Under review as a conference paper at ICLR 2025

MODELS THAT PROVE THEIR OWN CORRECTNESS

Anonymous authors
Paper under double-blind review

ABSTRACT

How can we trust the correctness of a learned model on a particular input of interest?
Model accuracy is typically measured on average over a distribution of inputs,
giving no guarantee for any fixed input. This paper proposes a theoretically-founded
solution to this problem: to train Self-Proving models that prove the correctness
of their output to a verification algorithm V' via an Interactive Proof. We devise
a generic method for learning Self-Proving models, and we prove convergence
bounds under certain assumptions. Empirically, our learning method is used to train
a Self-Proving transformer that computes the Greatest Common Divisor (GCD)
and proves the correctness of its answer.

1 INTRODUCTION

Bob is studying for his algebra exam and stumbles upon a question () that he cannot solve. He queries
a Large Language Model (LLM) for the answer, and it responds with a number: 42. Bob is aware of
recent research showing that the LLM attains a 90% score on algebra benchmarks (cf. Frieder et al.
2023), but should he trust that the answer to his particular question () is indeed 42?

Bob could ask the LLM to explain its answer in natural language. Though he must proceed with
caution, as the LLM might try to convince him of an incorrect answer (Turpin et al., 2023). Moreover,
even if 42 is the correct answer, the LLM may fail to produce a convincing proof (Wang et al., 2023).
If only the LLM could formally prove its answer, Bob would verify the proof and be convinced.

This paper initiates the study of Self-Proving models (Fig. 1) that prove the correctness of their
answers via an Interactive Proof system (Goldwasser et al., 1985). Self-Proving models successfully
convince a verification algorithm V' with worst-case soundness guarantees: for any question, V
rejects all incorrect answers with high probability over the interaction. This guarantee holds even
against provers that have access to Vs specification, and unbounded computational power.

Input x N Guarantee Type Def.
. Output y .-
Self-Proving e | Verification

Model 41| Algorithm y, Completeness Worst-case 3.2

a, & Soundness Yo,y

: - A -

P ar V Py Verifiability verage-case 34

0 ag | T~ ,u’

| y ~ Py(x)

accept/reject

Figure 1: Self-Proving models. For input z, Table 1: Formal guarantees. Completeness
Self-Proving model P generates an output ¥y and soundness are fundamental guarantees of
and sends it to a Verification Algorithm V. Then, a verification algorithm V. Verifiability (novel
over i € [R] rounds, V sends query g;, and re- in this work) is a feature of a model P, with
ceives an answer a; from FPy. Finally, V decides respect to a verifier V and input distribution s.

(“accept/reject”) whether it is convinced that y ~ Importantly, Vs soundness holds for any input
is a correct output for z. x and output y.

Under review as a conference paper at ICLR 2025

Learning method Correctness (%) Verifiability (%)

GPT (baseline) 99.8 -

GPT+TL 98.8 60.3
GPT+TL+RLVF 98.9 78.3
GPT+Annotated TL 98.6 96.0

Table 2: Self-Proving transformers computing the GCD. We train a 6.3M parameter GPT to
compute the GCD of two integers sampled log-uniformly from [10%]. Vanilla GPT correctly generates
the GCD for almost all inputs, but does not prove correctness to a simple verification algorithm. GPT
trained with Transcript Learning (+TL) proves its answer 60.3% of the time; adding Reinforcement
Learning from Verifier Feedback (+RLVF) increases this to 78.3%; instead training with Annotated
Transcript Learning gives the highest Verifiability score of 96%. See Section 5 for details.

Our contributions are as follows.

* We define Self-Proving models (Section 3).

* We propose two methods for learning Self-Proving models in Section 4. The first, Transcript
Learning (TL), relies on access to transcripts of accepting interactions and is the focus of this
paper; we prove convergence bounds for TL under convexity and Lipschitzness assumptions.
The second method, Reinforcement Learning from Verifier Feedback (RLVF), trains a model
by emulating interaction with the verifier. We also present variants of these algorithms that
use Annotations to improve learning in practice.

* We empirically study TL and Annotated-TL (ATL) for training Self-Proving transformers
that compute the Greatest Common Divisor (GCD) of two integers. Table 2 demonstrates
the efficacy of our methods, with additional experiments in Section 5. Our results may be of
independent interest for research on the arithmetic capabilities of transformers (e.g. Charton
2024; Lee et al. 2024). Code, data and models are available as supplementary material.

Scope. This paper contains a theory of learned models that prove their own correctness via an
Interactive Proof system. The fascinating and well-studied question of which settings are verifiable
in an Interactive Proof system is beyond our scope. Our theory is general in that it pertains to any
such setting, e.g., any decision problem solvable in polynomial space (Shamir, 1992). See Goldreich
(2008) for a primer on Proof systems more broadly.

2 RELATED WORK

This paper is situated at the intersection of machine learning (ML) and Interactive Proof systems
(IPs). We briefly discuss recent relevant work from these literatures.

ML and IPs. IPs have found numerous applications in ML towards a diverse set of goals. Anil et al.
(2021) introduce Prover—Verifier Games (PVGs), a game-theoretic framework for learned provers
and learned verifiers. PVGs were further investigated in at least two subsequent works: Hammond &
Adam-Day (2024) study multi-prover and Zero Knowledge variants of PVGs. Additionally, Kirchner
et al. (2024) successfully utilize PVGs towards obtaining human-legible outputs from LLMs. Notably,
they require a relaxed completeness guarantee of their learned proof system—this requirement is the
same as our Definition 3.4 of Self-Proving models.

Beyond PVGs, Wiildchen et al. (2024) cast the problem of model interpretability as a Prover—Verifier
interaction between a learned feature selector and a learned feature classifier. Debate systems (Condon
et al., 1995), a multiprover variant of IPs, were considered for aligning models with human values
(Irving et al., 2018; Brown-Cohen et al., 2023). In such Debate systems, two competing models
are each given an alleged answer y # ¥/, and attempt to prove the correctness of their answer to a
(human or learned) judge. Lastly, Murty et al. (2023) define Pseudointelligence: a model learner L,
and an evaluator learner L are each given samples from a ground-truth; L, learns a model of the
ground-truth, while L learns an evaluator of such models; the learned evaluator then attempts to
distinguish between the learned model and the ground-truth in a Turing Test-like interaction.

Under review as a conference paper at ICLR 2025

All of these works consider learned verifiers, whereas our work focuses on training models that
interact with a manually-defined verifier. More related in this regard is IP-PAC (Goldwasser et al.,
2021), in which a learner proves that she learned a model that is Probably Approximately Correct
(Valiant, 1984). We, however, consider models that prove their own correctness on a per-input basis,
rather than learners that prove average-case correctness of a model.

Models that generate formal proofs. Self-Proving models are verified by an algorithm with formal
completeness and soundness guarantees (see Definition 3.2). In this sense, Self-Proving models
generate a formal proof of the correctness of their output. Several works propose specialized models
that generate formal proofs.

AlphaGeometry (Trinh et al., 2024) is capable of formally proving olympiad-level geometry problems;
Others have trained models to produce proofs in Gransden et al. (2015); Polu & Sutskever (2020) and
others train models to produce proofs in Coq (Gransden et al., 2015), Metamath (Polu & Sutskever,
2020), Lean (Yang et al., 2023), or manually-defined deduction rules (Tafjord et al., 2020); FunSearch
(Romera-Paredes et al., 2024) evolves LLM-generated programs by systematically evaluating their
correctness. Indeed, all of these can be cast as Self-Proving models developed for specific proof
systems. Meanwhile, this work defines and studies the class of such models in general. Several works
(e.g. Welleck et al. 2022) consider models that generate natural language proofs or explanations,
which are fundamentally different from formal proofs (or provers) verified by an algorithm.

Training on intermediate steps. Chain-of-Though (CoT, Wei et al. 2022) refers to additional
supervision on a model in the form of intermediate reasoning steps. CoT is known to improve
model performance whether included in-context (Wei et al., 2022) or in the training phase itself
(Yang et al., 2022). Transcript Learning (TL, Section 4.1) can be viewed as training the model on a
Chain-of-Thought induced by the interaction of a verifier and an honest prover (Definition 3.2).

To complete the analogy, let us adopt the terminology of Uesato et al. (2022), who consider outcome
supervision and process supervision. In our case, the outcome is the decision of the verifier, and
the process is the interaction between the verifier and the model. Thus, Reinforcement Learning
from Verifier Feedback (RLVF, Section 4.2) is outcome-supervised while TL is process-supervised.
In a recent work, Lightman et al. (2024) find that process-supervised transformers outperform
outcome-supervised ones on the MATH dataset (Hendrycks et al., 2021).

Transformers for arithmetic. In Section 5 we train and evaluate Self-Proving transformers to
generate the GCD of two integers and prove its correctness to a verifier. These experiments leverage
a long line of work on neural models for arithmetic tasks originating with Siu & Roychowdhury
(1992), and in particular modular arithmetic, which is known to be challenging (Palamas, 2017). Of
particular relevance is the recent paper of Charton (2024), who trains transformers to generate the
GCD—without a proof of correctness. We benefit from conclusions suggested in their work and
start from a similar (scaled-down) experimental setup. Our main challenge (obtaining Self-Proving
models) is overcome by introducing Annotated Transcript Learning (ATL).

We conduct ablation experiments to find two deciding factors in ATL. First, we study the effect of the
amount of annotation given in the form of intermediate steps (Lee et al., 2024), which is related to
autoregressive length complexity (Malach, 2023). Second, we characterize ATL efficacy in terms of
an algebraic property of the tokenization scheme (cf. Nogueira et al. 2021; Charton 2022; 2024).

3 SELF-PROVING MODELS

We introduce and formally define our learning framework in which models prove the correctness of
their output. We start with preliminaries from the learning theory and proof systems literatures in
Section 3.1. We then introduce our main definition in Section 3.2.

3.1 PRELIMINARIES

Let X be a finite set of tokens and ¥* denote the set of finite sequences of such tokens. We consider
sequence-to-sequence models Fp: X* — ¥*, which are total functions that produce an output for
each possible input sequence. A model is parameterized by a real-valued, finite dimensional vector 6.

Under review as a conference paper at ICLR 2025

We consider models as randomized functions, meaning that Fy(x) is a random variable over X%, of
which samples are denoted by y ~ Fp(z).

Before we can define models that prove their own correctness, we must first define correctness.
Correctness is defined with respect to an input distribution ;1 over ¥*, and a ground-truth £'* that
defines correct answers. For simplicity of presentation, we focus on the case that each input z € X*
has exactly one correct output F™*(x) € 3*, and a zero-one loss function on outputs (the general case
is deferred to Appendix A). The fundamental goal of machine learning can be thought of as learning
a model of the ground-truth F™*. Formally,

Definition 3.1 (Correctness). Let p be a distribution of input sequences in ¥* and let F*: ¥* — ¥*
be a fixed (deterministic) ground-truth function. For any « € [0, 1], we say that model Fy is a-correct
(with respect to) if
_ *
Xr o ly=F(2)] = e
y~Fp(z)

An interactive proof system (Goldwasser et al., 1985) is a protocol carried out between an efficient
verifier and a computationally unbounded prover. The prover attempts to convince the verifier of the
correctness of some assertion, while the verifier accepts only correct claims. The prover is powerful
yet untrusted; in spite of this, the verifier must reject false claims with high probability.

In the context of this work, it is important to note that the verifier is manually-defined (as opposed to
learned). Formally, the verifier is a probabilistic polynomial-time algorithm tailored to a particular
ground-truth capability F'*. Informally, the verifier is the anchor of trust: think of the verifier as an
efficient and simple algorithm, hosted in a trustworthy environment.

Given an input © € ¥*, the model Fy “claims” that y ~ Fy(x) is correct. We now define what
it means to prove this claim. We will use P, to denote Self-Proving models, noting that they are
formally the same object' as non-Self-Proving (“vanilla”) models Fp. This notational change is to
emphasize that Py first outputs y ~ Py(x) and is then prompted by the verifier, unlike Fy who only
generates an output y ~ Fy(z).

A Self-Proving model proves that y ~ Py(x) is correct to a verifier V' over the course of R rounds of
interaction (Figure 1). In each round ¢ € [R], verifier V queries Py on a sequence ¢; € ¥* to obtain an
answer a; € X*; once the interaction is over, V' accepts or rejects. For fixed z,y € X*, the decision
of V after interacting with Py is a random variable over '’s decision (accept/reject), determined by
the randomness of V' and P. The decision random variable is denoted by (V, Py) (x, y).

We present a definition of Interactive Proofs restricted to our setting.

Definition 3.2. Fix a soundness error s € (0,1), a finite set of tokens ¥ and a ground-truth
F*: ¥* — ¥* A verifier V (in an Interactive Proof) for F'* is a probabilistic polynomial-time
algorithm that is given explicit inputs x,y € X* and black-box (oracle) query access to a prover P.% It
interacts with P over R rounds (see Figure 1) and outputs a decision (V, P) (x,y) € {reject, accept}.
Verifier V satisfies the following two guarantees:

* Completeness: There exists an honest prover P* such that, for all x € X%,
Pr[(V, P*)(z, F*(x)) accepts] = 1,
where the probability is over the randomness of V.3
* Soundness: For all P and for all x,y € ¥*, if y # F*(x) then
Pr[(V, P) (z,y) accepts] < s,

where the probability is over the randomness of V and P, and s is the soundness error.

The efficiency of an interactive proof is usually measured with respect to four parameters: the
round complexity R, the communication complexity (the overall number of bits transferred during

"Both are randomized mappings from ©* to 3*.

*We intentionally write P rather than Pp: Interactive Proofs are defined with respect to all possible provers,
not just parameterized ones.

3WLOG, the honest prover is deterministic by fixing the optimal randomness of a randomized prover.

Under review as a conference paper at ICLR 2025

the interaction), P*’s efficiency and Vs efficiency. These complexity measures scale with the
computational complexity of computing the ground-truth F'*. For example, an interactive proof for a
complex F™* may require multiple rounds of interaction.

Remark 3.3 (Verifier efficiency). Definition 3.2 requires that V' is a polynomial-time algorithm
whereas provers are unbounded. This captures a requirement for efficient verification. We chose
polynomial time as a measure of efficiency because it is common Proof systems literature. That
said, one could adapt Definition 3.2 to fit alternative efficiency measures, such as space complexity
(Condon & Lipton, 1989) or circuit depth (Goldwasser et al., 2007). Regardless of which measure is
taken, to avoid a trivial definition it is crucial that V' should be more efficient than the honest prover
P*; else, V' can simply execute P* to perform the computation itself.

By definition, the soundness error s of a verifier V' bounds the probability that it is mistakenly
convinced of an incorrect output; in that sense, the smaller s, the “better” the verifier V. In our
setting, we think of a manually-defined verifier V who is formally proven (by a human) to have a
small soundness error by analysis of Vs specification.

As depicted in Figure 1, each of the model’s answers depends on all previous queries and answers in
the interaction. This captures the setting of stateful models, e.g. a session with a chatbot.

Towards defining Self-Proving models (Section 3.2), let us observe the following. Completeness
and soundness are worst-case guarantees, meaning that they hold for all possible inputs x € ¥*.
In particular, completeness implies that for all z € X*, the honest prover P* convinces V of the
correctness of F*(x); in classical proof systems there is no guarantee that an “almost honest” prover
can convince the verifier (cf. Paradise 2021). Yet, if we are to learn a prover Py, we cannot expect
it to agree with P* perfectly, nor can we expect it to always output F*(z). Indeed, Self-Proving
models will have a distributional guarantee with respect to inputs x ~ .

3.2 SELF-PROVING MODELS

We define the Verifiability of a model Py with respect to an input distribution x4 and a verifier V.
Intuitively, Verifiability captures the ability of the model to prove the correctness of its answer
y ~ Py(z), when the input z is sampled from p. We refer to models capable of proving their own
correctness as Self-Proving models. Notice that, as in Definition 3.2, the verifier is fixed and agnostic
to the choice of the Self-Proving model.

Definition 3.4 (Self-Proving model). Fix a verifier V for a ground-truth F*: ¥* — X* as in
Definition 3.2, and a distribution 1 over inputs 3.*. The Verifiability of a model Py: ¥X* — ¥* is
defined as
very,,(0) = zliru [(V, Py) (z,y) accepts] . (1)
y~ Py ()
We say that model Py is 3-Self-Proving with respect to V' and p if very,,,(8) > f.

Remark 3.5 (Verifiability = correctness). Notice that the ground-truth F* does not appear in
Definition 3.4 except for the first sentence. Indeed, once it is established that V' is a verifier for F™*
(as per Definition 3.2), then Verifiability w.r.t V implies correctness w.r.t F'*: Consider any input
distribution p, ground-truth F*, and a verifier V for F* with soundness error s. By a union bound, if
model Py is B-Verifiable, then it is (5 — s)-correct. That is to say, Verifiability is formally a stronger
guarantee than correctness when V' has small soundness error s.

As depicted in Figure 1, a Self-Proving model Py plays a dual role: first, it generates an output
y ~ Py(x), and then it proves the correctness of this output to V. Note also that Self-Provability is a
feature of a model, unlike completeness and soundness which are features of a verifier (see Table 1).

The benefit of Verifiability over correctness is captured by the following scenario. Alice wishes to use
a model P, to compute some functionality F'* on an input zg in a high risk setting. Alice generates
yo ~ Py(xo). Should Alice trust that y is correct? If Alice has a held-out set of labeled samples,
she can estimate Pp’s average correctness on y. Unfortunately, (average) correctness provides no
guarantee regarding the correctness of the particular (g, yo) that Alice has in hand. If, however,
Alice has access to a verifier V' for which Py is Self-Proving, then she can trust the model on an
input-by-input (rather than average-case) basis: Alice can execute V' on (z0, yo) and black-box access
to Pp. Soundness of V' guarantees that if yg is incorrect, then V' rejects with high probability, in
which case Alice should either generate Py(z() again—or find a better model.

Under review as a conference paper at ICLR 2025

4 LEARNING SELF-PROVING AUTOREGRESSIVE MODELS

With a sound verifier V' at hand, obtaining Self-Proving models with respect to V' holds great promise:
a user that prompts the model with input 2 does not need to take it on good faith that Py(z) is correct;
she may simply verify this herself by executing the verification protocol. How, then, can we learn
models that are not just approximately-correct, but Self-Proving as well?

The challenge is to align the model with a verifier. We assume that the learner has access to input
samples 2 ~ p and correct outputs F*(x), as well as the verifier specification (code). Additionally,
the learner can emulate the verifier, as the latter is computationally efficient (Remark 3.3).

Our focus is on autoregressive sequence-to-sequence (Self-Proving) models Py. Such models generate
their output by recursively prompting a randomized sampling from a base distribution py over tokens
Y. For an input z € ¥*, the output w ~ Py(z) is generated as follows:

» Sample wy ~ py(2).

* Let j = 1. While wj is not the end-of-sequence token EOS € X:
- Sample wj1 ~ po(zwy - - wj).
— Update j :==j5 + 1.

e Output w = wyws - - - wj.

For any z € ¥*, it is useful to consider the vector of log-probabilities over X, denoted by log pg(z) €
RI¥I. We assume that each coordinate in this vector is differentiable with respect to 6.

Our general approach is inspired by Reinforcement Learning from Human Feedback (Christiano
et al., 2017), a method for aligning models with human preferences, which has recently been used
to align sequence-to-sequence models (Ouyang et al., 2022). However, there are two important
differences between humans and algorithmic verifiers: (1) Verifiers are efficient algorithms which
may be emulated by the learner. This is unlike humans, whose preferences are costly to obtain. On
the other hand, (2) verifiers make a single-bit decision at the end of an interaction, but cannot guide
the prover (model) in intermediate rounds. In RL terms, this is known as the exploration problem for
sparse reward signals (e.g. Ladosz et al. 2022).

Section 4.1 introduces Transcript Learning (TL), a learning algorithm that overcomes the exploration
problem mentioned in the second point under the assumption that the learner has access to transcripts
of interactions in which the verifier accepts. We prove convergence bounds for TL (Appendix B.1)
and analyze it experimentally (Section 5).

Access to accepting transcripts is a reasonable assumption, for example, when there is an efficient
honest prover that can generate such transcripts (Goldwasser et al., 2015). When there is no access to
accepting transcripts, we propose Reinforcement Learning from Verifier Feedback (Section 4.2).

4.1 TRANSCRIPT LEARNING

We present an algorithm for learning Self-Proving models which uses access to a distribution of
accepting transcripts. This is a reasonable assumption to make when the honest prover P* (see
Definition 3.2) is efficient, as in the case of public-coin Doubly-Efficient Interactive Proof systems as
defined by Goldwasser et al. (2015) and developed in other theoretical (e.g. Goldreich & Rothblum
2018) and applied (e.g. Zhang et al. 2021) works. In this case, an honest prover P* can be run by the
learner during training to collect accepting transcripts without incurring heavy computational cost.
Alternatively, the learner may collect a dataset of accepting transcripts prior to learning (see Figure 4
in Appendix B).

The intuition behind Transcript Learning is that the interaction of the verifier and prover can be
viewed as a sequence itself, which is called the transcript m € ¥*. The idea is to learn a model not
just of x — y* for a correct output y*, but of z — y*7*, where 7* is a transcript of an interaction in
which the verifier accepted.

In more detail, Transcript Learning (TL, Algorithm 1) requires access to an (honest) transcript
generator T*. Given an input z, the generator 7 *(x) samples a sequence P*(z)7* € £* such that
7* is an accepted transcript. TL trains a Self-Provable model by autoregressively optimizing towards

Under review as a conference paper at ICLR 2025

generating accepting transcripts. At a very high level, it works by repeatedly sampling = ~ p and
transcript y*7* ~ T *(x), and updating the logits log py towards agreeing with y*7* via Gradient
Ascent. We prove that, under certain conditions, it is expected to output a Self-Provable model.

Theorem 4.1 (Theorem B.5, informal). Fix an input distribution u, a verifier V, a transcript
generator T*, an autoregressive model family { Py }¢ parameterized by 0 € R? for some d € N, and

anorm || - || on R%. Assume that the agreement function A: R? — [0, 1] defined by
A(0) = Ifiru [Transcript((V, Pp) (z)) = 7]
" AT (0)

is concave in 6. For any ¢ > 0, let Bnorm, Brip and C be upper-bounds such that the following
conditions hold.

s There exists 0* € R with ||0*|| < Bxorm such that A(0*) > 1 —¢/2.
* For all 0, the logits of Py are By ,p-Lipschitz in 0.
* The number of tokens sent by the prover to the verifier V' in any interaction is at most C.

Denote by 6 the output of Transcript Learning (Algorithm 1) running for N interations, where

B2 - B2,
N 2 4. 02 . Norm2 Lip (2)
€
and learning rate A = BNorm/C’BLip\/ﬁ. Then the expected Verifiability 0f9_ is atleast 1 — e.

The proof (Appendix B) goes by reduction to Stochastic Gradient Descent (SGD). We show
(Lemma B.4) that the learner can use its only available tools—sampling honest transcripts, em-
ulating the verifier, and differentiating the logits—to optimize the agreement A(6). Specifically, this
is done by accumulating gradients from the cross-entropy loss computed at each token. Since A(6)
lower bounds the Verifiability of Py, the former can be used as a surrogate for the latter.

The conditions for Theorem 4.1 can be split into two. First, the standard conditions used to prove
SGD convergence: convexity,4 Bnorm-boundedness, and B i,-Lipschitzness. Second, there is a
bound C on the communication complexity of the prover in the Interactive Proof system.

Quantitatively, the efficiency of TL is captured by the number of iterations N. It is desirable to
minimize N, which is also the number of samples needed from the distribution x and the transcript
generator 7. The bound on N in Equation (2) can be decomposed into the complexity of SGD
(BﬁormBEip /2), and communication complexity of the proof system O(C?). Minimizing commu-
nication complexity has been an overarching goal in the study of proof systems (e.g. Goldreich &
Hastad 1998; Goldreich et al. 2002; Reingold et al. 2021). Theorem 4.1 formally shows the benefit of

communication-efficient proof systems in the context of Self-Proving models.

4.2 REINFORCEMENT LEARNING FROM VERIFIER FEEDBACK (RLVF)

As mentioned in Section 4.1, Transcript Learning uses access to an honest transcript generator to
estimate gradients of (a lower bound on) the Verifiability of a model FP.

Reinforcement Learning from Verifier Feedback (RLVF, Algorithm 2) estimates this gradient without
access to a transcript generator. RLVF can be viewed as a modification of TL in which the learner
emulates the interaction of the verifier with its own model P,. Rather than directly sampling from the
generator as in TL, it collects accepting transcripts by rejection sampling on emulated transcripts.

This rejection sampling means that RLVF requires its initial model P, to have Verifiability bounded
away from 0, so that accepting transcripts are sampled with sufficient probability. Fortunately, such
a Self-Proving base model can be learned using TL. This gives a learning paradigm in which a
somewhat-Self-Proving base model is first learned with TL (with Verifiability § > 0), and then
“amplified” to a fully Self-Proving model using RLVF (cf. Nair et al. 2018).

*Convexity does not hold in general LLM training. Yet, Theorem 4.1 provides useful theoretical analysis in a
simplified setting, which we empirically validate in the non-convex setting in Section 5.

Under review as a conference paper at ICLR 2025

We prove that RLVF learner can estimate the Verifiability gradient of Py using emulation alone
in Lemma B.7. From a broader perspective, RLVF can be derived by viewing Self-Proving as a
reinforcement learning problem in which the agent (prover) is rewarded when the verifier accepts.
Indeed, RLVF is the Policy Gradient method (Sutton et al., 1999) for a verifier-induced reward.
Convergence bounds for Policy Gradient methods are a challenging and active area of research (e.g.
Agarwal et al. 2021), and so we leave the full analysis to future work.

4.3 LEARNING FROM ANNOTATED TRANSCRIPTS

To minimize the length of messages exchanged in an Interactive Proof system, the honest prover is
designed to send the shortest possible message to the verifier, containing only essential information.

However, when training Self-Proving model, it may be useful for it to first generate an “annotated”
answer a which is then trimmed down to the actual answer a to be sent to the verifier. We adapt
Sections 3 and 4 to this setting in Appendix D, where we present Annotated Transcripts. The TL and
RLVF algorithms naturally extend to annotated transcripts as well. Table 2 shows that annotations
significantly improve performance of TL.

Annotations can be viewed as adding Chain-of-Thought (Wei et al., 2022). As a concrete example,
consider our experiments on computing the GCD. As detailed in Section 5.2, a proof 7 in this setting
is the output of an iterative process—the extended Euclidean algorithm—starting from the input z:
Z > 71 — g — + -+ — 7. The annotation of the proof 7 consists the first T" steps (71, ..., 77) up
to some fixed cutoff 7T". These are prepended to the proof and shown to the model during TL training.
At inference time, the model is evaluated only on whether it generated the proof 7 correctly.

5 EXPERIMENTAL RESULTS

We describe our experimental setup, and present ablation studies that shed additional light on the
effect of annotation and representation on Verifiability.

5.1 SETUP: TRAINING TRANSFORMERS TO PREDICT THE GCD OF TWO INTEGERS

Charton (2024) empirically studies the power and limitations of learning GCDs with transformers.
We follow their setup and two conclusions on settings that make for faster learning: Training from
the log-uniform distribution, and choosing a base of representation with many prime factors.

We fix a base of representation B = 210 and use x to denote an integer = encoded as a B-ary string.
For sequences of integers, we write (x1x2) to denote the concatenation of x; with x2, delimited by
a special token. The vocabulary size needed for this representation is || = 210.

We choose the input distribution i to be the log-uniform distribution on [10%], and train the transformer
on sequences of the form (x1x2y), where x1,29 ~ pand y = GCD(x1,22). This is a scaling-
down of Charton (2024), to allow single GPU training of Self-Proving transformers. In all of our
experiments, we use a GPT model (Vaswani et al., 2017) with 6.3M parameters trained on a dataset
of 1024K samples in batches of 1024. Full details are deferred to Appendix F.

Proving correctness of GCD. Following Charton (2024) as a baseline, we find that transformers
can correctly compute the GCD with over 99% probability over (z1, z2) ~ p. To what extent can
they prove their answer? To answer this question, we first devise a natural proof system based on
Bézout’s theorem. Its specification and formal guarantees are deferred to Appendix E. We denote its
verification algorithm by V/, and highlight some important features of the experimental setup:

* The proof system consists of one round (R = 1). The verifier makes no query, and simply
receives a proof 7 from the prover.

* Completeness: For any x1, 72,y € [10%] such that y = GC D(z1, x2), there exists a proof
7 such that V' (x3x2y7) accepts. As detailed in Appendix E, the proof 7 consists of a pair
of integers who are Bézout coefficients for x1, xs.

B = 210 is chosen following Charton (2024) to be an integer with many prime factors.

Under review as a conference paper at ICLR 2025

s Soundness: If y # GCD(x1,), then V (x1x2y7) rejects® for any alleged proof = € ¥*.

To measure Verifiability, we train a Self-Proving transformer using Transcript Learning on sequences
(x1x2y7) and estimate for how many inputs z1, 22 ~ u does the model generate both the correct
GCD y and a valid proof . We test on 1000 pairs of integers «/ , x5 ~ u held-out of the training set,
prompting the model with (x}x5) to obtain (y’7n’), and testing whether V (x} x5y’n’) accepts.

Table 2 shows our main experimental result, which has the following key takeaways:
1. Transcript Learning (TL) for 100K iterations (=100M samples) results in a Self-Proving
transformer that correctly proves 60.3% of its answers.

2. A base Self-Proving Model with fairly low Verifiability of 40% can be improved to 79.3%
via Reinforcement Learning from Verifier Feedback (RLVF). Although it does not rely on
honest transcripts, RLVF trains slowly: this nearly-twofold improvement took four million
iterations.

3. Most efficient is Annotated Transcript Learning, with 96% Verifiability in 100K iterations.

We further investigate the effect of annotations next.

5.2 MODELS GENERALIZE BEYOND ANNOTATIONS

(Zoomed-in)

T=3
[T

Euclidean depth 6
()
4 Euclidean depth 8

85.’0%,.. 84.0% 86.0% 88.0% 90.0% 92.0% 94.0% 96.0%

i i 0 i i
IS s IS 1 1 H
Ia o o 1 1 .
19 10 19 1 [
I° 1° 1° 1 [
1c 1< 1C 1 1 M
19 13 13 1 1
5 I T=0 IS 1 [
= 1= 1= | 1 N
18 18 PN :
I i@ !._.:*’_.-. o LK
1 1 1 ML 1 | -

20% 30% 40% 50% 60% 70% 80% 90% 100%

Verifiability

Figure 2: Verifiability with increasing amounts of annotation. 7 is the number of steps added in
Annotated Transcript Learning. Dashed lines indicate Euclidean depth, that bound the Verifiability of
models that prove only for integers up to a certain number of steps. Each T" was run with three seeds,
with mean =+ standard error depicted. The upper graph provides a zoomed-in view of the 82% to 98%
range from the lower graph, which spans a broader scale from 20% to 100%.

The proof 7 is annotated by including intermediate steps in its computation. Details are deferred to
Appendix E; roughly speaking, we observe that the proof 7 for input (a, b) is obtained as the last
element in a sequence a, b, 71, 72, . . . computed by the Euclidean algorithm. We annotate the proof
7 by prepending to it the sequence of Euclidean steps (71, ..., 7T) up to some fixed cutoff 7.

Figure 2 shows how T affects the Verifiability of the learned model. As suggested by Lee et al.
(2024), training the model on more intermediate steps results in better performance; in our case,

SWith probability 1, i.e., s = 0 in Definition 3.2.

Under review as a conference paper at ICLR 2025

increasing the number of intermediate steps 1" yields better Self-Proving models. One might suspect
that models only learn to execute the Euclidean algorithm in-context. To rule out this hypothesis, we
derive an upper bound on the possible efficacy of such limited models. This bound is based on the
Euclidean depth of integers (z1, x2), which we define as the number of intermediate steps that the
Euclidean algorithm makes before terminating on input (x1, z2). Indeed, a model that only learns to
compute (in-context) the simple arithmetic of the Euclidean algorithm would only be able to prove
the correctness of inputs (1, z2) whose depth does not exceed the annotation cutoff 7.

Figure 2 tells a different story: For each cutoff 7', we estimate the probability that integers x1, zo ~
u have Euclidean depth at most 7" on 10° sampled pairs. Larger annotation cutoff 7" increases
Verifiability, but all models exceed their corresponding Euclidean depth bound.

5.3 BASE OF REPRESENTATION

e e —
43.0% 44.0% 45.0% 46.0% 47.0% 48.0%
Verifiability

Figure 3: The number of prime divisors of a base w(B) determines Verifiability. For each o € [4],
we sampled 17 bases B € {2,...,1386} such that w(B) = o. A Self-Proving transformer was
trained via Transcript Learning for twenty epochs on an identical dataset of 1024K samples encoded
in base B. For each w(B) we depict the mean + standard error.

As mentioned previously, Charton (2024) concludes that, for a given base of representation B,
transformers correctly compute the GCD of integers x;, zo that are products of primes dividing
B. Simply put, choosing a base B with many different prime factors yields models with better
correctness (accuracy), which suggests why base B = 210 = 2 - 3 - 5 - 7 yielded the best results.

To test whether the factorization of B has a similar effect on Verifiability as well, we train transformers
on 68 bases varying the number of prime divisors w(B) from w(B) = 1 (i.e., B is a prime power) to
w(B) = 4. Figure 3 shows that w(B) correlates not just with correctness (Charton, 2024), but also
with Verifiability. Although the finding is statistically significant (no overlapping error margins), the
overall difference is by a few percentage points; we attribute this to the smaller (10%) number of
samples on which models were trained, relative to our other experiments.

6 CONCLUSIONS

Trust between a learned model and its user is fundamental. In recent decades, Interactive Proofs
(Goldwasser et al., 1985) have emerged as a general theory of trust established via verification
algorithms. This work demonstrates that models can learn to formally prove their answers in an
Interactive Proof system. We call models that possess this capability Self-Proving.

The definition of Self-Proving models forms a bridge between the rich theory of Interactive Proofs
and the contemporary topic of Trustworthy ML. Interactive Proofs offer formal worst-case soundness
guarantees; thus, users of Self-Proving models can be confident when their models generate correct
answers—and detect incorrect answers with high probability.

We demonstrate the theoretical viability of our definition with two generic learning algorithms:
Transcript Learning (TL) and Reinforcement Learning from Verifier Feedback (RLVF). The analyses
of these algorithms is informed by techniques from theories of learning, RL, and computational
complexity. This work can be extended in several directions: finding conditions for the convergence
of RLVF, improving sample complexity bounds for TL, or designing altogether different learning
algorithms (for example, by taking advantage of properties of the verifier).

To better understand the training dynamics of (Annotated) TL, we train Self-Proving transformers
for the Greatest Common Divisor (GCD) problem. We train a small (6.3M parameter) transformer
that learns to generate correct answers and proofs with high accuracy. Facing forward, we note that
Interactive Proofs exist for capabilities far more complex than the GCD (Shamir, 1992); scaling up
our experiments is the next step towards bringing Self-Proving models from theory to practice.

10

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

This work proposes a theoretically-grounded approach to enhancing trust in learned models. By
ensuring that models not only generate outputs but also prove their correctness to a verification
algorithm, we tackle fundamental issues of trust and accountability in machine learning.

Self-Proving models build trust between models and users by offering formal worst-case soundness
guarantees. This is particularly beneficial in high-stakes applications, such as healthcare and finance,
where incorrect outputs can have severe consequences. The ability to verify correctness on a per-
instance basis helps prevent potentially harmful decisions. It allows any user to decide for herself
whether she trusts a particular output generated by the model, rather than relying on average-case
guarantees (e.g., high scores on benchmarks as reported by the model’s developer).

Furthermore, Self-Proving models promote accountability by allowing stakeholders to independently
verify the correctness of a model’s outputs. In particular, lawmakers and regulators could require
models used in sensitive settings to be Self-Proving.

With that said, Self-Proving models also introduce challenges which must be addressed. First, we
expect Self-Proving models to be harder to learn (in practice), which may limit their applicability
in more complex tasks. Second, as with any learned model, Self-Proving models could be used in
harmful ways; developers of a model (and verification algorithm) must consider the impact of their
systems in the specific context in which they are deployed (Suresh et al., 2023). In other words, the
fact that a Self-Proving model’s outputs are provably correct does not mean that these outputs were
ought to be generated in the first place.

REPRODUCIBILITY STATEMENT

The pseudocode for Transcript Learning (TL) and Reinforcement Learning from Verifier Feedback
(RLVF) is specified in Algorithms 1 and 2, respectively. Their implementation is available in the
self-proving-models Python package; this package and all other code necessary to reproduce
the experiments in Section 5 are attached as supplementary material, and will be released under the
MIT license upon publication. The compute requirements, model architecture and hyperparameters
are all detailed in Appendix F. Datasets and model checkpoints from the experiments in Section 5 are
available via an anonymous link,” and will be made public upon publication.

As for the theoretical results in Section 4, the formal statement of assumptions and proofs can be
found in Appendix B.

REFERENCES

Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. J. Mach. Learn. Res., 22:
98:1-98:76, 2021. URL http://Jmlr.org/papers/v22/19-736.html.

Cem Anil, Guodong Zhang, Yuhuai Wu, and Roger B. Grosse. Learning to give checkable answers
with prover-verifier games. CoRR, abs/2108.12099, 2021. URL https://arxiv.org/abs/
2108.120909.

E. Bezout. Theorie Generale Des Equations Algebriques. Kessinger Publishing, 1779. ISBN
9781162056128. URL https://books.google.co.il/books?id=wQZvSwAACAAJ.

Satwik Bhattamishra, Arkil Patel, and Navin Goyal. On the computational power of transformers and
its implications in sequence modeling. In Raquel Fernandez and Tal Linzen (eds.), Proceedings
of the 24th Conference on Computational Natural Language Learning, CoNLL 2020, Online,
November 19-20, 2020, pp. 455—475. Association for Computational Linguistics, 2020. doi: 10.
18653/V1/2020.CONLL-1.37. URL https://doi.org/10.18653/v1/2020.conll-1.
37.

"https://zenodo.org/records/13855544

11

http://jmlr.org/papers/v22/19-736.html
https://arxiv.org/abs/2108.12099
https://arxiv.org/abs/2108.12099
https://books.google.co.il/books?id=wQZvSwAACAAJ
https://doi.org/10.18653/v1/2020.conll-1.37
https://doi.org/10.18653/v1/2020.conll-1.37
https://zenodo.org/records/13855544

Under review as a conference paper at ICLR 2025

Jonah Brown-Cohen, Geoffrey Irving, and Georgios Piliouras. Scalable Al safety via doubly-
efficient debate. CoRR, abs/2311.14125, 2023. doi: 10.48550/ARXIV.2311.14125. URL https:
//doi.org/10.48550/arXiv.2311.14125.

Francois Charton. Linear algebra with transformers. Trans. Mach. Learn. Res., 2022, 2022. URL
https://openreview.net/forum?id=Hp4g7FAXXG.

Frangois Charton. Can transformers learn the greatest common divisor? In The Twelfth Interna-
tional Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 6-11, 2024.
OpenReview.net, 2024.

Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
4299-4307, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
d5e2c0adad503¢c91£91df240d0cd4ed9-Abstract.html.

Anne Condon and Richard J. Lipton. On the complexity of space bounded interactive proofs (extended
abstract). In 30th Annual Symposium on Foundations of Computer Science, Research Triangle Park,
North Carolina, USA, 30 October - 1 November 1989, pp. 462—467. IEEE Computer Society, 1989.
doi: 10.1109/SFCS.1989.63519. URL https://doi.org/10.1109/SFCS.1989.635109.

Anne Condon, Joan Feigenbaum, Carsten Lund, and Peter W. Shor. Probabilistically checkable debate
systems and nonapproximability of pspace-hard functions. Chic. J. Theor. Comput. Sci., 1995, 1995.
URL http://cjtcs.cs.uchicago.edu/articles/1995/4/contents.html.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.
net/forum?id=HyzdRiR9Y7.

Simon Frieder, Luca Pinchetti, Alexis Chevalier, Ryan-Rhys Griffiths, Tommaso Salvatori,
Thomas Lukasiewicz, Philipp Petersen, and Julius Berner. Mathematical capabilities of chatgpt.
In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey
Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Conference
on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/
2023/hash/58168e8a92994655d6da3939%9e7cc0918-Abstract-Datasets_
and_Benchmarks.html.

Oded Goldreich. Probabilistic proof systems: A primer. Found. Trends Theor. Comput. Sci., 3(1):
1-91, 2008. doi: 10.1561/0400000023. URL https://doi.org/10.1561/0400000023.

Oded Goldreich and Johan Haéstad. On the complexity of interactive proofs with bounded commu-
nication. Inf. Process. Lett., 67(4):205-214, 1998. doi: 10.1016/S0020-0190(98)00116-1. URL
https://doi.org/10.1016/50020-0190(98)00116-1.

Oded Goldreich and Guy N. Rothblum. Simple doubly-efficient interactive proof systems for locally-
characterizable sets. In Anna R. Karlin (ed.), 9th Innovations in Theoretical Computer Science
Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs, pp.
18:1-18:19. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2018. doi: 10.4230/LIPICS.ITCS.
2018.18. URL https://doi.org/10.4230/LIPIcs.ITCS.2018.18.

Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. On interactive proofs with a laconic prover.
Comput. Complex., 11(1-2):1-53, 2002. doi: 10.1007/S00037-002-0169-0. URL https://doi.
org/10.1007/s00037-002-0169-0.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In Robert Sedgewick (ed.), Proceedings of the 17th Annual
ACM Symposium on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA, pp.
291-304. ACM, 1985. doi: 10.1145/22145.22178. URL https://doi.org/10.1145/
22145.22178.

12

https://doi.org/10.48550/arXiv.2311.14125
https://doi.org/10.48550/arXiv.2311.14125
https://openreview.net/forum?id=Hp4g7FAXXG
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://doi.org/10.1109/SFCS.1989.63519
http://cjtcs.cs.uchicago.edu/articles/1995/4/contents.html
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
http://papers.nips.cc/paper_files/paper/2023/hash/58168e8a92994655d6da3939e7cc0918-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/58168e8a92994655d6da3939e7cc0918-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/58168e8a92994655d6da3939e7cc0918-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.1561/0400000023
https://doi.org/10.1016/S0020-0190(98)00116-1
https://doi.org/10.4230/LIPIcs.ITCS.2018.18
https://doi.org/10.1007/s00037-002-0169-0
https://doi.org/10.1007/s00037-002-0169-0
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178

Under review as a conference paper at ICLR 2025

Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy N. Rothblum. Verifying
and decoding in constant depth. In David S. Johnson and Uriel Feige (eds.), Proceedings of the
39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13,
2007, pp. 440-449. ACM, 2007. doi: 10.1145/1250790.1250855. URL https://doi.org/
10.1145/1250790.1250855.

Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: Interactive
proofs for muggles. J. ACM, 62(4):27:1-27:64, 2015. doi: 10.1145/2699436. URL https:
//doi.org/10.1145/2699436.

Shafi Goldwasser, Guy N. Rothblum, Jonathan Shafer, and Amir Yehudayoff. Interactive proofs
for verifying machine learning. In James R. Lee (ed.), /12th Innovations in Theoretical Computer
Science Conference, ITCS 2021, January 6-8, 2021, Virtual Conference, volume 185 of LIPIcs,
pp. 41:1-41:19. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021. doi: 10.4230/LIPICS.
ITCS.2021.41. URL https://doi.org/10.4230/LIPIcs.ITCS.2021.41.

Thomas Gransden, Neil Walkinshaw, and Rajeev Raman. SEPIA: search for proofs using in-
ferred automata. In Amy P. Felty and Aart Middeldorp (eds.), Automated Deduction - CADE-
25 - 25th International Conference on Automated Deduction, Berlin, Germany, August I-
7, 2015, Proceedings, volume 9195 of Lecture Notes in Computer Science, pp. 246-255.
Springer, 2015. doi: 10.1007/978-3-319-21401-6_16. URL https://doi.org/10.1007/
978-3-319-21401-6_16.

Lewis Hammond and Sam Adam-Day. Neural interactive proofs. In ICML 2024 Next Generation of
Al Safety Workshop, 2024. URL https://openreview.net/forum?id=RhEND11itL.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with
the MATH dataset. In Joaquin Vanschoren and Sai-Kit Yeung (eds.), Proceedings
of the Neural Information Processing Systems Track on Datasets and Benchmarks
1, NeurlPS Datasets and Benchmarks 2021, December 2021, virtual, 2021. URL
https://datasets-benchmarks—-proceedings.neurips.cc/paper/2021/
hash/be83ab3ecd0db773eb2dclbl0al7836al-Abstract-round2.html.

Geoffrey Irving, Paul F. Christiano, and Dario Amodei. Al safety via debate. CoRR, abs/1805.00899,
2018. URL http://arxiv.org/abs/1805.00899.

Jan Hendrik Kirchner, Yining Chen, Harri Edwards, Jan Leike, Nat McAleese, and Yuri Burda.
Prover-verifier games improve legibility of LLM outputs. CoRR, abs/2407.13692, 2024. doi: 10.
48550/ARX1IV.2407.13692. URL https://doi.org/10.48550/arXiv.2407.13692.

Donald E. Knuth. The Art of Computer Programming, Volume II: Seminumerical Algorithms.
Addison-Wesley, 1969. ISBN 0201038021. URL https://www.worldcat.org/oclc/
310551264.

Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforcement
learning: A survey. Inf. Fusion, 85:1-22, 2022. doi: 10.1016/J.INFFUS.2022.03.003. URL
https://doi.org/10.1016/73.inffus.2022.03.003.

Nayoung Lee, Kartik Sreenivasan, Jason D. Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 6-11, 2024. OpenReview.net, 2024.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 6-11,
2024. OpenReview.net, 2024.

Eran Malach. Auto-regressive next-token predictors are universal learners. CoRR, abs/2309.06979,

2023. doi: 10.48550/ARXIV.2309.06979. URL https://doi.org/10.48550/arXiv.
2309.06979.

13

https://doi.org/10.1145/1250790.1250855
https://doi.org/10.1145/1250790.1250855
https://doi.org/10.1145/2699436
https://doi.org/10.1145/2699436
https://doi.org/10.4230/LIPIcs.ITCS.2021.41
https://doi.org/10.1007/978-3-319-21401-6_16
https://doi.org/10.1007/978-3-319-21401-6_16
https://openreview.net/forum?id=RhEND1litL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
http://arxiv.org/abs/1805.00899
https://doi.org/10.48550/arXiv.2407.13692
https://www.worldcat.org/oclc/310551264
https://www.worldcat.org/oclc/310551264
https://doi.org/10.1016/j.inffus.2022.03.003
https://doi.org/10.48550/arXiv.2309.06979
https://doi.org/10.48550/arXiv.2309.06979

Under review as a conference paper at ICLR 2025

Shikhar Murty, Orr Paradise, and Pratyusha Sharma. Pseudointelligence: A unifying lens on language
model evaluation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association
for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, pp. 7284-7290.
Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023. FINDINGS-EMNLP.485.
URL https://doi.org/10.18653/v1/2023.findings-emnlp.485.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. In 2018 IEEE Interna-
tional Conference on Robotics and Automation, ICRA 2018, Brisbane, Australia, May 21-
25, 2018, pp. 6292-6299. IEEE, 2018. doi: 10.1109/ICRA.2018.8463162. URL https:
//doi.org/10.1109/ICRA.2018.8463162.

Rodrigo Frassetto Nogueira, Zhiying Jiang, and Jimmy Lin. Investigating the limitations of the
transformers with simple arithmetic tasks. CoRR, abs/2102.13019, 2021. URL https://arxiv.
org/abs/2102.130109.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
blefde53be364a73914£58805a001731-Abstract-Conference.html.

Theodoros Palamas. Investigating the ability of neural networks to learn simple modular arith-
metic, 2017. URL https://project—archive.inf.ed.ac.uk/msc/20172390/
msc_proj.pdf.

Orr Paradise. Smooth and strong pcps. Comput. Complex., 30(1):1, 2021. doi: 10.1007/
S00037-020-00199-3. URL https://doi.org/10.1007/s00037-020-00199-3.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
CoRR, abs/2009.03393, 2020. URL https://arxiv.org/abs/2009.03393.

Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive proofs for
delegating computation. SIAM J. Comput., 50(3), 2021. doi: 10.1137/16M1096773. URL
https://doi.org/10.1137/16M1096773.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468-475, 2024.

Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. Interactive proofs of proximity: delegating
computation in sublinear time. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum (eds.),
Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013,
pp- 793-802. ACM, 2013. doi: 10.1145/2488608.2488709. URL https://doi.org/10.
1145/2488608.24887009.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning - From
Theory to Algorithms. Cambridge University Press, 2014. ISBN 978-1-10-
705713-5. URL http://www.cambridge.org/de/academic/subjects/
computer—science/pattern-recognition—-and-machine-learning/
understanding-machine-learning-theory-algorithms.

Adi Shamir. IP = PSPACE. J. ACM, 39(4):869-877, 1992. doi: 10.1145/146585.146609. URL
https://doi.org/10.1145/146585.1466009.

Kai-Yeung Siu and Vwani P. Roychowdhury. Optimal depth neural networks for multiplication and
related problems. In Stephen Jose Hanson, Jack D. Cowan, and C. Lee Giles (eds.), Advances in
Neural Information Processing Systems 5, [NIPS Conference, Denver, Colorado, USA, November
30 - December 3, 1992], pp. 59-64. Morgan Kaufmann, 1992.

14

https://doi.org/10.18653/v1/2023.findings-emnlp.485
https://doi.org/10.1109/ICRA.2018.8463162
https://doi.org/10.1109/ICRA.2018.8463162
https://arxiv.org/abs/2102.13019
https://arxiv.org/abs/2102.13019
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://project-archive.inf.ed.ac.uk/msc/20172390/msc_proj.pdf
https://project-archive.inf.ed.ac.uk/msc/20172390/msc_proj.pdf
https://doi.org/10.1007/s00037-020-00199-3
https://arxiv.org/abs/2009.03393
https://doi.org/10.1137/16M1096773
https://doi.org/10.1145/2488608.2488709
https://doi.org/10.1145/2488608.2488709
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
https://doi.org/10.1145/146585.146609

Under review as a conference paper at ICLR 2025

Harini Suresh, Divya Shanmugam, Tiffany Chen, Annie G. Bryan, Alexander D’ Amour, John V.
Guttag, and Arvind Satyanarayan. Kaleidoscope: Semantically-grounded, context-specific ML,
model evaluation. In Albrecht Schmidt, Kaisa Viinédnen, Tesh Goyal, Per Ola Kristensson,
Anicia Peters, Stefanie Mueller, Julie R. Williamson, and Max L. Wilson (eds.), Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems, CHI 2023, Hamburg,
Germany, April 23-28, 2023, pp. 775:1-775:13. ACM, 2023. doi: 10.1145/3544548.3581482.
URL https://doi.org/10.1145/3544548.3581482.

Richard S. Sutton, David A. McAllester, Satinder Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Sara A. Solla, Todd K. Leen,
and Klaus-Robert Miiller (eds.), Advances in Neural Information Processing Systems 12, [NIPS
Conference, Denver, Colorado, USA, November 29 - December 4, 1999], pp. 1057-1063. The MIT
Press, 1999.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. Proofwriter: Generating implications, proofs,
and abductive statements over natural language. In Findings, 2020. URL https://api.
semanticscholar.org/CorpusID:229371222.

Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and Thang Luong. Solving olympiad geometry with-
out human demonstrations. Nat., 625(7995):476—482, 2024. doi: 10.1038/S41586-023-06747-5.
URL https://doi.org/10.1038/s41586-023-06747-5.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel R. Bowman. Language models don’t
always say what they think: Unfaithful explanations in chain-of-thought prompting. In Al-
ice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023,2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
ed3fea9033a80feall376299fa7863f4a-Abstract-Conference.html.

Jonathan Uesato, Nate Kushman, Ramana Kumar, H. Francis Song, Noah Y. Siegel, Lisa Wang,
Antonia Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-
and outcome-based feedback. CoRR, abs/2211.14275, 2022. doi: 10.48550/ARXIV.2211.14275.
URL https://doi.org/10.48550/arXiv.2211.14275.

Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134-1142, 1984. doi:
10.1145/1968.1972. URL https://doi.org/10.1145/1968.1972.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998-6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053clcd4a845aa-Abstract.html.

Stephan Wildchen, Kartikey Sharma, Berkant Turan, Max Zimmer, and Sebastian Pokutta. Inter-
pretability guarantees with Merlin-Arthur classifiers. In Sanjoy Dasgupta, Stephan Mandt, and
Yingzhen Li (eds.), Proceedings of The 27th International Conference on Artificial Intelligence and
Statistics, volume 238 of Proceedings of Machine Learning Research, pp. 1963-1971. PMLR, 02—
04 May 2024. URL https://proceedings.mlr.press/v238/waldchen24a.html.

Boshi Wang, Xiang Yue, and Huan Sun. Can chatgpt defend its belief in truth? evaluating LLM reason-
ing via debate. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association
for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, pp. 11865-11881.
Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023. FINDINGS-EMNLP.795.
URL https://doi.org/10.18653/v1/2023.findings-emnlp.795.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information

15

https://doi.org/10.1145/3544548.3581482
https://api.semanticscholar.org/CorpusID:229371222
https://api.semanticscholar.org/CorpusID:229371222
https://doi.org/10.1038/s41586-023-06747-5
http://papers.nips.cc/paper_files/paper/2023/hash/ed3fea9033a80fea1376299fa7863f4a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ed3fea9033a80fea1376299fa7863f4a-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2211.14275
https://doi.org/10.1145/1968.1972
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.mlr.press/v238/waldchen24a.html
https://doi.org/10.18653/v1/2023.findings-emnlp.795

Under review as a conference paper at ICLR 2025

Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecfdflbafO0f7b3labcad—-Abstract-Conference.html.

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, and Yejin Choi. Natural-
prover: Grounded mathematical proof generation with language models. In Sanmi Koyejo,
S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neu-
ral Information Processing Systems 35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurlPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
1£fc548a8243ad0661l6eee731e0572927-Abstract—-Conference.html.

Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan J. Prenger, and Animashree Anandkumar. Leandojo: Theorem proving with retrieval-
augmented language models. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz
Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023,2023. URL http://papers.nips.cc/paper_files/paper/
2023/hash/4441469427094£8873d0fecb0cd4elcee-Abstract-Datasets_
and_Benchmarks.html.

Mengjiao Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. Chain of
thought imitation with procedure cloning. In Sanmi Koyejo, S. Mohamed, A. Agar-
wal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Informa-
tion Processing Systems 35: Annual Conference on Neural Information Processing Sys-
tems 2022, NeurIlPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
ebdb990471£653df£fb425ef£03c7c980-Abstract-Conference.html.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, and Sanjiv Kumar. Are
transformers universal approximators of sequence-to-sequence functions? In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. URL https://openreview.net/forum?id=ByxRMONtvr.

Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song, Xiang Xie, and Yupeng
Zhang. Doubly efficient interactive proofs for general arithmetic circuits with linear prover
time. In Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi (eds.), CCS *21: 2021 ACM
SIGSAC Conference on Computer and Communications Security, Virtual Event, Republic of Korea,
November 15 - 19, 2021, pp. 159-177. ACM, 2021. doi: 10.1145/3460120.3484767. URL
https://doi.org/10.1145/3460120.3484767.

LIMITATIONS

Our experiments are focused on a single ground-truth capability, namely, computing the GCD. Yet, the
theoretical portion of our work holds for any ground-truth F'* that admits an Interactive Proof system.
Training large Self-Proving models for more complex ground-truths will likely pose additional
practical learning challenges. With that said, we stress that generating accepting transcripts for use in
Transcript Learning is distinct from these learning challenges. Collecting accepting transcripts is a
purely computational task, and can even be done “offline” prior to the model’s training.

Additionally, in our current learning methods, each individual ground-truth capability requires training
a separate Self-Proving model. It would be interesting to adapt our definition and methods to deal
with a single generalist Self-Proving model that proves its correctness to multiple verifiers of different
ground-truths.

A A DEFINITION FOR GENERAL LOSS FUNCTIONS AND ONE-TO-MANY
RELATIONS

We present a variant of Self-Proving models (Definition 3.4) generalized in two ways.

16

http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/1fc548a8243ad06616eee731e0572927-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/1fc548a8243ad06616eee731e0572927-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/ebdb990471f653dffb425eff03c7c980-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/ebdb990471f653dffb425eff03c7c980-Abstract-Conference.html
https://openreview.net/forum?id=ByxRM0Ntvr
https://doi.org/10.1145/3460120.3484767

Under review as a conference paper at ICLR 2025

General (bounded) loss functions. In Definition 3.1 we implicitly use the 0-1 loss when measuring
the correctness of a model: For any x € X, we measure only whether the model generated the
correct output y = F*(x), but not how “far” the generated y was from F*(x). It is often the case
in machine learning that we would be satisfied with models that generate a “nearly-correct” output.
This is formalized by specifying a loss function £: ¥* x ¥* — [0, 1] and measuring the probability
that £(x, y) is smaller than some threshold A € [0, 1), where x is drawn from the input distribution g,
and y is generated by the model when given input x.

In the context of language modeling, different loss function allow for a more fine-grained treatment
of the semantics of a given task. As an example, consider the prime-counting task:

* Given an integer z < 10°, output the number of primes less than or equal to z.

In the notation of Section 3, the prime-counting task would be captured by the ground-truth function
F*(z) =|{pe N|p<ua, pisprime}| .5
Per Definition 3.1, any output other than F™*(z) is “just as incorrect” as any other. Yet, we might

prefer outputs that are closer to the correct answer, say, in L1 norm. This preference can be captured
by the following bounded loss function

y— F*(z)]-1072 ify < 10°

In particular, if we are interested in knowing the answer only up to some additive constant C, we
could say that an output y is “correct-enough” if /1 (z,y) < C - 1079,

More generally, we relax Definition 3.1 to capture approximate correctness as follows.

Definition A.1 (Approximate correctness). Let 1 be a distribution over input sequences in ¥.* and let
0: X% x ¥* — [0, 1] be a loss function. For any o, X € [0, 1], we say that model Fy is («, \)-correct
with respect to 1 if
S (CRESIERS
y~Fy(x)

One-to-many-relations. In Section 3, we focused on the setting of models of a ground-truth
function F**: ¥* — X*. That is, when each input x has exactly one correct output, namely F™*(x). A
more general setting would be to consider a ground-truth relation L C ¥* x ¥*. Then, we say that
y is a correct output for z if (x,y) € L. Importantly, this allows a single = to have many possible
correct outputs, or none at all.

Note that we must take care to choose a loss function ¢ that captures correctness with respect
to the relation L, i.e., ¢(x,y) = 0 if and only if (x,y) € L. Equivalently, any loss function ¢
induces a relation L == {(z,y) | £(x,y) = 0}. Therefore, our relaxation to approximate-correctness
Definition A.1 already captures the setting of one-to-many relations, since an input x may have
multiple y* such that £(z, y*) = 0.

A.1 THE GENERAL DEFINITION

We first present a relaxed definition of Interactive Proof systems for verifying approximate-
correctness.

Definition A.2 (Definition 3.2, generalized). Fix a soundness error s € (0,1), a threshold A € [0, 1),
a finite set of tokens ¥, and a loss function £: ¥* x ¥* — [0, 1]. A verifier V for £ with threshold A
is a probabilistic polynomial-time algorithm that is given explicit inputs x,y € X* and black-box
(oracle) query access to a prover P. It interacts with P over R rounds (see Figure 1) and outputs a
decision (V, P) (x,y) € {reject,accept}. Verifier V satisfies the following two guarantees:

» Completeness: There exists an honest prover P* such that, for all z,y € ¥*, if {(x,y) =0
then
Pr[(V, P*)(x,y) accepts] = 1,

where the probability is over the randomness of V.

8Formally, the input and output are strings in ©* representing integers (e.g. in decimal representation). See
Appendix F for a concrete instantiation used in our experiments.

17

Under review as a conference paper at ICLR 2025

* Soundness: For all P and for all x,y € ¥*, if {(x,y) > A then
Pr((V, P) (,) accepts] < s,
where the probability is over the randomness of V' and P, and s is the soundness error.

Indeed, for a given ground-truth function F*: ¥* — X*, Definition 3.2 can be recovered by choosing

the 0-1 loss
1 ifx# F*(y)
g * =
r-(2,9) {O else.

and any threshold A € [0,1).

Remark A.3 (Connection to Interactive Proofs of Proximity). Definition A.2 can be seen as a
slight generalization of (perfect completeness) Interactive Proofs of Proximity (IPPs, Rothblum et al.
2013). An IPP for a relation L C 3* x X* with proximity parameter X is obtained by instantiating
Definition A.2 with the loss function {Hamming defined by

#{”?'Jy?éy} ’ (z,y") € L, |y*] = Iyl}v

that is, {Hamming (T, Y) is the fraction of tokens in y that must be changed so as obtain an output
y* with (x,y*) € L. However, the motivation of Rothblum et al. (2013) was studying sublinear
time verification, whereas ours is to relax the requirements of traditional Interactive Proofs towards
meeting common desiderata in machine learning.

éHamming (l‘, y) = min {

With this relaxed notion of Interactive Proofs in hand, we are now ready to define Self-Proving
models for general (bounded) loss functions.

Definition A.4 (Definition 3.4, generalized). Fix a loss function £: ¥* x ¥* — [0, 1], a verifier V for
¢ with threshold \ € [0, 1) as in Definition A.2, and a distribution p over inputs ¥.*. The Verifiability
of a model Py = ¥* — X* is defined as

very,,(0) = xP~IL [(V, Py) (z,y) accepts] .
y~Po ()

We say that model Py is 3-Self-Proving with respect to V' and p if very,,,(8) > f.

Analogously to Remark 3.5, we observe that Verifiability (Definition A.4) implies approximate-
correctness: Suppose Py is 3-Self-Proving model with respect to a verifier V' that has soundness error
s and threshold parameter A for loss function ¢. Then by a union bound,

Pr o [((e.y) <N 2 5—s.

[

y~Po(x)

Importantly, as emphasized throughout this paper, soundness of V' implies that for all inputs x, any
output y such that ¢(x,y) > A is rejected with high probability (1 — s).

B THEORETICAL ANALYSES FOR SECTION 4

In this section we provide a formal description and analysis of Transcript Learning (TL, Section 4.1)
and Reinforcement Learning from Verifier Feedback (RLVF, Section 4.2). In Appendix B.1 we
prove a convergence theorem for TL under convexity and Lipschitzness assumptions. Obtaining
an analogous result for RLVF is more challenging; in lieu of a full analysis, we provide a lemma
showing that the gradients estimated in the algorithm approximate the Verifiability of the model in
Appendix B.2.

Specification of the learning model. We must first fully specify the theoretical framework in which
our results reside. Continuing from Section 3, we define a learner as an algorithm A with access to a
family of autoregressive models { Py }¢ and samples from the input distribution z ~ . In our setting
of Self-Proving models (and in consistence with the Interactive Proofs literature), we give the learner
the full specification of the verifier V. More formally,

18

Under review as a conference paper at ICLR 2025

Definition B.1 (Self-Proving model learner). A (Self-Proving model) learner is a probabilistic oracle
Turing Machine A with the following access:

* A family of autoregressive models { Py }ycra where d € N is the number of parameters
in the family. Recall (Section 4) that for each 0 and z € ¥*, the random variable Py(z)
is determined by the logits logpg(z) € Rl Forany » € ¥* and o € %, the learner A
can compute the gradient of the o™ logit, that is, Vg 1og Pros.p, () [0 = o']. In particular,
log Prosp, 2y [0 = '] is always differentiable in 0.

* Sample access to the input distribution u. That is, A can sample x ~ p.

* The full specification of the verifier V, i.e., the ability to emulate the verification algorithm
V. More specifically, A is able to compute V'’s decision after any given interaction, that is,
given input x, output y, and a sequence of queries and answers (q;, ai)f':l, the learner A
can compute the decision of V' after this interaction.

Throughout this section, we will refer to the transcript of an interaction between a verifier and a
prover (see Figure 1). We will denote this transcript by 7 = (y,¢1,4a1,...,qr,ar), and for any
index s € [|m|] we will write T € X! to denote the s-long prefix of 7.

B.1 TRANSCRIPT LEARNING

Recall that Transcript Learning requires access to an honest transcript generator. Before we can
formally define this object, it will be useful to define a query generator for a verifier V.

Definition B.2 (Query generator). Fix a verifier V in a proof system with R € N rounds, where the
verifier issues queries of length L, = |q;| and the prover (model) responses with answers of length
L, = |a;|.° The query generator Vq corresponding to V takes as input a partial interaction and
samples from the distribution over next queries by V. Formally, for any r < R, given input x, output
y, and partial interaction (gi, a;)'_1, Vo(,y, 1,01, ..., qr, ar) is a random variable over >Fa.10

A transcript generator is a random variable over transcripts that faithfully represents the interaction
of the verifier with some prover for a given input. An honest transcript generator is one who is
fully supported on transcripts accepted by the verifier. We denote accepting transcripts by 7* =
(y*7q]"j’ aT? R 7q}k%7a}<%)'

Definition B.3 (Transcript generator). Fix a verifier V in a proof system of R € N rounds. A
transcript generator Ty for V is a randomized mapping from inputs x € 3* to transcripts m =
(y,q1,01,...,qr,ar) € ¥*. For any input x, Ty (x) satisfies that for each r < R, the marginal of
Ty (x) on the r™ query q, agrees with the corresponding marginal of the query generator (V).

A transcript generator Ti5 = Ty is honest if it is fully supported on transcripts 7 for which the
verifier accepts.

Notice that for any verifier V, there is a one-to-one correspondence between transcript generators and
(possibly randomized) provers. We intentionally chose not to specify a prover in Definition B.3 to
emphasize that transcripts can be “collected” independently of the honest prover (see completeness
in Definition 3.2), and in fact can be collected “in advance” prior to learning (see Figure 4). As
long as the generator is fully supported on honest transcripts, it can be used for Transcript Learning
(Algorithm 1 described next).

Convergence of TL is proven by a reduction to Stochastic Gradient Descent (SGD). Essentially, we
are tasked with proving that TL estimates a surrogate of the Verifiability-gradient of its model Fy.
More precisely, TL estimates the gradient of a function that bounds the Verifiability from below.
Maximizing this function therefore maximizes the Verifiability.

The lower-bounding function is the agreement of the answers generated by P with the answers
provided by the honest transcript generator 7;7. More formally, we let ’T‘f denote the transcript
generator induced by the model Py when interacting with V': for each =, 7"3 () is the distribution

“We can assume that queries (resp. answers) all have the same length by padding shorter ones.
0For completeness’ sake, we can say that when prompted with any sequence z that does not encode an
interaction, V, (z) is fully supported on a dummy sequence L - -- L € ¥Fq,

19

1
2
3
4
5

9

Under review as a conference paper at ICLR 2025

Algorithm 1: Transcript Learning (TL)

Hyperparameters: Learning rate A € (0, 1) and number of samples N € N.

Input: An autoregressive model family { Py }gcra, verifier specification (code) V, and sample
access to an input distribution p and an accepting transcript generator 775 (+).

Output: A vector of parameters § € R?.

Initialize 0y := 0.

fori:=0,...,N—1do

Sample z ~ pand 7 = (y*, ¢}, a],...,q%, a%) ~ Ty (z). Denote ag = y*.
foreach Round of interactionr =0, ..., R do
Let S(r) denote the indices of the 7" answer a, in 7*, and let 7, denote the prefix of
the partial transcript (y, ¢7, a7, ..., q").
for s € S(r) do
Compute # Forwards and backwards pass
as(0;) = Pr [o=m7}]
o~po, (xm<s)
dy(0;) == Vglogas(6;) = Volog Pr [0 =]
o~pe, (TT<s)

Update
Oip1=0; + X+ H s (6;) - Z ds(0;).
re[R]U{0} re[R]U{0}
seS(r) seS(r)

Output § == + 2ien bi

over transcripts of interactions between V' and Py on input x. We stress that 7* ~ 7f(x) and
T~ ’T‘f (x) are transcripts produced when interacting with the same verifier queries; we can think of
the verifier as simultaneously interacting with the honest prover and with the model Py.!' In what
follows, we use 7 ~ T7(z) and ~ T%(z) to denote two transcripts that share the same queries.
That is, taking 7* = (y*, ¢7, a7, . .., ¢}, a};) to denote an accepting transcript sampled from 77} (),
and ™ = (y,q},a1,...,q%, ar) to denote a random transcript sampled from 7%(z), we say that 7
and 7* agree if they agree on the prover answers, namely if:

(yvalv"'aaR) = (y*vaia"wa'*R)'

This definition implicitly uses the independence of the verifier and model’s randomness. We first
prove that TL correctly estimates the gradient of A(6) in its update step.

Lemma B.4 (TL gradient estimation). Fix an input distribution p over ¥* and a verifier V with
round complexity R and answer length L,. Fix an honest transcript generator Ty;. Let 0 be the
parameters of a model Py and let
A(9) = x]illt [r=n"].
™ ~T (x)
FNT‘? (z)

Then,

va@) = E, | [a®- > d
w*~Ty | re[R]U{0} re[RJU{0}
seS(r) seS(r)

where S(r), o (0) and dy(0) are as defined in Algorithm 1.

""The way it is presented in the algorithm (and implemented in the experiments), first the verifier is called by
Ty and outputs queries (g7, - . . gr), and then the model is prompted with the verifier queries one a time. This
maintains soundness, since a proof system is sound as long as the prover does not know the verifier’s queries in
advance.

20

Under review as a conference paper at ICLR 2025

Phase 1: Collect honest transcripts Phase 2: Transcript Learning

For each honest transcript n*:
- For each honest transcript prefix m.,:

Input distribution

=
x |x }"111“11‘775--- “IR‘QR‘
‘/ \ Honest transcript prefix | Next token
y — T<s
Honest Prover Verification
2] Algorithm /
a;
" Self-Proving Forwards pass
= I == Autoregressive
P T V Model)
as(gi) = IOg[P[PSL(XT[<s) = ”s]

I P,

—— - accept
- -
’
Vx| vt | gl | al | - | gk | ak Backwards pass d () i= VglogP|Pg,(xn<s) = m;]
\A
Y| gV | Y qy | a¥ Update params 6;,, < 6; +21- 1_[as(6;) -Z?S(Qi)
S s

Figure 4: Transcript Learning, visualized. To understand Algorithm 1, consider the above visu-
alization. In Phase 1, N honest transcripts are collected by letting an Honest Prover interact with
the Verification Algorithm; these will be the samples from the honest transcript generator 775 (x).
Phase 2 describes the execution of Algorithm 1 itself: For each honest transcript 7* (lines 2-3), and
for each prefix 7, of this transcript (lines 4-6), the «(6;) and d; (6;) are computed via forwards and
backwards passes, respectively (line 7). After iterating through all prefixes, the parameters 6; are
updated (line 8).

Note that Lemma B.4 is true for any model Py. Moreover, the random vector over which the
expectation is taken (in the right hand side) is precisely the direction of the update performed in
Algorithm 1. We now prove Lemma B.4, from which we derive Theorem 4.1.

Proof. Throughout this proof, expectations and probabilities will be over the same distributions as
in the lemma statement. First, we use the law of total probability together with the autoregressive
property of Py (Section 4) to switch from probabilities on transcripts, to products of next-token

probabilities. Formally, consider a fixed input z, an honest transcript 7* = (y*, ¢}, aj, ..., ¢}k, a}),
and denote a random transcript sampled from T‘f (x) when using the same verifier queries by 7 =
(y,4f,a1,...,q%,ar). Forany r € [R] denote the random variable T‘}o’q =TI (ygiar -~ ar_1q}).
Then,
lzrr [r=7"] = lir[(y, a,...,agr) = (y*,aj,...,a%x)] 3)
= Pr [y=y]- Pr [a=a]]
y~Py(x) rg%] a~’7’3’<r
= Pr [y=v]- Pr [o=n]] “)
y~Po(z) relR) o~pe(TZy)
seS(r)
= J] e, ()
re[R]U{0}
seS(r)

where, as noted above, Equation (3) uses the independence of the verifier and model’s randomness,
Equation (4) uses the autoregressive property of Py (Definition B.1), and Equation (5) is by definition

21

Under review as a conference paper at ICLR 2025

of s and of ag. Next, a basic calculus identity gives

T

Vo (ljrr [r = w*]) = Prlr =n"]- Volog (ler [= w*]) .)

This implicitly assumes that Pr, [x = 7*] is differentiable in 0; indeed, this follows from Defini-
tion B.1, where the logits of the model were assumed to by differentiable. Let us focus on the
rightmost factor. By Equation (5),

Vo log (lzrr [r = 7T*]) = Vylog H as(0) | = Z Vo log as(0) = Z ds(0)
re[RJU{0} re[R]U{0} re[R]U{0}
seS(r) seS(r) seS(r)

)

where the last equality is by definition of d, (6). Combining Equation (5) and Equation (6) gives

Vo(Prim=m1)= [) Y d)
re[R]U{0} re[R]U{0}
seS(r) s€S(r)

By the law of total probability and the linearity of the gradient,

E [ve (ljrr 7 = n*])} =V (ﬁ [ljrr [= w*]D =V (Pr [r= w*]) = V,A(6).

x,m* x, T,

which concludes the proof. O

We are now ready to prove Theorem 4.1. We restate it below in full formality.

Theorem B.5 (Theorem 4.1, formal). Fix a verifier V, an input distribution u, an autoregressive
model family { Py }gcga, and a norm || - || on R%. Fix an honest transcript generator T.%, and assume
that the agreement function
. . *
Al0) = Pr [r=n"]

Ty ()

T~ T ()
is concave in 8, where the verifier queries are the same in m* and w. For any € > 0, let Bxorm, Brip
and C' be upper-bounds such that the following conditions hold.

s There exists 0* € R with ||0*|| < Bxorm such that A(0*) > 1 —¢/2.
* For all 0, the logits of Py are Buip-Lipschitz in 0. That is,

sup ||Vglogpg(2)|| < BLip.
feRr?
zeEX™

* In the proof system defined by V', the total number of tokens (over all rounds) is at most C.

Denote by 0 the output of TL running for number of iterations N where

B2 - B2,
2 Norm Lip
N>4.0%. ——r
and learning rate A = Bnorm/ QBLip V/N. Then the expected Verifiability (over the randomness of
the samples collected by TL) of 0 is at least 1 — €. That is,

Elvery,,(8)] > 1 —e.
0

Proof. Our strategy is to cast TL as Stochastic Gradient Ascent and apply Fact C.2. Let €, BNorm,
Brip and C as in the theorem statement be given. Let 6* be such that A(6*) > 1 — ¢/2 and
||9* H S BNorIn-

22

Under review as a conference paper at ICLR 2025

First, notice that - -

E [verv,.(9)] > E[A(9)].
This is because, for any and model Py, whenever the transcript generated by 7% (x) agrees with 7,
then the verifier accepts (because 7* is honest). Therefore, to prove the theorem it suffices to show
that

E[A@0)] >1-e.

Following the notation in Algorithm 1, in every iteration ¢ € [N] the norm of the update step is

[T @) > d@)|=| [I a6 | D du6)

re[RJU{0} re[RJU{0} re[RJU{0} re[RJU{0}
seS(r) seS(r) seS(r) seS(r)
re[RJU{0}
seS(r)

where the inequality is because «5(6;) are probabilities, so < 1. Continuing, we have

Z HCTS(HZ)H < Z Brip < C - BLip.
re[R]u{0} re[R]U{0}
seS(r) s€S(r)

The first inequality is by definition of By, as an upper-bound on the gradient of FPy’s logits. The
second is because, by definition, C' is an upper-bound on the number of tokens sent by the prover in
the proof system, which is exactly the number of terms in the sum: r indexes rounds, and s indexes
tokens sent in each round.

To conclude, Lemma B.4 shows that TL samples from a gradient estimator for A(¢), while the above
equation shows that the gradient is upper-bounded by C' - By,;,. We can therefore apply Fact C.2 to
obtain

E[A(0)] > A(0*) —¢/2>(1—¢/2) —¢e/2=1—¢,

0

where the inequality is by definition of 6*.
O

Remark B.6 (On the realizability assumption in Theorem B.5). The first condition in Theorem B.5
expresses a fundamental constraint: if a Self-Proving model cannot be realized within the chosen
architecture, then learning such a model is impossible regardless of the training approach. Rather
than being a limitation that requires justification, this represents a necessary logical precondition.

The challenge then lies in selecting an architecture capable of expressing a Prover for a given Proof
System. One common approach assumes deep neural networks as universal function approxima-
tors, scaling both architecture size and training data until achieving desired performance. Recent
theoretical work has established rigorous foundations for this approach, demonstrating the Turing-
completeness of transformers (Bhattamishra et al., 2020) and their variants (Dehghani et al., 2019).
These architectures can even approximate arbitrary continuous sequence-to-sequence functions on
compact domains (Yun et al., 2020). Therefore, transformer architectures can realize any Turing
machine—including the Prover in an Interactive Proof system, which operates within polynomial
space bounds (or better: Goldwasser et al. 2015).

B.2 REINFORCEMENT LEARNING FROM VERIFIER FEEDBACK

Our second learning method, Reinforcement Learning from Verifier Feedback (RLVF, Algorithm 2),
does not require access to an honest transcript generator. Instead, the learner generates transcripts
herself by emulating the interaction of the verifier with the current Self-Proving model Py. When
an accepting transcript is generated, the learner updates the parameters € towards generating such
transcript.

23

1

(7 N R N

10

Under review as a conference paper at ICLR 2025

Algorithm 2: Reinforcement Learning from Verifier Feedback (RLVF)

Hyperparameters: Learning rate A € (0, 1) and number of samples N € N.

Input: An autoregressive model family { Py }ycpa, initial parameters 6y € R?, verifier
specification (code) V, and sample access to an input distribution u.

Output: A vector of parameters § € R

fori=0,...,N—1do

Sample x ~ p.
Initialize ag ==y ~ Py, (z).
foreach Round of interactionr = 1,... R do
Sample the r" query # Emulate the verifier
qr ~ ‘/q(xva()v q1,a1,---,qr—1, ar71)~
Sample the r™ answer # Forwards pass
Ay ~ Pei(xva‘()vqlaala .. aQT)'
Let 7 == (ag, q1,- -+, Gr—1,Gr)-
for s € [L,] do
Let a, , denote the s token in a,-. Compute # Backwards pass

d,(0) = Volog Pr [o=ay,].

a~pe, (xTr)

if V(z,y,q1,a1,...,qr,ar) accepts then
Update

O =0i+ X > du(0).
re[R]U{0}
s€([Lq]

Output § == + Zie[N] 0;.

Before we continue with formal analysis of Algorithm 2, let us make a few observations.

Firstly, the parameters are updated (line 11) only when an accepting transcript was generated. This
means that the learner can first fully generate the transcript (lines 6-7), and then take backwards
passes (line 9) only if the transcript was accepted by V. This is useful in practice (e.g. when using
neural models) as backwards passes are more computationally expensive than forwards passes.

On the other hand, this means that RLVF requires the parameter initialization 6, to have Verifiability
bounded away from 0, so that accepting transcripts are sampled with sufficient probability. Fortunately,
such a Self-Proving base model can be learned using TL. This gives a learning paradigm in which a
somewhat-Self-Proving base model is learned with TL (with Verifiability 6 > 0), and then “amplified”
to a fully Self-Proving model using RLVF. This can be seen as an adaptation of the method of Nair
et al. (2018) to the setting of Self-Proving models.

Secondly, in comparing Algorithms 1 and 2, we see that the latter (RLVF) does not keep track of
the probabilities as. This is because, in RL terms, RLVF is an on-policy algorithm; it generates
transcripts using the current learned model, unlike TL that samples them from a distribution whose
parameterization is unknown to the learner. Hence, the update step in RLVF is simpler than TL.

We now prove that the update step in RLVF maximizes the Verifiability of Pp; this is analogous to
Lemma B.4 for TL. We leave it for future work to use Lemma B.7 to obtain convergence bounds on
RLVF (analogous to Theorem B.5). As mentioned in Section 4.2, the gap between the lemma and a
full convergence theorem (informally) reduces to the problem of obtaining convergence bounds for
Policy Gradient methods, a challenging and active research direction (e.g. Agarwal et al. 2021).

Indeed, the update step that the algorithm takes can be expressed as the random vector over which the
expectation is taken (in the right hand side).

Lemma B.7 (RLVF gradient estimation). Fix an input distribution p over ¥* and a verifier V
with round complexity R and answer length L,. For any transcript (x,y,q1,...,ar) we let

24

Under review as a conference paper at ICLR 2025

Accy (z,y,4q1,...,ar) denote the indicator random variable which equals 1 if and only if V accepts
the transcript. For any model Py, denote by ver () the verifiability of Py with respect to V and

(Definition 3.4). Then, for any 6,

ACCV(x7yaq17~~'7aR) ! Z ds(o)

Vover(d) = zINE#
y~Poy(z) re[RJU{0}
(arar)fy s€[La]

where (qy, a,)E_, are as sampled in lines 5-6 of Algorithm 2, and d, () is as defined in line 8 therein.

Proof. Recall the transcript generator of Py, denoted by T‘ﬁ (see Lemma B.4). By the definitions of
ag) in the lemma statement,

Verifiability in Definition 3.4 and V' (x,y, q1, - - .,

ver(0) = Tlist [(V, Pp) (x,y) accepts]

y~Po(z)
= xIEH [Accy (z,y,q1,...,aR)]
y~Po ()

(q7‘ 7‘%)5:1
Pr [Accy(z,7)]1 8)

T ()

= E

T

Now, for every input z, let IT*(z) C X* denote the set of accepting transcripts:
M (z) = {r* € ¥* : Accy(z,n*) = 1}.

We can assume that IT*(x) has finite cardinality, since ’s running time is bounded and hence the
number of different transcripts that it can read (and accept) is finite. For any fixed input x, we can

express its acceptance probability by the finite sum:

Pr J[Accy(z,m)] = I)

T @) 7€l ()
We will use Equations (3) through (7) in the proof of Lemma B.4. Up to a change in index notation,

these show that, for any 7*,

= Pr [w=7"]- Z Vods(6).

Vo Pr [m=n"]=
T () 7T (2) Rl
SE[Lq]

25

AW N =

[

Under review as a conference paper at ICLR 2025

Combining Equations (8) and (9) by linearity of expectation we have that

\Y% 0)= E Vo P =7*
ver(0) = B, z(o B fr=r

- II/\E-//_L Z 7r~173'£(a:) T Z Ved

7 ell* (x) reRU{0}
L SE[Lq]

= E E A \Y d
ot | 7T () CCV xZ, 7T Z 0
re RU{0}

L SE[Lq]

IINE# Accy (z,) Z Ved

7~ T () re RU{0}
SE[L(J.]

IIE/_L ACCV(Z’»,’%QM e 7aR) : Z Veds(e))
y~Py(x) re RU{0}
(q’l“ya’f‘)f:l s€[La]
where in the last equality, the probability is over (g;, a,-) sampled as in Algorithm 2, and it follows
from the definition of the transcript generator 77 (z). O

C PRELIMINARIES ON STOCHASTIC GRADIENT ASCENT

For convenience of the reader, we provide a description of Stochastic Gradient Ascent and quote
a theorem on its convergence. We adapt the presentation in Shalev-Shwartz & Ben-David (2014),
noting that they present Stochastic Gradient Descent in its more general form for non-differentiable
unbounded functions.

Stochastic Gradient Ascent (SGA) is a fundamental technique in concave optimization. Given a
concave function f: R? — [0,1], SGA starts at wy = 0 € R? and tries to maximize f(w) by taking
a series of “steps.” Than directly differentiating f, SGA instead relies on an estimation V f(w): in
each iteration, SGA takes a step in a direction that estimates V f (w).

Definition C.1 (Gradient estimator). Fix a differentiable function f: R* — R for some d. A gradient
estimator for f is a randomized mapping Dy : R — R whose expectation is the gradient of f. That
is, for all w € RY,

E - [v] =Vf(w).

v~ Dy (w)
Note that this is an equality between d-dimensional vectors.

Algorithm 3: Stochastic Gradient Ascent
Hyperparameters: Learning rate A > 0 and number of iterations N € N.
Input: A function f: R? — R to maximize and a gradient estimator D for f.
Output: A vector w € RY.
Initialize wy == 0 € RY.
fori=1,...,N—1do
Sample v; ~ D¢(w;—1).
Update w; = w;—1 + A - v;.
Output @ = + e W

Theorem 14.8 in Shalev-Shwartz & Ben-David (2014) implies the following fact.

26

Under review as a conference paper at ICLR 2025

Fact C.2. Fix a concave f: R — [0,1], a norm || - || on R%, and upper-bounds Bxorm, Brip > 0.
Let

w* € argmax f(w),
w:||w]| < BNorm

and let w denote the output of Algorithm 3 run for N iterations with learning rate

BNorm

A= ————.
BripVN

If at every iteration it holds that ||v;|| < Bup, then

F(@)] > flw) — %

s=

C.1 LEARNING WITH STOCHASTIC GRADIENT ASCENT/DESCENT

Fact C.2 captures the general case of using SGA for maximization of concave problems. It is more
common for the literature to discuss the equivalent setting of Stochastic Gradient Descent (SGD)
for minimization of convex problems. Specifically, a common application of SGD is for the task of
Risk Minimization: given a loss function and access to an unknown distribution of inputs, the goal
is to minimize the expected loss with respect to the distribution. Assuming that the loss function is
differentiable, the gradient of the loss serves as a gradient estimator (see Definition C.1) for the risk
function. We refer the reader to Shalev-Shwartz & Ben-David (2014, Section 14.5.1) for a complete
overview of SGD for risk minimization.

For the sake of completeness, we formulate Transcript Learning (TL, Algorithm 1) in the framework
of Risk Minimization for Supervised Learning. Although multiple loss functions may achieve our
ultimate goal—learning Self-Proving models—in what follows we define the loss that corresponds to
TL. Fix a verifier V and let 7; denote a distribution over accepting transcripts. We define

loss (0, (z,7*)) = Pr [r#7%], (10)

7~TE ()

where 7* and 7 share the same verifier messages (as in Lemma B.4) so the inequality is
only over the prover’s messages, namely Pr, 7o) [T # 7] = Pro 7oy, a1,...,ar) #

(y*,a3,...,a5))."2
The risk function is the expected value of the loss over the joint distribution of inputs and accepting
transcripts g0 x T (p):

Risk (9) == IIE:“ [loss (6, (z,7%))],

T ~Ty
which means that the agreement function defined in Theorem B.5

AB)= Pr =]
7w ~Ty (x)
T ()

satisfies A(f) = 1 — Risk(6).

Thus, maximizing the agreement is equivalent to minimizing the risk. The hypothesis class over
which the optimization is performed is the ball of radius Byoyms, i-€- {0 eR?:||0]| < BNorm}. The
assumption that A is concave in 6 implies that the loss function is convex in #, which is the required
assumption for using SGD for risk minimization.

Indeed, TL uses the natural gradient estimator for this setting, the gradient of the “complement” of
the loss: Pr, [r = 7], since TL maximizes the agreement instead of minimizing the risk. The proof
of LemmaB .4, ie., VgA(#) = E; »+ [Vg (Prr [m = 7*])], follows from the above discussion.

">This loss is not to be confused with those discussed in Appendix A. Here, we are simply explaining how TL
can be viewed as a supervised risk minimizer for the loss function defined in Equation (10).

27

Under review as a conference paper at ICLR 2025

D ANNOTATIONS

We formally capture the modification described in Section 4.3 by introducing a transcript annotator
and an answer extractor incorporated into the training and inference stages, respectively.

Fix a verifier V' in an R-round proof system with question length L, and answer length L,. An

annotation system with annotation length L, consists of a transcript annotator A, and an answer
extractor E.

In terms of efficiency, think of the annotator as an algorithm of the same computational resources as
an honest prover in the system (see Definition 3.2), and the answer extractor as an extremely simple
algorithm (e.g., trim a fixed amount of tokens from the annotation).

To use an annotation system the following changes need to be made:

* At training time, an input = and transcript 7 is annotated to obtain 7 := A(z,), e.g. before
the forwards backwards pass in TL (line 3 in Algorithm 1).

* At inference time (i.e., during interaction between V' and Fj), the prover keeps track of
the annotated transcript, but in each round passes the model-generated (annotated) answer
through the extractor F before it is sent to the verifier. That is, in each round r € [R), the
prover samples

d;“ ~ P@(xayaQIadila oo 7a7‘71aq7‘)'

The prover then extracts an answer a,. := F/(a,) which is sent to the verifier.

E A SIMPLE PROOF SYSTEM FOR THE GCD

The Euclidean algorithm for computing the Greatest Common Divisor (GCD) of two integers is
possibly the oldest algorithm still in use today (Knuth, 1969). Its extended variant gives a simple
proof system.

Before we dive in, let us clarify what we mean by a proof system for the GCD. Prover Paul has two
integers 212 and 159; he claims that GC'D(212, 159) = 53. An inefficient way for Verifier Veronica
to check Paul’s answer is by executing the Euclidean algorithm on (212, 159) and confirm that the
output is 53. In an efficient proof system, Veronica asks Paul for a short string 7* (describing two
integers) with which she can easily compute the answer—without having to repeat Paul’s work all
over. On the other hand, if Paul were to claim that “GC'D(212,159) = 517 (it does not), then for
any alleged proof 7, Veronica would detect an error and reject Paul’s claim.

The verifier in the proof system relies on the following fact.

Claim E.1 (Bézout’s identity (Bezout, 1779)). Let xo,x1 € Nand 29,21 € Z. If zo - xo + 21 - 1
divides both xo and x1, then zo - xo + 21 - 1 = GCD(xg, x1).

Any coefficients zg, z; satisfying the assumption of Claim E.1 are known as Bézout coefficients for
(29, 21). Claim E.1 immediately gives our simple proof system: For input = (z¢, 21) and alleged
GCD y, the honest prover sends (alleged) Bézout coefficients (zo, z1). The Verifier accepts if and
only if y = 29 - zo + 21 - z1 and y divides both zy and z;.

In this proof system the Verifier does not need to make any query; to fit within Definition 3.2, we can
have the verifier issue a dummy query. Furthermore, by Claim E.1 it is complete and has soundness
error s = 0. Lastly, we note that the Verifier only needs to perform two multiplications, an addition,
and two modulus operations; in that sense, verification is more efficient than computing the GCD in
the Euclidean algorithm as required by Remark 3.3.

Annotations. To describe how a proof z = (zg, 1) is annotated, let us first note how it can be
computed. The Bézout coefficients can be found by an extension of the Euclidean algorithm. It is
described in Algorithm 4.3

Bour description follows https://en.wikipedia.org/wiki/Extended Euclidean
algorithm.

28

https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

[Y O T R

Under review as a conference paper at ICLR 2025

Algorithm 4: Extended Euclidean algorithm

Input: Nonzero integers zg, z1 € N.
Output: Integers (y, 2o, 21), such that y = GCD(xzg, z1) and (2o, 1) are Bézout coefficients
for (.T(), I,Cl).
Initialize ro = xg, 71 = 1, S0 = 1, s1 = 0,and ¢ = 0.
while r; # 0 do
Update q == |ro/r1].
Update (rg,71) = (11,70 — ¢ X r1).
Update (sg, s1) = (81,80 — ¢ X 81).
Output GCD y = 1 and Bézout coefficients zo := sg and z1 := (rg — so - o) /1.

Referring to Algorithm 4, the annotation of a proof z = (2, z1) will consist of intermediate steps in
its computation. Suppose that in each iteration of the While-loop, the algorithm stores each of r,
so and ¢ in an arrays r(, Sg and ¢. The annotation Z of z is obtained by concatenating each of these
arrays. In practice, to avoid the transformer block (context) size from growing too large, we fix a
cutoff 7" and first trim each array to its first 7' elements.

We formalize this in the terminology of Appendix D by defining a Transcript Annotator and Answer
Extractor. Note that, since our proof system consists only of one “answer” z send from the prover to
the verifier, the entire transcript 7 is simply z = (2o, 21). Since the verification is deterministic, this
means that the proof system is of an NP type (however, note that the search problem of finding the
“NP-witness” z = (29, 1) is in fact in P).

* Transcript Annotator A: For a fixed cutoff T and given input x = (¢, z1) and transcript
z = (20, 21), A executes Algorithm 4 on input © = (z¢,z1). During the execution, A
stores the first 7" intermediate values of r(, sg and ¢ in arrays 7, sy and ¢. It outputs
Az, z) = (0, 50, G, 2)-

*» Answer Extractor E: Given an annotated transcript Z = (7, S0, ¢, 2), outputs E(Z) = z.

We note that the computational complexity of A is roughly that of the honest prover, i.e., Algorithm 4
(up to additional space due to storing intermediate values). As for F, it can be implemented in
logarithmic space and linear running time in |Z|, i.e., the length of the description.'*

F EXPERIMENT DETAILS

We provide details of how we implemented the experiments in Section 5 and additional figures for
each experiment. Code, data and models are available as supplementary material.

Model architecture. We use Karpathy’s nanoGPT'> implementation of GPT. Note that we train
the model “from scratch” only on sequences related to the GCD problem, rather than starting from
a pretrained checkpoint. We use a 6.3M parameter architecture of 8 layers, 8 attention heads, and
256 embedding dimensions. We optimized hyperparameters via a random hyperparameter search,
arriving at learning rate 0.0007, AdamW (3; = 0.733 and 32 = 0.95, 10% learning rate decay factor,
no dropout, gradient clipping at 2.0, no warmup iterations, and 10% weight decay.

Data. We sample integers from the log; ,-uniform distribution over {1, ..., 10%}. Models in Table 2
and Fig. 2 are trained for 100K iterations on a dataset of ~10M samples. For Figure 3 (base ablation)
we train for 20K iterations on a dataset of ~1M samples; this is because this setting required 68 many
runs in total, whereas the annotation-cutoff ablation required 18 longer runs.

Compute. All experiments were run on a machine with an NVIDIA A10G GPU, 64GB of RAM,
and 32 CPU cores. The longest experiment was the single RLVF run, which took one month and

"That is, if integers are represented by n-bits, then E has space complexity O(log n + log T') and running
time O(n - T).
]Shttps ://github.com/karpathy/nanoGPT.

29

https://github.com/karpathy/nanoGPT

Under review as a conference paper at ICLR 2025

four days. The annotation-cutoff ablation runs took about 75 minutes each. Base of representation
ablation runs were shorter at about 15 minutes each. The total running time of the Transcript Learning
experiments was approximately 40 hours (excluding time dedicated to a random hyperparameter
search), and the RLVF experiment took another month and four days. The overall disk space needed
for our models and data is 4GB.

Representing integers. We fully describe how integer sequences are encoded. As a running
example, we will use base 210. To encode a sequence of integers, each integer is encoded in base 210,
a sign is prepended and a delimiter is appended, with a unique delimiter identifying each component
of the sequence. For example, consider the input integers x¢ = 212 (which is 12 in base 210) and
x1 = 159. Their GCD is y = 53, with Bézout coefficients zp = 1 and z; = —1. Therefore, the
sequence (212, 159,53, 1, —1) is encoded as

+,1,2,x0,+,159,x1,+,53,y,+,1,20,-,1,z1

where commas are added to distinguish between different tokens. Null tokens are appended to pad all
sequences in a dataset to the same length. Both the input and the padding components are ignored
when computing the loss and updating parameters.

Annotations Annotations are encoded as above, with each component in an intermediate step
m; delimited by a unique token. Since different integer pairs may require a different number of
intermediate steps to compute the Bézout coefficients, we chose to pad all annotations to the same
length T by the last step 7 in the sequence (which consists of the final Bézout coefficients).
This ensures that the final component output by the model in each sequence should be the Bézout
coefficient, and allows us to batch model testing (generation and evaluation) resulting in a 1000x
speed-up over sequential testing.

As an example, consider the inputs zop = 46 and z; = 39. Tracing through the execution of
Algorithm 4, we have

zo |1 |y | S0 |70 |d] 20 |2
46 | 39 1 146 |1
0 |39]5
1 711
514 |1
6 313

1 —11 |13

To encode this as an annotated transcript for the transformer, we must specify a base of representation
and an annotation cutoff. Suppose that we wish to encode this instance in base B = 10 and cutoff
T = 3. Then the input with the annotated transcript is encoded as

+,4,6,x0,+,3,9,x1,+,1,vy,
+,1,20",+,4,6,2z1",+,1,9’,
+,0,2z0”,+,3,9,z1”,+,5,9”,
+I 1’ ZO,” I+I 7’ Zl,” I+I 1’ q", 14
-,1,1,20,+,1,3,z1

where commas are used to separate between tokens, and linebreaks are added only for clarity. Notice
the three types of tokens: signs, digits, and delimiters. Notice also that the output y is added
immediately after the input, followed by the annotated transcript (whose six tokens comprise the
proof itself). Since the Self-Proving model we train has causal attention masking, placing the output
y before the proof means that the model “commits” to an output and only then proves it.

30

Under review as a conference paper at ICLR 2025

- T=7 - T=5 — T=3 == T=0

Verifiability

0.8

0.6

0.4

0.2

Iteration

0 20k 40k 60k 80k 100}

Figure 5: Verifiability as a function of the number of samples V. Each iteration (X axis) is a batch
of 1024 samples from a dataset of ~10M sequences. Every 10k iterations, Verifiability was evaluated
on a held-out dataset of 1k inputs (as described in Section 5). T is the number of steps in Annotated
Transcript Learning (Figure 2), and 7" = 0 is non-annotated Transcript Learning. Each 7" was run
with three seeds, with mean depicted by the curve and standard error by the shaded area.

31

Under review as a conference paper at ICLR 2025

Verifiability

0.7

0.6

0.55

Iteration

0 M 2M 3M 4M

Figure 6: RLVF Verifiability as a function of the number of samples V. Starting from a base
model with Verifiability 48% (obtained via Transcript Learning), in each iteration a batch of 2048
inputs are sampled; the model generates a proof for each; the Verifier is used to check which proofs
are accepted; then, the model parameters are updated accordingly (see Algorithm 2). Verifiability
was evaluated on a held-out dataset of 1k inputs.

32

	Introduction
	Related Work
	Self-Proving models
	Preliminaries
	Self-Proving models

	Learning Self-Proving Autoregressive Models
	Transcript Learning
	Reinforcement Learning from Verifier Feedback (RLVF)
	Learning from annotated transcripts

	Experimental Results
	Setup: Training transformers to predict the GCD of two integers
	Models generalize beyond annotations
	Base of representation

	Conclusions
	A definition for general loss functions and one-to-many relations
	The general definition

	Theoretical analyses for Section 4
	Transcript Learning
	Reinforcement Learning from Verifier Feedback

	Preliminaries on Stochastic Gradient Ascent
	Learning with Stochastic Gradient Ascent/Descent

	Annotations
	A simple proof system for the GCD
	Experiment details

