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ABSTRACT

Modifications to test-time sampling have emerged as an important extension to
diffusion algorithms, with the goal of biasing the generative process to achieve
a given objective without having to retrain the entire diffusion model. However,
generating jointly correlated samples from multiple pre-trained diffusion models
while simultaneously enforcing task-specific constraints without costly retraining
has remained challenging. To this end, we propose Projected Coupled Diffusion
(PCD), a novel test-time framework for constrained joint generation. PCD in-
troduces a coupled guidance term into the generative dynamics to encourage co-
ordination between diffusion models and incorporates a projection step at each
diffusion step to enforce hard constraints. Empirically, we demonstrate the effec-
tiveness of PCD in application scenarios of image-pair generation, object manip-
ulation, and multi-robot motion planning. Our results show improved coupling
effects and guaranteed constraint satisfaction without incurring excessive compu-
tational costs.

1 INTRODUCTION

Diffusion models have achieved remarkable success in generative modeling, with a plethora of ap-
plications ranging from image (Rombach et al. [2022), video (Ho et al., 2022), language (Li et al.|
2022), graph generation (Niu et al.,|2020; Madeira et al.,[2024; Luan et al.,|2025)), as well as robotics
(Janner et al., 2022; |Chi et al., 2023; |Carvalho et al.| [2023)). One of the crucial factors underlying
these achievements is the use of fest-time conditional sampling techniques such as classifier guid-
ance (Dhariwal & Nicholl 2021} [Song et al., [2021b), inpainting (Lugmayr et al., 2022} [Liu et al.,
2023)), reward alignment (Uehara et al.| 2025; [Kim et al.| 2025), and projection (Christopher et al.,
2024; Sharma et al., 2024)).

While these methods are primarily designed for sampling from univariate distributions, numerous
real-world tasks require sampling highly correlated variables from joint distributions, e.g., image
pairs (Zeng et al.,[2024), multimedia (Ruan et al.,|2023; Tang et al.| 2023} |Hayakawa et al.| 2025)),
traffic prediction (Jiang et al., 2023} |Wang et al., 2024b)), and multi-robot motion planning (Shaoul
et al.| [2025; |Liang et al., 2025). Directly training a diffusion model to capture one single joint
distribution is costly and inefficient. First, high-quality annotated datasets of joint behaviors are
scarce, expensive, and often proprietary. One example is real-world traffic trajectory data, which is
essential for prediction and planning in autonomous driving (L1 et al.| [2023). Second, training joint
distributions becomes increasingly computationally demanding as the number of variables grows
(Gu et al.}2024), and relearning the entire joint distribution becomes necessary when marginals are
changed. For instance, coordinating robot teams may require retraining the entire model even if
only one robot’s behavior differs from its marginal of the pretrained joint for a new task.

Inspired by compositional modeling (Du et al.,[2020; |L1u et al., 2022} |Du & Kaelbling} 2024; Wang
et al.| 20244a; Cao et al.,[2025), we opt for a more practical approach of modeling multiple marginal
distributions independently — each cheaper and simpler to train — and to couple them during fes?-
time in a sensible way to obtain the required joint distribution. Unfortunately, such test-time cou-
pling alone does not efficiently guarantee adherence to task-specific hard constraints such as safety
protocols and physical limits. To address such limitation, we propose extending standard Langevin
dynamics by combining projection methods with coupled dynamics. Our method cleanly integrates
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multiple pretrained diffusion models through a coupling cost while explicitly incorporating a pro-
jection step to ensure strict adherence to task-specific constraints throughout joint sampling.

Contributions. We propose Projected Coupled Diffusion (PCD), a novel test-time framework uni-
fying both coupled generation leveraging multiple pre-trained diffusion models and projection-based
generation to enforce hard constraints only specified at inference. PCD suitably generalizes some
conditional sampling techniques including classifier guidance. We show empirically that PCD with
both a coupled cost and projection is superior in jointly generating highly correlated samples with
hard constraints compared to alternatives with the absence of either or both components.

2 RELATED WORK

Diffusion Models and Guidance Diffusion models conceptualize generation as a progressive de-
noising process, i.e.,|Denoising Diffusion Probabilistic Models (DDPM)|(Ho et al.| |2020), or equiv-
alently, as a gradient-descent-like procedure that leverages the score of the data distribution within
a Langevin dynamics framework (Welling & Teh, |[2011}; Song & Ermon, |2019; Song et al., [2021b).
Improving DDPM, Song et al.| (2021a) introduced DDIM to accelerate sampling, and Karras et al.
(2022) systematically clarified key design choices for practitioners. Guidance mechanisms form an
important class of conditioning techniques for diffusion sampling. |Dhariwal & Nichol| (2021) first
introduced classifier guidance (CG) to steer pretrained diffusion models at inference time without
retraining, while Ho & Salimans| (2022) proposed classifier-free guidance by integrating condition-
ing signals directly during training. Building upon CG, subsequent work has extended guidance
beyond classifiers to include analytic functions (Guo et al. 2024; [Lee et al., |2025) and property
predictors (Meng & Fanl 2024} [Feng et al 2024) in tasks beyond image generation.

Constrained Diffusion To address requirements of constraints in real-world tasks, researchers
resort to constraint-guided diffusion generation (Yang et al [2023; [Kondo et al., 2024; [Feng et al.|
2024). However, such paradigm falls short of enforcing constraint satisfaction. This incentives the
introduction of projection at each step of diffusion (Bubeck et al., 2015} |Christopher et al., 2024;
Liang et al} [2025). A primal-dual LMC method by |(Chamon et al.| (2024)) handles both inequality
and equality constraints, and Zampini et al.| (2025) proposed a Lagrangian relaxation of projection in
the latent space. |Lou & Ermon| (2023) proposed Reflected diffusion for hypercube-constrained data
while Metropolis sampling (Fishman et al., [2023b)), log-barrier and reflected dynamics (Fishman
et al., |2023a)) were also introduced to Riemannian diffusion models.

Diffusion for Joint Generation Previous studies in joint generation using multiple diffusion mod-
els primarily targeted multimodal generation. Bar-Tal et al.| (2023) and [Lee et al|(2023) demon-
strated panoramic image synthesis by synchronizing several image diffusion models. Xing et al.
(2024) and |[Hayakawa et al.| (2025) demonstrated synchronized audio—video generation, and [Tang
et al.| (2023)) introduced a framework for generating and conditioning content across combinations
of a set of modalities. Joint high- and low-level robot planning is also studied in (Hao et al., 2025).

3 PRELIMINARIES

Notation. Denote by Z™ the set of all positive integers, || - || the Euclidean norm and || - || 7 the
Frobenius norm. Let X € RP» and Y € RP» be random variables where D,,D, € Z" are
their dimensionality, respectively. We denote px () as the probability density function of random
variable X, likewise for Y, and may omit the subscript indicating the random variable when it is
clear from the context for notational brevity. Let V'(, ) be a normal distribution with mean 1 and
covariance Y. Denote TTic,, () : RP+ — RP= as a projection onto a nonempty set Kx C RP=:

[k (z) £ argmin, ¢, ||z — x||

Diffusion and Score-based Generative Models. We examine diffusion models’ inference from
the perspective of Langevin dynamics. Let Ex(z) : RP= — R be a continuously differentiable
energy function with Lipschitz-continuous gradients and Z = [, exp (—Ex(z))dz < oco. This

energy function defines a probability density px (x) = 1/Z-exp (—Ex (z)). To sample from px (x),
one may leverage [Langevin Monte Carlo (LMC)|(Roberts & Tweedie} 1996} [Welling & Tehl [2011).

"We break ties arbitrarily if arg min ||z — || is not unique. Uniqueness always holds for convex Kx.

zeK x
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Given an initial sample from a prior distribution X ~ p'y () and a fixed time step size § € R, the
[CMCliterates are as follows:

Xip1 = Xy + 0V logpx (Xe) + & (D

where ¢, € N(0,201) and V,log px (z) is called the (Stein) score function of px (x). When § — 0
and T' — oo, the distribution of Xt converges to px (x) under some regularity conditions (Welling
& Tehl 2011; |Song & Ermonl, [2019). In practice, the analytic form of Ex () is not accessible.
Instead, the score V log px (x) or equivalently the gradient —V Ex (x) is approximated by a neu-
ral network parameterized by 6 and trained via denoising score matching (Song & Ermon| 2019):
5,9)( ('ra t) ~ vangX,t(x)'

Classifier guidance. Classifier guidance (CG) is a “soft” way to steer the diffusion sampling pro-
cess toward desired distributions. Given a desired attribute ¥, as (a constant) condition, the objective

of CG is to sample from a target conditional distribution px|y (z | ¥ = yo). CG achieves this by
perturbing the original learned score with a likelihood term to obtain the posterior score:

Valogpx)y (x| y =wo) = Valogpx () + Vlogpy | x (y = %o | ©),

where Vlog px () is approximated by the trained score model s%, and the likelihood py | x (y | z)
can be modeled by a classifier, predictor, or a differentiable function.

Projected diffusion. To enforce the hard constraint X € Kx, projected performs a projec-
tion operation at every diffusion time step:

X1 = %I (Xt + 0V logpx (x) + €) 2)

with e, ~ N(0,267). The convergence properties of Eq. is analyzed by Bubeck et al.| (2015)
when the constraint set K x is convex and the distribution px () is log-concave.

4 PROJECTED COUPLED DIFFUSION

We study the problem of generating correlated samples (X, Y") subject to the test-time constraints

of X € Kx and Y € Ky, with two pre-trained scores or diffusion models sg((x, t) and sf,(y, t),
parameterized by 6 and ¢, respectively, without retraining either of them.

Coupled Dynamics through Costs. To facilitate correlation between the generated X and Y, we
propose using a cost function to couple their diffusion dynamics, i.e., Eq. (I)) for X and likewise
for Y. Let the cost function c(x,y) : RP= x RP» — R be continuously differentiableﬂ Then the
coupled joint dynamics of (X,Y) are

X1 = Xt — ¥0Vae( Xy, Vi) 4 055 (Xi, 1) + ex (3a)
Yigr = Y —v0V,e(Xy, V) + 052 (Vi, t) + ey (3b)

where v € R is a coupling strength parameter, ex € N'(0,20Ip, ), ey, € N(0,20Ip,) arei.id.
Gaussian noise drawn at each diffusion time step. The cost function c¢(x, y) can either be an analytic
function or a neural network, e.g., a trained classifier or a regression model, and we demonstrate the
use of both in our experiments.

As an extension, for each cost function instance ¢(x,y), we can derive its posterior sampling (PS)
variant cps(x,y,t) with the DPS method (Chung et al), [2023). Concretely, by Tweedie’s formula
(Efron, 201 1)) we may obtain a point estimate for each variable’s denoised version through the trained
scores, and then compute the cost with those estimates:

crs(w,9,1) = ¢ (X; + 0% sk (X, ), Vi + 0153 (Vi 1))

where 0%, and o3, , are the noise levels at time step ¢ associated with the score models.

Remark 1. The PS variant does not exactly match the description of a cost function in Eq. due
to the extra dependence on diffusion time step ¢. Yet empirically we find them performing well in
our proposed framework.

2n practice, this can be relaxed to cost functions that possess subgradients.
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Figure 1: Toy example of fitting two blocks with different sizes into a narrow corridor. (a) Setting:
the bigger block (purple) and small block (green) are with lengths 6 and 2. Both score functions are
those of two Gaussians centered at the middle of the red corridor of length 9. (b) Naive conditional
approach: the big block occupies the center and the small block is highly possible to overlap if to
stay within the corridor (orange for probability mass of overlapping positions, blue for that of non-
overlapping positions). (c) The coupled dynamics can place both blocks at different sides with much
lower overlapping probabilities, but still can go out of the corridor. (d) PCD produces solutions with
low overlapping probabilities and guarantees both blocks stay within the corridor.

Projected Coupled Diffusion. On top of promoting correlations between the generated samples,
we also aim to enforce the constraints given only at fest-time. As such, we propose to join the
coupled dynamics and projection, resulting in the Projected Coupled Diffusion (PCDﬂ

Xyp1 = I (Xt — 70Voe(X, Vy) + 6% (X, t) + €x.t) (4a)

Yipr = T (Y= 70V,0(X0, Yi) + 855 (Y2, 1) + v, ) (4b)
Y

where § € R is the step size parameter, v € R is the coupling strength parameter, €x ; ~

N(0,26Ip,), ey ~ N(0,20Ip,) are i.i.d. noise drawn per step and Xy ~ N(0,Ip,), Yy ~

N(0,Ip,). Generation algorithms of our method adopting or[DDPM]are in Appendix

We illustrate the importance of simultaneous coupling and projection through a toy example (Fig-
ure[Ta). Two 1D blocks of different lengths must fit within a corridor and avoid overlapping as far
as possible. Each of the block’s center (denoted by X and Y) is generated with a score model that
has learned a Gaussian distribution centered at the midpoint of the corridor. A naive approach is
to first generate X with only its learned score, and then generate Y conditioned on X via classifier
guidance. However, this can lead to samples with poor mutual correlations, e.g., the first generated
X occupies the center of the corridor regardless of Y, leaving not enough room to fit both (Fig-
ure|1bj)f’| In contrast, coupled dynamics incorporates mutual influence into the generation process of
both variables via the cost function, resulting in a much lower overlap probability, yet could violate
the hard corridor constraint (Figure [Ic). Our proposed method, PCD, combines coupled dynamics
and projection (Figure[Id), avoiding overlaps while enforcing the corridor constraint.

RELATIONSHIP TO OTHER METHODS

Classifier Guidance. Interestingly, our framework can encompass the prevailing technique of
classifier guidance (CG) as a special case. If we (i) set the cost function as c(x,y)
—logpy|x (y | ), assuming a continuously differentiable density py | x exists and the (approxi-
mated) gradient V.py|x (y | x) is accessible, (ii) let Ky be a singleton only containing the constant

condition Ky = {yo}, and (iii) x = R+, then PCD reduces to
Xiy1 = X¢ 4+ 6Valog [(pyx (Wo | Xb)) " px(Xi)] + e, e ~N(0,201) )]

where v becomes a temperature for the likelihood and trivially Y; = yo; when v = 1, the gradient
term fully recovers the score of the posterior distribution px|y (« | ¥ = yo). In that regard, CG can
be seen as PCD with one variable fixed and projection removed in the other.

3While the assumptions in (Bubeck et al.l 2015) do not directly apply due to the non-convex (non-concave)
nature of the neural networks used for score approximation, we observe that PCD performs well in practice
with reasonable parameters.

“If the small block is placed first, it is highly likely to become even infeasible to position the big block
without exceeding the corridor or overlapping.
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Projected Diffusion. We can consider projected diffusion as PCD without coupling. In PDM
(Christopher et al.l 2024), which only concerns a single variable X, the dynamics of X is
projected onto a nonempty but not necessarily convex set C C RP=. This work fits into PCD in the
sense of (1) Kx = C, Ky = {yo}, and (ii) the cost function ¢(z,y) = 0, preserving the projection
and decoupling the dynamics (turning Y; into a dummy variable).

Compositional Diffusion. Another notable line of research is in compositional diffusion (Liu
et al., 2022 Wang et al., 20244} |Xu et al.| 2024; |Cao et al., [2025). Similar to ours, this class of
methods also aim to “combine” multiple distributions modeled by [energy-based models (EBMs)|
e.g., diffusion or score models. Unlike ours, however, they still focus on a univariate distribution
(c.f. a joint distribution in ours). These works attempt to sample from a target product distribu-
. T N i N 1

tion 3 (&) o px () TTIL, (v () /px (2)) o exp(—Ex(2) - exp (N Bx(2) = = By ()
where Eé (x) are the corresponding energy functions for ¢ = 1,...,N. In practice, the gra-
dients of the N energy functions VE}, () are learned (independently) by N diffusion models
sgg. PCD can conceptually cover those methods by (i) projecting X; onto R”+, (ii) projecting
Y} onto a singleton {yo} and rendering it a dummy variable, and (iii) setting the cost function as:

c(z,y) =N - Ex(z) — va E%, (), whereas only its partial gradient V.c(x, y) is being used.

Joint Diffusion. |Hayakawa et al.| (2025) propose to decompose the “joint scores” V  log p(z,y)
and V,logp(z,y) with Bayes rule: Vx, logp(X;,Y;) = Vx,logpx(X:) + Vx,pyx(Ye|X:)
and likewise for Vy,log p(X;,Y;), and train one single discriminator Dy(z,y) to approximate

both conditional scores: Vx,logp(Y:|X:) = Vx,log %, likewise for Vy,logp(X¢|Y;).

PCD can cover this by setting the constraint sets to Kx = RP= Ky = RPv, and the cost to

clw,y) = —log oprs.

5 EXPERIMENTS

We seek to address the following research question:

How effective is our proposed PCD method in terms of jointly generating correlated samples with
test-time constraints compared to generation only with projection, coupling costs, or neither?

We also explore via ablations the tradeoffs between coupling and trained distribution adherence.

5.1 CONSTRAINED MULTI-ROBOT NAVIGATION

We demonstrate PCD in constrained multi-robot motion planning tasks (Shaoul et al., [2025)) and its
extension to more than two Variablesﬂ Given a start and goal location for each robot, our objective
is to use pretrained diffusion models to generate 2D path trajectories that: (i) avoid collisions with
static obstacles and any other robots, (ii) respect hard velocity limits specified at test time, and (iii)
exhibit specific motion patterns dictated by the environment. See Appendix for task details.

Projection. We use projection to enforce max velocity constraints on each robot. Denote the
velocity limit as vy, the (physical) time step size as At, and trajectory horizon as H. The projection
can be written as an optimization of which the feasible set is our constraint set Kx:

in_||X - X|? 6
i X - X3 (6
S.t. ||.130 — X1H < Umax At, (6b)
||Xh_Xh71H < UmaxAt, h=2,... H, (6¢0)

where X is the diffusion-predicted trajectory for one robot in matrix form, X, € R? is the position
vectors at (physical) discrete time step h and 2y € R? is a known starting position. This convex
optimization problem can be efficiently solved in parallel using the Alternating Direction Method

SInstead of aiming for state-of-the-art performance, these experiments demonstrate that a simple method
like PCD can achieve strong results without intricate domain-specific extensions as MMD(Shaoul et al., 2025).
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(a) MMD-CBS (b) DIFFUSER (c) PD (d) CD (w/o proj.)  (e) PCD (Ours)

Figure 2: Robot trajectories in Hi ghways with N = 4 robots generated by the compared methods.
Red crosses mark collisions; blue stars mark velocity constraint violations. The desired motion pat-
tern is to circle the central obstacle counterclockwise. (a) MMD-CBS excels in collision avoidance
but cannot guarantee velocity constraint satisfaction. (b) Vanilla DIFFUSER fails to generate both
collision-free and velocity constraint-compliant trajectories. (c) Projection only enforces velocity
constraint but ignores collision avoidance. (d) A coupling cost facilitates inter-robot collision avoid-
ance but cannot guarantee velocity constraint. (e) Our method can effectively generate collision-free
trajectories and enforce the velocity constraint. More qualitative results are in Appendix @

Task Empty, 4 Robots, Max Vel. 0.703 Task Highways, 4 Robots, Max Vel. 0.878

METHOD \Metric ~ SU(%)T RST *minCS(%)1 *minDA? [SU(%)T RST *minCS(%)t  “minDA?T
DIFFUSER 65.0 0.616 62.3 0.990 53.0 0.208 66.7 0.979
MMD-CBS 100 1.00 11.0 0.990 100 1.00 63.0 0.960
DIFFUSER + proj. 65.0 0.615 100 0.990 54.0 0.214 100 0.978
CD-LB (w/o proj.) 100 0.993 0.0312 0.814 100 0.999 0.00 0.986
CD-SHD (w/o proj.) 100 1.00 35.3 0.990 100 1.00 34.6 0.976
PCD-LB 96.0 0.916 100 0.489 100 0.950 100 0.957
PCD-SHD 100 0.993 100 0.960 100 0.996 100 0.963

Table 1: Performance comparison with N = 4 robots on two out of four tasks. Left: Empty, vmax =
0.703; Right: Highways, vma,x = 0.878. *For CS and DA, which should have been N-tuples, we
report here the minimum of them due to space limit. See additional results in Appendix @

of Multipliers (Boyd et al., 2011} |Parikh et al., 2014). Detailed derivations and algorithm are in
Appendix [B.2.2]

Coupling Cost. We aim to avoid both collisions among robots and collisions with known static
obstacles via coupling. Prior work (Carvalho et al.,|2023;|Shaoul et al., 2025)) achieves static obstacle
avoidance by CG, which we have shown is a special case of PCD coupling. Thus, our coupling cost
function is a linear combination of a robot-collision and obstacle-collision costs:

C(Xv Y) = Arobocrobo(X» Y) + Aobstcobst(Xv Y)7

where X, Y € RH*2 are trajectories of 2 robots’ positions. We experiment with two robot collision
cost functions, (i) a log-barrier (LB) cost

H
ap(X,Y) == log(| Xy~ Yull +a) (7)
where a > 0 is a parameter, and (ii) a “squared hinge distance” (SHD) cost:
H 2
conn(X,Y) =3 (1[IXn = Yall < 7] (r — | X0 = Vi) ®)

where 1[-] is the indicator function and » > 0 is the active range parameter. For N > 2
robots, X*,..., X, we extend both costs to co (X', ..., XN) = 37,y (X', X7) with
o € {LB,SHD}. We follow Carvalho et al.[(2023) in designing the obstacle-avoidance cost. See
details in Appendix

Experiment Setup & Evaluation Metrics. We test with 2 and 4 robots on four different tasks
from Shaoul et al.|(2025)). For each task, we use the pretrained models from|Shaoul et al.|(2025) and
choose three v xS. Baselines:E] We compare our method with a vanilla diffusion model DIFFUSER

SA contemporaneous work by [Liang et al.| (2025) is related to our method. However its implementation is
not publicly available at the time of this submission. Their method involves projection only, whereas PCD is
more generic by incorporating both projection and various coupling costs as shown later.
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(a) PushT Task (b) DP (c) DP + projection  (d) CD (w/o proj.) (e) PCD (Ours)

Figure 3: (a) The PushT task: One single robot (blue circle) pushes a T block (gray) to a target pose
(green) given different initial positions of the block and robot. Robot trajectories are plotted with
a colormap (warmer colors indicate later time steps), with red crosses marking velocity violations.
Only the first few dozen steps are shown for visual clarity. (b) Vanilla DP fails to generate trajectory
pairs, each in a distinct mode, and adhering to velocity limits. (c) Projection enforces velocity limits
but cannot “split” trajectories apart. (d) A coupling cost encourages non-intersecting trajectories but
does not strictly enforce velocity constraints. (¢) Our method generates non-intersecting trajectories
and ensures strict adherence to velocity constraints.

(Janner et al.,[2022) and MMD-CBS (Shaoul et al., [2025). We evaluate each method on 100 trials,
each with an initial configuration (start and goal locations for each robot) sampled uniformly at
random by rejection sampling. Except for MMD-CBS, we generate 128 i.i.d. samples ; for MMD-
CBSE], we also set its diffusion sampling batch size as 128. We run 25 diffusion inference steps
for all methods. Metrics: We evaluate performance of the methods in terms of task completion or
adherence to original data distribution, constraint satisfaction, and inter-robot collision avoidance.
We adopt success rate (SU) and data adherence (DA) from (Shaoul et all [2025) to evaluate task
completion. SU is the average, over all initial configurations, of an indicator for whether at least
one trajectory in the batch completes the task without collision. Constraint satisfaction (CS) is an
indicator of whether a trajectory satisfies the velocity constraint at all time steps. Inter-robot safety
(RS) is an indicator of whether a trajectory tuple is inter-robot collision-free. All metrics except SU
are reported as empirical means over a batch of i.i.d. samples.

Results. Figure 2] shows sample trajectories from compared methods. Table [T] summarizes quan-
titative results for two environments with 4 robots under one velocity constraint. All constraint-
agnostic methods (without projection) achieve low CS rates. MMD-CBS unsurprisingly achieves
perfect SU score by selecting and stitching a single optimal trajectory tuple. PCD- and CD- methods
approach this upper bound, while vanilla DIFFUSER and its projected variant lag behind. PCD-SHD
shows slightly reduced data adherence, while the LB cost more aggressively trades data adherence
for collision avoidance due to its steep gradients. Similar patterns are observed in the other tasks.
Overall, PCD effectively promotes inter-robot safety through coupling while enforcing hard test-
time velocity constraints, with a tradeoff between coupling strength and data adherence depending
on the cost function. See additional results with ablations, and runtime in Appendix and[C.1]

5.2 CONSTRAINED AND DIVERSE ROBOT MANIPULATION

We evaluate our method on the PushT task (Florence et al., 2022; |Chi et al., 2023). As shown
in Figure a diffusion model is trained to generate trajectories for a robot to push the gray T-
shaped block from different starting positions till it matches the green target pose. Our objective
is to utilize such pretrained models to generate a pair of distinct trajectories strictly satisfying a
maximum velocity constraint imposed at test time and do not intersect as far as possibl

Projection & Coupling Cost. As in multi-robot experiment, we enforce velocity limits via pro-
jection, using the formulation in Eq. (6). We experimented with two cost functions for encouraging
trajectories from a pair to stay away from each other. The first cost builds upon the Determinantal
Point Process (DPP) guidance (Feng et al.| |2025) designed for promoting trajectory diversity:

copp(X,Y) = log (cos Z(X,Y) + 5) )

"See a detailed discussion of difference between PCD and MMD-CBS in Remark Appendix
8Note that the two trajectories in a pair are not pushing the block together at the same time.
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METHOD DTW1 DFD{ CS(%)t  TCt  Method XOR%?T M/F%? SE-C*{ SE-L*] IS-L*{

DP 3.2 .47 (65,65) (.93,.93) SD 20 71/14 .40/.41 .77/.76 .75/.75
DP + proj. 3.0 .43 (100,100) (.90,.89) CNet® 8  100/56 .68/.75 .48/.50 .45/.50
CD.DPP 37 51 (03.62) (92,02) SD+P 44 100/100 .88/.91 .15/.16 .06/.09
CD-DPP-PS 45 .65 (57,57) (.91,.92) sync® 48  95/17 .62/.61 .67/.68 .70/.69
CD-LB 41 .60 (59,59) (91,.91) SD+C 48  51/47 .45/.46 .76/.74 .75/.75
CD-LB-PS 45 .65 (59,59) (92,.93) Sp+C" 64  47/37 .55/.60 .70/.68 .69/.69
PCD-DPP 4.6 .64 (100,100) (.83,.83) pcp 96  100/100 .88/.92 .11/.14 .11/.13
PCD-DPP-PS 4.4 .62 (100,100) (.89,.89)

PCD-LB 51 .71 (100,100) (.78,.79 . .

PCD-LB-PS 44 62 510071003 E.89 88; Table 3: Paired face-generation results. Base-

lines: CNet = ControlNet-XS; Sync = SyncDif-
fusion. Metrics: SE-C* = SE-CLIP; SE-L* = SE-
LPIPS; IS-L* = IS-LPIPS. Boldface indicates the
best score(s) for each metric. Full results includ-
ing SE-FID are deferred to Tablein appendix.

Table 2: Results of PushT task by all compared
methods with velocity limit v, = 8.4. CD de-
notes DP+coupling only; -PS denotes posterior
sampling. See full results in appendix Table @

where X R Y € R2H are the flattened vectors of the trajectories, and € > 1 is a constant. The other
cost is the log-barrier cost Eq. (7). For both costs, we also devise their posterior sampling variants.

Setup & Evaluation Metrics. We adopt DIFFUSION POLICY (DP) by |Chi et al|(2023) as our
base algorithm, using pretrained weights from [Feng et al.| (2024)°’} Compared methods are vanilla
DP, DP with only projection, DP with only coupling and PCD. We evaluate each method on 50
uniformly random initial conditions. With each method, we generate 100 pairs of full trajectories,
under three different max velocity limits. We use 32 diffusion steps at inference, with other settings
recommended by Chi et al.|(2023). Metrics: Four quantitative metrics are evaluated: Dynamic Time
Warping (DTW) (Berndt & Clifford, |1994; Miiller, 2007), discrete Fréchet distance (DFD) (Alt &
Godau, [1995)), velocity constraint satisfaction rate (CS), and task completion score (TC) (Florence
et al.| 2022} (Chi et al.} |2023). DTW and DFD quantify dissimilarity between two trajectories. CS
evaluates fraction of trajectories satisfying the velocity constraint. TC measures how well the block-
pushing task is accomplished, where 1.0 is the best and 0 the worst. We report all metrics by their
empirical means over all initial staring locations and trajectory pairs. Details are in Appendix [B.3]

Results. We report results in Figure and Table 2] From Table [2] we see all projection-
involved methods achieve perfect velocity constraint satisfaction, outperforming both the baseline
and coupling-only (CD) approaches. CD and our PCD methods consistently produce higher DTW
and DFD than baseline with or without projection, suggesting that coupling effectively discourages
intersecting trajectories. In terms of task completion, all methods except the baseline show degraded
performance, likely due to the velocity limit enforced by projection. These results show that our
framework can enforce test-time velocity constraints and spatially separate generated trajectories
without significantly sacrificing data adherence. Without projection, both PS variants of the coupling
costs exhibit higher DTW and DFD than their respective non-PS version, and better preserves the
task completion with projection. Full results and additional ablation study are in Appendix [C.3]

5.3 CONSTRAINED COUPLED IMAGE PAIR GENERATION

We demonstrate a foy example of paired face generation using two latent diffusion models (LDMs)
(Rombach et al [2022) (Figure ). Each generated pair must (i) satisfy gender and facial attribute
constraints, and (ii) exhibit a clear contrast between age groups. We enforce (i) via projection and
promote (ii) through a classifier-driven coupling cost.

Projection. For each LDM, we generate two structurally similar exemplar images of one individ-
ual at different ages (Figure @a)) using ChatGPT (OpenAl, 2023), encode them via the model’s VAE,
and form convex hulls as feasible latent regions. At each diffusion step, we use mirror descent (Ne-
mirovsky & Yudin, [1983; [Beck & Teboullel [2003) to project intermediate latents onto these hulls,
enforcing strict gender and facial attribute constraints (see Appendix for details).

“The model from (Feng et al.|[2024) was trained on an augmented dataset with broader coverage than that
provided by (Chi et al.|(2023)), yielding more diverse and feasible trajectories.
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(a) Exemplar Images  (b) SD  (c) Sync’ (d) SD+C (e) SD+C' (f) CNet' (g) SD+P  (h) PCD (Ours)

Figure 4: Paired face generation with two Stable Diffusion models (SD) (row-wise). Methods: Sync
= SyncDiffusion, CNet = ControlNet-XS, +C = coupling; +P = projection; " = with text prompt. (a)
Exemplar images of each model, their latents form the convex hulls. (b) Vanilla SD often fails to
produce faces. (c, d) SyncDiffusion and Coupling steers samples toward the target age-group con-
trast but with attribute drift. (e) Adding text prompts to Coupling yields faces, yet violates attribute
constraints. (f, g) ControlNet-XS encourages gender and facial attribute alignment; Projection en-
forces it; but both fail to promote the age-group contrast. (h) Our method yields pairs that satisfy
the gender and facial-attribute constraints and simultaneous promote sheer age-group contrast.

Coupling Cost. To induce an age-group contrast, we use a latent classifier that classifies age
groups Y (young, < 50) and O (old, > 50). Our coupling cost is defined as cxor(z,y) =
= Yuciv, 0} XOR(z,y), where XOR(z, y) = p(alz) (1 — p(aly)) +p(aly) (1 — p(alz)) and p(al-)
are the probabilities of a sample belonging to age-class a € {Y, O}, obtained from the classifier.

Setup & Metrics. We employ STABLE DIFFUSION V2.1-BASE (SD-2.1) (Stability Al 2022) as
our base model and disable classifier-free guidance during sampling to achieve unconditional gen-
eration unless specified otherwise. For coupling, we train a latent classifier for the model using the
FFHQ-Aging Dataset [2020). Baselines: We compare our method with vanilla SD-2.1,
SD-2.1 with only projection, SD-2.1 with only coupling, and SD-2.1 with coupling and a generic
text prompt. We also compare against SyncDiffusion and ControlNet-XS
for referenc We use 100 diffusion steps and generate 25 pairs of samples
using each method. See setup details in Appendix [B.4] Metrics: To evaluate projection, we report
five metrics: (i) Gender constraint satisfaction rate (M/F); (ii) Sample-Exemplar CLIP similarity
(SE-CLIP) (Radford et al. 2021)); (iii) Sample-Exemplar LPIPS (SE-LPIPS) (Zhang et al.l 2018));
(iv) Sample-Exemplar FID (SE-FID) (Heusel et all 2017); (v) Intra-Sample LPIPS (IS-LPIPS).
SE-CLIP, SE-LPIPS and SE-FID serve as proxies for adherence to exemplar-specified facial at-
tribute constraints (noting that satisfaction is guaranteed by design of our projection operator),
while IS-LPIPS quantifies diversity across generated samples. To evaluate coupling, we measure
the age-group contrast satisfaction rate (XOR) with another age-group image classifier trained on
the FFHQ-Aging Dataset. We average XOR and M/F over generated pairs, SE-CLIP and SE-LPIPS
over sample—exemplar pairs, IS-LPIPS over intra-model sample pairs. SE-FID is computed as a
single scalar between the exemplar set and generated samples set of each model.

Results. We report results in Figures and Table 3] Projection-based methods (SD+P, PCD)
attain 100% gender satisfaction (M/F) and the strongest alignment to exemplars (higher SE-CLIP
and lower SE-LPIPS) compared to vanilla SD, coupling-only variants and other baselines. Pro-
jection reduces diversity (low IS-LPIPS); adding coupling partially recovers diversity. Coupling-
based methods improve age-group XOR satisfaction, with PCD attaining the highest rate (96%).
SyncDiffusion matches SD+C on XOR but shows slightly reduced sample variation (lower IS-
LPIPS). ControlNet-XS exhibits a male-bias, producing more male samples and thus yielding 100%
male gender satisfaction (M). See additional results with larger exemplar sets and ablations in Ap-
pendix [C.4] and runtime profile in Appendix[C.1}

"Note that ControlNet-XS requires additional training and we use pretrained weights released by

(2024). See details in Appendix@

SyncDiffusion and ControlNet-XS are included solely for reference. We are not claiming state-of-the-art
performance. Instead, we are demonstrating potential uses of PCD in image-related generation tasks.
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6 LIMITATIONS AND DISCUSSIONS

First, the projection step in PCD introduces computational overhead compared to vanilla or standard
guided diffusion methods.

Second, PCD assumes differentiability or at least the existence of subgradients for the cost func-

tions as many other approaches (Carvalho et all, 2023, [Rmer et all, 2025). For many practical

applications, differentiable approximations are available for reasonable yet non-differentiable and

discontinuous costs such as temporal logic specifications (Feng et all, 2024} [Meng & Fan| [2024).
Moreover, alternatives that do not require gradients such as Monte Carlo based importance sampling
could be leveraged for approximation (Dou & Song|, 2024}, [Phillips et al., 2024} [Tung et al., 2025},
2025).

Third, PCD assumes that the feasible region of the test-time constraints has an overlap with the
support of the distribution learned by the pretrained model. This issue becomes critical if the feasible
solutions differ substantially from the training data. For example, restricting end-effector velocity to
only 1% of its original average in the PushT task would cause PCD to generate trajectories failing
the manipulation task at most times.

Finally, PCD introduces a coupling strength hyperparameter, and practitioners may need to tune
it for desired outcomes. Degraded data fidelity was observed if the coupling strength is set too
high, indicating a trade-off between data fidelity and desired correlations between variables. Recent

efforts (Jung et al.l 2025) in promoting compatibility between test-time objectives and pretrained
diffusion’s data fidelity points a promising direction to addressing this issue.

7 CONCLUSION

We introduced Projected Coupled Diffusion (PCD), a test-time framework for joint generation with
multiple diffusion models under hard constraints. Our method combines coupled dynamics and
projection operation, generalizing existing techniques like classifier guidance and projection-based
diffusion inference without requiring model retraining. Experiments on image-pair generation, ob-
ject manipulation, and multi-robot motion planning show that PCD effectively facilitates mutual
correlation and provides guaranteed test-time hard constraint satisfaction. Future work includes
exploring more sophisticated and non-differentiable coupled costs and non-convex constraints.

10
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REPRODUCIBILITY STATEMENT

Code implementations of the proposed method are provided in the supplementary materials. Details
of hyperparameters are described in the appendix and reflected in the code. We will open-source all
code and relevant trained model weights upon acceptance.

LARGE LANGUAGE MODEL USAGE DECLARATION

As stated in Section[5.3] the images used as exemplars for the paired-faces experiments were gen-
erated by ChatGPT (OpenAl, 2023). We also used ChatGPT (OpenAl, 2023) to perform grammar
check and minor language polishing for the first three paragraphs of Section [I] with further human
edition.
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NUMERICAL VERIFICATION OF PCD SPECIAL CASES

We numerically verify that PCD recovers into two known methods, classifier guidance (CG) and
projected diffusion (PD), under specific circumstances as stated in Section 4]

Setup We experiment on the 1D toy example demonstrated in Section [ Figure[[] We run PCD
in two degenerated versions that correspond to CG and PD, respectively, as well as separately im-
plemented CG and PD, and then compare their empirical sample distributions over the X variable.
Specifically, we discretize the range of X into 200 bins and compare the resulting histograms with
a sample size of 10°. For the degenerated PCD corresponding to CG, we fix the Y variable in PCD
to the center of the corridor to match the conditioning used in CG, and adopt the same coupling or
guidance strength for PCD and CG. For the degenerated PCD corresponding to PD, we set the cou-
pling strength in PCD as v = 0. Additionally, we include a “baseline” where we draw two groups
of samples from the same standard normal distribution, each with a different random seed, in order
to provide a numerical reference in the reported metrics to demonstrate the effects of stochasticity
with the chosen sample size.

Metrics To quantify similarity between distributions, we report three common metrics: Jensen-
Shannon divergence (JS), total variation distance (TV), and L4 distance (L2).

Results The resulting distributional discrepancies are quantified and reported in Table ] These
divergences show that the discrepancies in sample distributions between the degenerated PCD and
the corresponding special cases (CG or PD) lie within the same order of magnitude as the baseline
case, wherein two groups of samples are indeed drawn from the same distribution. Visualization of
the empirical distributions is in Figure[5] These results numerically verify that PCD recovers the
behaviors of CG and PD in degenerated scenarios, and thus can be regarded as a generalization.

Method Pair \Metric IS TV L2
(PCD, CG) 391 x 1075 540x 1073 1.38 x 1073
(PCD, PD) 523 x107° 797 x 1072 1.44x 1073

(Baseline, Baseline) 4.48 x 107° 5.58 x 1073 1.32x 1073

Table 4: Distributional metrics results for numerical verification of PCD special cases.
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Figure 5: Empirical distributions of samples yielded by degenerated PCD compared to CG and PD.
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Dynamic Time Warping (DTW)
Max Velocity 8.4; Projection ADMM

Discrete Frechet Distance (DFD)
Max Velocity 8.4; Projection ADMM

Velocity Constraint Satisfaction (CS)
Max Velocity 8.4; Projection ADMM

Task Completion (TC)
Max Velocity 8.4; Projection ADMM
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Figure 6: Sampling steps ablation of PCD: Evaluation metrics results with different number of
sampling steps 7" given the same coupling strength  for each type of cost.

ABLATION ON NUMBER OF SAMPLING STEPS
We perform ablation study to explore the effect of the number of sample steps on the PushT task.

Setup We use a pretrained DDPM model that was originally trained with 77 = 100 de-
noising diffusion stepsEL and vary the number of denoising steps during sampling with T €
{15, 20, 30, 40, 50, 75,100} while keeping the same noise schedule. We set the velocity limit as
Umax = 8.4, and we use the same coupling strengths as those for obtaining the results reported in
Table[2] For each method, we run it on 10 uniformly random initial conditions and generate 50 pairs
of full trajectories. We report the same four metrics as in Section@ DTW, DFD, CS, and TC.

Results The performance against number of sampling steps curves are shown in Figure [} For
the baseline Diffusion Policy, diversity metrics (DTW and DFD) appear to improve as 7" decreases.
However, this trend is mainly an artifact: when 7" < 40, the trajectory sample quality deteriorates
significantly (e.g., with jerky and teleporting motions), which is also reflected in degraded task com-
pletion score (TC) and rapidly dropping velocity constraint satisfaction rates (CS). Such low-quality
samples often fail the manipulation task, making comparisons for 7" < 40 unreliable. Therefore, we
shall focus on meaningful comparisons only for 7" > 40. Surprisingly, for all methods the TC scores
do not peak at the highest number of sampling steps, even for the baseline. When the number of
sampling steps 1" > 40, the improvements in diversity performance over the baseline grow steadily
as T increases. This pattern can be partly explained by the coupling effect benefiting from more
accurate Tweedie’s estimates used in the PS cost variants at later denoising steps, as a higher total
number of sampling steps leads to a greater number of steps with more accurate Tweedie’s estimates.

2 This is also a pretrained model from (2024), but is not the one we used in our main experiment.
We use this model only for this ablation.
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A METHOD DETAILS

Our proposed PCD framework can perform inference with [LMC| and Denoising Diffusion Proba-
blistic Models (DDPM) (Ho et al., 2020). Moreover, it is also easy to apply Diffusion Posterior
Sampling (DPS) (Chung et al.,|2023)) within our framework. We present here three algorithms under
PCD framework: PCD-LMC, PCD-DDPM, and PCD-DPS, detailed in Algorithm [I] Algorithm 2]
and Algorithm [3] respectively.

Algorithm 1 Projected Coupled Diffusion with LMC

Require: Score models sg(, s?ﬁ; projectors Ik, , Ik, ; coupling strength ~; step size 0; max
iteration 7.

I: Xo ~N(0,Ip,),Yo~N(0,Ip,) > Initialize from std. Gaussian
2: fort=1toT —1do
3: > Coupled LMC dynamics N
4: Xt+1 — Xt-‘,—l — 68%()(, t) - ’y(SVXc(Xt,Yt)
50 Y Y1 — 055 (Y, t) —v6Vye(Xy, Vi)
6: ex ~N(0,Ip,), ey ~N(0,Ip,) > i.i.d. noise
7 Xiy1 ¢ Xep1 +V20ex
8: Yig1 < Xet1 + V20ey
9: > Projection step N
10: Xiv1 Ty (Xiv1)
11: | Y < Tky (Yiga)
12: return (X7, Y7) > Return joint samples

Algorithm 2 Projected Coupled Diffusion with DDPM

Require: Score models sg(, s‘{i; projectors Ilx ., Ik, ; coupling strength v; DDPM noise schedule
{a;}I_,; DDPM inference step 7.

1. Xp ~N(0,Ip,),Yr ~N(0, IDy) > Initialize from std. Gaussian

2: fort =T to1ldo

3: > Normal diffusion 4

4: €x NN(O,ID$>,6Y NN(O,I})y)

5: sx — 5% (X, 1), sy « (Y, 1)

6 thl — \/%—t(Xt—f—(l—O[t)SX)—f—\/l—OétEX

7

8

Yioq « \/% Y+ (1 —ay)sy) + V1 — arey
: > Coupling step N
9: Xio1 ¢+ X1 —YVx,e(X, V7)
10: )/t,1 — Y;gfl — ’YthC(Xta )/t)
11: > Projection step <
12: Xio1 ey (Xi—1)
13: | Y1 Ty (Yie1)
14: return (X, Yp) > Return joint samples

B IMPLEMENTATION DETAILS

B.1 GENERAL
Computational Hardware. All experiments were run on a workstation with 1 AMD Ryzen

Threadripper PRO 5995WX 64-Core CPU, 504 GB RAM, and 2 NVIDIA RTX A6000 GPUs each
with 4GB VRAM. For each experiment run, only 1 GPU was utilized.

Software and Code Bases. All experiments were run using PyTorch (Paszke et al., [2019). Im-
age experiments were also run with Diffusers (von Platen et al., [2022). The PushT experiment
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Algorithm 3 Projected Coupled Diffusion with DPS

Require: Score models sgf, s?ﬂ; projectors I ., Ik, ; coupling strength v; DDPM noise schedule
{a;}L_|; DDPM inference step 7.
1: Pre-compute &; = [[._, a, fort =1,...,T

2: Xp,Yr ~N(0,1) > Initialize from std. Gaussian
3: fort =T to1ldo

4: > Normal diffusion N
5: €xX NN(O,IDw),Gy NN(O,IDy)

6: Sx (*Sg(Xt,t),Sy (*S¢(Y;,t)

7: Xt—l < \/%—t(Xt+(1*O[t)SX)+\/1*Oét€X

8: Y 1« \/%—t(ﬁ-i-(l—at)sy)-i-\/l—atey

9: > Coupling with posterior sampling q
10: Xo \/% (Xe+ (1 —ay)sx) > Tweedie’s formula

11: | Yy« \/%(er(l—at)sf) )

12: Xt—l <— Xt—l — ’YVXtCEXOlYo)

13: Y;g_l — Y%_l — ’}/Vth(Xo, YQ)

14: > Projection step <
15: X1« iy (X4—1)

16: | Y1+ Tlx, (Yic1)

17: return (X, Yo) > Return joint samples

is adapted from LTLDOG (Feng et al. [2024) and DIFFUSION PoLICY (Chi et all 2023). The
multi-robot experiment builds upon MMD (Shaoul et al.,2025)).

B.2 MULTI-ROBOT EXPERIMENT

B.2.1 SIMULATION TASKS AND ENVIRONMENTS

Four simulated environments used in our experiments are from the MMD benchmark Shaoul et al.
(2025), Empty, Highways, Conveyor and DropRegion, as shown in Figure[7] In each envi-
ronment, given a start and a goal position (s, g) € R? x R? of a single robot, a diffusion model is
trained to generate 2D trajectories X € R¥*2 where H is the trajectory length. Each environment
comes with a trajectory distribution through a trajectory dataset collected under a specific motion
pattern:

* In Empty, the motion pattern is straight-line movements from start to goal.

* In Highways, the pattern is circling around a central block in counterclockwise direction
when moving from start to goal, resembling a traffic roundabout.

* In Conveyor, the pattern is only moving in one single direction (either left or right) when
entering the two corridors in the middle of the map.

* In DropRegion, the pattern is to stay around one of the four “dropping points” in the map
for a certain amount of time steps when moving from start to goal, resembling a delivery
job.

The task in both environments is to generate collision-free trajectories for /N robots, given an initial
configuration consisting of start and goal positions for all robots:

P £ {(31791)7 AR (stgN)} € (Wfree X Wfree)N )

where s;, g; are the start and goal positions for robot 7, and Wee C R? denotes the obstacle-free
environment space (free workspace).
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Q | \N\
Figure 7: Multi-robot motion planning tasks with 4 robots and simulation environments (from left to
right) Empty, Highways, Conveyor, and DropRegion, each with their own motion patterns.

Each of the trajectories’ colors denotes an individual robot; green and purple small dots represents
start and goal positions.

B.2.2 ADMM-BASED PROJECTION DESIGN

We repeat Eq. (6) here for readers’ convenience:

min X - X|?

L 7 (62)

s.t. ||£B() — X1H S Umax At, @I)
||Xh_Xh71H SvmaxAta h:2,'~'aHa '['ﬁ'

where X is the diffusion-predicted trajectory for one robot in matrix form, X; € R? is the position
vector at (physical) discrete time step h and 29 € R? is a known starting position.

A direct approach for solving the optimization in Eq. (6 is to leverage off-the-shelf solvers to op-
timize each trajectory. However, this incurs significant computation overheads upon large batch of
trajectories. Alternatively, we can reformulate Eq. (6) and efficiently solve a batch of such problem
instances in parallel using Alternating Direction Method of Multipliers (ADMM) (Boyd & Vanden-
berghel 2004).

To apply ADMM, we need to introduce auxiliary variables Z;, € R? representing the per-step
positional displacements:

Z1 = X1 — z0, (10a)
Zn = Xp— Xn_1 forh=2,... H. (10b)
The constraints Eq. then become:
1Z1]] < vmaxAt, h=1,..., H.

Let Z = [Zy, -+, Zg]" € RT*2 and define the constraint set for Z:
Kz ={Z e R"**| || Z}|| € vmuxAt,h=1,...,H}, (11)
together with the indicator function of Kz:
0 ifZeky
Ik, (Z2) = ’ 12
xz(2) {oo otherwise. 12)
Let A € RH¥*H be a coefficient matrix
1 0 0 0
-1 1 0 0
a0 -1 1 0 (13)
0 0 -1 1
and define an offset matrix b € R 2
+
b= i) 02“-02 (14)
—_——
H-1
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where 05 € R? is a zero column vector.

With X and Z, optimization problem Eq. () can be reformulated in an ADMM fashion as:
i X - X||% + 1k, (Z 15a
ern 2D e | 17 + Ik, (2) (15a)

st. AX —Z=hb. (15b)
The augmented Lagrangian of Eq. (T3) is:
Le(X,Z,A) = || X — X% + 1, (Z2) + Tr (AT (AX — Z — b)) + §||AX —Z-b%  (16)

where A € R¥*2 is the dual variable, & > 0 is the augmented Lagrangian penalty parameter, Tr(-)
denotes the trace of a matrix, and || - |  denotes the Frobenius norm.

The update rules of X, Z and the dual A is derived as follows by ADMM:

* X-update:
XFH = arg min Le (X, ZF AF).

It has a closed-form solution given by taking the gradient w.r.t. X and setting it to zero:

2AX —X)+ ATAF 4 €AT(AX — ZF —b) =0,

which yields
XM= 20y + EATA) T QX +EATZF +€ATh— ATAF). (17)
e Z-update:
ZM = arnginﬁg(Xk+1, Z,\F),
which is

k+1 ; Tk 3 k+1 2
Zk+ = arg min (Tr(—Z A )+5||Z—(AX + —b)||F>
The solution to the above is
1
VAR | P <AX’“+1 —b+ 6/\’“) : (18)

where the projection operation is applied row-wise

lwnl

k1 _ (Vmax At) 72— if [Jwp || > Vmax AL,
h wp, otherwise,

with wy, being the h-th row of (AX’“Jrl —-b+ %Ak)
* A-update:
Ak+1 _ Ak + f(AXkJrl _ Zk+1 o b) 19)

Remark 2. Note that the matrix (215 + (AT A) in Eq. is symmetric positive definite and
constant across iterations, which allows for caching its inverse. A more efficient approach is to
perform LU or Cholesky decomposition on (215 + £AT A) once and solve the linear system

(20 + EATA)XFHE = 2X 4 AT ZF 4+ €ATh— ATAF
at each iteration using the cached LU or Cholesky factors.

The above derivations lead to Algorithm 4]
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Algorithm 4 Batched ADMM Projection for Velocity-Constrained Trajectories

Require: Predicted trajectory batch X, starting position batch xg, Umax > 0, At > 0, penalty
¢ > 0, max iteration K,,, tolerance €.

1: Pre-compute A and batched b matrices
2: Pre-compute M + 2I;; +¢(ATA > same for all batches
3: Caching inverse or factors of M > same for all batches
4: Initialize Z° «+ 0, A° <0 > zero tensors of shape B x H x 2
5: fork < 0to K, — 1 do
6: > X -update, Eq. [T7) N
7: V =2X + EAT (Zk +b— %Ak) > A broadcasts across batches
8: D, Ganpis SolveLinearSystBatch(]\JXkJrl = V) > M broadcasts across batches
9: > Z-update, Eq. N
10: | W AXFH b AP
11: forall (3,h) € {1,...,B} x {1,..., H} in parallel do > Vectorized operation
12: Z’g:‘;} < min {vmax AL, || Wg |} HV‘\’}Z% > Small v > 0 to avoid singularity
13: > Dual-update, Eq. [[9) N
14: AFFL AR ¢ (A Xkl _gk+l b)
15: > Optional: Convergence check N
16: if check convergence then
17: R+ AXFHL _Zk+1 _p > Primal residuals
18: S« €EAT (Z’Cle — Zk) > Dual residuals
19: Tmax B—HllaXB {IRsl#, 1Spllr}
20: if rpax < € then
21: [ | break

22: return XFt1!

B.2.3 OBSTACLE COST

For static obstacle avoidance, we follow (Carvalho et al.[(2023) using a cost based on signed distance
to a static obstacle. Specifically, let o(z) : R* — R be a differentiable signed distance from a robot
to its closest obstacle, and then the obstacle cost term reads

H
Cobst( XY, ..., X)) = Z 1[p(Xp) <] (7 — (X)) (20)
h=1i=1

where 7' > 0 is also a parameter.

B.2.4 HYPERPARAMETERS

Let all robots share the same radius R. We set A;opo = 1.0 and Aghe = 0.1/. For SHD cost, we set
p = 6R and typically v € [0.6,3.0]. For LB cost, we set « = 1.9R and typically v € [0.01, 0.06].
Regarding projection, typically we set the penalty ¢ = 10, max iteration K,,x = 1000, and tolerance
e=3x1075.

B.3 DIVERSE ROBOT MANIPULATION EXPERIMENT

B.3.1 DIFFUSION PoOLICY

We adopt DIFFUSION PoLICY (DP) (Chi et al) 2023) as our base algorithm, using pretrained
weights from (Feng et al., 2024 DP is a conditional diffusion model operating in a receding-
horizon manner. Conditioned on an observation O € RH>*5 (a trajectory of H, steps where each
step is a 5D state vector capturing the planar position of the robot end effector and the T block’s cen-
ter and orientation), DP generates an action segment X € R¥*?2 representing future end-effector

3The model from (Feng et al.l [2024) was trained on an augmented dataset with broader coverage than that
of (Chi et al.,[2023), yielding more diverse and feasible trajectories.

24



Under review as a conference paper at ICLR 2026

positions. Only the first H, < H steps are executed (in simulation for our case), after which a new
observation O’ is obtained and the process repeats, until a total of Hy,,x execution steps is reached.

B.3.2 DETAILED SETUP

We compare our method with the vanilla DIFFUSION POLICY (DP) as baseline, DP with only pro-
jection, and DP with only coupling. We evaluate each method on 50 uniformly random initial
observations. With each method, we generate 100 pairs of full trajectories A € Rfmx*2 (concate-
nated by the executed portion of each action segments) conditioned on every initial observation.
For projection, we choose three different max velocity limits, corresponding to the 80%, 90% and
95% quantiles of the velocitie generated by the baseline across the initial observations. We use
32 diffusion steps at inference, and take 1 gradient descent step for coupling. We adopt the set-
ting of prediction horizon H = 16, action horizon H, = 8, and observation horizon H, = 2 as
recommended in (Chi et al.,[2023)). The maximal action steps Hp,x is set to 360.

Remark 3. We only take the executed part of the generated action segments and concatenate them
along time dimension to form a full trajectory A € Rm*2 for evaluation.

B.3.3 PROJECTION DETAILS

We use the same formulation and implementation of projection as in the multi-robot experiments.
The parameters used are penalty £ = 6.0, max iteration K., = 250, and tolerance ¢ = 2 x 1074,

B.3.4 COUPLING COSTS

For all methods at all velocity limits we use the same cost-dependent « value. Concretely, for DPP
and DPP-PS costs we set v = 0.2; for LB and LB-PS costs we set v = 0.02. These parameters are
chosen based on a coarse parameter scan and selecting one among the Pareto front of the TC-DTW
and TC-DFD relations.

B.3.5 DETAILS IN EVALUATION METRICS

We use four quantitative metrics for evaluation: Dynamic Time Warping (DTW) (Berndt & Clifford,
1994; Miiller, |2007), discrete Fréchet distance (DFD) (Alt & Godaul [1995), velocity constraint
satisfaction rate (CS), and task completion score (TC) (Florence et al.,|2022; Chi et al.,[2023). DTW
and DFD quantifies dissimilarity between two trajectories and have been widely used in robotics
(Bucker et al.l 2023; Memmel et al., |2025) and dynamical systems learning (Rana et al., |2020;
Zhang et al., [2022). For each pair of full trajectories, we report the DTW and DFD between the
two corresponding segments, and average them over number of segments within each full trajectory.
The velocity constraint satisfaction rate for each full trajectory is defined as the fraction of action
segments respecting the constraint within the full trajectory. The task completion score measures
how well the manipulation task is accomplished by a full trajectory given an initial observation,
where 1.0 is the best, and 0 the worst. We report all metrics by their empirical mean over all initial
observations and full trajectory pairs.

B.4 CONSTRAINED COUPLED IMAGE PAIR GENERATION EXPERIMENT
B.4.1 TEXT PROMPTS FOR EXEMPLAR GENERATION

All exemplar images in this toy example were generated using ChatGPT (OpenAl [2023)). We first
employ a generic prompt:

“Generate a simple, clean portrait of a male/female in his/her early 30s, wearing
a plain T-shirt, against a white studio background with soft lighting. The portrait
should be a centered headshot, similar to a passport photo.”

to generate the seed exemplar. We then provide the seed exemplar alongside a follow-up prompt
instructing ChatGPT to regenerate the exact same image, but depicting the subject at an older age,
or with different clothing.

" Calculated by forward difference of positions of the robot.
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B.4.2 TEXT PROMPT FOR STABLE DIFFUSION AND BASELINES

As shown in both Figure 4e| and Table (3] we also run additional comparisons against SD-2.1 with
coupling, SyncDiffusion and ControlNet-XS, all with the use of a generic text prompt. For all text-
prompted runs, we use

“High-resolution passport photo of a person, facing forward with a neutral ex-
pression. Wearing a plain white t-shirt, with a clean white background and even,
soft lighting. The composition is centered and symmetrical, with the head at the
center of the frame.”

We set classifier-free guidance scale s=25 for all SD-2.1 variants, and use the authors’ recommended
defaults for external baselines, that is: s=7.5 for SyncDiffusion, and s=9.5 for ControlNet-XS. We
also set all negative prompts to null strings.

B.4.3 DETAILED SETUP FOR SYNCDIFFUSION

We choose SyncDiffusion (Lee et al.| [2023)), which was originally designed for panorama genera-
tion with an LPIPS-based style loss to promote global synchronization and coherence, as a reference
method to compare performance on promoting age-group contrast. Since SyncDiffusion allows for
an arbitrary style loss, we replace the LPIPS loss with our coupling loss cxor(,y), parameter-
ized by an image classifier trained on FFHQ-Aging (Or-El et al., [2020). We set the latent stride
to Sjaent=04 to match SD-2.1’s latent spatial dimensions, which disables any form of latent over-
lapping during sampling and essentially reduces the setup to paired image generation. We employ
100 DDIM (Song et al., |2021a) steps and use a synchronization weight wgyn.=1.3 with exponen-
tial decay dsyn.=0.99. We perform one synchronization step for all 100 diffusion steps. All other
hyperparameters follow the defaults by [Lee et al.|(2023) unless stated otherwise.

B.4.4 DETAILED SETUP FOR CONTROLNET-XS

ControlNet-XS (Zavadski et al.l 2024)) is used for reference to compare performance in facial at-
tribute preservation. We use the official ControlNet-XS implementation . We adopt the SD-2.1
Canny Edge 14M model weights provided by the authors, rather than the SD-2.1 Depth Map 14M
variant, as Canny edges preserve higher-frequency facial details relevant to our attributes. The Canny
thresholds are set t0 thig, =250 and 16w =100 as per the recommended values by [Zavadski et al.
(2024). We use a ControlNet control weight of w.,1=0.95 and set DDIM sampling steps to 100.

In this setup, we note that ControlNet-XS serves as a soft-constraint baseline: it encourages attribute
alignment via conditioning but does not enforce feasibility, in contrast to our projection-based hard-
constraint method.

Condition aggregation across exemplars. ControlNet-XS accepts a single conditioning image
per generation. To obtain a single representative condition from an exemplar set, we compute the
arithmetic mean of the exemplars in SD-2.1’s latent space and decode it back to image space for
conditioning. Because the exemplars are structurally and spatially aligned (see discussion in Ap-
pendix [B.4.7), this linear averaging preserves shared spatial attributes. Geometrically, the latent
average lies near the centroid of the convex hull spanned by the exemplars, providing a neutral,
exemplar-consistent condition. Conditioning images derived from M € {2, 6} exemplars per model
are visualized in Figures [8aH3b]

B.4.5 PROJECTION VIA MIRROR DESCENT

Given two exemplar sets of sizes M, and M,, we encode them via VAE encoders and obtain the
latents X(© = [X{9...X{7] € RXM: and Y(©) = [¥{9...¥])] € R”My, where d is the

flattened latent dimension. Define Kx = { X(®X | A € Ay, } the constraint set for X, where Ay,
is an M -simplex, and define Ky likewise. At each diffusion step ¢, we project the current latent X
onto K x by solving the simplex-constrained problem:

Ny = argmin | XN — X;[[3 1)

AEA N,

26



Under review as a conference paper at ICLR 2026

¢ 6

(a) Conditioning images for M =2 exemplars (b) Conditioning images for M =6 exemplars

Figure 8: Conditioning images used for ControlNet-XS. (a) Conditioning images formed by taking
a linear average in latent space for //=2 exemplar images from Figure #al (b) Likewise, but for
M =6 exemplar images from Figure 23]
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Figure 9: Generated samples obtained by projecting intermediate DDPM latents (Eq .) onto
the exemplar convex hulls at every step. Top: projection using the exemplar pair from the top
row of Figure fa} bottom: using the bortom-row pair. Within each row, the samples collapse to a
narrow mode, illustrating significantly reduced diversity induced by per-step projection onto a fixed
exemplar set.

via Mirror Descent (MD) wusing the negative-entropy mirror map, which yields
exponentiated-gradient updates that remain on A,; by construction (Nemirovsky & Yudin|

1983} [Beck & Teboullel 2003). For the MD updates, define

Gx = X x(©) ¢ RMaxMa (22a)
by = X©' X, € RM=, (22b)

and let fx +(\) = [| X(©X — X;||3. Its gradient is

Vixi(A) =2(GxA—bx.y). (23)

Starting from )\gg?t = M%El, each MD step performs

log A1 = 1og A%, — 1 VIxe(AX)), (24a)
)\g?jl) = softmax( log Ag’;tl)), (24b)

with learning rate 7 > 0, which is equivalent to

M @ oexp {-nvrxe ()} (25)

followed by normalization. After Kmax steps, we obtain A , and compute the final projected latent

Xt =X (e))\}’t. Yt is computed likewise. We run MD for K ,,,x = 10, 000 steps and set its learning
rate 7 = 107" for convergence.

Mode Collapse. We follow theformulation of (2020). Let {3}, C (0,1) be
a predefined noise-variance schedule for the forward process q(z: | z:—1) = N/ (\/ 1— B¢ ze—1, Bl )
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Define
ap=1— 0, (26)
t
Q1= H as (cumulative product), 27
s=1

~ 1—a;_

By = T -1 5. (posterior variance). (28)
—

At inference, the standard DDPM sampling update with a learned noise predictor eg (x4, t) is

1 ~
241 = o (zt— f_t 5 sg(zt,t)) + 1/ Bi €, e~N(0,I)ift > 1, else 0. (29)
Recall Kx = { XX : X\ € Ay, } (and Ky analogously for Y)). When sampling with Eq. ,
we observe that projecting the latents at every step — i.e., X; = i, (X;) and Y; = Tk, (V) —
leads to pronounced mode collapse in the generated samples as shown in Figure 9]

As shown in (Song et al., 2021b; [Luo} [2022), the score predicted by the model at timestep ¢ can be
derived from the model’s noise prediction ¢ (z¢, t) using Tweedie’s formula:

1
so(z,t) = V., logp () ~ BViET7 ez, ). (30)

1—0oy

In Figure we analyze the score field along the 1-D subspace spanned by two exemplar latents
from the second row of Figure @ Specifically, we project the score V,, log pi(z;) onto the line
segment (the convex hull of two points) joining the two exemplars — the direction preserved by the
projection operator when there are exactly two exemplars — and visualize its signed magnitude. Be-
cause latent interpolatability in our setting relies on structurally and spatially aligned exemplars (see
discussion on Latent Space Interpolatability in later sections), projection induces a narrow feasible
corridor. With projection enabled, this projected score points almost exclusively toward the same
endpoint across timesteps, yielding a nearly deterministic path toward the final projected latent Z;.
This concentration substantially reduces sample diversity for the given exemplar set.

While this concentrates samples within a narrower neighborhood of the exemplars, it also delivers
strong controllability and structural fidelity — properties that are particularly valuable for tasks such
as image editing, personalization, and attribute-preserving transformations. We view leveraging this
precision-fidelity regime as a promising direction for such application-oriented extensions.

Following Nichol & Dhariwal| (2021), which highlights the impact of reverse-process variance on
sampling, we additionally adopt a DDIM-style stochasticity control and scale the noise term by a
factor of k during sampling to increase output diversity. The updated DDPM sampling update is
hence

1 =
Zi_1 = \/70725 (Zt—\/lﬂtﬁfa(znt)) +1/ B ke, e~N(0,I)ift > 1, else 0.  (31)
where k£ € R>; scales the stochastic term (k = 1 recovers standard DDPM; k& > 1 increases the
noise standard deviation by k, variance by k2). To set k, we compute at each diffusion step the
average ratio 1, = ||V, log p(2¢)||/||TI(V -, log pi(2:)) || between the model score magnitude and
the magnitude of its projected component (see Figure [11). We aggregate 7, over timesteps and
exemplar sets and choose k near this summary; empirically, & = 20 provides a good diversity-
stability trade-off for experiment runs involving projection. See Appendix [C]for ablation on k.

B.4.6 COUPLING GUIDANCE STRENGTH

We observe that projection dampens the gradients supplied by the coupling loss, which calls for the
need of vy to be scaled well beyond the values typical for classifier guidance (Dhariwal & Nichol,
2021) in order to take effect. We find that empirically, recognizable young—old contrast appears
only when v > 200. This is consistent with our earlier finding that the score component aligned
with the line segment connecting the exemplar latents is roughly 13-20x weaker than the full score
(as illustrated in Figure - the projection operator only preserves the component of gradients
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provided by the coupling loss that is parallel to the line segment connecting the two exemplar sets.
Consequently, a simple estimate of the effective guidance strength gives

Vet Y/ Tt (32)

which means compensating for a ; ~ 20 reduction requires v to increase by roughly 50x. We
therefore set v = 450 (yielding v.g ~ 9.0) for all experiment runs involving both coupling and
projection if not otherwise specified. See Appendix [C]for an ablation on ~.

B.4.7 LATENT SPACE INTERPOLATABILITY

VAE:s are trained to encourage a smooth, approximately Euclidean latent space by regularizing pos-
teriors toward a standard Gaussian prior, making nearby latent codes decode to similar images and
thereby support interpolation (Kingma & Welling, 2014} Rezende et al.| [2014). However, we find
empirically that linear interpolation is reliable only when exemplars are both structurally and spa-
tially aligned. Concretely, if spatial layouts differ, straight-line paths (and thus convex-hull pro-
jections) tend to leave the data manifold and decode implausibly. See examples of interpolation
between latents of samples from FFHQ-Aging Dataset (Or-El et al.l 2020) in Figure This ob-
servation accords with geometric analyses showing that semantically consistent transitions follow
curved geodesics under the decoder-induced Riemannian metric, rather than straight lines in Eu-
clidean latent coordinates (Arvanitidis et al., 2018). Hence, we also experimented with spherical
linear interpolations (SLERP) (Shoemake| |[1985)) to maintain constant-norm paths under an isotropic
Gaussian prior. In practice, SLERP still required close structural alignment of exemplars, and it only
interpolates between two endpoints, whereas our convex-hull projection must accommodate multi-
ple exemplars. Moreover, adopting SLERP consistently would call for a manifold-aware projection,
which is nontrivial and beyond the scope of this work. Consequently, we use simple linear interpo-
lation but restrict convex sets to closely related exemplars to preserve visual coherence.

C ADDITIONAL RESULTS

C.1 RUNTIME AND MEMORY

PCD is approximately 4 ~ 7x slower than vanilla diffusion mainly due to the per-step projection
operation. Memory overhead compared to vanilla diffusion is negligible.

Image Pair Generation Table [5] shows the per-diffusion step runtime of each operation in sec-
onds, computed across 100 diffusion steps, for the Constrained Coupled Image Pair Generation
experiment, using M € {2, 6} exemplars from Figureand Figurerespectively. In terms of no-
ticeable time differences, all runs involving projection in the M =6 exemplars setup is only ~ 0.15
seconds slower than the M =2 exemplars setup. This small increase in runtime is due to our pro-
jection operator being implemented as the Mirror Descent algorithm (Nemirovsky & Yudin, [1983;
Beck & Teboulle, 2003)) which scales effortlessly on GPUs; see Sectionfor details. Across both
setups, we can observe that: (i) diffusion model forward passes and other miscellaneous overheads
have nearly constant runtime across runs; (ii) coupling adds ~ 0.5 second per diffusion step; (iii)
projection adds ~ 3 seconds, with almost negligible dependence on M. Relative to vanilla SD, per-
step runtime increases by ~ 1.5x with coupling alone, ~ 4 x with projection alone, and ~4.5x with
both.
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METHOD Model Coupling Projection Misc Total
SD 0.92910,005 - - 0.003:‘:0.003 0~932:|:O‘007
PCD 0.91940.003 0.4984+0.010 2.98410.030 0.00240.002 4.40240.035
(a) M =2 exemplars.
METHOD Model Coupling Projection Misc Total
SD 0.93240.005 - - 0.00249.003  0.934+0.007
SD+P 0.922:|:0_002 - 3.0425:0_03() 0.003:‘:0.002 3.9675;0_030
PCD 0.92140.003 0.50340.010 3.01340.011 0.002109.002 4.440+0.022

(b) M =6 exemplars.

Table 5: Per-diffusion step runtime (in seconds; mean =+ std over 100 diffusion steps) for each
operation of the Constrained Coupled Immage Pair Generation experiment. Total is the per-step sum.
Components: Model = SD-2.1 UNet inference; Coupling = coupling step; Projection = projection
step; Misc = other supporting ops (e.g., Scheduler.step ()). Results are from a single run
generating 25 samples with M € {2,6} exemplars from Figure @ and Figure respectively. A
dash indicates the component is not applied.
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Figure 13: Runtime profile per iteration (in milliseconds) for each task scaling with the number
of robots in the multi-robot experiment. The inference batch size for each robot is set to 32 and
the total diffusion time step is set to 25 for profiling. Results are averaged over 50 random initial
configurations for each task and the standard deviations are plotted with error bars.

Multi-Robot Navigation Figure[T3]exhibits the runtime profiles of PCD running across different
tasks and scaling with number of robots. Similar to image generation, the runtime fraction of the
diffusion model’s forward pass and associated overheads remains nearly constant despite the number
of robots due to GPU parallelization, provided the total workload does not exceed the GPU’s com-
putational throughput. Runtime fraction of coupling approximately equals that of diffusion model
forward pass but slightly varies across numbers of robots and tasks. The ADMM-based projection
operation takes up roughly 67% to 75% of the total runtime and scales up approximately linearly
with the numbers of robots (which conforms to theoretical complexity). Note that due to the batched
convergence check described in Algorithm[] the reported projection runtime is effectively the worst
case within each batch per iteration. Implementing more efficient projectors such as adopting adap-
tive augmented Lagrangian penalty (Boyd et al.,[2011) may help accelerate convergence.

C.2 MULTI-ROBOT NAVIGATION

C.2.1 ADDITIONAL QUALITATIVE RESULTS

Figure [T4] T3] [16] [I7] exhibit more trajectory samples generated by the compared methods on all
four tasks with N = 2 and N = 4 robots. These results demonstrate the effectiveness of PCD in
generating highly correlated trajectories and simultaneously enforcing hard constraints compared to
methods with the absence of either coupling or projection, or both.
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Task Empty, 2 Robots

METHOD \ Metric SU%) RSt CS(%)t DAt

Max Vel. =0.703
vanilla DIFFUSER 9297 0.9249.97 (59:‘:49, 65:‘:48) (0-99:t0.0857 1.0:|:0_0)
MMD-CBS 1004 1.040.0 (8.0427,12432) (0.994+0.073, 1.040.0)
DIFFUSER + projection 92497 0.9240.07 (100L9, 100+0) (0.99+0.085, 1-0+0.0)
CD-LB (W/O pI‘Oj.). ].OOiO 1-0:t0.065 (7~3:t267 5.55;23) (0.92:‘:0_2, 0'93:t0.18)
CD-SHD (W/O pI‘OJ.) 100:&0 1.0:|:().0 (45:|:5()7 52:t50) (0.99:|:(),097 1-0:|:O.0062>
PCD-LB 95190 0.954022  (100+9,100+0) (0.98+0.12, 1.0-£0.0087)
PCD-SHD 10010  1.0+0.061 (10040, 100+0) (0.99+0.089, 1.0+0.0092)

Max Vel. = 0.692
vanilla DIFFUSER 92497 0.9240.07 (40:|:497 44:i:50) (0-99i0.0857 1.05;0_0)
MMD-CBS 10049 1.040.0 (8.0427,12439) (0.994+0.073, 1.040.0)
DIFFUSER + pI‘OjeCtiOIl 93i26 0-92i0.27 (100i07 100i0) (0-99j:0.085a 1~0i0.0)
CD-LB (W/O pI‘Oj.). 1OO:I:O 1-0i0.065 (6.9i25, 4.6:|:21) (0.92:‘:0,2, 0~93:t0.18)
CD-SHD (w/o proj.) 10040 1.040.0 (31146, 37448 (0.99-+£0.09, 1.0+0.0062)
PCD-LB 95429 0.9540.22 (1000, 10040) (0.9840.12, 1.040.0088)
PCD-SHD 10040 1+0.065 (1000, 100+0) (0.9810.0885 1.0+0.012)

Max Vel. =0.675
vanilla DIFFUSER 92497 0.9240.07 (19i407 22i41) (0-99i0.0857 1~0i0.0)
MMD-CBS 10049 1.040.0 (8.0127,12439) (0.99+0.073, 1.040.0)
DIFFUSER + projection 934926 0.9249.07 (100:|:()7 100:&0) (0-9910.0857 1-O:|:0)
CD-LB (W/O pI'Oj.) 100i0 1i0.065 (6.45125, 3.6i19) (0-92i0.27 0~93iO.18)
CD-SHD (W/O proj.) ].OOiO 1.0:|:0_0 (18.4i39, 21-3:t41) (0.99:|:0_09, ]-~O:|:O.0062)
PCD-LB 95429 0.9540.22 (1000, 1000) (0.9219.2,0.9310.17)
PCD-SHD 100+0  1.040.060 (10049, 100+0) (0.99+0.088, 1.0+0.012)

Table 6: Task Empty, 2 robots, 100 random tests, sample size 128 except MMD-CBS.

C.2.2 ADDITIONAL QUANTITATIVE RESULTS

Tables [6] [7] [8] and [O] summarize quantitative evaluation on all of the four environments with N = 2
robots, each subject to three different maximum velocity constraints. Results on all environ-
ments with N = 4 robots are in Table [10} [T1} [[2land [I3] In terms of constraint satisfaction,
constraint-agnostic methods (vanilla DIFFUSER, MMD-CBS, and all coupling-only CD- variants)
achieve similar rates: as low as 8-22% in Empty and between around 28% and 62% in Highways.
In contrast, every projection-based variant (DIFFUSER with projection and our PCD-LB/SHD) en-
forces the constraint in all cases, confirming the effectiveness of projection. Inter-agent safety scores
show the similar trend. Because MMD-CBS repeatedly samples and then stitches together one opti-
mal trajectory (see Remark[d), it unsurprisingly attains perfect score. Among the one-shot methods,
PCD- and CD- methods can almost match this upper bound, while vanilla DIFFUSER and and its
projected variant performs much worse. Slightly degraded data adherence performance is again
observed in our method: the LB cost function gets affected more due to its steeper gradients by
design. Similar trends can be observed in the other two environments. Overall, the results show that
PCD effectively promotes inter-robot collision avoidance through appropriate coupling costs, while
enforcing hard test-time velocity constraints. A tradeoff exists between coupling strength and data
adherence, depending on the coupling cost.

Remark 4 (Comparison to MMD-CBS). A direct comparison between MMD-CBS (Shaoul et al.|
20235)) and our method is not straightforward due to fundamental differences in their sampling proce-
dures. MMD-CBS is a search-based approach that generates a batch of trajectories using diffusion
models, selects the best one based on a cost function, adopts only a partial segment of the selected
trajectory to resolve collisions, and repeats this process iteratively. As a result, it produces only one
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Task Highways, 2 Robots

METHOD \ Metric SU(%)t RSt CS(%)t DAt

Max Vel. = 0.878
vanilla DIFFUSER 93496 0.8140.39 (72:|:45, 76:|:43) (0.99:‘:0.11, 0.98i0_13)
MMD-CBS 10049 1.040.0 (73444,79+41)  (0.99+0.099,0.97+0.17)
DIFFUSER + projection 92497 0.8140.39 (100i0, 100i0) (0.9910.12, 0.98i0,14)
CD-LB (w/o proj.) 10040  1.040.033  (22442,18+38)  (0.99+0.11,0.98+0.15)
CD-SHD (W/O pI‘O_].) 100:|:0 1.0:&0,029 (65:|:48> 66i47) (0.99:‘:0.12, 0.98:‘:0.13)
PCD-LB 10040 0.9940.1 (100+0, 100+0) (0.98+0.14,0.97+0.18)
PCD-SHD 10040 1.040.012  (10040,100+0)  (0.98+0.14,0.9710.16)

Max Vel. =0.781
vanilla DIFFUSER 93496 0.8140.39 (63:|:48, 65:|:48) (0.99:*:0.11, 0.98:{:0,13)
MMD-CBS 10049 1.040.0 (674£47,67+47)  (0.9940.099,0.97+0.17)
DIFFUSER + projection 95499 0.8140.39 (100i0, 100i0) (0-98i0.127 O.98i0,14)
CD-LB (W/O pI‘Oj.)' 100:|:0 1-0i0.033 (14:|:35, 125;32) (O~99:t0.117 O.98i0_15)
CD-SHD (W/O pl"O].) 100:|:0 1.0:‘:0,0 (55:|:5(), 53:|:5()) (0.99:‘:()_11, 0.98:‘:0_13)
PCD-LB 10049  0.9940.11 (10040,10040) (0.9840.14,0.9610.19)
PCD-SHD 10040 1.040.041  (10040,100+0)  (0.98+0.14,0.9710.16)

Max Vel. =0.647
vanilla DIFFUSER 93496 0.8140.39 (52i50, 50i50) (0.9910.11, 0.98i0,13)
MMD-CBS 10049 1.040.0 (62+49,54450)  (0.99+0.099,0.97+0.17)
DIFFUSER + pI‘OjCCtiOIl 914929 0.8440.36 (100:‘:0, 100:|:()) (0.98:‘:0.13, 0.98:‘:0.14)
CD-LB (w/o proj.) 10010 0991012  (29+45,22+41)  (0.99+0.11,0.9810.16)
CD-SHD (W/O prO].) 100:|:0 1.0:|:0_029 (49:|:5(), 46:|:5()) (0.99:‘:0.12, 0.98:‘:0_13)
PCD-LB 99199 0.9840.14 (10040,10049)  (0.98+0.15,0.96+0.19)
PCD-SHD 10040 1.040.022 (IOOiO, 100i0) (0.98i0,15, 0-97i0.17)

Table 7: Task Highways, 2 robots, 100 random tests, sample size 128 except MMD-CBS.

trajectory per robot per forward pass, making it inefficient for generating multiple i.i.d. samples. In
contrast, DIFFUSER and our method produce a full batch of i.i.d. trajectories in a single pass, which
preserves the benefit of massive parallel sampling from generative models. Thus, directly comparing
a 128-sample batch from DIFFUSER or ours against a single best output from MMD-CBS, or vice
versa, would not be very meaningful.

C.2.3 ABLATION STUDY

We perform ablation study on the coupling strength ~ for both tasks Empt y and Highways with the
velocity limits reported in Table[T] but with both 2 and 4 robots. Results are presented in Figure [I§]
and Figure [I9] In task Empty, as the coupling strength v increases, SU and RS increases and
saturated near 1.0, with an exception in N = 4 where RS drops a bit when -y is too high; CS remains
at 100% by projection, and DA in general gradually drops. Results of Highways demonstrates the
similar trends, with the difference where SU drops significantly for the LB cost when + is large. This
is because SU also takes into accounts collisions with static obstacles. When -y is high, the gradient
of the robot-collision cost overwhelms that of the obstacle-avoidance ter resulting in the robots
bumping into obstacles. This is supported by Figure [20]in which we report the decreasing obstacle
safe rate, suggesting more trajectories are hitting static obstacles as ~ increases. A potential remedy
is to leverage projection to also enforce static obstacle avoidance as [Christopher et al.| (2024)), but
that would introduce non-convexity into the projection process and might cause convergence issues.

5The coefficient for the gradient of the obstacle-avoidance cost is fixed in our experiments. See Ap-

pendix for details.
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Task Conveyor, 2 Robots

METHOD \ Metric SU(%)t RSt CS(%)t DA?

Max Vel. =1.21
vanilla DIFFUSER 14435 0.6440.48 (0.19:|:4_3, 0~45:|:6.7) (0.95:|:0_21, 0-97:|:0.18)
MMD-CBS 86435 1.040.0 (0.040.0,1.049.9) (1.040.0,0.9840.14)
DIFFUSER + projection 10430 0.6840.47 (IOOio, 100i0) (0.71i0_45, 0~70i0.46)
CD-LB (W/O proj.) ].OOiO 0.96:|:0_2 (0.039:‘:2_0, 0'42:t6.5) (0~99:|:0.117 0.98:|:0,13)

CD-SHD (W/O proj.) 100:|:0 1.0:|:()‘0 (0-007810‘887 0.2:|:4‘4) (0.99:‘:0.093, 0~99:|:O‘098)

PCD-LB 10049 0.944¢.94 (1000, 100+0) (0.85+0.35,0.85£0.36)
PCD-SHD 10020 099011  (10040,10040)  (0.9040.30,0.9110.25)
Max Vel. = 1.46
vanilla DIFFUSER 14135 0.6440.48 (2.4:|:15, 1-7:i:13) (0.955;0_21, 0~97:|:0.18)
MMD-CBS 86135 1.040.0 (4.0420,5.0122) (1.040.0,0.9840.14)
DIFFUSER + projection 14435 0.67+0.47 (IOOio, 100j:0) (0.87i0,33, 0.89i0,31)
CD-LB (W/O pI‘Oj.) 100:|:0 0.96:|:0_20 (0.145;3_7, 0-75:i:8.6) (0.99:|:0_11, 0.98:|:0_13)

CD-SHD (W/O proj.) 100:&0 ]-~0:|:0.0 (0.80:|:8_9, 0.82:‘:9) (0.99:‘:0,093, 0‘99:|:0.098)

PCD-LB 10049 0.9540.03 (10040, 100+0) (0.9540.23,0.9440.24)
PCD-SHD 10019 0.99:0073  (10040,10040)  (0.98.40.15, 0.9810.14)
Max Vel. =1.76
vanilla DIFFUSER 14435 0.6440.48 (36i487 33i47) (0.95i0_21, 0~97i0.18)

MMD-CBS 86135  1.010.0 (48450, 50+50) (1.04+0.0,0.98+0.14)
DIFFUSER + projection 17438  0.6540.48 (100i0, 100:‘:0) (0.94:|:0,23, 0.96:|:0‘20)
CD-LB (W/O pI'Oj.) 100i0 0.96i0,2 (5.4i23, 4-4i21) (0.99i0_11, 0.98i0_13)
CD-SHD (W/O proj.) ].OOiO ]-'0:|:0.0 (22:|:41, 20:|:40> (0.99:‘:0.093, 0-99:|:0.098)
PCD-LB 1009 0.961¢.21 (10040, 10040) (0.9840.14,0.9710.18)
PCD-SHD 10010  1.0+0.037 (1000, 100+0) (0.9940.003, 0.99+0.10)

Table 8: Task Conveyor, 2 robots, 100 random tests, sample size 128 except MMD-CBS.

C.3 CONSTRAINED DIVERSE ROBOTIC MANIPULATION
C.3.1 QUALITATIVE RESULTS

We present in Figure 21| more comparative results on the trajectories by all compared methods.
Sheer contrast between our PCD method and others highlights the efficacy of our framework in
jointly generating correlated samples while enforcing hard constraints.

C.3.2 QUANTITATIVE RESULTS AT DIFFERENT VELOCITY LIMITS

Table 14| summarizes quantitative results of all compared methods with all three velocity limits. We
also report standard deviations in the tables.

C.3.3 ABLATION STUDY

We perform ablation study investigating how the coupling strength ~ affects the performance of our
PCD method. Figure@]shows the trends of evaluation metrics’ (DTW, DFD, CS, TC) change as the
coupling strength parameter 7y increase, with all three velocity limits we experimented. Above all,
the general trends look expected and similar across the three velocity limits: as we increase vy, the
DTW and DFD monotonically increase, velocity constraint satisfaction (CS) is maintained perfect
by design, and task completion score (TC) drops monotonically. This suggests that (i) the projection
can guarantee velocity constraint regardless of coupling strength; (ii) as - increases, the correlations
between the variables get stronger, with the cost gradients gradually overwhelming the learned score
and thus deviating from the original data distribution. A tradeoff exists between data adherence and
correlation strength.
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Task DropRegion, 2 Robots

METHOD \ Metric SU(%)T RSt CS(%)t DA?

Max Vel. = 0.928
vanilla DIFFUSER 60449 0.6140.49 (1].:|:32, 9.5:‘:29) (0.89:|:0_32, 0.88:|:0,32)
MMD-CBS 100400 1.0400 (22441,21447) (1.040.0, 1.040.0)
DIFFUSER + projection 63448 0.674+0.47 (100i0, 100i0) (0-92i0.277 0~92i0.27)
CD-LB (W/O proj.). IOOiO 0~97:|:0.18 (9.6:‘:30, 9:|:29) (0.59:|:0_49, 0.60i0,49)
CD-SHD (W/O pI‘O].) 100:‘:0 1.0:|:()‘07 (7-21267 5-7:|:23) (0.96:&0,19, 0.96:|:0‘19)
PCD-LB 10049 0.914929 (100+0,10040) (0.86+0.35,0.87+0.34)
PCD-SHD 10040 1.040.014 (10010,10040) (0.9710.15,0.9640.15)

Max Vel. =1.13
vanilla DIFFUSER 60449 0.6140.49 (37:i:48a 35:E4S) (0.895;0_32, O.88i0_32)
MMD-CBS 100100 1.0400 (5lis0,58149) (1.040.0,1.0400)
DIFFUSER + projection 61449 0.6540.48 (100i0, 100i0) (0-92i0.287 0~91i0.28>
CD-LB (W/O pI‘Oj.) CD-LB IOOiO 0-97:|:0.18 (18;‘;39, 19;‘;39) (0.59:|:0_49, 0.60:|:0_49)
CD-SHD (W/O proj.) 100:‘:0,0 1.0:|:0,07 (24:t43, 22:‘:42) (0.96:|:0,19, 0.96:|:0,19)
PCD-LB 10040.0 0.9010.30 (100+0,100+0) (0.8540.35,0.8640.35)
PCD-SHD 10040.0 1.040.042 (100:|:0, IOOio) (0.96:|:0_19, 0~96:|:0.18)

Max Vel. =1.34
vanilla DIFFUSER 60449 0.6140.49 (78142, 73144) (0.89i0_32, 0.88i0_32)
MMD-CBS 100100 1.0400 (71ta5,81139) (1.0+0.0,1.0400)
DIFFUSER + projection 959449 0.63+0.48 (100:|:07 100:t0) (0.91:&0,29, 0.90:|:0‘30)
CD-LB (W/O proj.) CD-LB 10010 0-97i0.18 (31146, 33147) (0-59i0.497 0.60i0_49)
CD-SHD (W/O pl"Oj.) 100:‘:0,0 1.0:|:0,07 (50i50, 48:‘:50) (0.96:|:0_19, 0.96;‘;0,19)
PCD-LB 100100 0.90+0.30 (10040,10040) (0.8510.36,0.8510.35)
PCD-SHD 1004+0.0 1.040.033 (100i0, IOOiO) (0.96i0_19, 0.96i0_19)

Table 9: Task DropRegion, 2 robots, 100 random tests, sample size 128 except MMD-CBS.

A similar ablation is also conducted on coupling-only method (CD) by removing the projection;
results are in Figure 23] The same tradeoff between correlations and data adherence also exists.
Unsurprisingly the velocity constraint satisfaction rates drop as -y increases, and the LB cost function
is more sensitive.

C.4 CONSTRAINED COUPLED IMAGE PAIR GENERATION

C.4.1 ADDITIONAL QUALITATIVE RESULTS

Figure[24] presents additional pairs generated by PCD when rwo exemplar images (Figure[dh) define
the convex hull. We repeat the experiment with six exemplars per model (Figure 25); the corre-
sponding samples are shown in Figure [26]

C.4.2 ADDITIONAL QUANTITATIVE RESULTS

Table [T5] reports the full set of metrics including the standard deviations for the samples generated
using rwo exemplars per model, while Table [T6] for the samples generated with six exemplars per
model. Quantitatively, both setups show the same trend throughout, that is: Projection-based meth-
ods (SD+P, PCD) achieve 100% gender satisfaction (M/F) and the strongest alignment to exemplars
(higher SE-CLIP, lower SE-LPIPS and SE-FID) compared to vanilla SD, coupling-only variants and
other baselines. Projection reduces diversity (low IS-LPIPS); adding coupling partially recovers
diversity relative to projection alone. Coupling-based methods improve the age-group XOR satis-
faction, with PCD attaining the highest rate (96% for the setup using rwo exemplars and 76% for the
setup using six exemplars). In both experiments, SyncDiffusion matches SD+C on XOR (48%) but
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Task Empty, 4 Robots

METHOD \ Metric ~ SU(%)! RSt CS(%)t DA%

Max Vel. =0.703

vanilla DIFFUSER 65448 .62+.49 (69+46,65+48,64+48,62+48) (.99+.073, 1.4+.00055, 1.+.0014, 1.4.0016)
MMD-CBS 10040 1l.40. (16436,17+38,11431,17438)  (.99+.044, 1.4.0035, 1.4.019, L.40.)
DIFFUSER + proj. 65448 .61+.49 (100+0,100+0,100+0,100+0) (.99+.073, 1+.00055, 1+.0014, 1+.0016)
CD-LB (w/o proj.) 10040 .99+ .0s5 (.03141.8,1+9.9,3+17,3.1+17) (.81+.33,.88+.26, .86+ .26, .85+ .28)
CD-SHD (w/o proj.) 10040  1+o0 (38449, 38+48,35+48,37+48)  (.99+.076, 1+.001, 1+.0085, 1+.003)

PCD-LB 96420 .924+.28 (100+0,100+0,100+0,100+0) (.57+.38,.51+ 37, .52+ .37, .49+ 37)
PCD-SHD 10040 .99+ .084 (10040, 10040, 10040, 10040) (.96+.1,.98+.046,-97+.069, -96+.078)

Max Vel. = 0.692

vanilla DIFFUSER 65448 .62+.49 (42449,42449,43+449,41449) (.99+.073, 1.4.00055, 1.+.0014, 1.4+.0016)
MMD-CBS 100+0 l.to. (15+36,17+38,11431,16437)  (.99+.044, 1.+.0035, 1.+ 019, 1.40)
DIFFUSER + proj. 64448 .61+ .49 (100+0,100+0,100+0,100+0) (.99+ 073, 1.+.00053, 1.+ 0014, 1.+ 0016)
CD-LB (w/o proj.) 10010 .99+.085 (0+0,1+9.9,2.5416,3.1+17) (-81+.33, .88+ .26, .86+ .26, -85+ .28)
CD-SHD (w/o proj.) 100+0 1l.to. (28+45,29+45,27+44,27445) (.99+.076,1.4.001, 1.+.0085, L.4.003)

PCD-LB 94424 .92+ .98 (100+0,100+0,100+0,100+0)  (.6+.39,.56+.37, .58+ 38, .55+ .38)
PCD-SHD 10040 .99+ 005 (100:{:0, 10040, 10040, 100;{;0) (.96 .1,.98+ 045, .97+ 07, .96i_07g)

Max Vel. =0.675

vanilla DIFFUSER 65448 .62+.49 (24443,22442,24442,26444) (.99+.073, 1.4.00055, 1.+.0014, 1.4.0016)
MMD-CBS 100+0 1.to. (15+36,17+38,11431,14435)  (.99+.044, 1.+ 0035, 1.+ 010, 1.40.)
DIFFUSER + proj. 64+4s 63148 (100+0,100+0,100+0,100+0) (.99+.073, 1.4.00055, 1.+.0014, 1.%.0016)
CD-LB (w/o proj.)  100+0. .99+.085 (0.+0.,1.49.9,1.7413,3.417)  (.81+.33,.88+.26, .86+ 26, .85+.28)
CD-SHD (w/o proj.) 100+0 1l.10. (21+41,21441,194390,21440) (.99+.076,1.4.001, 1.+.0085, 1.4.003)

PCD-LB 92427 .88+.33 (10040,100+0,100+0,100+0) (.73+.38,.79+.33, .77+.34, .75+ .34)
PCD-SHD 10040 .99+ 099 (100;&0, 10040, 10040, 1003:0) (.96:‘:,17 98+ 045, .97+ .069, .96i,077)

Table 10: Task Empty, 4 robots, 100 random tests, sample size 128 except MMD-CBS.

shows slightly reduced sample variation (lower IS-LPIPS). We also observe that even with the use of
a generic text prompt as outlined in Appendix[B.4] ControlNet-XS exhibits a male-bias, consistently
producing more male samples, thus yielding 100% male gender satisfaction (M) and generally lower
female gender satisfaction (F) across both runs.

C.4.3 ABLATION STUDY

We ablate both the coupling strength v and the noise-scaling factor k. For PCD, we vary v €
{50, 150, 250, 350,450, 500} with M € {2,6} exemplar images per model. Separately, for SD+P
we vary k € {1,2,5,10,20} (again with M € {2,6}) to examine how amplifying the noise standard
deviation impacts diversity and other metrics. Figures 27 and 28] summarize the trends for XOR%,
M/F%, SE-CLIP, SE-LPIPS, SE-FID and IS-LPIPS as «y and k increase, respectively.

As v increases, we observe that XOR% increases monotonically, M/F% (gender constraint satis-
faction) is maintained perfect by design, SE-CLIP maintains in place, SE-LPIPS and SE-FID drops
almost monotonically, while IS-LPIPS increases. This suggests that (i) a larger  strengthens the
coupling signal, yielding a clearer young/old contrast (higher XOR%), (ii) generated sample pairs
resemble more of the exemplars provided (denoted by gradually decreasing SE-LPIPS and SE-FID)
due to gradients from the coupling loss, (iii) stronger coupling also injects modest additional diver-
sity (higher IS-LPIPS), and (iv) projection ensures the gender constraint is satisfied regardless of
7.

In the independent study of k, we observe that as k increases, the trend across all metrics are very
much similar to that of -, with one notable difference: IS-LPIPS rises sharply and monotonically as
k grows. This suggests that increasing the noise scaling factor boosts sample variation, and yet does
not violate the attribute constraints provided by the exemplars (perfect M/F%, high SE-CLIP, low
SE-LPIPS and SE-FID).
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Task Highways, 4 Robots

METHOD \ Metric  SU(%)t RSt CS(%)T DA?T

Max Vel. = 0.878
vanilla DIFFUSER 53+50 21441 (73+44,68+47,68+47,67+47) (1.+.04,-98+ .14, 1.4 04, 1.4 028)
MMD-CBS 10040 1.40. (68+47,64+48,63+48,65+48) (-98+.14,.96+ 20, .97+ .17, .99+ .10)
DIFFUSER + pI'Oj. 54i50 .21:|:A41 (100i0, 100i0, 100:|:0, 100i0) (1.:};0527 .98:‘:‘15, 1.:|:A077 1-;[;047)
CD-LB (w/oproj.) 10010 1.x.032 (0+0,.11+3.3,0.20.,0.+0.) (-99+.12, .99+ 11, L.+ 067, 1.+ .066)
CD-SHD (w/o proj.) 10040 1.+.012 (35448, 35448, 36448, 35+48) (1.+.07,.98+.15, L.4.07, 1.4.044)
PCD-LB 10010 .95+ 22 (10040, 10040, 10040, 100+0) (:97+.16,.964.2,.994 12, .99+ 098)
PCD—SHD 100:t0 1.;‘:‘063 (100;{:0, 100:{:0, 100;&0, 100:&0) (.98;|:A13, .96;|:A19, .99:|:A127 ~99:b076)

Max Vel. =0.781
vanilla DIFFUSER 53+50 21441 (62449, 57+49, 58449, 57+50) (1.+.04,-98+ .14, 1.4 04, 1.4 028)
MMD-CBS 10040 1.40. (5849, 51450, 58449, 59+49) (-98+.14,.96+ 20, .97+ .17, .99+ .10)

DIFFUSER + pI‘Oj. 53450 .224 .42 (100i07 100i07 100i07 100i0) (1.iA054, .98iA15, .99iA075, 1~iA048)
CD-LB (w/oproj.)  100+0 1.+.069 (0.x0.,.031+1.8,.07+2.7,.0078+ 88) (.99+.11,.98+ 13, 1.+ 067, 1.+.062)
CD-SHD (w/o proj.) 10040 1.+.051 (49450, 42+49,45450,43+50) (:994+.072,.98+ .15, L.4+.071, 1.+.048)

PCD-LB 100410 .91+ 28 (10040, 10040, 10040, 10040) (.98+.15, .95+ .21, .994 12, .99+ 093)
PCD-SHD 10040 14+.064 (10040, 10040, 10040, 10040) (.984 .14, .96+ 19, .98 12, .99+ 0s2)

Max Vel. = 0.647

vanilla DIFFUSER 53450 21441 (46i507 43.5i50, 39.2i49, 45.9i50) (1.i,04, .98i_14, 1.i,04, 1-i4028)
MMD-CBS 10040 1.40. (48+450,41+49,46+50,51450) (-98+.14,.96+ 20, .97+ .17, .99+ .10)
DIFFUSER + proj. 49450 284 .45 (100&07 100i07 100io, 100i0) (1.iA059, .98iA15, ~99iA0847 1~i.052)
CD-LB (w/o proj.) 10040 .97+.17 (.07+2.7,.2144.6,.27+5.1,.05542.3) (.99+.11,.97+ .16, 1.+ .068, 1.+.061)
CD-SHD (w/o proj.) 100+0 1.+.012 (18439, 16437,22441,21441) (1.+.07,-98+.15, L.4.07, 1.+.044)

PCD-LB 87+34 .92+ .27 (10040, 10040, 10040, 10040) (.98+.15, .95+ .22, .984 13, .99+ 099)
PCD-SHD 100i0 .99iA1 (100i07 100i07 100i0, 100i0) (.96iA2, .93iA25, ~97iA187 .97iA17)

Table 11: Task Highways, 4 robots, 100 random tests, sample size 128 except MMD-CBS.
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Figure 10: Signed component of the model score V., log p:(z:) projected onto the line segment con-
necting two exemplar latents (the convex hull of two exemplars). The x-axis represents interpolation
between the two exemplar latents (from left to right), and the y-axis denotes the diffusion timestep
t. Color indicates the direction and strength of the projected score: blue values push towards the
right exemplar, while red values push towards the left. This visualization, based on two exemplars
from row 2 of Figure[a] reveals that the projected score components consistently point towards one
side (left), creating a narrow “white” transition band that funnels every sample to the left exemplar
— hence a nearly deterministic path and little diversity. Such behavior is observed consistently in
all exemplar sets experimented and likely stems from the exemplars being relatively similar, which
induces a narrow feasible region for the diffused latents. Empirically, the exemplars cannot differ
too much in spatial structure. When exemplars differ significantly, interpolations between them of-
ten fail to represent coherent or meaningful images (see discussion on Latent Space Interpolatability
in later sections).
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Mean r; over diffusion timestep t (Male Exemplars)
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Figure 11: Mean ratio r; = ||V, logpi(z)||/||T( V=, logpi(2:))]|| over diffusion timesteps ¢,

where TI(-) projects onto the convex hull formed by exemplar latents. Top: computed with male
exemplar pair (top row of Fig. a)); bottom: female exemplar pair (bottom row). Large outlier r,
values indicate the predicted score is nearly orthogonal to the chord connecting the two exemplar
latents. Outliers are defined as r; > 1+ 1.50, where p is the global mean and o the global standard

deviation across t.
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Figure 12: Linear latent interpolations between pairs of FFHQ-Aging Dataset images l I- El et al.|
[2020). Rows 1-3 use exemplars that differ in pose or spatial layout; midway latents leave the data
manifold and decode to implausible faces. Rows 4—6 use structurally aligned exemplars; the entire
interpolation produces coherent and plausible images. The contrast illustrates that latent interpola-
tions are reliable only for closely aligned exemplars.
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(a) MMD-CBS (N = 2) (b) DIFFUSER (N = 2) (c)PD (N = 2) (d)cD (N =2) (e) PCD(Ours) (N = 2)

(1) CD (N = 4) (j) PCD (Ours)(N = 4)

(k) MMD-CBS (N = 4) (1) DIFFUSER (N = 4) (m) PD (N = 4) (N) CD(N =4)  (0) PCD(Ours) (N = 4)

Figure 14: Robot trajectories in environment Hi ghways generated by the compared methods with
N = 2 and N = 4 robots running. Red crosses mark collisions and blue stars mark velocity
constraint violations. Each row corresponds to one initial configuration (start and goal positions for
each robot).
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(k) MMD-CBS (N = 4) (1) DIFFUSER (N = 4) (m) PD (N = 4) (n) CD (N = 4) (0) PCD(Ours) (N = 4)

Figure 15: Robot trajectories in environment Empty generated by the compared methods with
N = 2 and N = 4 robots running. Red crosses mark collisions and blue stars mark velocity
constraint violations. Each row corresponds to one initial configuration.
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(f) MMD-CBS (N = 4) (g) DIFFUSER (N = 4) (h) PD (N = 4) (i) CD (N = 4) (j) PCD (Ours)(N = 4)

(k) MMD-CBS (N = 4) (1) DIFFUSER (N = 4) (m) PD (N = 4) (n) CD (N = 4) (0) PCD(Ours) (N = 4)

Figure 16: Robot trajectories in environment Conveyor generated by the compared methods with
N = 2 and N = 4 robots running. Red crosses mark collisions and blue stars mark velocity
constraint violations. Each row corresponds to one initial configuration.
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Figure 17: Robot trajectories in environment DropRegion generated by the compared methods
with N = 2 and N = 4 robots running. Red crosses mark collisions and blue stars mark velocity
constraint violations. Each row corresponds to one initial configuration.
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Figure 18: Coupling Strength Ablation of PCD on task Empty with velocity limit vpax

(a,b,c,d) N = 2 robots; (e,f,g,h) N = 4 robots.
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Task Conveyor, 4 Robots

METHOD \ Metric

SU%)T RSt

CS(%)1 DA?T

Max Vel. =1.21

vanilla DIFFUSER l.1909 ~O74:i:.26 (.53;‘:7,37 .6i7,7, .34:‘:5,97 -23:t4.8) (.96;‘:,21, .96;‘:,27 .95:&‘21, »97:i:.16)
MMD-CBS* 79441 .99+.10 (0.40.,0.40.,0.40.,0.40.) (:99+ .10, .96+ .20, .99+ .10, .99+ .10)
DIFFUSER + pI‘OjeCtiOIl 0.+o0. 14 39 (:l()()j:()7 :l()()j:(]7 100:‘:07 100i0) (.73i,44, .72i,45, -70:1:.467 .75:{:,43)
CD-LB (W/O proj.) 100i0 ~99iA10 (O.io,, 0~i0., O.io,, .023i1,5) (.89i317 ~913528, .90i,30, .89i,32)
CD-SHD (W/O pI‘Oj.) 100:|:0. 1~:l:0. (.078:&2,& ,047i2,2, .039:{:2‘, .023:{:1‘5) (.98i,14, .98;‘;,14, .98:{:,13, .98:{:,13)
PCD-LB 95192 .844.36 (100-0, 1000, 1000, 100-+0) (.80+.40, -81+.40, .80+ .40, .79+ .41)
PCD-SHD 10010 .93+ 26 (10040, 100+0,100+0, 100+0) (.91 2s,.90= 50, .90+ 30, .89+ 31)
Max Vel. =1.46
vanilla DIFFUSER l.1909 .O74j:,26 (3~2:l:18, 4.1:‘:207 1.9;{:14, 1.6i13) (.96;‘:,21, .96;‘:,27 .95;‘:‘217 ~97j:.16)
MMD-CBS* 79441 .99+.10 (2.414,2.414, 4. 420, 4.420) (:99+ .10, .96+ 20, -99+.10, .99+ .10)
DIFFUSER + pl‘OjeCtiOIl l.+9.9 .0924 29 (100i07 100:‘:07 IOOio, 100i0) (.90i,30, .89+ 39, .89:{:,31, -91j:.28)
CD-LB (W/O proj.) 100i0 .99i,10 (.14i3,7, .016i1_2, .0078i,83, -13i346) (.89i_317 .gligs, .90i,30, .89i,32)
CD-SHD (w/o proj.)  100+0  1.x0. (.68+8.2,.60+7.7,.33+5.7,.31x5.6) (.98+.14,.98+ 14,.98+ 13,.98+ 13)
PCD-LB 100io .89iA32 (100i0, 100i07 100i0, 100i0) (.90i_297 .903529, .gli,zs, .90i,30)
PCD-SHD 10040 .97+.1s (10040, 10040, 10040, 100+0) (:97+.17, .96+ .19, .96+ .19, .96+ .19)
Max Vel. =1.76
vanilla DIFFUSER 1.:&9,9 -074:t.26 (34:‘:477 32:‘:477 301467 30;‘:4(,‘) (.96i_21, .96;‘:,27 .95:[:,217 ~97:t.16)
MMD-CBS* 79441 .99+.10 (48450, 53+50, 40+49,43+50) (:99+.10, .96+ 20, -99+.10, .99+ .10)
DIFFUSER + pl‘OjeCtiOIl l.i99 .084.27 (100:‘:07 100:‘:07 100:‘:07 100i0) (.95i,22, .94:‘:,23, .94:&,23, -97j:.18)
CD-LB (W/O proj.) 100i0 -99i,1 (-35i5497 -34i5.97 .20i4,4, -42i6,5) (.89i,31, .gli,zs, .90i,3, .89i,32)
CD-SHD (w/o proj.) 10010 1.1o. (13433, 14435, 12432, 10430) (-98+.14, .98+ 14, .98+ 13, .98+ 13)
PCD-LB 100i0 ~92i.27 (100i07 100i07 100i0, 100i0) (.95i_217 .96iA21, .96i,19, .95i,22)
PCD-SHD 100+0 .99+ .097 (10040, 10040, 10040, 100+0) (-98+.13,.984 14, .98+ 16, -98+.14)

Table 12: Task Conveyor, 4 robots, 100 random tests, sample size 128 except MMD-CBS.
*MMD-CBS yielded no trajectories when it failed to find an inter-robot-collision-free solution
within time limit; therefore, the CS metric for MMD-CBS is calculated only with inter-robot-
collision-free trajectories.
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Figure 19: Coupling Strength Ablation of PCD on task Highways with velocity limit vy,,x =
0.878. (a,b,c,d) N = 2 robots; (e,f,g,h) N = 4 robots.
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Task DropRegion, 4 Robots

METHOD \ Metric SU(%)t RSt CS(%)1 DA?

Max Vel. = 0.928

vanilla DIFFUSER 3.0417
MMD-CBS 100+o0.
DIFFUSER + projection 4.0+2¢
CD-LB (w/o proj.) 100+o0.
CD-SHD (w/o proj.) 10049

053422 (11432,9.7430,13+33,11432) (.904.30,.89+ 32,.89+ 32,.89+ 31)
1.+0. (18438, 16+37,17+38,19439)  (.98+.14,.98+ 14, 1.40.,.99+.10)

.084+ 28 (1000, 1000, 1000, 100+0) (.93+.26,.92+.27,.93+ 26, .92+ 27

87+.34 (4.1420,4.0420,3.7+19,3.0417) (.24+.43,.24+ 42, .26+ 44,.2414 43

.72:{:,45 (IOO:I:O, 100:|:0, 100:{:0, 100:{:0)
984115 (10040, 10040, 10040, 10040)

23+ .42,.214 41, .26+ 44, .224 42

(- )
(- )
934 .25 (5.3+422,4.3420,6.1424,4.6421) (.93+.26,.924 .27, .93+.26, .93+.26)
(- )
(:924.27, 914 .29, .92 27,924 27)

Max Vel. =1.13

PCD-LB 98414
PCD-SHD 10049
vanilla DIFFUSER 3.0417
MMD-CBS 10040,

DIFFUSER + projection 3.0+17
CD-LB (w/o proj.) 10040
CD-SHD (w/o proj.)  100+¢

053422 (40+49,37+48,37+48,40449) (.90 .30,.89+ 32,.89+.32,.89+ 31)
1.40. (43430, 39+49, 51450,50450)  (.98+.14,.98+ 14, 1.40.,.99+.10)
.0744 .26 (10040, 100+0,100+0,100+0) (.93+.26,.91+.28,.92+ 27, .91+ 28)
87+.34 (9.6429,9.9430,8.7+28,9.0429) (.24+ 43,.24+ 42, .26+ 44, .24+ 43)
93125 (18138, 15436, 18+30,18+38) (.93+.26, .92+ 27, .93+ 26, .93+ 26)

72445 (100+0,10040,100+0,100+0) (.224 .42, .2+ .4,.25+ .43, .224 41)
.98+.13 (10040, 10040, 100+0,100+0) (.92+.28,.914 29,.92+.28,.92+ 28)

Max Vel. =1.34

PCD-LB 9949.9
PCD-SHD 10049
vanilla DIFFUSER 3.04+17
MMD-CBS 10040,

DIFFUSER + projection 4.0+20
CD-LB (w/o proj.) 10040
CD-SHD (w/o proj.)  100+¢

053+ .20 (78441, 75443, 76442, 77+42) (.90+.30,.89+.32,.89+ 32, .89+ .31)
l.to.  (65+48,69+46, 75443, 75+43)  (.98+.14,.98+ .14, 1.40.,.99+ 10)
.068+ 25 (1000, 100+0,100+0,100+0) (.92+.27,.91+ 29, .91+ 28,.91+ 29)
87+.34 (15436, 16437,16437,15436) (.24+.43,.24+ 42, .26+ 44, .24+ 43)
93125  (39449,34147,39+49,36448) (.93+.26,.92+.27,.934 .26,.934.26)

PCD-LB 99499
PCD-SHD 10049

744 44 (100+0,10040,10040,100+0) (21441, .2+.4,.244 43, .214 41)
99+.10 (10040, 10040, 100+0,100+0) (.91+.28,.914.29,.91+.28,.91+ 28)

Table 13: Task DropRegion, 4 robots, 100 random tests, sample size 128 except MMD-CBS.

Obstacle Safe Rate Obstacle Safe Rate
Max Velocity 0.878; Projection ADMM Max Velocity 0.878; Projection ADMM
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Figure 20: Obstacle safe rates for the coupling strength ablation of PCD on task Highways with

velocity limit vy,x = 0.878.

The obstacle safe rate is defined as the average of an indicator of

whether all trajectories are not colliding into static obstacles.
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Figure 21: Additional qualitative results of the PushT experiment. Rows correspond to initial
observations; columns correspond to methods. Robot trajectories use a colormap (warmer colors
indicate later time steps); red crosses mark velocity violations. Only the first few dozen steps are

shown for clarity.
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PushT Experiment Results

METHOD\Metric DTW* DFD? CS(%)t TCH

Max Vel. =6.2
DP . 3.1641.13 0.46540.149  (47.6+£17.1,48+170)  (0.92710.195,0.93110.183)
DP + proj. 2-95i1.26 042210‘166 (100i07 100i0) (0.862i0,2537 0.860i0,255)
CD-DPP 3741104 054440135 (44.4416.6,44.5416.3)  (0.92340.206,0.92240.204)
CD-DPP-PS 44840911 0.64810.114 (39.6:|:15,5, 39~7:tl5.5) (0~912:|:0.2087 0'91710.199)
CD-LB 4134117  0.59640.151 (41.6i15‘47 41.3115,5> (0-910i0.2087 0-912i0.201)
CD-LB-PS 4.5041.01 0.64610.129 (41.4i16.47 41-4116.3) (0-921i0.1997 0~925i0.189)
PCD-DPP 4.6341.07 0.64310.135 (100:|:0, 100:|:0) (0.776:|:0_3017 0'777:t0.298)
PCD-DPP-PS  4.341, 05 0.6104013¢  (10020,10040)  (0.856.0 258, 0.85540.253)
PCD-LB 5072105 0.6960155  (10040,10040) (0.74740.3.0.75040.5)
PCD-LB-PS 4.324100 0.60510.138 (10040, 10040) (0.86510.257,0.861£0.259)

Max Vel. = 8.4
DP . 3.16+1.13 0.46540.149  (64.8413.8,654+13.7)  (0.92740.195,0.93140.188)
DP + proj. 2.96:&1,21 0.428:‘:0‘159 (100:|:()7 100:|:O) (0.896:|:0.2277 0.888:‘:0.237)
CD-DPP 3741100 054440135 (62.5413.9,62.41136) (0.92340.206,0.922.40.204)
CD-DPP-PS 44840911 0.64810.114 (57.4:|:14,0, 57-3113.9) (0-912:&:0.208, 0-91710.199)
CD-LB 4134117  0.59610.151 (58.9:|:13~87 58.6:‘:14,1) (0-910:|:0.2087 0.912:‘:0.201)
CD-LB-PS 4.5041 .01 0.64610.129 (58.8i14,47 58.7114,3) (0-921i0.1997 0~925i0.189)
PCD-DPP 4554100 0.63810.126 (10040, 10040) (0.82910.272,0.834L0.271)
PCD-DPP-PS 4.394105 0.62210.133 (100:|:07 100:|:0) (0.885:|:0.2367 0.885:‘:0.233)
PCD-LB 5.1241.08 0.708+0.135 (100i07 100i0) (0-778i0.2887 0~791i0.275)
PCD-LB-PS 43841102 0.61810.129 (10040, 10040) (0.890+0.234, 0.882£0.240)

Max Vel. =10.7
DP . 3.1641.13 0.46540.149 (77.649.97,77.610981) (0.92740.195,0.93140.183)
DP + proj. 3-00:|:1.18 0.435:‘:0,155 (100:|:0, ].OOio) (0.905:|:0_2227 0.906:‘:0_216)
CD-DPP 3.7441.04 0.5444¢.135 (76.2i10‘3, 76.2110,1) (0-923i0.2067 0-922i0.204)
CD-DPP-PS 44840911 0.64810.114 (71.8:|:10.8, 71-7:t10.8) (0-91210.2087 0.917:‘:0,199)
CD-LB 4134117 059640151 (72.7410.9,72.3+11.0) (0.91040.208,0.91240.201)
CD-LB-PS 4.5041.01 0.64610.129 (72.6i11’1, 72.6111,1) (0-921i0.1997 0-925i0,189)
PCD-DPP 4.5210.996 0.63710.125 (100:|:0, 100:|:0) (0.852:‘:0.26, 0.855:|:0_257)
PCD-DPP-PS 4401105 0.62640127  (10010,10040)  (0.89240.228,0.900 40 220)
PCD-LB 5161100 0.71610156  (10040,10020)  (0.80440 571,0.80350 275)
PCD-LB-PS 4394101 0.62240100  (10020.10020)  (0.89640.227,0.9000 292)

Table 14: Results of PushT task by all compared methods with all three velocity limits. DP refers
to DIFFUSTION POLICY; CD denotes DP+coupling only; PS denotes posterior sampling variants of

cost functions.

METHOD XOR%T M/F%1 SE-CLIP! SELPIPS|  SE-FID|  IS-LPIPSt

SD 20 71/14  4040.046/-4140.035 -77+0.043/-76+0.026 -42/.43 7510.050/-75+0.036
CNet"' 8 100/56 -68i0.036/-75i0.044 -48i0.039/-50i0.056 29/44 ~45i04043/~50i0.046
SD+P 44 100/100 .88:‘:0.001/.91:‘:0'003 ~15:|:0.022/~16:|:0.038 ].]./].7 -0610.043/'09ﬂ:0.064
Sync’ 43 95/17  .62+0.052/-61+0.066 -67+0.051/-68+0.040 -39/.81 .7040.051/-69+0.060
SD+C 48 51/47 .45:&0,057/.46:&0,067 .76:&0,042/.74:&0,033 47/54 .75:t0‘052/.75i()‘051
PCD 96 100/100 .88i0,003/32i0_004 -11i0.019/-14i0.032 .05/.09 1140.088/-13+0.089

Table 15: Paired face-generation results with projection and coupling applied. M =2 exemplars used
are as per Figure @ Boldface indicates the best score(s) for each metric.
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Dynamic Time Warping (DTW)

Discrete Frechet Distance (DFD)
Max Velocity 6.2; Projection ADMM

Velocity Constraint Satisfaction (CS)
Max Velocity 6.2; Projection ADMM

Task Completion (TC)
Max Velocity 6.2; Projection ADMM
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Figure 22: Coupling Strength Ablation of PCD: Evaluation metrics results at different vpaxs as
coupling stength « and coupling function vary. (a,b,c,d) vmax = 6.2; (e,f,g,h) vmax = 8.4; (i,),k,1)

Umax = 10.7.

METHOD XOR%1 M/F%"

SE-CLIP}

SE-LPIPS|

SE-FID,,

IS-LPIPST

SD

20

71/14  4040.046/-41+0.035

7+0.043/.76+0.026

:39/.40

7540.060/-75+0.036

100/29  .64+0.051/-7320.055
100/100 .84 0.014/-910.006

A7 40.054/-51+0.050
2210.036/-27+0.023

24/.30
11/.20

4440.043/49+0.045
1440.051/-11+0.039

CNet' 12
SD+P 44
Sync' 48
SD+C 48
SD+C* 64

98/17  .640.049/0.590.067
51/46  .4410.055/-4420.065

47/38  .5410.064/-59+0.104

67+0.045/.67+0.052
7610.042/-73£0.029
70+0.0535/-68+£0.044

A1/.74
A43/.49

T140.062/-69+0.060
75+0.052/-75+0.051

.35/.37 .69+0.066/-69+0.064

PCD

76

100/100 .8510.013/-90+0.008

19.40.064/-24+0.041

.09/.14

18.40.082/.16-+0.065

Table 16: Paired face-generation results with projection and coupling applied
are as per Figure @ Boldface indicates the best score(s) for each metric.
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Dynamic Time Warping (DTW)
Max Velocity 6.2; Projection NONE

Discrete Frechet Distance (DFD)
Max Velocity 6.2; Projection NONE

Velocity Constraint Satisfaction (CS)
Max Velocity 6.2; Projection NONE

Task Completion (TC)
Max Velocity 6.2; Projection NONE
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Figure 23: Coupling Strength Ablation of CD (coupling-only, without projection): Evaluation met-
rics results at different v,,«s as coupling stength v and coupling function vary. (a,b,c,d) v = 6.2;
(e,f,g.h) vmax = 8.4; (1,),k,1) vimax = 10.7.
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Figure 24: Sample pairs generated with both projection and coupling applied. The two exemplars
used for each model (each row) are as per Figure@
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Figure 25: Six exemplar images for each model (one row per model), generated via ChatGPT
(2023). The exemplars differ only by minor visual details, ensuring close structural alignment.
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Figure 26: Sample pairs generated with both projection and coupling applied. The six exemplars
used for each model (each row) are as per Figure@
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: Ablation of coupling strength ~ for PCD, using M € {2,6} exemplars per model. We
evaluate v € {50, 150, 250, 350, 450, 500}.
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Figure 28: Ablation of noise scaling factor k for SD+P, using M € {2, 6} exemplars per model. We

evaluate k € {1,2,5, 10, 20}.
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