, that comes
at a price of obscurity and inefficiency that we do not want
to pay. We want to build agents that are faster, use less re-
sources and can be deployed with little or no deep learning.

Experience There are many applications in which an
agent is not expected to rediscover Quantum Field Theory
from raw data of a particle accelerator. Just being honest
about its own limitations and helpful when it can be, without
exploring infinite trees is enough. Many decisions in walk-
ing the tree can just be ”in this situation, that was useful”.
Occasionally, explore new paths but mostly just follow suc-
cessful ones. We call data about situations and success rates
experience. As in Monte-Carlo Tree Search, the algorithm is
”always-ready”, meaning it has an answer, possibly not very

good, and it can spend resources improving it. Experience
is a principle rather than an algorithm: Having a shallow
always-ready answer for most tree search decisions based
of previous success rates in some context.

7. Present and future goals
Our main goal for this architecture, the reason we created
The Tangle and what we use to battle-test our implementa-
tions is making sense of human-written text. The next goal is
becoming a reliable natural language interface for software
services.

Dreaming about near future applications to advance to-
wards deeper human interaction, we could give some defini-
tions.
Definition 9 Self awareness is having a concept of self in
one’s semspace. That is as natural for an agent as playing
chess against itself is for a chess engine. It will be just as
good/bad, smart/stupid about itself as about anything else.
Definition 10 Introspection is being able to make sense of
one’s code. And in this case, it is superhuman just out of the
box by design.
Definition 11 A model of mind is having good concepts of
other agents and humans. Again, like with self awareness it
will be as good/bad as anything else.
Definition 12 Self experience is having access to one’s past
history of interactions (experience as in record, not as in
perceptual experience). Again, superhuman out of the box.

None of that is hard to build with what we already have.
We are not aware of any other architecture in which this is
as simple. Some authors expect it to ”just emerge.” We don’t
want to make an argument about that, but we do want to
highlight that engineering it is not the same as hand-coding
it. Engineering it makes it reliable, understandable, and ed-
itable, but it is still the agent’s task to learn and evolve it,
each agent in its own subjective way.

8. Conclusion
We have presented an architecture built on top of ideas that
have been researched by our team in recent years. It operates
as a tree search of tree searches (which is still a tree search)
to tackle ambitious present and near future challenges.

The architecture is open to different search algorithms. It
is work in progress to find out which one is best, but we
have already shared experimental results with algorithm de-
tails and code in the ARC challenge (Basaldúa 2020b), The
Tangle and TLSS.

We also discuss the unique position of our approach to
tackle reliable human interaction in natural language.

9. Acknowledgments
We wish to thank BBVA for releasing Jazz version 0.1.7 as
open source software in 2017. Jazz is a highly efficient data
processing platform that is currently being refactored as a
server implementing formal fields in both research and in-
dustrialized applications.

We wish to thank BBVA AI Factory for supporting our
research including The Tangle and this paper.



References
Basaldúa, J. 2020a. Formal Fields: A Framework to Au-
tomate Code Generation Across Domains. arXiv preprint
arXiv:2007.14075.
Basaldúa, J. 2020b. JazzARC, PoC on Code Generation us-
ing Formal Fields on the ARC Challenge. https://github.
com/kaalam/JazzARC.
Chollet, F. 2019. The Abstraction and Reasoning Corpus
(ARC). https://github.com/fchollet/ARC.
McCarthy, J. 1960. Programs with common sense. RLE and
MIT computation center.
Morise, M.; Yokomori, F.; and Ozawa, K. 2016. WORLD:
a vocoder-based high-quality speech synthesis system for
real-time applications. IEICE TRANSACTIONS on Infor-
mation and Systems, 99(7): 1877–1884.
Schmidhuber, J. 1990. Making the world differentiable:
on using self supervised fully recurrent neural networks
for dynamic reinforcement learning and planning in non-
stationary environments, volume 126. Inst. für Informatik.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2017. Mastering chess and shogi by self-play with
a general reinforcement learning algorithm. arXiv preprint
arXiv:1712.01815.
Sleator, D. D.; and Temperley, D. 1995. Parsing English
with a link grammar. arXiv preprint cmp-lg/9508004.
Von Neumann, J. 1958. The computer and the brain. Yale
university press.
Weston, J.; Bordes, A.; Chopra, S.; Rush, A. M.;
Van Merriënboer, B.; Joulin, A.; and Mikolov, T. 2015. To-
wards ai-complete question answering: A set of prerequisite
toy tasks. arXiv preprint arXiv:1502.05698.
Winograd, T. 1980. What does it mean to understand lan-
guage? Cognitive science, 4(3): 209–241.


