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ABSTRACT

Graphs typically exhibit distinctive structure and domain-specific knowledge, mo-
tivating the development of a Graph Foundation Model (GFM) capable of gen-
eralizing across various graphs and tasks. While recent efforts have focused on
combining the strengths of Large Language Models (LLMs) and Graph Neural Net-
works (GNNs), they often struggle to maximize mutual benefit due to the decoupled
architectures. Moreover, existing methods assign out-of-vocabulary (OOV) tokens
to nodes, which are incompatible with the natural language vocabulary for task-
oriented prompt generation, hindering knowledge transfer in GFM. In this paper,
we introduce PromptGFM, a versatile GFM grounded in graph vocabulary learning,
comprising two key components: (1) Graph Understanding Module, which explic-
itly replicates the finest GNN workflow in the language space using LLMs, enabling
seamless GNN-LLM integration and elegant graph-text alignment; (2) Graph In-
ference Module, where we establish a novel language-based graph vocabulary to
ensure expressiveness, transferability, and scalability. This vocabulary enables the
generation of readable instructions for LLM inference, resolving modality incom-
patibility and facilitating positive transfer. Extensive experiments demonstrate the
superiority of PromptGFM in node classification and link prediction, along with its
strong transferability across different datasets and tasks. The code is available at
https://anonymous.4open.science/r/PromptGFM.

1 INTRODUCTION

Graphs, representing intricate and complex relationships between nodes, are ubiquitous across various
real-world domains, including citation networks (Eto, 2019; Hu et al., 2020; Buneman et al., 2021),
social networks (Kempe et al., 2003; Myers et al., 2014), and molecular graphs (Wieder et al.,
2020; Jin et al., 2024). These graphs typically exhibit distinctive non-Euclidean data structures
while embody essential domain-specific knowledge. In this context, most graph learning approaches
necessitate individual training and deployment tailored to specific datasets or tasks. To overcome
this limitation, we aim to build a Graph Foundation Model (GFM) capable of generalizing across
different graphs and tasks (Mao et al., 2024; Xia et al., 2024).

With the advent of Large Language Models (LLMs), significant efforts have been dedicated to
harnessing their powerful understanding and inference capabilities alongside traditional Graph Neural
Networks (GNNs) to tackle broad challenges in graph machine learning. As Figure 1 shows, existing

GNN

(a) GNN for LLM

LLM

Alignment in Embedding Space

LLM

(b) LLM for GNN

GNN

Labels
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Figure 1: Overview of different GNN-LLM integration methods for graph-text alignment: (a) GNN
for LLM and (b) LLM for GNN use decoupled architectures in the embedding space. (c) In this
work, we aim to function LLM as GNN to achieve alignment directly in the language space.
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studies focus on modeling text-attributed graphs, which can be summarized as follows: (1) GNN
for LLM. GNNs produces structure-aware embeddings that enhance original textual embeddings,
boosting LLM inference (Tang et al., 2024; Chai et al., 2023; Liu et al., 2024b). (2) LLM for
GNN. LLMs contribute additional node features or labels derived from textual data, supervising the
training of GNN predictions (Chen et al., 2024c; Liu et al., 2024a; Zhu et al., 2024). Nonetheless,
concurrent loosely decoupled architectures struggle to maximize the advantages of both GNNs and
LLMs simultaneously, resulting in suboptimal graph-text alignment.

Recently, a noteworthy trend has emerged toward implementing LLM as GNN, where LLMs function
as GNNs to capture graph semantics and structure. A few studies design structure verbalizers to
convert graph structures into code-like or heuristic prompts, enabling LLMs to comprehend and
encode the graph through text (Ye et al., 2024; Wang et al., 2024; Chen et al., 2024a). However, we
argue there are currently no genuine instances of this category. As Figure 2(a) shows, the essence of
a true GNN lies in its message-passing paradigm, where each layer involves key components such as
neighbor sampling, aggregation, update, and optimization (Kipf & Welling, 2017; Velickovic et al.,
2017). By stacking multiple GNN layers, structure-less embeddings are gradually transformed into
structure-rich embeddings, capturing higher-order signals. Motivated by the absence of essential
properties of GNNs, a critical challenge arises: Can we leverage LLMs to faithfully replicate GNNs
to capture both graph semantics and structures simultaneously?

Even worse, existing models are all confined to a shared embedding space. They intuitively assign
each node in the graph as an out-of-vocabulary (OOV) token, relying on ID-based embeddings for
downstream graph-specific tasks (Tang et al., 2024; Ye et al., 2024). Unfortunately, these graph
embeddings are inherently incompatible with language-based token embeddings due to mismatch
vocabularies, leading to semantic discrepancies when constructing natural language instructions for
LLM inference. More importantly, this incompatibility makes it challenging for this graph-specific
knowledge to transfer or scale to other graphs and tasks. To achieve positive transfer, an urgent
challenge emerges: Can we replace the OOV tokens with compatible node representations to build
versatile graph foundation model?

This paper aims to build a versatile GFM grounded in graph vocabulary learning (Mao et al., 2024;
Cai, 2024). An ideal graph vocabulary should share following properties: (1) Expressiveness: the
vocabulary encapsulates semantic and structural knowledge across various domain-specific graphs.
(2) Transferability: each node in any graph is represented by one or more fundamental units within
this vocabulary. (3) Scalability: the vocabulary is sufficiently inclusive to accommodate unseen
nodes, even those from outside existing graphs. Since natural language is a highly expressive medium
made up of meaningful and transferable tokens (Raffel et al., 2020; Radford et al., 2021; Palo et al.,
2023), we establish a universal graph vocabulary within the language space to develop a versatile
GFM, called PromptGFM. In particular, PromptGFM consists of two key components:
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(b) Prompt-based GNN

…

The selected one-hop neighbors are 

[<l-th round node #1>, … ,<l-th 

round node #N >]. 

Note connected nodes should share 

similar semantics and vice versa. 

Please aggregate neighbor nodes 

and update a concise yet meaningful 

representation for the central node. 

Figure 2: The LLM-driven replication of the GNN
workflow to refine textual representations and cap-
ture high-order signals. We achieve fine-grained
alignment between traditional embedding-based
GNN and our prompt-based GNN.

Graph Understanding Module. To func-
tion LLMs as GNNs, we prompt LLMs to ex-
plicitly replicate the core principles of GNNs
within the language space. As shown in Figure
2, we use textual attributes as initial features
and meticulously design a series of prompts
to align with the GNN workflow at the finest
granularity. Specifically, we sample one-hop
neighbors for each node to convey graph struc-
ture, and then use straightforward prompts to
simulate a more flexible aggregation-update
mechanism. Additionally, we design heuristic
prompts to reflect the key idea of contrastive
loss, as analogy to mean pooling in unsuper-
vised graph learning (Hamilton et al., 2017).
By multiple rounds of LLM calls, we faith-
fully reproduce the iterative message-passing
paradigm of GNNs, progressively refining ver-
bose textual attributes into concise but mean-
ingful textual representations, rather than re-
lying on numerical embeddings. Furthermore,
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our prompt-based GNN successfully inherits the advantages of embedding-based GNNs, preserving
critical node semantics while capturing higher-order relationships within the graph. In essence,
LLMs function as GNNs, and GNNs can be viewed as LLMs, unleashing the potential of GNN-LLM
integration and empowering elegant graph-text alignment.

Graph Inference Module. Since we have captured semantic and structural information through the
prompt-based GNN, we propose decoupling these textual representations to establish a universal
graph vocabulary, where each node is mapped to a finite sequence of tokens, essentially as language-
based IDs. This vocabulary is universally transferable and scalable across diverse graphs, which
resolves the incompatibility typically associated with OOV tokens. Building on this insight, we
feed these language-based IDs to generate readable and coherent instructions composed entirely of
transferable natural language tokens. Within a multi-instruction fine-tuning framework, we gather
massive instructions from various graphs and tasks to effectively fine-tune an LLM, enabling it to
transfer cross-graph and cross-task knowledge for handling unseen graphs and tasks. In conclusion,
this universal graph vocabulary empowers us to thoroughly overcome the incompatibility challenge
and build a general graph foundation model. The contributions are summarized as follows:

•We propose a graph foundation model capable of generalizing across all the graphs and tasks.

•We highlight the potential of functioning LLMs as GNNs, and propose prompting LLMs to drive a
fine-grained replication of GNN flows that captures high-order signals within the language space. This
approach facilitates a seamless GNN-LLM integration and achieves elegant graph-text alignment.

• We establish a universal graph vocabulary within the language space that resolves graph-text
incompatibility. By multi-prompt instruction fine-tuning, its inherent transferability and scalability
empower the acquisition of open-world global knowledge for a graph foundation model.

•We conduct extensive experiments on several public benchmarking datasets, demonstrating the
effectiveness of our proposed PromptGFM framework in node classification and link prediction tasks,
as well as its strong zero-shot transferability across various datasets and tasks.

2 RELATED WORKS

GNN-LLM Integration. LLMs have unlocked unprecedented potential for graph machine learning,
inspiring the integration between GNNs and LLMs. (1) GNN for LLM. A common approach employs
graph encoders to capture graph structure, aiding LLMs in comprehensive graph understanding. Many
models, like GraphGPT (Tang et al., 2024) and GraphLLM (Chai et al., 2023), and GraphPrompter
(Liu et al., 2024b), use GNNs or graph transformers as structure tokenizers, enabling synergistic
fine-tuning with LLMs. Despite their prevalence, challenges persist in effectively coordinating the
architecture and co-training of GNNs and LLMs. (2) LLM for GNN. Another approach harnesses
LLMs to provide additional labels and features for GNN. In practice, LLM-GNN (Chen et al.,
2024c), GraphEdit(Guo et al., 2024), and OpenGraph (Xia et al., 2024) leverage LLMs to generate
node-level and edge-level labels, addressing data sparsity issues. OFA (Liu et al., 2024a), ENGINE
(Zhu et al., 2024), and TAPE (He et al., 2024) further direct LLMs to produce additional features
and explanations to overcome semantic deficiencies. Nevertheless, a notable drawback lies in the
heavy reliance on the instructions design and the quality of LLM-generated content, which inevitably
introduces noise and negatively impacts performance. (3) LLM as GNN. In this paradigm, LLMs
themselves are designed to function as GNNs. Existing efforts, such as LLaGA (Chen et al., 2024a),
InstructGLM (Ye et al., 2024), and InstructGraph (Wang et al., 2024), employ structure verbalizers
to convert graph structures into code-like or heuristic prompts for LLM inference. However, they
struggle to capture high-order connections without a true GNN mechanism, thus not fully functioning
LLMs as GNNs. Overall, the current decoupled integration of LLMs and GNNs fails to fully exploit
the strengths of both architectures. This limitation motivates us to propose a new paradigm where
LLMs function as GNNs at every level, maximizing their synergistic potential.

Graph-Text Alignment in Embedding Space. Existing graph-text alignment preserves features from
different modalities, while facilitates their coordination in the embedding space. With graph encoders
as prefixes, some studies actively align graph-aware embeddings with LLMs and finetune them
alongside language-based embeddings, such as G-Prompt (Huang et al., 2023) and GraphAdapter
(Huang et al., 2024). An alternative way is to derive distinctive features via a two-tower architecture
and apply alignment techniques for mutual benefits, such as contrastive learning (Li et al., 2023a;
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Brannon et al., 2023; Tang et al., 2024), iterative training (Zhao et al., 2023a; Zhu et al., 2024), and
knowledge distillation (Mavromatis et al., 2023). Nevertheless, these strategies bridge modality
gaps by mapping data to a shared embedding space, but they face challenges in terms of flexibility,
transferability, and scalability when dealing with natural language tokens from task-specific templates.

Graphs Foundation Models. A GFM aims to enable transferability across different datasets and
tasks (Liu et al., 2023). Observations have shown the key challenge lies in finding a graph vocabulary,
identifying transferable units to encode invariance on graphs (Mao et al., 2024). Specifically,
GraphGPT (Tang et al., 2024) assumes a unique ID for each node, creating a dataset-specific
vocabulary. MoleBERT (Xia et al., 2023) defines a molecular graph vocabulary by converting
atomic properties into chemically meaningful codes. Despite their success, ID-based vocabularies are
typically domain-specific, lacking in-context learning capabilities and exhibiting poor transferability
across different domains.. Recently, significant efforts (Fatemi et al., 2024; Wang et al., 2023; Zhao
et al., 2023b; Liu et al., 2024a) have been dedicated to effectively understanding and inferring graphs
in a natural language format, but none of them attempts to extend a language-based graph vocabulary
to fully leverage the inherent transferability of natural language. In this paper, we aim to build an
expressive graph vocabulary using natural language tokens, which means to represent each node
with a finite sequence of language tokens. Our work thoroughly resolves the semantic discrepancy
between graph and text, advancing the development of a versatile GFM.

3 PRELIMINARIES

Graph Data. A graph is formally represented as G = (V,E,X), where V is the set of nodes,
E is the set of edges. In this work, each node vi ∈ V is associated with a textual description
Xi =

(
x1
i , x

2
i , . . . , x

ni
i

)
, where each xk

i ∈ X , k = 1, . . . , ni. Here, X denotes the textual attributes
for nodes, and X represents the natural language token dictionary.

Graph Neural Networks. GNNs have gained widespread recognition as state-of-the-art models in
graph machine learning, with most operating through a message passing paradigm (Wu et al., 2021).
In this framework, a GNN begins by selecting neighboring nodes to the target node, then aggregates
their representations to capture the local structure of the graph. The target node subsequently updates
its own representation using the aggregated information. Mathematically, for a given node vi, the l-th
layer of a general GNN is formulated as:

N (l)
i = fsample (Ni) ,

m
(l)
i = fagg

({
h
(l−1)
j , vj ∈ N (l)

i

})
,

h
(l)
i = fupdate

(
h
(l−1)
i ,m

(l)
i

) (1)

where h
(l)
i is the embedding of node vi in the l-th layer. Ni is the full set of its neighbors and N (l)

i
represents sampled neighbors in the l-th layer. To capture high-order relationships, we stack multiple
GNN layers and acquire final embeddings by adopting the last layer embedding hi = h

(L)
i or mean

pooling hi = fmean

(
h
(1)
i , ...,h

(L)
i

)
, where L is the number of layers (Grattarola et al., 2024). For

GNN training, a contrastive loss with negative sampling is commonly used in unsupervised graph
learning (Hamilton et al., 2017; Velickovic et al., 2019). The goal is to increase the similarity
between connected nodes and decrease it between unconnected nodes:

ℓ = floss (fsim (hi,hj) , fsim (hi,hk)) , vj ∈ N (l)
i , vk /∈ Ni (2)

where vj is a positive sample and vk is a negative one. fsim (·) measures the similarity between two
node embeddings, such as dot product or cosine similarity. floss (·) represents the contrastive loss,
which could be margin-based or cross-entropy based loss function.

4 METHODOLOGY

In this section, we describe the pipeline for our proposed PromptGFM framework. We highlight
the component-wise reproduction of the GNN framework in graph understanding module and our
language-based graph vocabulary in graph inference module, as illustrated in Figure 3 and Figure 4.
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Large Language Model

Neighbor Sampling

Aggregate-Update

1st round: Attention Is All You Need: The 

dominant sequence transduction models are based 

on complex recurrent or convolutional …

Optimization

2nd round: Transformer, a new architecture 

based on attention mechanisms, reducing the 

need for recurrence and convolutions. 

…

L-th round: Transformer encoder-decoder model 

use self-attention mechanism for translation task.

Given the central node < l-th round textual node representation >. The selected one-hop neighbors 

are [ < l-th round node #1>, < l-th round node #2 >, … ,< l-th round node #N > ]. Please aggregate 

neighbor nodes and update a concise yet meaningful representation for the central node. Note 

connected nodes should share similar semantics and vice versa.

…

𝑙 = 1 𝑙 = 2 𝑙 = 𝐿

Layer 1

Layer 2

Layer L

Figure 3: Graph understanding module. We prompt LLMs to achieve fine-grained reproduction of
traditional GNN workflow, refining verbose textual representations into concise yet meaningful ones.
In the prompt, neighbor sampling (see Equation 3) is highlighted in purple, the aggregation-update
mechanism (see Equation 4) in blue, and the optimization in red.

4.1 GRAPH UNDERSTANDING MODULE

The graph understanding module aims to generate expressive representations for each node within
the graph, supporting the subsequent graph inference module. The key to this task lies in effectively
capturing and aligning the semantic and structural information, where LLMs and GNNs offer distinct
advantages (Li et al., 2023b; Ren et al., 2024). However, the decoupled nature between GNNs and
LLMs leads to potential semantic discrepancy and information loss. In this module, we propose
a prompt-based GNN by functioning LLM as GNN, where core GNN operations are faithfully
replicated within natural language space using LLMs.

GNN Replication with LLMs. Our priority is to design appropriate prompts that reflect the GNN
workflow and guide LLMs to execute them. This requires considering three aspects: (1) Graph
Representation: How can we effectively convey the node features and local structure to LLMs? (2)
Graph Structure: How can we achieve message passing to capture the global structure? (3) Graph
Semantics: How can we refine the core semantics to produce concise yet meaningful representations?

As shown in Figure 3, we conduct a fine-grained replication of GNN within the language space, i.e.
prompt-based GNN. First, we use the LLM to summarize raw textual attributes as input to the GNN,
akin to node initialization with low-dimensional embeddings. Then, we follow the general workflow
of a GNN layer to inform prompt engineering. Due to the prompt length limitation, we sample its
one-hop neighbors and extract their corresponding textual summaries as follows:{

X
(l−1)
j , {vj} ⊂ Ni

}
← Promptsample

(
X(l−1),Ni

)
, (3)

where X(l−1) =
{
X

(l−1)
0 , X

(l−1)
1 , . . . , X

(l−1)
|V |−1

}
denotes the textual representations of all nodes at

the previous layer, and
{
X

(l−1)
j

}
corresponds to the selected neighbors from Ni. Promptsample (·)

refers to sampling a subset of one-hop neighbors and obtaining their textual representations, similar
to how traditional GNNs reduce computational overload. Prompts can be found in Appendix C.
Leveraging this context, we can directly use natural language prompts to guide the most essential
message aggregation-update process, which can be formulated as:

X
(l)
i ← Promptagg-update

({
X

(l−1)
j , {vj} ⊂ Ni

}
, X

(l−1)
i

)
. (4)

where Promptagg-update (·) is a prompt that aggregates the neighborhood information with previous

representations and updates the node vi to produce X(l)
i at the current layer. Unlike traditional opera-

tors like mean and weighted aggregators, this prompt-based method allows for more flexible message
passing without constraints. To handle diverse downstream tasks, we consider an unsupervised graph
learning setting that commonly leverages contrastive learning for optimization, encouraging semantic
similarity between neighboring nodes and dissimilarity between distant ones. We rely on prompts to
intuitively steer this process because negative sampling is redundant in the situation.
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After repeating L rounds for all nodes, we obtain the final textual representation Ti = X
(L)
i for each

node vi ∈ V . These textual representations are rich in both semantic and structural information,
effectively solving the outlined issues: (1) Graph Representations: Through multi-layer propagation,
one-hop neighbor descriptions are equivalent to an adjacency matrix, thereby representing the entire
graph structure. (2) Graph Structure: To capture high-order relationships, we repeatedly call the
LLM with the same prompts, with the output of each round serving as the input for the next. (3)
Graph Semantics: Simultaneously, we instruct the LLM to produce concise yet meaningful textual
representations for each node, gradually refining for denser and richer semantics.

Embedding-based GNNs vs. Prompt-based GNNs. We systematically compare existing embedding-
based GNNs with our proposed prompt-based GNN and highlight our advantages. Overall, we
empower LLM to faithfully mirror the whole GNN workflow within language space.

• Input and output. In the embedding-based GNN framework, for each node, structure-less
embeddings are progressively refined to structure-rich embeddings, whereas verbose textual sequences
are gradually converted to concise textual sequences in our prompt-based GNN.

•Message passing. The multi-layer embedding updates are mirrored by multi-round LLM calls in
the language space, both of which progressively refining the representations in different spaces.

• Neighbor sampling. The neighbor sampling operation used to reduce computational load in
traditional embedding-based GNNs is analogous to the selected one-hop neighbor descriptions
employed to address prompt length limitations in prompt-based GNNs.

• Aggregation-update mechanism. Embedding-based GNNs use predefined operators (e.g., mean
aggregator, weighted aggregator, or LSTM aggregator) to achieve message passing in the embedding
space, while prompt-based GNNs use straightforward prompts to guide LLMs in executing the
process more flexibly without predefined rules.

• Optimization. In prompt-based GNNs, we use heuristic prompts at each layer to reflect the key
idea of contrastive loss. These cumulative layer-by-layer prompts are comparable to the layer-wise
loss combination, formally as mean pooling, commonly seen in embedding-based GNNs.

Our graph understanding module relies solely on prompting LLMs, using text as both input and
output, without requiring fine-tuning of LLMs. In summary, our component-wise replication of GNNs
serves as an example of functioning LLMs as GNNs, effectively achieving seamless GNN-LLM
integration and elegant graph-text alignment.

4.2 GRAPH INFERENCE MODULE

The primary role of the graph inference module in our PromptGFM is to acquire transferable open-
world knowledge through instruction fine-tuning with LLMs, making it adaptable to different graphs
and tasks. Current methods treat nodes as OOV tokens and merge them with task-oriented templates
to form instructions. However, distinct vocabularies across modalities create incompatibility between
graph and language-based embeddings, leading to semantic discrepancies and limiting the transfer of
graph-specific knowledge. In response, we propose a novel language-based graph vocabulary that
resolves this incompatibility and enables readable and coherent instructions for LLM inference.

Graph Vocabulary Learning. Learning a transferable graph vocabulary, whose fundamental units
can represent each node, plays a central role in building GFMs. The effectiveness of a graph
vocabulary is determined by three essential criteria: expressiveness, transferability, and scalability.
Since each node has been associated with a textual representation that encapsulates its core semantics
and local structure, we intuitively propose establishing a graph vocabulary within the natural language
space using these rich representations. To this end, we introduce an expressive and universal language-
based graph vocabulary, where each node is represented by such a finite sequence of language tokens,
i.e. a language-based ID. Formally, our graph vocabulary can be defined as follows:

F : V → T, (5)

where T =
{
T0, T1, . . . , T|V |−1

}
denotes language-based IDs of all nodes in V . Each node vi is

mapped to a sequence Ti =
(
t1i , t

2
i , . . . , t

mi
i

)
, where tki ∈ X , and X is natural language token

dictionary. Evidently, language tokens serve as the fundamental units in our graph vocabulary, with
structured sequences representing nodes in the graph, akin to words in a conventional vocabulary.
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Large Language Model

Graph Vocabulary

graph  convolutional  …  connection

Language-based ID

Constrained Decoding with 

Prefix Tree Search

Given   the  central   node   <   Transformer  … translation  task  > .   Among  <  graph  convolutional   …  connection  >   and  … which   node  should   be   connected  ?

Language-based ID

Figure 4: An instance of graph inference module in link prediction, where language-based IDs are
indexed from the graph vocabulary to generate readable instructions using task-oriented templates.
We adopt multi-instruction fine-tuning framework to learn transferable global knowledge for a GFM.

Our graph vocabulary satisfies all expected criteria: (1) Expressiveness. The textual representations
in the vocabulary have captured rich semantic and structural information from an open-world setting.
(2) Transferability. Like natural language vocabulary, our graph vocabulary also shares natural
language tokens as fundamental units, enabling direct transfer across different graphs and tasks. (3)
Scalability. Any node, whether previously seen or not, can be comparable to existing nodes via its
language-based ID, effectively resolving the semantic discrepancy of OOV tokens.

Instruction Fine-Tuning. We employ a multi-instruction fine-tuning framework for LLM inference
to incorporate various graphs and tasks (Chung et al., 2024; Wei et al., 2022). As illustrated in the
Figure 4, we index nodes from the graph vocabulary and integrate their language-based nodes into
task-oriented prompt templates to form comprehensive instructions:

T ← Prompttemplate (T,G | F) , (6)

where Prompttemplate (·) concatenates language-based IDs T with appropriate templates to generate a
collection of completed instructions T . Notably, these instructions are fully readable and composed
entirely of natural language tokens. In light of LLMs’ strengths in understanding and generating text,
we effectively convert all question-answering tasks into a unified text-to-text format (Mishra et al.,
2022). Let Y denote target output sequences, the loss function for LLM fine-tuning is computed as:

L = −
|Y |∑
j=1

log Pr (Yj | T , Y<j) , (7)

where Pr (Yj | T , Y<j) is the probability of the j-th token Yj in the output sequence Y , conditioned
on the instruction T and all previous tokens Y<j = (Y1, Y2, . . . , Yj−1). This probability is computed
by the LLM in an autoregressive manner, following the standard next-token prediction approach used
in models like T5 (Raffel et al., 2020), FLAN (Wei et al., 2022), and LLaMA (Touvron et al., 2023).

Constrained Decoding with Prefix Tree Search. Generating candidate neighbors in link prediction
may cause LLM hallucination issues. In response, we introduce a constrained decoding method using
a prefix tree search strategy to regulate LLM outputs (Cao et al., 2021; Tan et al., 2024). Specifically,
we collect the language-based IDs of all candidate nodes and craft a prefix tree, where each tree
node equals to a natural language token. Each unique path from the root to a leaf corresponds to the
language-based ID of a node. During autoregressive generation, each new token is constrained by the
previous tokens to follow a valid path in the prefix tree. This ensures that the prediction is associated
with an actual graph nodes, effectively preventing hallucinations. This success is largely due to the
discrete language-based IDs, further demonstrating the flexibility of the proposed graph vocabulary.

Generalization of Graph Foundation Model. We employ prompt-based GNN to directly propagate
textual representations within a graph, capturing semantic and structural information. By decoupling
these nodes from their original graphs, we establish a universal graph vocabulary. To develop a
versatile GFM, we can extract nodes and generate instructions from different graphs. Thus, we can
co-train across graphs and tasks by fine-tuning a unified LLM. This approach enables the acquisition
of open-world global knowledge and inclusive accommodation of any unseen graphs or tasks.

5 EXPERIMENTS

In this section, we conduct extensive experiments to address the following questions: RQ1: How does
PromptGFM perform on supervised node classification and link prediction? RQ2: Can it generalize
to unseen graphs and tasks as a versatile GFM? RQ3: How does each module contribute to the overall
performance? RQ4: What affect the GNN replication, and what insights can be gained from it?
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Table 1: Comparison with four categories of baselines on node classification accuracy. Results of
GNN-LLM models are sourced from original papers or this study (Chen et al., 2024b) without
standard deviation. ‘N/A’ denotes unreported metrics. Macro-F1 scores are in Appendix E.

Model Cora Citeseer PubMed ogbn-arxiv
MF 60.07±2.69 62.33±2.08 59.82±1.42 68.47±0.92

MLP 62.29±4.69 64.42±2.43 62.88±1.88 62.07±0.35
GCN 82.47±3.89 76.11±3.34 77.36±1.07 66.15±0.46
GAT 82.92±2.58 77.30±2.57 74.36±3.48 65.29±0.64

SAGE 83.69±2.43 73.17±3.83 83.22±1.86 68.78±0.77
RevGNN 86.90±1.72 77.34±2.59 82.16±2.27 70.43±0.38
AGNN 77.64±2.55 73.14±1.93 73.55±0.62 60.63±0.42
DNA 80.81±3.38 73.64±2.98 80.68±1.33 58.51±0.67

SGFormer 82.36±2.88 73.76±3.03 78.92±1.63 63.44±0.95
NodeFormer 81.55±3.01 72.98±2.10 76.49±1.91 73.21±0.41

OFA 79.41 81.35 N/A 73.75
LLaGA 81.25 68.80 N/A 76.05

ENGINE 91.48 78.46 N/A 76.02
GraphPrompter 80.26 73.61 94.80 79.54

PromptGFM 91.72±1.06 84.49±1.37 90.67±1.16 80.58±0.54

Table 2: Comparison of discriminative link prediction performance across all datasets. Among the
GNN-LLM models, only GraphPrompter and PromptGFM are applicable.

Model Cora Citeseer PubMed ogbn-arxiv
MF 66.43±1.13 70.12±1.99 59.34±1.03 60.26±0.92

MLP 70.11±2.50 74.76±1.80 62.88±1.88 72.64±3.37
GCN 77.15±2.20 78.72±2.11 77.36±1.07 80.89±1.66
GAT 70.44±3.80 77.17±3.30 74.36±3.48 76.25±1.90

SAGE 85.31±3.34 87.15±1.83 83.22±1.86 80.76±2.77
RevGNN 70.13±1.72 78.26±3.08 82.16±2.27 69.67±0.80
AGNN 71.52±2.62 74.23±1.90 73.55±0.62 75.56±0.67
DNA 62.76±1.85 63.96±1.07 58.56±3.36 69.13±2.51

GraphPrompter 90.10 91.67 86.49 73.21
PromptGFM 90.57±1.26 92.03±2.74 87.64±1.98 89.82±2.54

Data description. We introduce four public benchmarking datasets: Cora (McCallum et al., 2000),
Citeseer (Giles et al., 1998), PubMed (Sen et al., 2008), and ogbn-arxiv (Hu et al., 2020), which are
academic networks from different domains. Details can be found in Appendix A.

Baselines. We make comprehensive comparisons with existing methods across four categories: (1)
Graph-agnostic methods. We consider basic models such as MF and MLP, which do not utilize
graph structure. (2) GNN-based methods. We employ three fundamental GNN models: GCN (Kipf
& Welling, 2017), GAT (Velickovic et al., 2017), and GraphSAGE (Hamilton et al., 2017). We
also compare three different architectures: ReVGNN (Li et al., 2021), AGNN (Thekumparampil
et al., 2018), and DNA (Fey, 2019). (3) Transformer-based methods. We explore SGFormer (Wu
et al., 2023) and NodeFormer (Wu et al., 2022), which leverage transformer architectures to model
graph data. (4) GNN-LLM Integration methods. Following the aforementioned taxonomy, we
select GraphPrompter (Liu et al., 2024b) as an instance of using GNNs to enhance LLMs. OFA
(Liu et al., 2024a) and ENGINE (Zhu et al., 2024) are examples of leveraging LLMs for GNNs.
Besides, we incorporate LLaGA (Chen et al., 2024a) as an attempt of implementing LLM as GNN.
We provide the details of these baselines in Appendix B.

Reproduction Settings. We implement our PromptGFM in PyTorch and run experiments on four
NVIDIA RTX A6000 GPUs. The graph understanding module leverages OpenAI’s GPT-3.5 while we
fine-tune a T5 model (Raffel et al., 2020) in the graph inference module. We employ 10-fold cross-
validation and report average results with standard deviation across all folds. For evaluation metrics,
we use accuracy and Macro-F1 for node classification, and accuracy and HR@1 for discriminative
and generative link prediction, respectively. We utilize the textual features to initialize the node
embeddings for all embedding-based models. We provide further details in Appendix D.

5.1 OVERALL PERFORMANCE

Node Classification and Link Prediction. We train PromptGFM on a single graph from scratch
and provide a comprehensive comparison in node classification and link prediction, shown in Tables
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Table 3: Intra-domain cross-graph transferabil-
ity on node classification. w/o training is direct
inference using off-the-shelf LLM. supervised
means training PromptGFM on a single graph
from scratch through supervised learning.

Setting Acc Macro-F1
w/o training 27.64 17.10

Cora→Citeseer 51.63 45.10
arxiv→Citeseer 60.34 54.81

Cora+arxiv→Citeseer 61.25 55.66
supervised 84.97 80.13

Table 4: Cross-task performance from link pre-
diction (LP) to node classification (NC).

Dataset Setting Acc Macro-F1

Cora
w/o training 18.54 12.16

LP→NC 60.74 55.42
supervised 91.72 90.06

Citeseer
w/o training 27.64 17.1

LP→NC 50.12 44.68
supervised 84.49 80.13

PubMed
w/o training 39.12 39.84

LP→NC 57.42 58.79
supervised 90.67 91.82

Table 5: Inter-domain cross-graph transferability
on node classification. We transfer knowledge
from computer science domain (Cora, Citeseer,
and arxiv) to biomedical domain (PubMed).

Setting Acc Macro-F1
w/o training 39.12 39.84

Cora→PubMed 51.76 52.64
Citeseer→PubMed 40.12 42.38

arxiv→PubMed 60.21 62.02
Cora+Citeseer→PubMed 50.17 51.74

Cora+arxiv→PubMed 57.28 59.71
Citeseer+arxiv→PubMed 55.34 57.11

Cora+Citeseer+arxiv→PubMed 53.07 54.90
supervised 90.67 91.82

Table 6: Comparison of HR@1 for generative
link prediction. Our PromptGFM is the only
applicable model within GNN-LLM research.

Model Cora Citeseer PubMed
GCN 5.95 6.82 0.51
GAT 2.22 3.59 0.28

SAGE 6.59 8.73 0.45
PromptGFM 8.21 8.90 1.21

1 and 2. PromptGFM demonstrates significant improvements over state-of-the-art models, with
the following key insights: (1) Graph-based models generally outperform graph-agnostic methods,
showing the value of graph structure. (2) In node classification, PromptGFM outperforms OFA,
GraphPrompter, and ENGINE, which represent the two main approaches (GNN for LLM and LLM for
GNN), which can be attributed to their decoupled integration. (3) PromptGFM outperforms LLaGA,
which employs templates to convey graph structure for LLM inference. It is evident these heuristic
prompts fail to capture sufficient high-order signals without a true GNN mechanism. Conversely,
PromptGFM showcases the potential of using LLMs as GNNs via a prompt-based GNN, suggesting
a new paradigm for LLM-GNN integration and the advancement of GFMs.

Generative Link Prediction. We conduct link prediction in a generative setting on Cora, Citeseer,
and PubMed. Specifically, we split the graph data by links and construct an input graph using
the training set. Given a specific node, we follow the transductive setting by predicting its unseen
connections in the test set, where any node in the input graph can be a candidate. As Table 6
shows, our method consistently outperforms these traditional GNN models. Unfortunately, existing
GNN-LLM works generally ignore this setting. This occurs because LLM outputs cannot map to the
OOV token embeddings of specific nodes, resulting in unsolvable LLM hallucination issues. Our
success lies in representing nodes as finite token sequences, enabling constrained decoding through
prefix tree search to guide LLM outputs. This further highlights indispensable value of our graph
vocabulary and generative capability of PromptGFM.

5.2 MODEL GENERALIZATION

Cross-graph Generalization. We evaluate zero-shot transferability across graphs, focusing on both
intra-domain and inter-domain scenarios. Cora, Citeseer, and arxiv belong to the computer science
domain as citation networks, and PubMed represents the biomedical domain. Table 3 shows the
intra-domain results for node classification. First, all transfer results consistently outperform the w/o
training variant by a large margin, highlighting the strong transferability of PromptGFM by effectively
learning from other graphs. Not surprisingly, zero-shot results are inferior to graph-specific supervised
learning from scratch. Fortunately, we observe improvements when co-training PromptGFM with
Cora and Citeseer. The finding implies the potential to collect a large amount of graph data and train
a highly comprehensive and knowlegable GFM in the future. Besides, Table 5 outlines cross-domain
transfer from computer science to the biomedical field. Similarly, even in cross-domain settings, all
zero-shot variants maintain superiority over the w/o training variant. Additionally, learning from
scratch still performs best. However, unlike inter-domain scenarios, incorporating more source
graph data does not always enhance performance in the target domain, possibly due to catastrophic
forgetting or incompatible hyperparameters (Chen et al., 2024b).
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Figure 5: Impact of varying prompt-based GNN layers on node classification performance.
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Figure 6: Ablation studies on node classification performance across three datasets.
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Cross-task Generalization. We also explore the transferability from link prediction to node classifi-
cation. Table 4 summarizes the cross-task performance. As expected, our zero-shot variant LP→NC
underperforms compared to supervised learning, but consistently exhibits significant improvement
over the w/o training variant across all three datasets, indicating the adaptability to unseen tasks
of PromptGFM. Overall, these experiments highlight that PromptGFM effectively transfers global
knowledge across graphs and tasks, qualifying it as a versatile and knowledgeable GFM.

5.3 ABLATION AND EXPLORATION STUDIES

Ablation Studies. To investigate the contributions of each module, we design the following variants:
(1) w/o understanding. This variant removes the prompt-based GNN and uses only the summarized
textual representations of nodes for LLM fine-tuning. (2) w/o inference. This variant retains the GNN
replication but performs LLM-based inference without additional fine-tuning. (3) w/o both. This
variant relies solely on the initial textual summaries and uses pre-trained LLMs for inference without
any GNN integration or fine-tuning. Figure 6 illustrates the node classification accuracy of these
variants in Cora, Citeseer, and PubMed, with our full model consistently outperforming in all settings.
First, the decrease in w/o understanding variant suggests that the absence of GNN replication results
in the loss of crucial semantic and structural information. Second, the w/o inference variant exhibits a
significant decline, highlighting the critical role of fine-tuning in integrating specific knowledge into
the pre-trained model. Lastly, the w/o both variant yields the worst results, underscoring the synergy
between the understanding and inference modules for overall performance.

Hyperparameter Sensitivity. We explore the impact of the number of layers in our prompt-based
GNN. As shown in Figure 5, we can observe that PromptGFM progressively improves as the layer
increases due to its ability to capture broader context and higher-order relationships over the graph.
However, after a certain point, further stacking layers results in diminishing returns or even perfor-
mance degradation due to over-smoothing, where node representations become indistinguishable
within their local structures. This trend is consistent with traditional GNNs. Optimal performance is
achieved with 3-layer GNN for Cora, while Citeseer reaches its best results with two layers. This
analysis suggests that textual representations can be propagated over the graph similarly to numerical
embeddings, effectively capturing semantic and structural information simultaneously.

Case Study. To provide further insights, we provide a case study showing the layer-by-layer
refinement of textual representations in Appendix F.1. Additionally, since the nodes represent
research papers, we compare their language-based IDs with key words from the papers, showing the
superiority of PromptGFM in capturing essential meanings. Details can be found in Appendix F.2 .

6 CONCLUSION

We present PromptGFM, a graph foundation model grounded in graph vocabulary learning. By
replicating the GNN workflow within the language space, we decouple the refined textual repre-
sentations of nodes and establish an expressive and universal graph vocabulary. This vocabulary
endows compatibility and scalability with natural language, enabling seamless transferability across
graphs and tasks. Experiments demonstrate superior overall performance and strong cross-graph and
cross-task generalization. Our research reveals the potential to function LLM as GNN and opens new
avenues to build GFMs within the language space.
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SUMMARY OF THE APPENDIX

This appendix contains additional details for the ICLR 2025 submission, titled “LLM as GNN:
Graph Vocabulary Learning for Graph Foundation Model”. The appendix is organized as follows:

• §A provides Data Descriptions used in our experiments.
• §B illustrates more details about Baselines employed for comparison.
• §C analyzes Prompt Design in our PromptGFM framework.
• §D shows more Implementation Details.
• §E reports the Extended Experiments on node classification.
• §F presents the Case Study to offer deeper insights of our research.
• §G gives Announcement for LLM Selection in our experiments for reference.

A DATA DESCRIPTIONS

Table 7: Statistics of four public benchmarking datasets for our research.

Dataset #Nodes #Edges #Labels Domain
Cora 2,708 5,429 7 Computer Science

Citeseer 3327 4732 6 Computer Science
Pubmed 19,717 44,338 3 Biomedical

ogbn-arxiv 169,343 1,166,243 40 Computer Science

We utilize four public benchmarking datasets to evaluate our framework, including Cora, Citeseer,
PubMed, and obgn-arxiv. The statistics of these datasets is illustrated in Table 7. We provide detail
information as follows.

• Cora (McCallum et al., 2000). The dataset include a citation network consisting of 2,708 scientific
publications in the field of machine learning, categorized into 7 classes based on their research topics.
Nodes represent individual papers, and edges denote citation links between them, totaling 5,429
connections. Each paper is described the paper contents (titles and abstracts).

• Citeseer (Giles et al., 1998). This work introduces a citation network dataset comprising 3,327
scientific publications, categorized into 6 classes, including Agents, Artificial Intelligence, Database,
Information Retrieval, Machine Learning, and Human-Computer Interaction. Nodes correspond to
documents, and edges represent citation relationships between them, amounting to 4,732 links.

• PubMed (Sen et al., 2008). PubMed is a citation network of 19,717 scientific publications from
the PubMed database pertaining to diabetes, classified into 3 classes: experimental induced diabetes,
type 1 diabetes, and type 2 diabetes. Nodes are research papers, and edges signify citation links,
amounting to 44,338 connections. This dataset is used for large-scale graph representation learning
and evaluating algorithms in the biomedical domain.

• obgn-arxiv (Hu et al., 2020). The ogbn-arxiv dataset is part of the Open Graph Benchmark and
consists of a directed citation graph of 169,343 arXiv papers, categorized into 40 subject areas.
Nodes represent individual papers, and edges indicate citation relationships, totaling over 1.1 million
connections. Each paper includes textual data from its title and abstract.
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B BASELINES

We provide detailed information on the baseline models, categorized into: (1) Graph-agnostic
methods, (2) GNN-based methods, (3) Transformer-based methods, and (4) GNN-LLM integration
methods.

B.1 GRAPH-AGNOSTIC METHODS.

•MF. This baseline is a matrix factorization approach with Bayesian personalized ranking as the
objective function. It learn dense embeddings to reconstruct the adjacent matrix. For both node
classification and link prediction, We adapt it to predict the labels of nodes or edges, respectively.

•MLP. This method adopts a multi-layer perceptron to learn low-dimensional embeddings for each
node. In our work, we randomly initialize node embeddings without textual attributes for both
graph-agnostic methos.

B.2 GNN-BASED METHODS.

•GCN (Kipf & Welling, 2017). This model introduces a neural network architecture that generalizes
convolution operations to graph-structured data, enabling effective semi-supervised learning by
aggregating feature information from a node’s local neighborhood.

• GAT (Velickovic et al., 2017). This method incorporates attention mechanisms into graph neural
networks, allowing nodes to assign different importance weights to their neighbors during feature
aggregation, which enhances performance by focusing on the most relevant connections.

• SAGE (Hamilton et al., 2017). GraphSAGE is an inductive representation learning framework on
large graphs; it generates node embeddings by sampling and aggregating features from a node’s local
neighborhood, facilitating generalization to unseen nodes or graphs.

• ReVGNN (Li et al., 2021). This method includes a recurrent graph neural network tailored for
dynamic graphs, capturing temporal dependencies by updating node representations as events occur
over time, which is crucial for modeling evolving graph structures.

• AGNN (Thekumparampil et al., 2018). AGNN leverages attention mechanisms to compute
attention coefficients based on node features, enabling the network to dynamically weigh the influence
of neighboring nodes without introducing additional parameters.

• DNA (Fey, 2019). This work presents a flexible neighborhood aggregation method that dynam-
ically selects and combines information from variable-sized node neighborhoods, enhancing the
expressive power and adaptability of graph neural networks.

B.3 TRANSFORMER-BASED METHODS.

• SGFormer (Wu et al., 2023). This work introduces a transformer-based architecture designed for
graph data, integrating spectral graph theory into the transformer framework. It aims to capture both
local and global graph structures efficiently by incorporating spectral filters, enhancing the model’s
ability to learn complex graph representations.

• NodeFormer (Wu et al., 2022). This framework presents a scalable graph transformer model
that utilizes a randomized attention mechanism to approximate full attention on graphs. By reducing
computational complexity, it enables efficient learning on large-scale graphs while preserving the
expressiveness of transformer architectures.

B.4 GNN-LLM INTEGRATION METHODS.

• LLaGA (Chen et al., 2024a). This model effectively integrates LLM capabilities to handle the
complexities of graph-structured data. It transforms graph nodes into structure-aware sequences and
maps them into token embedding space using a specialized projector. LLaGA excels in generalization
and interpretability, performing strongly across various datasets and tasks. It also supports zero-shot
learning, making it highly adaptable for unseen datasets.
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•OFA (Liu et al., 2024a). This paper proposes a framework that handles various graph classification
tasks across different domains using a single model. It introduces the nodes-of-interest (NOI)
subgraph mechanism to standardize different tasks with a single task representation. Additionally,
a novel graph prompting paradigm to leverage in-context learning and apply the same architecture
across diverse graph classification tasks, achieving generalization across multiple domains.

• GraphPrompter (Liu et al., 2024b). This work introduces a novel framework designed to align
graph with LLMs via soft prompts. Specifically, it adopts GNNs to capture graph structure and
leverages an LLM to interpret the textual information at the node level. By prompt tuning, this
approach demonstrates the potential of LLMs to effectively interpret graph structures, combining
both semantic and structural insights for improved graph learning tasks.

• ENGINE (Zhu et al., 2024). This paper proposes a parameter- and memory-efficient fine-tuning
method for textual graphs by using LLMs as encoders. It combines the LLMs and GNNs through a
tunable GNN-based side structure, called G-Ladder, alongside each LLM layer, effectively reducing
training costs without compromising performance.
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C PROMPT DESIGN

In this section, we provide the templates of prompts in our PromptGFM framework.

Prompt for node summarization.

The title of the paper is <the title of the paper>, the
abstract of the paper is <the abstract of the paper>. Please
summarize the paper.

Prompt for each GNN layer replication.

Given the central node <l-th round textual representation
of the central node>. The selected one-hop neighbors are
[< l-th round of node #1>, <l-th round node #2>, ... ,<l-th
round node #N>]. Please aggregate neighbor nodes and update
a concise yet meaningful representation for the central node.
Note connected nodes should share similar semantics and vice
versa.

Prompt for node classification.

<the language-based ID of the central node> has 1-hop
connections with [..., <language-based IDs of its 1-hop
neighbors>, ...], and it also has 2-hop connections with
[..., <language-based IDs of its 2-hop neighbors>, ...].
Which category should <the language-based ID of the central
node> be classified as ?

Prompt for discriminative link prediction.

<the language-based ID of the central node> has 1-hop
connections with [..., <language-based IDs of its 1-hop
neighbors>, ...], and it also has 2-hop connections with
[..., <language-based IDs of its 2-hop neighbors>, ...].
Among <the language-based ID of the central node> and <the
language-based ID of its negative sampling node>, which node
will be connected to <the language-based ID of the central
node>?

Prompt for generative link prediction.

<the language-based ID of the central node> has 1-hop
connections with [..., <language-based IDs of its 1-hop
neighbors>, ...], and it also has 2-hop connections with
[..., <language-based IDs of its 2-hop neighbors>, ...].
Which node should be connected to <the language-based ID of
the central node>?
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D IMPLEMENTATION DETAILS

We provide further information for reproduction. In the graph understanding module, we selected
the number of layers for the prompt-based GNN from {1, 2, 3, 4}. We randomly sampled 30% of
the first-order neighbors during neighborhood sampling, capping the maximum number of sampled
nodes at 12 to reduce computational cost and prevent overfitting. In the graph inference module,
we fine-tuned the LLM with a learning rate of 3e-4 and a batch size of 4. To mitigate potential
biases introduced by task-specific prompts, we designed a prompt pool for each task requirement and
randomly selected prompts during instruction construction to enhance robustness. We employed a
standard early-stopping strategy during training: if the performance metric on the validation set did
not improve over a fixed number of consecutive epochs (determined based on the dataset), we halted
training to prevent overfitting. For other hyperparameters of the compared methods, we referred to
the original papers and carefully tuned them to suit each dataset.

E EXTENDED EXPERIMENTS

Due to space constraints in the main text, we provide the comparison of node classification Macro-F1
scores across four categories of baselines in Table 8. Unfortunately, OFA, LLaGA, ENGINE, and
GraphPrompter did not report F1-scores in their respective papers.

Table 8: Comparison with four categories of baselines on node classification Macro-F1 scores. The
metrics for GNN-LLM models are unavailable in their respective papers.

Model Cora Citeseer PubMed ogbn-arxiv

MF 58.26±2.81 55.17±1.97 73.15±0.79 39.81±0.58
MLP 59.44±2.96 57.85±2.26 75.23±0.91 41.79±0.32

GCN 79.20±5.80 70.30±2.68 79.95±1.86 39.94±1.24
GAT 80.12±3.60 67.00±1.71 79.40±2.04 35.35±0.68

SAGE 81.96±3.45 66.73±4.03 81.58±1.08 46.81±2.13
RevGNN 85.24±2.85 71.12±2.00 83.94±1.29 46.18±0.74
AGNN 75.71±2.70 64.03±2.36 75.69±1.77 29.48±3.35
DNA 76.63±5.77 63.22±2.27 80.86±1.23 20.94±0.64

SGFormer 79.28±4.85 63.42±2.37 79.31±1.72 44.89±3.79
NodeFormer 77.98±2.91 62.58±2.19 77.35±1.35 43.87±1.05

PromptGFM 91.72±1.06 84.49±1.37 90.67±1.16 80.58±0.54

F CASE STUDY

F.1 TEXTUAL REPRESENTATIONS IN PROMPT-BASED GNNS

In this part, we select two representative cases in citation networks and demonstrate their layer-by-
layer refinement of our prompt-based GNN. Specifically, we provide the textual representations at each
layer, including Round 0 as initial features. More importantly, we also collect its one-hop nodes and
annotate the source and relevant information below (highlighted in blue). From our empirical studies,
we have the following observations. Overall, it is evident that the verbose textual representations
are progressively refined to concise textual presentations. Meanwhile, the core semantics become
increasingly clear throughout the process, until a short sequence composed of several natural language
tokens at the last round. Furthermore, we notice that we effectively incorporate the key ideas of some
neighboring nodes, as reflected in the refined textual representations after each aggregation-update
operation. More specifically, the neighboring information is naturally fused to the central node within
the language space, boosting their connections and improving the expressiveness of the central node.
This study further illustrates the explicit message passing through our proposed prompt-based GNN
in the language space, which captures the graph semantics and structures simultaneously.
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Case A.

Raw text attributes: Paper Title: Evaluating Neural Network
Predictors by Bootstrapping. Abstract: We present a new method,
inspired by the bootstrap, whose goal it is to determine the
quality and reliability of a neural network predictor. Our method
leads to more robust forecasting along with a large amount of
statistical information on forecast performance that we exploit.We
exhibit the method in the context of multi-variate time series
prediction on financial data from the New York Stock Exchange. It
turns out that the variation due to different resamplings (i.e.,
splits between training, cross-validation, and test sets) is
significantly larger than the variation due to different network
conditions (such as architecture and initial weights). Furthermore,
this method allows us to forecast a probability distribution,
as opposed to the traditional case of just a single value at
each time step. We demonstrate this on a strictly held-out test
set that includes the 1987 stock market crash. We also compare
the performance of the class of neural networks to identically
bootstrapped linear models.

Round 0: This method evaluates neural network predictors using a
bootstrap-inspired approach, improving robustness in NYSE financial
data forecasting. It predicts probability distributions rather
than single values, surpassing resampling variations. Compared to
bootstrapped linear models, it enhances accuracy, as demonstrated
during the 1987 stock market crash.

Round 1: This bootstrap method improves neural network evaluations
in NYSE forecasting, comparable to traditional error estimation
methods. It clears and simplifies data structures, enhancing
accuracy and predicting probability distribution.
/* "comparable to traditional error estimation methods" comes from
paper: A comparison of some error estimates for neural network
models; "It clears and simplifies data structures" comes from paper:
The Observer-Observation Dilemma in Neuro-Forecasting: Reliable
Models From Unreliable Data Through CLEARNING.. */

Round 2: This bootstrap-inspired method refines neural network
evaluations for NYSE forecasting, highlighting local error bars
from nonlinear regression analysis, improving accuracy with data
simplification techniques.
/* "local error bars from nonlinear regression analysis" comes from
paper: Learning Local Error Bars for Nonlinear Regression*/

Round 3: Bootstrap method refines neural forecasts, integrates
error bars, enhances accuracy.
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Case B.

Raw text attributes: Paper Title: Insulin dependent diabetes in
Asians. Abstract: Type 1 diabetes is said to be extremely rare
in children in India, where diabetes treated with insulin may be
due to chronic pancreatic disease or malnutrition. To see whether
typical type 1 diabetes occurred in Asian children in the United
Kingdom, all known Asian children with diabetes in industrial
West Yorkshire were ascertained. A total of 17 such children
were studied; of these, seven were from three multiplex families
and two fathers from these families had diabetes. All children
were ketosis prone and developed diabetes while resident in the
UK. There were significant increases in HLA-B8 and HLA-DR3 and
increases in HLA-DR4 and HLA-DR3/DR4, while HLA-B15 was absent.
Islet cell antibodies, either IgG or complement fixing, were
present in four of 18 subjects tested, all of whom had disease
of short duration. The prevalence of type 1 diabetes in Asian
children aged 15 years or less in West Yorkshire was 36/100,000,
assuming complete ascertainment. It is concluded that typical type
1 diabetes may occur in Asian children and this condition may be
more common in families who have migrated to the UK.

Round 0: The study examined type 1 diabetes prevalence in 17
Asian children in West Yorkshire, UK, focusing on family history.
Seven were from multiplex families, and all were ketosis-prone.
Significant increases in HLA-B8, HLA-DR3, and HLA-DR4 were found,
with no HLA-B15. Islet cell antibodies were present in four of 18
subjects. The diabetes prevalence was 36/100,000, suggesting it
may be more common in migrant families.

Round 1: The study examined type 1 diabetes in Asian children in
West Yorkshire, UK. Environmental factors and migration may raise
incidence, unlike the low incidence of insulin-dependent diabetes
in Karachi. Increases in HLA-B8, HLA-DR3, and HLA-DR4 were found.
/*"Environmental factors and migration may raise incidence" comes
from paper: Evidence for an environmental effect in the aetiology
of insulin dependent diabetes in a transmigratory population; "low
incidence of insulin-dependent diabetes in Karachi" comes from
paper: Incidence of insulin dependent diabetes mellitus in Karachi,
Pakistan*/

Round 2: The study examined type 1 diabetes in Asian children in
West Yorkshire, UK. Migration may raise incidence, unlike the low
incidence in Karachi. Increases in HLA markers were found, similar
to North and South Indian diabetics.
/*"Migration may raise incidence" comes from the paper: HLA-DR
antigen frequencies in a North Indian type I diabetic population;
"North and South Indian diabetics" comes from papers: HLA-DR
antigen frequencies in a North Indian type I diabetic population
and HLA, complement C2, C4, properdin factor B and glyoxalase types
in South Indian diabetics. */

Round 3: Type 1, diabetes. Migration and HLA markers linked to
increased diabetes incidence.
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F.2 LANGUAGE-BASED IDS VS. KEY WORDS

To provide further insights, we leverage external information to validate the superiority of PromptGFM
in capturing the core semantics of nodes. Since all datasets in this work represent research publication
network, we extract key words from the papers and compare them with their language-based IDs
in our universal graph vocabulary. Table 9 summarizes the key words and language-based IDs of
selected papers, along with their titles and URLs for reference. Overall, it is evident that there are
strong semantic relevance between the language-based IDs and keywords. For example, regarding
the paper titled Distributed Protocols at the Rescue for Trustworthy Online Voting, the key words
have appeared within its language-based ID, suggesting that PromptGFM has effectively captured its
core semantics through our prompt-based GNN. In addition, in Committees providing EJR can be
computed efficiently, where the title is less indicative of the content, the language-based ID still aligns
perfectly with the corresponding key words, such as efficient computation and rules. This finding
demonstrates that PromptGFM not only effectively captures the core idea without relying on the
title, but also filters relevant semantics from neighboring nodes to enhance its own representations.
Overall, our language-based IDs accurately capture and extend the semantics of the nodes, making
them well-suited to form a universal graph vocabulary.

G ANNOUNCEMENT FOR LLM SELECTION

Furthermore, we acknowledge the rapid advancements in LLMs. In the graph understanding module,
employing more powerful models like GPT-4o and GPT-o1 could enhance the reproduction of the
GNN flow and generate higher-quality textual representations. Similarly, in the graph inference
module, fine-tuning larger open-source LLMs, such as LLaMA, may lead to improved results due
to their increased capacity to model complex patterns. While integrating these advanced models
holds promise for better performance, it also introduces additional computational requirements and
challenges in fine-tuning. We leave the exploration of these possibilities as future work. Conversely,
achieving state-of-the-art performance using previous models further highlights the robust design of
our graph foundation model.
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Table 9: The comparison between the language-based IDs from the graph vocabulary and the key
words in their original paper. The observed similarity demonstrates that our prompt-based GNN
effectively captures the essential meanings of these nodes.

Paper Language-based ID Key Words URL

Modular Verification of Interrupt-Driven
Software

Modular verification of
interrupt-driven software
using abstract interpretation

Software, Abstract Interpretation,
Feasibility Verification arXiv:1709.10078

Parsimonious Data: How a single
Facebook like predicts voting behaviour in
multiparty systems

Predicting voting behavior
using Facebook likes in
multiparty systems

Facebook Likes, Voter Intention,
Machine Learning, Multiparty
System

arXiv:1704.01143

A Fast Noniterative Algorithm for
Compressive Sensing Using Binary
Measurement Matrices

Fast noniterative algorithm
for compressive sensing
with binary matrices

Compressive Sensing,
Deterministic Methods arXiv:1708.03608

Optimization of Battery Energy Storage to
Improve Power System Oscillation
Damping

Battery storage optimization
improves power system
oscillation damping

Battery Energy Storage System,
Oscillation Damping arXiv:1811.10213

Neural Variational Hybrid Collaborative
Filtering

Neural Variational Hybrid
Collaborative Filtering
improves recommendation
performance

Collaborative Filtering, VAE,
Recommendation System arXiv:1810.05376v6

Interpretable Neural Networks for
Predicting Mortality Risk using
Multi-modal Electronic Health Records

Predicting mortality risk
using interpretable
multi-modal neural network

Mortality Risk Prediction, Clinical
Data arXiv:1901.08125

A New Approach to Distributed
Hypothesis Testing and Non-Bayesian
Learning: Improved Learning Rate and
Byzantine-Resilience

Distributed hypothesis
testing with Byzantine
resilience using Bayesian
update

Bayesian Learning, Byzantine
Resilience arXiv:1907.03588

Accurate and Efficient Hyperbolic Tangent
Activation Function on FPGA using the
DCT Interpolation Filter

Efficient hyperbolic tangent
activation function using
DCTIF

Hyperbolic Tangent, Activation
Function arXiv:1609.07750

Distributed Protocols at the Rescue for
Trustworthy Online Voting

Trustworthy online voting
with distributed blockchain
protocols

Distributed Voting, Distributed
Protocols arXiv:1705.04480

Committees providing EJR can be
computed efficiently

Efficient computation of
approval-based multi-winner
voting rules

Approval-Based Voting,
Multi-Winner Elections arXiv:1704.00356

Creatism: A deep-learning photographer
capable of creating professional work

Creatism: deep learning
system for artistic
photography creation

Creatism, Evaluation of
Photographic Quality, Deep
Learning

arXiv:1707.03491

Relation of familial patterns of coronary
heart disease, stroke, and diabetes to
subclinical atherosclerosis: the
multi-ethnic study of atherosclerosis

Family history beyond
early-onset heart disease
impacts atherosclerosis

Family History, Coronary Heart
Disease, Stroke

doi.org/10.1097/GIM.0b0
13e31818e639b

Glycemic index, glycemic load, and risk of
type 2 diabetes

Benefits of low-GI diet in
type 2 diabetes Diabetes, Prevention doi.org/10.1093/ajcn/76/1.

274S

Decreased insulin responsiveness of
glucose uptake in cultured human skeletal
muscle cells from insulin-resistant
nondiabetic relatives of type 2 diabetic
families

Inherited defects contribute
to insulin resistance in
diabetes

Insulin Resistance, Inherited
Factors

doi.org/10.2337/diabetes.
49.7.1169

Quantitative histopathological studies of
the extramural coronary arteries from Type
2 (non-insulin-dependent) diabetic patients

Histopathological study of
coronary arteries in diabetic
patients

Histopathology, Diabetes Mellitus doi.org/10.1007/BF0027
4798

Metabolic control and diet in Finnish
diabetic adolescents

Factors influencing
metabolic control in diabetic
adolescents

Diabetes Mellitus, Adolescent doi.org/10.1111/j.1651-
2227.1992.tb12212.x
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