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ABSTRACT

Fair visual recognition has become critical for preventing demographic disparity.
A major cause of model unfairness is the imbalanced representation of different
groups in training data. Recently, several works aim to alleviate this issue using
generated data. However, these approaches often use generated data to obtain
similar amounts of data across groups, which is not optimal for achieving high
fairness due to different learning difficulties and generated data qualities across
groups. To address this issue, we propose a novel adaptive sampling approach
that leverages both real and generated data for fairness. We design a bilevel
optimization that finds the optimal data sampling ratios among groups and between
real and generated data while training a model. The ratios are dynamically adjusted
considering both the model’s accuracy as well as its fairness. To efficiently solve
our non-convex bilevel optimization, we propose a simple approximation to the
solution given by the implicit function theorem. Extensive experiments show that
our framework achieves state-of-the-art fairness and accuracy on the CelebA and
ImageNet People Subtree datasets. We also observe that our method adaptively
relies less on the generated data when it has poor quality.

1 INTRODUCTION

Model fairness in visual recognition is becoming essential to prevent discriminatory predictions over
demographics. Recently, numerous unfairness issues have been reported (Wang et al., 2020; Najibi,
2020), and several fair image classification approaches have been proposed that do not discriminate
against specific groups such as gender, age, or skin color (Ramaswamy et al., 2021; Roh et al., 2021).

With the rapid progress in deep generative learning (Karras et al., 2020; Dhariwal & Nichol, 2021),
there is a new research direction to improve fairness by augmenting training data with generated
data. Recent breakthroughs in generative learning make generated data practical enough to use in
real-world applications (OpenAI, 2022), and many high-quality pre-trained generative models are
now open to the public (Rombach et al., 2022), which obviates the need to train such models ourselves.
Thus, generated data is increasingly used to improve model performances, including fairness. From a
fairness perspective, generated data complements real data by making it more diverse. For example,
if a specific group’s data is collected from a limited data source that does not have the full data
distribution, that group may be discriminated in model training due to the bias (Mehrabi et al., 2021).
In this case, generated data can be used to supplement that underrepresented group.

However, most fair training approaches that use generated data simply generate similar amounts
of data across groups (Ramaswamy et al., 2021; Choi et al., 2020), which may not be optimal to
improve group fairness such as equalized odds (Hardt et al., 2016) and demographic parity (Feldman
et al., 2015). Such suboptimality could originate from 1) the learning difficulty differences across
groups and 2) the potential bias (i.e., typically in the form of missing modes) and quality issues in the
generated data that can hurt the accuracy and fairness of the model under training. Therefore, it is
essential to find the right mix of generated and real data for the best accuracy and fairness.

In this paper, we harness the potential of both real and generated data via adaptive sampling to
improve group fairness while minimizing accuracy degradation. To this end, we design a new
sampling approach called Dr-Fairness (Dynamic Data Ratio Adjustment for Fairness) that adaptively
adjusts data ratios among groups and between real and generated data over iterations, as in Figure 1a.
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(b) Accuracy and fairness performances.

Figure 1: (a) Our framework iteratively updates the data ratios among groups and between real and generated
data based on the fairness and accuracy of the intermediate model. (b) Performances on CelebA, using
gender as the group attribute and age as the label attribute. Compared to the original model, the 1:1 ratio
baseline (Ramaswamy et al., 2021) does not significantly improve group fairness, measured through equalized
odds (EO) disparity. FairBatch (Roh et al., 2021) shows high fairness by adaptively selecting real data only, but
loses accuracy. In comparison, Dr-Fairness (ours) achieves high fairness, while not sacrificing accuracy.

Table 1: Functionality comparison of algorithms.

Method
Uses

generated
data

Finds
the optimal
group ratio

Finds
the optimal
real & gen.
data ratio

Utilizes
accuracy
for ratio
updates

1:1 ratio ✓ ✗ ✗ ✗
FairBatch ✗ ✓ ✗ ✗
Dr-Fairness ✓ ✓ ✓ ✓

In Table 1, we compare the unique properties of
Dr-Fairness against two representative methods:
1) an equal ratio baseline (1:1 ratio) (Ramaswamy
et al., 2021) that uses generated data and 2) a
fairness-aware adaptive sampling baseline (Fair-
Batch) (Roh et al., 2021) that finds the optimal
group ratio for fairness only using real data. We
can see that Dr-Fairness subsumes the two baselines and improves them by also optimizing the ratio
between real and generated data and utilizing accuracy for ratio updates.

To perform adaptive sampling systematically, we design a novel bilevel optimization problem
along with an efficient algorithm for solving it. Our bilevel optimization consists of 1) an outer
optimization that adjusts data sampling ratios considering both fairness and accuracy and 2) an inner
optimization that minimizes the standard empirical risk on both real and generated data, given the
current sampling ratios. Although various exact algorithms have been proposed to solve bilevel
optimizations (Maclaurin et al., 2015), they often scale poorly in our scenario with large models and
data. We thus propose an approximate algorithm that uses the implicit function theorem (Krantz &
Parks, 2002) and identity-matrix approximation (Luketina et al., 2016) to efficiently compute the
gradient of our bilevel optimization. Specifically, instead of computing the expensive inverse Hessian
matrix, we approximate it with a simple diagonal identity matrix.

Experiments on CelebA (Liu et al., 2015) and ImageNet People Subtree (Yang et al., 2020) show that
our approach achieves the state-of-the-art fairness and accuracy performances. For instance, Figure 1b
highlights our results on CelebA, where our framework largely outperforms FairBatch, which only
uses real data and the 1:1 ratio baseline – see Sec. 3 for comparisons using more baselines and
other fairness metrics, which show consistent results. On the ImageNet People Subtree classification
problem, which represents a large-scale real-world scenario, we achieve better accuracies than the
best baseline, with an absolute improvement of 5–9%, while obtaining similar fairness scores. We
also observe that our framework adaptively relies less on the generated data when it has poor quality.

Summary of Contributions: (1) We propose Dr-Fairness, a novel adaptive sampling framework
for fair training that enjoys the potential of both real and generated data. (2) To perform adaptive
sampling systematically, we formulate a bilevel optimization to train fair and accurate models on
real and generated data. (3) We also design an approximate algorithm based on the implicit function
theorem and identity-matrix approximation to efficiently solve our optimization. (4) We perform
extensive experiments on CelebA and ImageNet People Subtree to show that Dr-Fairness achieves
the state-of-the-art accuracy and fairness. (5) Finally, we believe that our work reveals the importance
of using generated data together with real data to improve model fairness.

2 FRAMEWORK

In this section, we first formulate a bilevel optimization problem for optimizing sampling ratios for
real and generated data. We then design a new algorithm that efficiently solves the optimization
problem. Throughout this paper, we use the following notations and fairness definitions.

Notations Let x ∈ X be the input feature, and let y ∈ Y and ŷ ∈ Y be the true label and the
predicted label, respectively. Let z ∈ Z be a sensitive group attribute, e.g., gender, age, or skin
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color. Let m be the total number of training samples, and my,z be the number of samples in the
set {i : yi = y, zi = z} with label y and group label z. Similarly, my,⋆ := |{i : yi = y}| and
m⋆,z := |{i : zi = z}|. Let w be the model weights, and the overall empirical risk is given by
L(w) = 1

m

∑
i ℓ(yi, ŷi), where ℓ(·) represents the loss function. Let Ly,z(w) be the empirical risk

over samples in the set {i : yi = y, zi = z}, i.e., Ly,z(w) := 1
my,z

∑
i:yi=y,zi=z ℓ(yi, ŷi). Finally,

let Lreal(·) and Lgen(·) be the empirical risks on real data and generated data, respectively.

Fairness Definitions For the method design, we focus on two prominent group fairness defi-
nitions: equalized odds (EO) (Hardt et al., 2016) and demographic parity (DP) (Feldman et al.,
2015). EO is satisfied when the accuracies conditioned on the true label are the same for differ-
ent groups (i.e., Pr(ŷ = y|y = y, z = z1) = Pr(ŷ = y|y = y, z = z2),∀y ∈ Y, z1, z2 ∈ Z). DP is
satisfied when the positive prediction rates are the same for the groups (i.e., Pr(ŷ = 1|z = z1) =
Pr(ŷ = 1|z = z2),∀z1, z2 ∈ Z), where DP is designed for binary classifications (i.e., y ∈ {0, 1})
with a favorable label class (e.g., “approval” in loan decision).

Generated Data In general, any synthetic data, including data from deep generative models, can
be considered generated data for fair training. Here, the key role of the generated data in algorithmic
fairness is supporting the limited subset of the real data. Also, we implicitly assume that the domains
of the generated data and real data are the same, but the distributions of the two data can be different.
For example, if the real data represents human faces, then we assume the generated data also
contains human faces. However, generated data may have a fairer distribution than real data. In this
paper, we assume we can get group-specific generated data by using conditional image generation
techniques (Nie et al., 2021; Dhariwal & Nichol, 2021) – see details in Secs. 3 and B.3.

2.1 BILEVEL OPTIMIZATION FOR FAIRNESS WITH REAL AND GENERATED DATA

To design an adaptive sampling strategy on real and generated data, we first formulate a bilevel
optimization for training fair and accurate models. The bilevel optimization consists of inner and
outer objectives: 1) we maintain the standard empirical risk minimization (ERM) in the inner problem,
and 2) we capture the desired fairness properties in the outer problem. The bilevel formulation allows
us to support prominent group fairness metrics and utilize generated data for fairness. Moreover,
through this formulation, we can achieve the desired fairness properties while keeping the standard
model training process without re-configuring the model architecture or loss functions. We discuss
more advantages of using bilevel optimization compared to other problem formulation methods like
distributionally robust optimization (Sinha et al., 2017) in Sec. A.6.

We now explain how our optimization improves group fairness and accuracy together by using both
real and generated data. The outer objective aims to find the optimal data ratios among sensitive
groups and between real and generated data to minimize the fairness and accuracy losses on the real
data distribution. Given the current data ratios, the inner objective runs a weighted ERM with both
real and generated data. We can support various prominent group fairness metrics by modifying the
outer objective and the constraints. As an illustration, we state our bilevel optimization w.r.t. EO as
follows (see the DP version in Sec. A.1):

min
λ,µ

max
y∈Y,z1,z2∈Z

{|Lreal
y,z1(w(λ,µ))− Lreal

y,z2(w(λ,µ))|}+ k
∑

y∈Y,z∈Z
my,z

m
Lreal
y,z(w(λ,µ)),

w(λ,µ) = argmin
w

∑
y∈Y,z∈Z

my,⋆

m
λy,z{µy,zL

real
y,z(w) + (1− µy,z)L

gen
y,z(w)},

s.t. λ ∈ [0, 1],µ ∈ [0, 1],
∑

z∈Zλy,z = 1,∀y ∈ Y,
where λy,z is the ratio for group z in class y, µy,z is the ratio for real data in the (y, z)-class, and λ
and µ are the sets of all λy,z and µy,z , respectively. In the outer objective, the first term indicates the
fairness loss, and second term indicates accuracy loss. The hyperparameter k tunes the importance
of the two losses. We note that the λy,z and µy,z values are the data ratios within one mini-batch.
Thus, among all samples in the real and generated data, our framework serves mini-batches according
to λy,z and µy,z . Here, we can capture the EO disparity as the maximum of the loss differences in
different groups within the same label (i.e., max |Lreal

y,z1(w)−Lreal
y,z2(w)|) – see the details in Sec. A.2.

Through the above formulation, the amount of generated data is automatically adjusted to augment
the real data. One problem with only using real data is that there can be an accuracy degradation of
the model due to over-sampling minority groups for better fairness. Generating data for these groups
can prevent the model’s overfitting and lessen the accuracy degradation.
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2.2 ALGORITHM

We now design our algorithm to solve the above bilevel optimization. In this section, we first describe
how to efficiently approximate our optimization by utilizing the implicit function theorem (Krantz &
Parks, 2002) and adapting identity-matrix approximation (Luketina et al., 2016) in a fairness setting.
We then introduce the overall training procedure, and show the validity of our approximate algorithm
on synthetic data.

Algorithm Design Solving bilevel optimization is known to be challenging (Liu et al., 2021),
especially when the objectives are non-convex as in our problem. Thus, we resort to stochastic
gradient descent to find the optimal parameters of the bilevel optimization gradually. To obtain the
gradients, we first convert our optimization into the unconstrained version:

min
λ,µ

max
y∈Y,z1,z2∈Z

{|Lreal
y,z1(w(λ,µ))− Lreal

y,z2(w(λ,µ))|}+ k
∑

y∈Y,z∈Z
my,z

m
Lreal
y,z(w(λ,µ)),

w(λ,µ) = argmin
w

∑
y∈Y,z∈Z

my,⋆

m
σy(λy,z){S(µy,z)L

real
y,z(w) + (1− S(µy,z))L

gen
y,z(w)},

where σy(λy,z) := exp(λy,z)/
∑

zi
exp(λy,zi) (i.e., the softmax function), and S(µy,z) :=

1/(1 + exp(−µy,z)) (i.e., the sigmoid function). Denoting the outer and inner objectives
as fouter(λ,µ,w(λ,µ)) and finner(λ,µ,w) respectively, the inner optimization w(λ,µ) =
argminw finner(λ,µ,w) can be solved efficiently using SGD-like algorithms. The main ques-
tion is how to solve the outer optimization. We can state the gradient of fouter w.r.t. λ as follows:

dfouter

dλ
=

∂fouter

∂λ︸ ︷︷ ︸
Term A

+
∂fouter

∂w(λ,µ)︸ ︷︷ ︸
Term B

× ∂w(λ,µ)

∂λ︸ ︷︷ ︸
Term C

, (1)

where Term A and Term B are the direct gradients w.r.t. λ and w(λ,µ), respectively, and Term C is
the best-response Jacobian. Note that w(λ,µ) is the best-response of model weights.

In Eq. 1, the best-response Jacobian is hard to directly compute. Although various algorithms have
been proposed to explicitly find the best-response Jacobian, most of them require propagating the
entire history of the gradients (Maclaurin et al., 2015), which is very time-consuming. Instead, we
implicitly measure the best-response Jacobian using the implicit function theorem (Krantz & Parks,
2002). This approach does not need to investigate the entire gradient history (Rajeswaran et al., 2019;
Lorraine et al., 2020) and builds on the assumption that the inner optimization has converged to a
local minimum, i.e., ∂finner

∂w = 0. Using this assumption, we can convert the best-response Jacobian
into the multiplication of two matrices (see more details in Corollary 2 of Sec. A.3):

dfouter

dλ
=

∂fouter

∂λ
+

∂fouter

∂w(λ,µ)
×−[∂

2finner

∂w∂w
]−1 × ∂2finner

∂w∂λ
. (2)

However, obtaining the inverse Hessian (i.e., [∂2finner/∂w∂w]−1) in Eq. 2 is also computationally
expensive. Thus, we consider the identity matrix approximation (Luketina et al., 2016; Finn et al.,
2017; Geng et al., 2021) that replaces the inverse Hessian with the identity matrix. Despite its
simplicity, such approximation may be valid for neural networks with normalization layers that make
the Hessian matrix diagonally dominant (e.g. BatchNorm), and in practice, it often performs on par
with other approximation methods in various applications (Raiko et al., 2012; Pedregosa, 2016; Liu
et al., 2018; Wilder et al., 2019; Fung et al., 2022). Given this, we can rewrite Eq. 2 simply as:

dfouter

dλ
≈ ∂fouter

∂λ
− ∂fouter

∂w(λ,µ)
× ∂2finner

∂w∂λ
, (3)

where the second term on the right-hand side is efficiently computed via vector-Jacobian prod-
uct (Paszke et al., 2017). Similarly, we can also approximate the gradient of fouter w.r.t. µ.

Overall Training Process We now describe the overall training process in Algo. 1. We first
initialize the model parameters and the data ratios, and for each iteration, we then get a minibatch
from Dr-Fairness (Algo. 2). In Algo. 2, we first update the data ratios among groups (λ) and between
real and generated data (µ) by calculating dfouter

dλ and dfouter
dµ as in Eq. 3. We then draw a minibatch

according to σy(λ) and S(µ). Note that the batch sampling with σy(λ) and S(µ) provides an
unbiased estimator of the weighted ERM in our inner optimization (Roh et al., 2021). Finally, we
update the model parameters w with the given minibatch. Here we can optionally use an exponential
moving average (EMA) that averages the model parameters w for improving training stability.

4



Under review as a conference paper at ICLR 2023

Algorithm 1: Model Training with Dr-Fairness
Input: real data (xreal, yreal, zreal), generated data

(xgen, ygen, zreal)
dreal,dgen ← (xtrain, ytrain, zreal), (xgen, ygen, zreal)
w← initial model parameters
λ, µ← initialize sampling ratio logits
Get current sampling ratios σy(λ), S(µ)
for each iteration do

minibatch=Dr-Fairness(w,dreal,dgen,λ,µ)
Update w according to the minibatch (optionally
with exponential moving average (EMA))

Output :model parameters w

Algorithm 2: Dr-Fairness
Input: model parameters w, data dreal

and dgen, group ratio λ,
real data ratio µ

Calculate fouter and finner according to
w, dreal, dgen, λ, and µ

Get dfouter
dλ and dfouter

dµ as in Eq. 3

Update λ by dfouter
dλ and µ by dfouter

dµ

using optimizers (e.g., Adam)
Draw a minibatch w.r.t. σy(λ), S(µ)
Output :minibatch

Validity of Our Algorithm We empirically verify how close the solutions from our approximation
strategy are to the optimal ones. To this end, we follow the synthetic binary setting in Roh et al.
(2021), where FairBatch has a theoretical guarantee to find the optimal group ratios, and compare
the optimized group ratios of Dr-Fairness and FairBatch – see details on the setup in Sec. A.4. Note
that in this synthetic setting, we set the fairness metric to equal opportunity (i.e., a relaxed version of
EO that focuses on the positive label) and only use the real data to optimize the group ratios λ, as
FairBatch cannot handle µ for the generated data. Ideally, if the approximation error in our method is
small, Dr-Fairness should obtain the same group ratios and performance as FairBatch.

Figure 2 shows that our algorithm converges to similar group ratios to those in FairBatch, although
the key ideas of the two algorithms on updating the group ratio are very different. Also, the two
algorithms have the similar fairness scores (0.012 equal opportunity disparity for both). These results
imply that our approximations are good enough to find reasonable solutions, which is consistent with
the observations in other applications (Lorraine et al., 2020; Luketina et al., 2016). In the next section,
we will show that Dr-Fairness achieves much higher accuracy with similar or better fairness than
FairBatch on real-world datasets, as our algorithm scales to multiple groups and labels and is capable
of harnessing the potential of both real and generated data. We note that although FairBatch is known
to have theoretical guarantees, they only apply to limited settings (e.g., binary groups and labels), so
there is room to improve fairness in other settings.

We also verify that, in the above setting, the identity matrix approximation indeed gets almost the
same group ratios with the exact inverse Hessian computation. See more details in Sec. A.5.

λ1,1 λ1,0

0.761

0.239

(a) Group ratios in Dr-Fairness.

λ1,1 λ1,0

0.773

0.227

(b) Group ratios in FairBatch.
Figure 2: Comparison of group ratios λ from Dr-Fairness and FairBatch. Both converge to similar ratios.

3 EXPERIMENTS

We perform various experiments to evaluate our algorithm. We repeat all experiments with three
random seeds and measure all performances on a separate test set – see more information, including
hyperparameter details of the algorithms, in Sec. B.1. We use ResNet50 (He et al., 2016) and the
Adam optimizer (Kingma & Ba, 2015) – see results on ViT (Dosovitskiy et al., 2021) in Sec. B.9.

Datasets We utilize two real-world datasets: 1) CelebA (Liu et al., 2015) to compare our algorithms
with baselines and perform various analyses, and 2) ImageNet People Subtree (Yang et al., 2020) to
further observe the algorithm performances on a large-scale real-world scenario. Note that we are
using large datasets instead of the traditional smaller tabular benchmarks for fairness because our
goal is to make Dr-Fairness work in large-scale real-world applications.

[CelebA] Contains celebrity images, where each image has 40 attributes (e.g., gender, age, and
smiling). We choose group and label attributes that are less subjective and traditionally considered for
fairness. The group attributes are gender (male and female) and age (young and old). The label
attributes are age, haircolor (black, blond, and others), and smiling (smiling and not-smiling).
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Note that age can be used as either the group or label attribute. The sizes of the training, validation,
and test sets are 160k, 20k, and 20k, respectively.

[ImageNet People Subtree] Contains 284 label classes and 3 group attributes: gender (male, female,
and unsure), skin color (light, medium, and dark), and age (child, adult, middle, and retired).
We first filter out classes that are vague, duplicates, or too small with few samples, which leaves us
with 112 classes – see details in Sec. B.2. These classes contain about 111k samples, but only 10% of
them have group attribute annotations. We split the group-labeled data into 40%, 20%, and 40% for
training, validation, and testing, respectively.

Data generation We create the generated datasets using state-of-the-art generative models that
conditionally synthesize images for each (y, z)-class. For CelebA, we use a StyleGAN-based
controllable generation method called LACE (Nie et al., 2021). For ImageNet People Subtree, we
fine-tune a diffusion model (Dhariwal & Nichol, 2021) pre-trained on ImageNet (Deng et al., 2009),
and use classifier guidance (Song et al., 2020; Dhariwal & Nichol, 2021) to sample images in each
(y, z)-class. Note that the controllable generation for ImageNet People Subtree is more challenging
due to its large number of (y, z)-classes and labeling noises. Thus, the resulting generated data has
lower quality than the generated data in CelebA. More details on data generation are in Sec. B.3.

Baselines We compare our algorithm with three types of baselines: 1) vanilla (non-fair) baseline, 2)
fair pre-processing baselines, and 3) fair in-processing baselines.

For fair pre-processing training, we consider three baselines: simple sampling, pair-augmenting
(PairAug) (Ramaswamy et al., 2021), and pair-augmenting with our generated data (PairAug*).
For simple sampling, we over- and under-sample the real data to ensure an equal ratio among
groups. PairAug is a fair augmentation technique that uses the generation methods to synthesize
balanced images for groups to reduce the correlation between the group and label attributes. For a
fair comparison, we also implement an extension of PairAug (denoted by PairAug*), which uses the
same balancing ratio in Ramaswamy et al. (2021), but uses our generated data.

For fair in-processing training, we consider three baselines: fairness constraint (Zafar et al., 2017a;b),
domain independence (Wang et al., 2020), and FairBatch (Roh et al., 2021). Fairness constraint adds
a fairness penalty term to the loss function to reduce the unfairness. Domain independence trains
separate classifiers per each group to reduce the correlation between the group and label attributes. At
inference, one can ensemble the outputs of the trained classifiers to get the final predictions. FairBatch
adaptively adjusts batch ratios among groups to improve fairness only using real data.

Metrics We focus on two accuracy metrics and three fairness metrics. [Accuracy] We measure the
standard accuracy over all samples and the balanced accuracy that averages y-class-wise accuracies.
[Fairness] We focus on equalized odds (EO) (Hardt et al., 2016), demographic parity (DP) (Feldman
et al., 2015), and bias amplification (Zhao et al., 2017). For EO and DP, we measure the disparities
(i.e., unfairness) among groups: EO disp. = maxz∈Z,y∈Y |Pr(ŷ=y|z=z, y=y)−Pr(ŷ=y|y=y)|,
and DP disp.= maxz∈Z |Pr(ŷ=1|z=z)−Pr(ŷ=1)|. Together with either EO or DP, we mea-
sure bias amplification to see how much the data bias is amplified in the model: Bias amp. =
maxy∈Y Pr(z=z|ŷ=y) − Pr(z=z|y=y), where z := argmaxz′∈Z Pr(z=z′|ŷ=y). Here, a good
performance is indicated by high accuracy values and low EO disp., DP disp., and bias amp. values.

3.1 CELEBA EXPERIMENTS

We evaluate Dr-Fairness on CelebA by comparing it with baselines (Sec. 3.1.1) and analyzing the
impact of its hyperparameters (Sec. 3.1.2), components (Sec. 3.1.3), and generated data (Sec. 3.1.4).

3.1.1 ACCURACY AND FAIRNESS

Table 2 shows the accuracy and fairness performances of different algorithms on CelebA when
training w.r.t. EO (see results of training w.r.t. DP in Sec. B.5). Here we consider two scenarios: 1)
binary setting of y (age) & z (gender) and 2) non-binary setting of y (haircolor) & z (gender, age). In
Sec. B.6, we show similar results for the experiments on other group and label combinations. Also,
in Sec. B.7, we visually demonstrate the accuracy-fairness tradeoffs of the algorithms.

The fair pre-processing baselines (in rows 2–4) improve the fairness performances compared to the
original non-fair baseline, but still perform worse (i.e., lower EO disp. and lower bias amp.) than the
fair in-processing baselines and Dr-Fairness. Thus, simply equalizing the data ratio among groups
may not be enough to achieve high group fairness. Note that it is not straightforward to get the
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Table 2: Performances on the CelebA test set when training w.r.t. EO on two scenarios: binary y (age) & z
(gender) and non-binary y (haircolor) & z (gender, age). We compare Dr-Fairness with three types of baselines:
1) non-fair baseline, 2) fair pre-processing baselines: Simple Sampling, PairAug, and PairAug*, and 3) fair
in-processing baselines: Fair. Const., Dom. Indep., and FairBatch. Note that PairAug and Fair. Const. cannot be
trivially extended to the non-binary label setting, so we only show their results in the first column.

y: age and z: gender y: haircolor and z: (gender, age)

Method Acc. Bal. Acc. EO Disp. Bias Amp. Acc. Bal. Acc. EO Disp. Bias Amp.

Non-fair 86.4±0.3 76.4±0.2 0.173±0.023 0.101±0.022 83.8±0.3 82.0±0.6 0.535±0.049 0.014±0.003

Simple Sampling 86.8±0.2 78.3±0.5 0.132±0.019 0.052±0.017 83.2±0.4 80.9±0.3 0.421±0.016 0.026±0.002

PairAug (Ramaswamy et al., 2021) 85.6±0.6 79.8±0.3 0.124±0.002 0.030±0.003 - - - -
PairAug* (Ramaswamy et al., 2021) 86.7±0.2 79.3±0.6 0.134±0.008 0.053±0.008 83.0±0.2 80.1±0.8 0.406±0.026 0.022±0.005

Fair. Const. (Zafar et al., 2017b) 86.8±0.2 79.6±0.5 0.106±0.014 0.028±0.012 - - - -
Dom. Indep. (Wang et al., 2020) 85.0±0.7 72.4±2.1 0.070±0.008 0.034±0.021 81.7±0.6 74.8±1.4 0.340±0.041 0.026±0.013

FairBatch (Roh et al., 2021) 84.7±0.3 72.5±1.8 0.023±0.014 -0.043±0.007 79.4±1.5 68.2±4.7 0.096±0.033 0.033±0.003

Dr-Fairness 87.7±0.3 81.0±0.2 0.020±0.010 -0.026±0.002 85.0±0.1 84.4±0.3 0.079±0.023 0.012±0.002
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Figure 3: The performances of Dr-Fairness by varying the hyperparameter k when (y, z) = (haircolor, (gender,
age)). The first two graphs show the performance changes during the training, and the last graph shows the
accuracy-fairness tradeoff curves. Compared to FairBatch, Dr-Fairness shows a better tradeoff.

generated data from the original PairAug work in the non-binary label setting, so we are not able to
report the numbers (e.g., the right columns of Table 2). But we expect that the results would be similar
to PairAug*, as observed in the binary setting. Additionally, FairnessGAN (Sattigeri et al., 2019) is
another previous method that aims to generate fair images, but this method has been reported to show
worse fairness and accuracy performances than PairAug – see Sec. B.4 for a detailed comparison.

The fair in-processing baselines (in rows 5–7) improve fairness (esp. EO), but tend to sacrifice
accuracy because they only utilize real data. Here, in the baselines with higher fairness, the decrease
in accuracy becomes more significant. For example, FairBatch adaptively adjusts the group ratio on
real data to improve fairness, but we observe that some small-sized groups end up being oversampled,
which is detrimental to the accuracy performance on the test set.

In comparison, Dr-Fairness achieves high fairness performances while even improving accuracies by
adaptively finding optimal data ratios among groups and between real and generated data. There are
two takeaways: 1) we can find a better group ratio than the 1:1 ratio for fairness, and 2) an optimal
combination of real and generated data can mitigate the accuracy degradation of fair training.

3.1.2 HYPERPARAMETER ANALYSIS

We now evaluate Dr-Fairness by varying its main hyperparameter k used in the bilevel optimization.
A larger k puts more weight on the accuracy loss than the fairness loss. Figures 3a and 3b show the
accuracy and fairness of Dr-Fairness during the training with the different k values. As expected,
increasing k (say k = 50) results in higher accuracy and lower fairness. By varying k, we can also
compare the accuracy-fairness tradeoff curves of Dr-Fairness and FairBatch in Figure 3c. Dr-Fairness
shows a better tradeoff, which is consistent with the results in Sec. 3.1.1.

3.1.3 ABLATION STUDY

We perform an ablation study on our framework to evaluate the impact of each component in the
optimization on fairness and accuracy. For fairness, we conduct two ablations: F1) remove both the
fairness loss in the outer objective and λy,z in the inner objective, and F2) only remove the fairness
loss in the outer objective. For accuracy, we consider three ablations: A1) remove the accuracy loss
in the outer objective; and µy,z and the generated data loss in the inner objective, A2) remove µy,z

and the generated data loss in the inner objective, and A3) only remove the accuracy loss in the
outer objective. We note that A2 also represents how Dr-Fairness works only with real data when we
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cannot utilize generated data. Through this sequence of ablations, we observe that each part of our
algorithm gradually improves the fairness and accuracy performances.

Table 3: Ablation study on CelebA, where we consider the
setting of non-binary y (haircolor) and binary z (gender). We
mark noticeable performance degradations with underlines.
Method Acc. Bal. Acc. EO Disp.

F1: w/o fair. loss and λy,z 85.7±0.3 83.9±1.0 0.432±0.063

F2: w/o fair. loss 85.1±0.3 84.6±0.3 0.261±0.017

A1: w/o acc. loss, µy,z , and gen. data 79.3±1.2 66.7±3.8 0.090±0.058

A2: w/o µy,z , and gen. data 80.0±1.2 70.8±3.1 0.031±0.012

A3: w/o acc. loss 71.5±0.9 82.1±0.8 0.046±0.029

Dr-Fairness 84.5±0.2 82.3±0.7 0.029±0.009

In Table 3, the fairness ablations (in rows 1–
2) show worse fairness as the fairness loss
and λy,z are discarded, and the accuracy
ablations (in rows 3–5) demonstrate lower
accuracy and balanced accuracy as some
of the accuracy loss, generated data, and
µy,z are removed. We thus conclude that
all components in our bilevel optimization
contribute to the overall performances.

3.1.4 GENERATED DATA OF DIFFERENT QUALITIES

Table 4: Analysis of the behavior of Dr-Fairness when the quality
of generated data changes. We add different amounts of Gaussian
noise to the original (clean) generated data. In the severe case,
we fully replace the generated data with the noise. We set y to
haircolor (non-binary) and z to gender (binary).

Noise level
in gen. data

Final gen. data ratio
found in Dr-Fairness Acc. Bal. Acc. EO Disp.

Clean 0.224±0.009 84.5±0.2 82.3±0.7 0.029±0.009

Light noise 0.210±0.018 84.4±0.2 81.6±1.0 0.033±0.003

Mid noise 0.192±0.012 84.5±0.1 81.9±0.3 0.039±0.022

Severe noise 0.114±0.041 83.1±1.8 78.3±0.8 0.108±0.038

Non-fair baseline – 83.8±0.3 82.0±0.6 0.399±0.019

We analyze the robustness of our frame-
work against the generated data qual-
ity as shown in Table 4. We vary the
quality of generated data by adding ran-
dom Gaussian noise to the original im-
ages. Interestingly, when the gener-
ated data quality decreases (i.e., adding
more noise to the images), Dr-Fairness
automatically reduces the usage of the
generated data, as shown in the second
column of Table 4. With this automatic
adjustment, Dr-Fairness shows robust
performances in the last three columns. When the generated data is fully replaced with Gaussian noise
(i.e., severe noise), the accuracy and fairness performances become worse than the clean setting as
expected, but the fairness score is still much better than the non-fair baseline by reasonably sacrificing
the accuracy. These results show that Dr-Fairness is effective even with low-quality generated data.

3.2 IMAGENET PEOPLE SUBTREE EXPERIMENTS

We finally perform experiments on ImageNet People Subtree, which represents a large-scale real-
world scenario. As only 10% of the data has group annotations, following Zhao et al. (2021), we first
pre-train a non-fair model on the entire training set with y labels and then fine-tune the pre-trained
model to improve fairness on the small set with group labels.

Tables 5 (below) and 10 (in Sec. B.8) show the performances of the algorithms on four group scenarios:
gender, skin color, age, and all combinations of them. The overall results are consistent with the
CelebA experiments, where we can see Dr-Fairness outperforms the baselines in accuracy, fairness, or
both. Specifically, our algorithm shows the best or second-best performance on EO disparity and bias
amplification in almost all group settings while obtaining better classification accuracies compared
to the baselines with similar fairness scores. For example, we obtain classification accuracies better
than FairBatch, with an absolute improvement of 5–9%, while achieving similar fairness scores.

As ImageNet People Subtree shows a more complicated real-world scenario than CelebA, we have
two additional observations. First, when we train the baselines w.r.t. EO, the bias amplification metric
occasionally gets worse compared to the original model (e.g., Dom. Indep. on gender and FairBatch
on skin color). This result shows that improving EO, which aims to minimize the label-specific
accuracy gap between groups, does not necessarily lead to reducing the bias in the model compared
to the data. In addition, as domain independence trains separate classifiers per each group, we suspect
that the final model may have undesirable results (e.g., worse bias amp.) if some of the classifiers
fail. Second, this dataset contains a large number of (y, z)-classes where many of them are extremely
small-sized. Here the controllable data generation becomes challenging where the generated labels
may be noisy, which negatively affects the fair training as well. Nonetheless, Dr-Fairness still shows a
clear improvement in fairness compared to the baselines, and we believe more data with clean labels
could further improve its performance.

The above experiments use ResNet50 (He et al., 2016) as the model backbone. In Sec. B.9, we also
conduct experiments using ViT (Dosovitskiy et al., 2021) and observe similar results. The results
imply our method is applicable to different network architectures.
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Table 5: Performances on the ImageNet People Subtree test set when training w.r.t. equalized odds (EO) for
either age or all combinations of groups. Other settings are identical to Table 2.

z: age z: (gender, skin color, age)

Method Acc. Bal. Acc. EO Disp. Bias Amp. Acc. Bal. Acc. EO Disp. Bias Amp.

Non-fair 61.4±0.8 61.8±0.8 0.849±0.029 0.191±0.039 61.4±0.8 61.8±0.8 0.918±0.016 0.270±0.107

Simple Sampling 53.4±0.9 53.6±0.9 0.822±0.044 0.201±0.077 54.6±0.9 54.8±0.8 0.885±0.041 0.181±0.002

PairAug* (Ramaswamy et al., 2021) 55.6±1.2 55.9±1.3 0.820±0.046 0.168±0.022 57.6±0.4 57.9±0.5 0.871±0.005 0.153±0.036

Dom. Indep. (Wang et al., 2020) 59.9±0.2 60.1±0.3 0.838±0.019 0.220±0.006 50.0±0.9 50.1±0.9 0.897±0.015 0.254±0.020

FairBatch (Roh et al., 2021) 51.3±1.2 51.5±1.2 0.798±0.042 0.198±0.003 50.1±5.3 50.3±5.3 0.853±0.013 0.185±0.021

Dr-Fairness 59.7±0.1 59.9±0.1 0.784±0.011 0.149±0.012 58.7±0.5 59.1±0.5 0.866±0.012 0.146±0.006

4 RELATED WORK

As model fairness becomes indispensable for Trustworthy AI, numerous works have been recently
proposed to better measure fairness and design fairness-aware algorithms (Narayanan, 2018). Among
various fairness definitions, we focus on group fairness measures (Hardt et al., 2016; Feldman
et al., 2015), which are widely studied in the fairness literature – see representative works in Sec. C.
Unfortunately most of the existing algorithms are not designed to handle large number of groups or
labels, and our contribution is to support such large-scale scenarios for real-world applications.

Among the previous techniques, FairBatch (Roh et al., 2021) is the most relevant to our work as it finds
the optimal group ratio for fairness on real data and shows the state-of-the-art fairness performances
on various tabular datasets, including COMPAS (Angwin et al., 2016) and AdultIncome (Kohavi,
1996). However, FairBatch may suffer from accuracy degradation due to oversampling on very
small-size groups, especially in vision datasets. In particular, FairBatch cannot utilize accuracy-based
objectives and generated data, which may result in a worse accuracy and fairness tradeoff. Also,
the theoretical guarantees of FairBatch do not apply in our setting because the outer objective of
our bilevel optimization problem is non-convex. In contrast, Dr-Fairness can minimize the accuracy
degradation of fair training by optimally utilizing both real and generated data based on the fairness
and accuracy objectives.

There is an emerging line of research for fairness in visual recognition (Najibi, 2020; Wang et al.,
2020) where using generated data is critical. Many visual recognition tasks involve multiple classes
of varying sizes, and only using real data is often insufficient to improve fairness. In response, several
works have proposed new algorithms to create a balanced dataset by augmenting the biased real
dataset with well-controlled generated data (Sattigeri et al., 2019; Choi et al., 2020; Ramaswamy
et al., 2021). However, simply balancing the data sizes is not enough to achieve high-enough group
fairness, as the learning difficulty and generated data quality can differ across groups. Although a
recent work (Zietlow et al., 2022) suggests an adaptive data augmentation that generating more data
for worse-performing groups, it uses heuristics to adjust data ratios without proper optimization and
thus has limited fairness performance. In comparison, Dr-Fairness solves a novel bilevel optimization
problem to find optimal data ratios and thus obtains both high fairness and accuracy.

In addition, there are other related studies on fair data reweighing (Li & Liu, 2022; Jiang & Nachum,
2020; Krasanakis et al., 2018), fair augmentation (Chuang & Mroueh, 2021), and fair representa-
tions (Shui et al., 2022). Compared to our work, these studies only use real data or do not scale to
large datasets – see a detailed discussion in Sec. C.

5 CONCLUSION

We proposed a novel adaptive sampling approach called Dr-Fairness that utilizes both real and
generated data for fairness. To perform adaptive sampling systematically, we first formulated a bilevel
optimization, where the goal is to find the optimal data ratios among sensitive groups and between real
and generated data to achieve high group fairness while minimizing accuracy degradation. To solve
the bilevel optimization problem, we then designed an efficient approximate algorithm based on the
implicit function theorem and identity-matrix approximation. Extensive experiments on the CelebA
and ImageNet People Subtree datasets showed that Dr-Fairness achieves state-of-the-art fairness and
accuracy performances. We believe Dr-Fairness opens up new opportunities for effectively using
generated data in large-scale real-world scenarios.
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ETHICS STATEMENT

We believe our work can positively impact society by reducing discrimination in AI applications. In
particular, our framework shows that generated data can compensate for unfairness issues in real data
(e.g., size bias and lack of diversity) to help obtain better accuracy and fairness results that would not
have been possible otherwise. As a result, real-world applications have a better chance of ensuring
fairness without sacrificing accuracy unnecessarily.

We do note that choosing an appropriate fairness metric for each application is essential, as a poor
choice may lead to unintended discrimination. Thus, one needs to carefully choose the target fairness
metrics based on the social context in each application. Also, in terms of privacy, we did not involve
human subjects or use any direct personal identifiers in the experiments, except for the human images
in the publicly available benchmark datasets.

REPRODUCIBILITY STATEMENT

We provide implementation and experimental details (e.g., libraries, hyperparameters, data prepro-
cessing, and data generation) in Sec. 3 and Sec. B to enable the reproduction of our results. To help
with the reproducibility of results in this paper, we will make our source code publicly available in
the future.
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A APPENDIX – OPTIMIZATION AND ALGORITHM

A.1 BILEVEL OPTIMIZATION FOR DEMOGRAPHIC PARITY

Continuing from Sec. 2.1, we formulate our bilevel optimization w.r.t. demographic parity (DP) as
follows:

min
λ,µ

max
y∈Y,z1,z2∈Z

{|my,z1

m⋆,z1
Lreal
y,z1(w(λ,µ))− my,z2

m⋆,z2
Lreal
y,z2(w(λ,µ))|}+ k

∑
y∈Y,z∈Z

my,z

m Lreal
y,z(w(λ,µ)),

w(λ,µ) = argmin
w

∑
y∈Y,z∈Z

my,⋆

m
λy,z{µy,zL

real
y,z(w) + (1− µy,z)L

gen
y,z(w)},

s.t. λ ∈ [0, 1],µ ∈ [0, 1],
∑

z∈Zλy,z = 1,∀y ∈ Y,

where Y = {0, 1}. Note that DP is designed for binary classification. For designing the fairness
loss, we are inspired by Roh et al. (2021), which gives a hint on formulating DP loss in bilevel
optimization. Intuitively, the fractions in the fairness loss make the model reduces the disparity of
each prediction ratio across groups, without considering the sizes of true label classes. This strategy
can be a sufficient condition for DP, as the goal of DP is to achieve the same positive prediction ratio
among groups – see more details in Roh et al. (2021).

A.2 CAPTURING EQUALIZED ODDS WITH THE LOSS CONSTRAINT

Continuing from Sec. 2.1, we explain how the loss-based constraints can capture equalized odds.
We recall our notation: the empirical risk over samples in the set (y = y, z = z) is Ly,z(w) :=

1
my,z

∑
i:yi=y,zi=z ℓ(yi, ŷi), where ℓ(yi, ŷi) is the loss function. Here, when the loss function ℓ(yi, ŷi)

is 1/0-loss (i.e., ℓ(yi, ŷi) = 1(yi ̸= ŷi), where 1(·) is an indicator function), the loss-based constraint
can perfectly express the equalized odds disparity. Specifically, Ly,z(w) with 1/0-loss is equivalent to
the probability of the correct predictions in each (y, z)-class (i.e., Pr(ŷ = y|y = y, z = z)). Therefore,
our fairness loss constraint (i.e., maxy∈Y,z1,z2∈Z{|Lreal

y,z1(w(λ,µ)) − Lreal
y,z2(w(λ,µ))|}) becomes

the equalized odds metric, which describes the class-conditioned accuracy disparity among groups
(i.e., maxy∈Y,z1,z2∈Z |Pr(ŷ = y|y = y, z = z1) − Pr(ŷ = y|y = y, z = z2)|). In practice, we can
also use other loss functions like cross-entropy loss instead of the 1/0-loss, as other loss functions
have been empirically verified as reasonable proxies for capturing group fairness metrics (Roh et al.,
2021; Shen et al., 2022).

A.3 USING THE IMPLICIT FUNCTION THEOREM

Continuing from Sec. 2.2, we describe how we convert the best-response Jacobian in Eq. 1 using the
implicit function theorem. We note that among various methods of solving bilevel optimization prob-
lems, the implicit function theorem significantly improves the algorithm efficiency with theoretical
evidence. Here, we first state the original implicit function theorem:
Theorem 1. (Implicit Function Theorem, stated in Krantz & Parks (2002); de Oliveira (2014))
Let F : Rn × Rm → Rm be a continuously differentiable function, where the input of F is (x, y)
∈ Rn × Rm. Assume there is an input point (a, b) that satisfies F (a, b) = 0, and ∂F (a,b)

∂y (i.e., the
Jacobian matrix) is invertible. Then, there exist open sets U ⊂ Rn and V ⊂ Rm that contain a and
b, respectively, and satisfy the following:

• There is a unique continuously differentiable function G, where G(a) = b and F (x, G(x)) = 0
for all x ∈ U .

• We have the Jacobian matrix of partial derivatives of G in U as follows:

∂G(x)

∂x
= −[∂F (x, G(x))

∂y
]−1[

∂F (x, G(x))

∂x
].

We now apply the above theorem in our setting. To get the best-response Jacobian w.r.t. λ, we
consider ∂finner(λ,w)

∂w as F (x,y) and w(λ) as G(x). Note that when accessing the gradient w.r.t. λ,
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we can ignore µ without loss of generality, and vice versa. Then, we can rewrite Theorem 1 for our
scenario as follows:

Corollary 2. (Implicit Function Theorem in our setting) Let ∂finner
∂w : Rn × Rm → Rm be a

continuously differentiable function, where the input of ∂finner
∂w is (λ,w) ∈ Rn × Rm. Assume there

is an input point (a, b) that satisfies ∂finner(a,b)
∂w = 0, and ∂2finner(a,b)

∂w∂w (i.e., the Jacobian matrix) is
invertible. Then, we have the Jacobian matrix of partial derivatives of w(λ) as follows:

∂w(λ)

∂λ
= −[∂

2finner(λ,w)

∂w∂w
]−1 × ∂2finner(λ,w)

∂w∂λ
.

Thus, with the assumption that the inner optimization has converged to a local minimum, i.e.,
∂finner
∂w = 0, we can convert the best-response Jacobian in Eq. 1 to the multiplication of two matrices in

Eq. 2. Similarly, we can convert the best-response Jacobian w.r.t. µ by setting F (x,y) to ∂finner(µ,w)
∂w

and G(x) to w(µ).

A.4 SETTING FOR THE VALIDITY CHECK

Continuing from Sec. 2.2, we describe the synthetic binary setting in Roh et al. (2021), which is used
to empirically verify how close the solutions from our approximation strategy are to the optimal ones.

For generating the synthetic dataset, we use a method in Zafar et al. (2017a), which produces two
input attributes (x1, x2), one binary label attribute y, and one binary group attribute z. We draw each
sample (x1, x2, y) from Gaussian distributions and make z follow a biased distribution.

In detail, we generate each sample (x1, x2, y) from two Gaussian distributions: (x1, x2)|y = 0 ∼
N ([−2;−2], [10, 1; 1, 3]) and (x1, x2)|y = 1 ∼ N ([2; 2], [5, 1; 1, 5]). Then, we make z follow
a biased distribution: Pr(z = 1) = Pr((x′1, x′2)|y = 1)/[Pr((x′1, x′2)|y = 0) + Pr((x′1, x′2)|y = 1)]
where (x′

1, x′2) = (x1 cos(π/4) − x2 sin(π/4), x1 sin(π/4) + x2 cos(π/4)). This synthetic dataset
contains training, validation, and test sets with 2k, 1k, and 1k samples, respectively.

In this experiment, we use logistic regression models for all algorithms, as in Roh et al. (2021).

A.5 COMPARISON WITH EXACT INVERSE HESSIAN COMPUTATION

Continuing from Sec. 2.2, we compare our identity matrix-based approximation results with the
exact inverse Hessian computation results. We use the same setting described in Sec. A.4, where it is
tractable to compute the exact inverse Hessian.

Figure 4 shows the group ratios of Dr-Fairness (with the identity matrix approximation) and Dr-
Fairness with the exact inverse Hessian computation. We can see that Dr-Fairness, which uses the
identity matrix approximation to estimate the inverse Hessian in Eq. 2, converges to similar group
ratios to those in computing the exact inverse Hessian. It implies that our solution is close to the
exact solution despite the method’s simplicity. Another observation is that the data ratios in Figure 4b
converge within fewer iterations than those in Figure 4a. We note that although the number of required
iterations is fewer when computing the exact inverse Hessian, the training time is much slower if the
number of parameters increases. Thus, the approximation used in Dr-Fairness can be a reasonable
solution to estimate the inverse Hessian, which is usually intractable for large models and data.

λ1,1 λ1,0

0.761

0.239

(a) Group ratios in Dr-Fairness.

λ1,1 λ1,0

0.763

0.237

(b) Group ratios with the exact inverse Hessian.

Figure 4: Comparison of group ratios λ from Dr-Fairness (with the identity matrix approximation) and Dr-
Fairness with the exact inverse Hessian computation. Both converge to similar ratios.
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A.6 COMPARISON WITH OTHER PROBLEM FORMULATION METHODS

Continuing from Sec. 2.1, we discuss the advantages of using bilevel optimization compared to other
problem formulation methods, especially using distributionally robust optimization (DRO) (Sinha
et al., 2017).

DRO is one of the prominent problem formulation methods in machine learning, which can solve a
target objective in a min-max formulation, but we believe that our bilevel formulation is more suitable
to handle both real and generated data while improving group fairness. In our scenario, real data and
generated data play very different roles in the bilevel objectives, and such roles are difficult to capture
via a DRO formulation.
• In detail, at the test-time evaluation, we only care about the fairness and accuracy losses (in our

outer objective) on the real data distribution. Therefore, the empirical risk for generated data (Lgen)
only appears in the inner objective for model parameters update.

• Directly applying DRO to empirical risks of real and generated data does not lead to the same
effect as our bilevel objective because this ignores the EO-based loss in our outer objective, and
more importantly, it is unclear what is the benefit of optimizing the real/generated data sampling
ratio to maximize the empirical risks. If we consider an example where we have a high loss on
generated data and a low loss on real data, then DRO should increase the sampling ratio for the
generated data to increase the overall loss. However, the high loss on generated data could be the
result of the low quality of generated data, and increasing its sampling ratio might instead hurt the
performance and fairness. On the other hand, as shown in Sec. 3.1.4, Dr-Fairness would decrease
the ratio of generated data when its quality is low.

B APPENDIX – EXPERIMENTS

B.1 EXPERIMENTAL SETTINGS

Continuing from Sec. 3, we provide detailed information on the experimental settings. We use
PyTorch for all experiments and utilize the pre-trained ResNet50 (He et al., 2016) provided by
PyTorch library (i.e., torchvision (Marcel & Rodriguez, 2010)). We change the last fully-connected
layer of each model with the number of corresponding label classes. When training, we update
all model parameters in the pre-trained model. The batch size of all experiments is 128. We set
the learning rate for updating model parameters to 0.0001. For the data ratio (λ and µ) updates in
Dr-Fairness, we use the Adam optimizer and set the learning rate for the ratio update to 0.005 in all
experiments. When calculating the gradients w.r.t. model parameters or data ratios in Eq. 3, we use
the autograd functionality in PyTorch. We apply the exponential moving average when updating the
model parameters in Dr-Fairness. To prevent the overfitting, we use the validation set when measuring
the fairness and accuracy losses in the outer objective of our bilevel optimization. Similarly, we use
the validation set in other baselines if they require the computation of additional (fairness) losses in
the algorithm.

Hyperparameters For Dr-Fairness, we choose k from a candidate set {0.1, 1, 10, 20} to have the
best fairness score while minimizing the accuracy degradation in the validation set. We set the learning
rates for λ and µ to 0.005. We initialize λ to the original (y, z)-ratios in the real data. We initialize
µ to 0.5 for CelebA (i.e., we start with 50% real and 50% generated data) and 0.99 for ImageNet
People Subtree (i.e., 99% real and 1% generated data). We use a higher (conservative) µ initially for
ImageNet People Subtree because its generated data has lower quality than that for CelebA. For all
baselines, we choose the hyperparameters that show the best fairness while minimizing the accuracy
degradation in the validation set.

B.2 FILTERING LABEL CLASSES IN IMAGENET PEOPLE SUBTREE

Continuing from Sec. 3, we explain how we filter the label classes in the ImageNet People Subtree
dataset. Initially, the dataset contains 284 label classes. Among them, we filter out classes that are
vague, duplicates, or too small with few samples. First, we filter vague classes like “ex-president”
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and “junior”, which are hard to classify even for human annotators. To decide whether each class is
vague or not, we perform internal crowdsourcing. For each class, we gather 3 expert decisions and
do a majority vote. Also, we remove classes that are conceptually duplicates of others. Finally, we
set the allowed minimum sample size to 50 and ignore the classes with fewer than 50 samples. As a
result, 112 classes are used in our experiments.

B.3 DATA GENERATION

Continuing from Sec. 3, we explain the details on data generation.

For experiments on CelebA, we use LACE (Nie et al., 2021) to generate data. LACE is a controllable
generation method that uses an energy-based model (EBM) in the latent space of a pre-trained
generative model such as StyleGAN2 (Karras et al., 2020). We consider StyleGAN2 pre-trained
on the CelebA-HQ dataset as our base generative model. In LACE, we first need to train the latent
classifiers in the w-space of StyleGAN2, each of which corresponds to an energy function for an
individual attribute in the EBM formulation (see Eq. (4) in (Nie et al., 2021)). Since we mainly
focus on five attributes (i.e., age, gender, smile, glasses, and haircolor) in the CelebA
experiments, we end up with five latent classifiers. Next, for each combination of attribute values (e.g.,
age=‘young’, gender=‘female’, smile=‘true’, glasses=‘true’, and haircolor=‘black’), we
use the ordinal differential equation (ODE) sampler in the latent space to sample the corresponding
images. We repeat the above sampling process until we cover all the combinations of attribute values.

For experiments on ImageNet People Subtree, we use a guided diffusion model (Dhariwal & Nichol,
2021) with classifier guidance (Song et al., 2020; Dhariwal & Nichol, 2021) to generate data.
Since there exist no ADM checkpoints pre-trained on ImageNet People Subtree, we first fine-tune
the ImageNet-pretrained ADM on ImageNet People Subtree, where the ADM model that we use
conditions on the 112 labels. For classifier guidance, we also need to first train three time-dependent
attribute classifiers, each corresponding to a demographic attribute (i.e., gender, skin color,
and age), on noisy images produced by the diffusion process. In particular, we fine-tune the noisy
image classifier (also pre-trained on ImageNet) with three new prediction heads on 10% of the
annotated data. Next, for each combination of label and attribute values, we pass the label value as
the input of the conditional ADM and use the classifier guidance (i.e., the guidance from the fine-tune
noisy image classifier in Eq. (10) of Dhariwal & Nichol (2021)) with the scale s = 15. Similarly, we
repeat the above sampling process until we cover all the combinations of label and attribute values.

Here we describe the number of generated samples in each dataset. In CelebA, we consider 5
attributes for the controllable generation: gender (male and female), age (young and old), smile
(true and false), glasses (true and false), and haircolor (black, blond, and others). Thus,
these 5 attributes yield 48 class combinations (i.e., 24 × 3). We generate a total of 96k samples,
where there are 2k samples for each attribute combination (e.g., 2k samples for (age=‘young’,
gender=‘female’, smile=‘true’, glasses=‘true’, and haircolor=‘black’)). In ImageNet
People Subtree, there are 112 label classes and 3 group attributes: gender (male, female, and
unsure), skin color (light, medium, and dark), and age (child, adult, middle, and retired). Thus,
we have 4,032 combinations (i.e., 112 × 3 × 3 × 4) for the controllable generation. We generate 32
samples for each combination, which results in about 129k samples in total.

Figures 5 and 6 show examples of the generated images. We note that the controllable generation for
ImageNet People Subtree is more challenging due to its large number of (y, z)-classes and labeling
noises. Thus, the resulting generated data is noisier than the generated data in CelebA.

B.4 COMPARISON BETWEEN FAIRNESSGAN AND PAIRAUG

Continuing from Sec. 3.1.1, we compare FairnessGAN (Sattigeri et al., 2019) and PairAug (Ra-
maswamy et al., 2021). Table 6 shows the accuracy and fairness performances of the two algorithms
on CelebA, where they consider the setting of binary label attribute y (attractive) and binary group
attribute z (gender). We show the numbers that are reported in Ramaswamy et al. (2021). As a result,
PairAug shows better accuracy and equalized odds performances compared to FairnessGAN.
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age = old, gender = female, smile = false, glasses = false, haircolor = black

age = old, gender = male, smile = true, glasses = false, haircolor = others age = young, gender = male, smile = true, glasses = true, haircolor = blond

age = young, gender = female, smile = true, glasses = false, haircolor = blond

Figure 5: Examples of the generated images on CelebA.

Tennis player, gender = male, skin color = light, age = child

Anchor, gender = female, skin color = medium, age = middle

Captain, gender = male, skin color = dark, age = middle

Astronaut, gender = female, skin color = light, age = adult

Figure 6: Examples of the generated images on ImageNet People Subtree.

B.5 OTHER RESULTS ON CELEBA W.R.T. DEMOGRAPHIC PARITY

Continuing from Sec. 3.1.1, we perform experiments on the CelebA dataset w.r.t. demographic parity
(DP). Table 7 shows the accuracy and fairness performances of the algorithms. Similar to the results
in Table 2, Dr-Fairness shows higher fairness than the pre-processing (1:1 data ratio) baselines (i.e.,
simple sampling, PairAug, and PairAug*) and higher accuracy than the in-processing baselines (i.e.,
fairness constraint, domain independence, and FairBatch). Here, as the pre-processing baselines are
not explicitly designed for DP, their fairness performances in terms of DP are sometimes worse than
the original ResNet50 results. Since DP aims to ensure the same positive prediction rates without
considering the true labels, the training sometimes needs to overfit on the positive labels for specific
groups to improve DP. Thus, simply equalizing the data ratio among groups may not be enough to
improve DP compared to the EO case.

B.6 OTHER RESULTS ON CELEBA WITH DIFFERENT SETTINGS

Continuing from Sec. 3.1.1, we perform experiments on the CelebA dataset with different group and
label combinations. Tables 8 and 9 show the accuracy and fairness performances on the following
two settings: (y, z) = (smiling, gender) and (y, z) = (haircolor, gender). In both cases, we observe
consistent results to those in Sec. 3.1.1, where Dr-Fairness achieves high fairness (esp. EO) while not
sacrificing accuracy. We note that in these two settings, the bias amplification values of the non-fair
baseline are already very small (i.e., good enough), so the fair algorithms may not further improve
the bias amplification.

B.7 ACCURACY-FAIRNESS TRADEOFFS

Continuing from Sec. 3, we visually demonstrate the accuracy-fairness tradeoffs of Dr-Fairness and
the baselines on the CelebA and ImageNet People Subtree datasets. Figure 7 shows the accuracy and
unfairness performances of the baselines and Dr-Fairness. Here, being on the lower-right indicates
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Table 6: Additional comparisons between baselines using generated data. We compare PairAug and Fairness-
GAN, where the results are from Ramaswamy et al. (2021). The baselines use the attractive attribute as the label
and gender attribute as the group.

Method Acc. EO Disp.

PairAug (Ramaswamy et al., 2021) 80.0 0.21
FairnessGAN (Sattigeri et al., 2019) 71.0 0.25

Table 7: Performances on the CelebA test set w.r.t. demographic parity (DP) on the binary y (age) and z (gender)
scenario. Other settings are identical to Table 2. We mark the best and second best performances among the
fairness algorithms with bold and underline, respectively.

y: age and z: gender

Method Acc. Bal. Acc. DP Disp. Bias Amp.

Non-fair 86.4±0.3 76.4±0.2 0.141±0.009 0.101±0.022

Simple Sampling 86.8±0.2 78.3±0.5 0.132±0.010 0.052±0.017

PairAug (Ramaswamy et al., 2021) 85.6±0.6 79.8±0.3 0.151±0.007 0.030±0.006

PairAug* (Ramaswamy et al., 2021) 86.7±0.2 79.3±0.6 0.144±0.003 0.053±0.008

Fair. Const. (Zafar et al., 2017a) 85.9±0.3 74.3±1.3 0.124±0.009 0.103±0.006

Dom. Indep. (Wang et al., 2020) 85.0±0.7 72.4±2.1 0.091±0.004 0.034±0.021

FairBatch (Roh et al., 2021) 84.9±0.3 74.0±1.5 0.074±0.005 -0.034±0.004

Dr-Fairness 86.5±0.3 78.2±0.1 0.088±0.009 -0.028±0.005

higher accuracy and fairness and is thus desirable. In CelebA, Dr-Fairness achieves both better
accuracy and fairness performances compared to all the baselines. In ImageNet People Subtree, 1)
the baselines Simple Sampling, PairAug, and Dom. Indep. show strictly worse performances than
Dr-Fairness, 2) FairBatch achieves higher fairness than ours, but the accuracy degradation is severe,
and 3) the non-fair baseline shows high accuracy, but much worse fairness. Thus, we can conclude
that Dr-Fairness achieves the best accuracy-fairness tradeoffs in both datasets.

(a) Tradeoffs in CelebA
when (y, z) = (haircolor, (gender, age)).

(b) Tradeoffs in ImageNet People Subtree
when z = (gender, skin color, age).

Figure 7: Accuracy-unfairness graphs to visualize the algorithm performances on the CelebA and ImageNet
People Subtree datasets. Being on the lower right is desirable (high accuracy and fairness).

We explain when Dr-Fairness can improve both fairness and accuracy compared to other fairness
baselines. We believe this phenomenon is related to the optimal accuracy-fairness tradeoff, which is
known to be determined by the data distribution (Menon & Williamson, 2018). When the performance
of a fair algorithm lies on the optimal accuracy-fairness tradeoff, any other algorithm can only achieve
either better fairness or better accuracy, but cannot improve both. However, when the fairness
algorithms do not achieve the optimal accuracy-fairness tradeoff in the given data, there is an
opportunity to improve the model’s performances toward the optimal tradeoff line. For example, we
observe that Dr-Fairness improves both accuracy and fairness compared to other baselines in CelebA,
implying that the baselines do not achieve the optimal accuracy-fairness tradeoff in the first place.
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Table 8: Performances on the CelebA test set w.r.t. equalized odds (EO) on the binary y (smiling) and binary z
(gender) scenario. We mark the best and second best performances among the fairness algorithms with bold and
underline, respectively. Other settings are identical to Table 2.

z: age

Method Acc. Bal. Acc. EO Disp. Bias Amp.

Non-fair 91.7±0.2 91.7±0.2 0.027±0.004 0.006±0.002

Simple Sampling 91.8±0.1 91.8±0.1 0.019±0.007 0.012±0.004

PairAug (Ramaswamy et al., 2021) 91.4±0.1 91.4±0.1 0.022±0.001 0.003±0.001

PairAug* (Ramaswamy et al., 2021) 92.0±0.1 92.0±0.1 0.031±0.001 0.003±0.000

Fair. Const. (Zafar et al., 2017b) 91.3±0.5 91.3±0.5 0.014±0.007 0.009±0.002

Dom. Indep. (Wang et al., 2020) 91.2±0.3 91.2±0.3 0.014±0.000 0.009±0.004

FairBatch (Roh et al., 2021) 91.6±0.1 91.6±0.1 0.012±0.002 0.018±0.002

Dr-Fairness 92.7±0.1 92.7±0.1 0.013±0.003 0.009±0.004

Table 9: Performances on the CelebA test set w.r.t. equalized odds (EO) on the non-binary y (haircolor) and
binary z (gender) scenario. We mark the best and second best performances among the fairness algorithms with
bold and underline, respectively. Other settings are identical to Table 2.

y: haircolor and z: gender

Method Acc. Bal. Acc. EO Disp. Bias Amp.

Non-fair 83.8±0.3 82.0±0.6 0.399±0.019 0.010±0.003

Simple Sampling 83.1±0.1 78.9±0.8 0.322±0.006 0.021±0.004

PairAug* (Ramaswamy et al., 2021) 82.7±0.9 80.0±3.0 0.374±0.029 0.018±0.013

Dom. Indep. (Wang et al., 2020) 83.2±0.2 79.4±0.9 0.308±0.033 0.011±0.006

FairBatch (Roh et al., 2021) 78.4±1.4 68.7±1.3 0.085±0.015 0.072±0.022

Dr-Fairness 84.5±0.2 82.3±0.7 0.029±0.009 0.023±0.009

B.8 OTHER RESULTS ON IMAGENET PEOPLE SUBTREE WITH DIFFERENT GROUPS

Continuing from Sec. 3.2, we perform experiments on the ImageNet People Subtree with different
groups. Table 10 shows the accuracy and fairness performances when the group attribute is gender or
skin color. We observe consistent results to those in Sec. 3.2.

Table 10: Performances on the ImageNet People Subtree test set when training w.r.t. equalized odds (EO) for
either gender or skin color. We mark the best and second best performances among the fairness algorithms with
bold and underline, respectively. Other settings are identical to Table 2.

z: gender z: skin color

Method Acc. Bal. Acc. EO Disp. Bias Amp. Acc. Bal. Acc. EO Disp. Bias Amp.

Non-fair 61.4±0.8 61.8±0.8 0.871±0.013 0.256±0.031 61.4±0.8 61.8±0.8 0.874±0.024 0.239±0.062

Simple Sampling 54.8±0.8 54.9±0.9 0.834±0.004 0.282±0.038 55.5±1.1 55.7±1.0 0.849±0.000 0.219±0.035

PairAug* (Ramaswamy et al., 2021) 54.6±0.5 54.9±0.5 0.821±0.030 0.241±0.034 58.1±0.1 58.3±0.1 0.830±0.000 0.225±0.010

Dom. Indep. (Wang et al., 2020) 59.9±0.1 60.1±0.1 0.857±0.016 0.381±0.033 60.2±0.2 60.5±0.3 0.874±0.009 0.204±0.009

FairBatch (Roh et al., 2021) 52.9±3.1 53.1±3.2 0.816±0.076 0.191±0.011 51.9±0.5 52.1±0.5 0.811±0.019 0.346±0.021

Dr-Fairness 58.2±0.3 58.3±0.2 0.817±0.012 0.220±0.027 60.8±1.4 61.2±1.3 0.845±0.001 0.137±0.009

B.9 OTHER RESULTS ON IMAGENET PEOPLE SUBTREE WITH VIT

Continuing from Sec. 3.2, we perform experiments using DeiT-S (Touvron et al., 2021), a variant of
ViT (Dosovitskiy et al., 2021), on the ImageNet People Subtree dataset w.r.t. the age group attribute.
Table 11 shows the accuracy and fairness performances of Dr-Fairness and the representative baselines.
Here we observe similar results to those in Sec. 3.2. This experiment shows that Dr-Fairness is
applicable to various network architectures, including ViT.
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Table 11: Performances on the ImageNet People Subtree test set w.r.t. equalized odds (EO). We use DeiT-
S (Touvron et al., 2021), a variant of ViT (Dosovitskiy et al., 2021), for all algorithms. We mark the best and
second best performances among the fairness algorithms with bold and underline, respectively. Other settings
are identical to Table 2.

z: age

Method Acc. Bal. Acc. EO Disp. Bias Amp.

Non-fair 64.8±0.0 65.2±0.1 0.890±0.027 0.198±0.030

Simple Sampling 55.3±0.7 55.7±0.7 0.807±0.011 0.261±0.081

PairAug* (Ramaswamy et al., 2021) 59.5±0.1 59.9±0.1 0.824±0.006 0.237±0.083

Dom. Indep. (Wang et al., 2020) 51.8±1.6 52.0±1.5 0.817±0.005 0.634±0.246

FairBatch (Roh et al., 2021) 58.2±0.6 58.6±0.5 0.817±0.001 0.162±0.016

Dr-Fairness 64.4±0.6 64.8±0.6 0.774±0.001 0.176±0.001

C APPENDIX – RELATED WORK

Continuing from Sec. 4, we discuss more related work.

The main approaches for satisfying group fairness are: 1) fix the training data to mitigate bias (Kami-
ran & Calders, 2011; Zemel et al., 2013), 2) modify the training process to prevent the model from
learning bias (Zafar et al., 2017a;b; Zhang et al., 2018a; Agarwal et al., 2018; Roh et al., 2020;
2021), or 3) alter the outputs of the trained model to achieve fairness metrics (Hardt et al., 2016). As
discussed in Sec. 4, most of these algorithms are not designed to handle large number of groups or
labels, and our contribution is to support such large-scale scenarios for real-world applications.

In addition, there are other related studies on 1) fair data reweighing (Li & Liu, 2022; Jiang &
Nachum, 2020; Krasanakis et al., 2018), 2) fair augmentation (Chuang & Mroueh, 2021), and 3) fair
representations (Shui et al., 2022).
• The data reweighing techniques (Li & Liu, 2022; Jiang & Nachum, 2020; Krasanakis et al.,

2018) are indeed relevant to our data sampling framework, as they keep finding data weights to
improve group fairness. Compared to our work, Jiang & Nachum (2020) and Krasanakis et al.
(2018) require multiple re-training of the model, and Li & Liu (2022) uses additional assumptions,
including the loss function being twice differentiable and strictly convex in the model parameters.
Therefore, applying these reweighing techniques when training models on large-scale data may
lead to significant training times due to multiple re-trainings or performance degradation due to
violations of the assumptions. In comparison, Dr-Fairness works well in large-scale scenarios as in
our experiments.

• There is another interesting work called FairMixup (Chuang & Mroueh, 2021), which augments
training data for fairness using mixup methods (Zhang et al., 2018b). However, the key difference
from ours is that FairMixup only augments the data within the original training data distribution.
FairMixup also cannot dynamically adjust sampling ratios from different groups explicitly. In
contrast, Dr-Fairness can utilize any additional data, which is not limited to the original training
(real) data distribution, and also find the optimal sampling ratios among groups and between real
and generated data.

• Recently, a fair representation paper (Shui et al., 2022) uses the bilevel optimization formulation
with the implicit function theorem and shows promising results. Although this work also uses a
bilevel formulation, it targets a different problem from ours, where the goal is to map the input
feature X into the latent variable X ′ for fairness. In comparison, we use the bilevel formulation to
adjust the ratio among groups and between real and generated data to improve fairness. Specifically,
we design the inner objective by explicitly separating the group-wise terms and real/generated
data terms to adequately apply the data weights. We note that this inner structure is different
from Shui et al. (2022), where they apply the common outputs of the outer objective to all terms
in the inner objective that only considers real data. In addition, when approximating the inverse
Hessian matrix resulted by the implicit function theorem (e.g., Eq. 2), Shui et al. (2022) use
the conjugate gradient (CG) method (Rajeswaran et al., 2019), whereas we utilize the identity-
matrix approximation (Luketina et al., 2016; Geng et al., 2021). We note that the identity-matrix
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approximation is known to be much more efficient and may achieve on-par or sometimes better
performances compared to the CG method (Lorraine et al., 2020).

Although not our immediate focus, there are other important research lines for fairness: 1) fulfilling
other fairness definitions (e.g., individual fairness (Dwork et al., 2012) and causal fairness (Kusner
et al., 2017)) and 2) handling noisy or missing group labels (Hashimoto et al., 2018; Celis et al.,
2021). We believe that supporting these aspects can be promising future directions.
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