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Abstract

In health, most large language model (LLM) research has focused on clinical tasks. However,
mobile and wearable devices, which are rarely integrated into such tasks, provide rich, longitudi-
nal data for personal health monitoring. Here we present Personal Health Large Language Model
(PH-LLM), fine-tuned from Gemini for understanding and reasoning over numerical time-series
personal health data. We created and curated three datasets that test 1) production of personalized
insights and recommendations from sleep patterns, physical activity, and physiological responses,
2) expert domain knowledge, and 3) prediction of self-reported sleep outcomes. For the first task
we designed 857 case studies in collaboration with domain experts to assess real-world scenarios
in sleep and fitness. Through comprehensive evaluation of domain-specific rubrics, we observed
that Gemini Ultra 1.0 and PH-LLM are not statistically different from expert performance in
fitness and, while experts remain superior for sleep, fine-tuning PH-LLM provided significant im-
provements in using relevant domain knowledge and personalizing information for sleep insights.
We evaluated PH-LLM domain knowledge using multiple choice sleep medicine and fitness
examinations. PH-LLM achieved 79% on sleep and 88% on fitness, exceeding average scores
from a sample of human experts. Finally, we trained PH-LLM to predict self-reported sleep
quality outcomes from textual and multimodal encoding representations of wearable data, and
demonstrate that multimodal encoding is required to match performance of specialized discrimi-
native models. Though further development and evaluation are necessary in this safety-critical
domain, these results demonstrate the broad knowledge and capabilities of Gemini models and
the benefit of contextualizing physiological data for personal health applications.

1 Introduction

Large language models (LLMs) are versatile tools for generating language and have shown strong
performance across a range of diverse domains. LLMs achieved passing grades on the US legal bar
exam [30] and second year medical school exams [45, 50, 55]. In medicine in particular, natural
language as an interface has shown potential to influence clinical practice [37], education, and
research [39]. When enriched with healthcare data, LLMs attain impressive performance in medical
question-answering [50, 55], analysis of electronic health records [63], differential diagnosis from
medical images [58], assessment of psychiatric functioning based on standardized assessments [20],
and psychological intervention delivery [34, 52, 53]. Strong performance on these tasks shows that
LLMs are able to effectively capture signal from “clinical data” collected within a clinical setting.
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Figure 1: PH-LLM: A Personal Health Large Language Model. (A) We present PH-LLM, a
version of Gemini fine-tuned for personal health and wellness. We evaluated PH-LLM on three
aspects of personal health: generating personalized insights and recommendations for user goals in the
domains of sleep and fitness, assessing levels of expert knowledge from certification examination style
multiple choice questions, and predicting patient-reported outcomes in sleep quality from detailed
sensor information. (B) Performance of PH-LLM contextualized with expert human responses. Error
bars represent 95% confidence intervals. “∗” indicates a statistically significant difference between
two response types. “Naive Performance” is that achieved by a random classifier. Human expert
performance is not available for patient-reported outcome prediction from sensor features as this is
not commonly performed, and no fitness-related outcomes were measured in the study [36].

Due to their sporadic nature, conventional clinical visits often fail to capture key aspects of human
health and well-being that are measurable with wearable devices including sleep, physical activity,
stress, and cardiometabolic health measured through physiological response and behavior. These
continuous, longitudinal measures have significant advantages for health monitoring in that they
are passively and continuously acquired, and provide direct physiological and behavioral signals.
However, they have neither been deeply integrated into clinical practice nor incorporated into standard
datasets used for medical question-answering [23, 29], despite statistics on adverse health outcomes,
morbidity, and Disability-Adjusted Life Years that underscore the profound impact these factors have
on overall health [3, 11, 18, 46, 60]. This limited adoption is likely because these data are typically
captured without context, are computationally demanding to store and analyze, and can be difficult to
interpret. As a result, general foundation LLMs or even medically-tuned LLMs may lack the ability
to use these data to reason about and recommend interventions based on individual health behaviors.

Mobile devices, including smart wearables and smartphones, have become instrumental tools for
monitoring personal health metrics and gathering longitudinal data that cannot be obtained in
traditional clinical settings [56]. Unlike structured clinical data, personal health data is heterogeneous
across data types, sources, and timescales [36], ranging from continuous streams of biometric data
from wearables, such as sleep patterns or heart rate, to sporadic and qualitative inputs like exercise
logs, dietary logs, mood journals, and even social media activity.

In this paper, we introduce Personal Health Large Language Model (PH-LLM), a version of Gemini
fine-tuned to generate both insights about and recommendations to improve personal health behaviors
related to sleep and fitness patterns. We evaluate the performance of PH-LLM across three tasks:
coaching recommendations, multiple choice exams assessing expert knowledge, and prediction of
subjective patient-reported outcomes (PROs). The coaching recommendations tasks are tailored to two
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verticals of high personal health interest: sleep and fitness. The sleep tasks leverage individual’s sleep
metrics to derive insights, possible etiological factors, and provide personalized recommendations to
improve sleep quality. The fitness tasks integrate information from training load, sleep, health metrics,
and subjective feedback to provide personalized recommendations for the intensity of a physical
activity that day. For the coaching recommendations tasks, we create the first personal health case
study dataset to benchmark LLM performance on reasoning and understanding of personal health
behaviors. This dataset consists of long-form questions grounded in summarized personal health
behavior data, vertical-specific evaluation rubrics, and expert human responses for 857 case studies
across sleep and fitness. Through rigorous human and automatic evaluation, we demonstrate that
Gemini Ultra 1.0 approaches expert performance in fitness while fine-tuning PH-LLM enables it
reduce the gap with experts in sleep coaching experiences, explore the breadth of personal health
knowledge encoded within Gemini models, and apply multimodal capabilities to prediction of PROs
in sleep (Figure 1). Our key contributions are summarized as follows:

• PH-LLM: We introduce a new model fine-tuned from Gemini for applications in personal health,
capable of performing interpretation of time-series sensor data from wearables (i.e., Fitbit and
Pixel Watch) for analysis and recommendations in sleep and fitness.
• Long-form case studies from domain experts: We create the first dataset of detailed personal

health case studies in sleep and fitness curated by multiple experts in the associated domains.
The dataset contains individual wearable sensor data and corresponding long-form insights and
recommendations. We present rubrics for evaluation of long-form responses that span domain
knowledge, use of user data, personalization, and potential for harm, and provide insights on
training experts for accurate evaluation.
• Benchmark and contextualize personal health question-answering: We curate a set of vali-

dated domain-specific multiple choice examination questions on sleep and fitness, establish strong
benchmarks based on continuing medical education requirements, and provide context for the
scores through a set of human experts who completed a representative set of exam questions.
• Multimodal sensor interpretation of self-reported outcomes: We successfully integrate lon-

gitudinal time-series sensor features to interpret a user’s subjective experience. To do so, we
evaluate the capabilities of PH-LLM in predicting sleep disturbance and impairment PROs (ac-
quired through validated survey instruments) from passive sensor readouts and show that accurate
model performance requires native multimodal data integration.

2 Personal Health Dataset Creation and Methods

Owing to the absence of clearly defined language and multimodal datasets in the domain of personal
health, we created datasets and associated tasks to evaluate different capabilities of PH-LLM. These
datasets include case studies about real-world coaching recommendations, professional examinations
that test domain knowledge about sleep medicine and fitness, and patient-reported sleep outcomes.

2.1 Coaching recommendations

Many real-world applications of LLMs for personal health require realistic long-form text generation,
which is challenging to evaluate automatically. As previously observed in the medical domain, strong
performance on question-answering tasks does not necessarily transfer to the complexity of real-world
tasks [17]. To address the absence of rich long-form tasks for personal health data, in conjunction
with domain experts and overseen by clinical leads we created detailed case studies that span two
key personal health domains: sleep and fitness. Each case study was designed to interpret a range of
physiological sensor information toward deriving insights, potential causes, or recommendations for
future behaviors, and was sampled from high-volume anonymized production data from individuals
who provided consent for research purposes.

The sleep case studies aimed to enhance understanding of sleep patterns, identify causes of irregular
sleep, and offer actionable recommendations based on these findings. Each case study incorporated
wearable sensor data for up to 29 days, demographic information, and an expert analysis (Figure 2A-
C). This comprehensive approach both facilitates a deeper understanding of health-related behaviors
and also guides the development of personalized interventions to improve individual outcomes.

The fitness case studies were designed to provide a comprehensive analysis of an individual’s training
load, sleep patterns, and health metrics, and were similarly based on wearable sensor data over 30
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days, demographic information, and expert analysis (Figure 2D-G). The goal of the fitness-related
task was to synthesize the suite of metrics into a data-driven assessment of the extent to which the
individual is prepared for physical activity today and provide associated recommendations.

Sleep Case Study Creation. In the development of sleep case studies, we recruited six domain
experts in sleep medicine to craft guidance in the second person narrative, fostering a direct and
personalized dialogue with the user. The six sleep experts all possessed advanced degrees (M.D.,
D.O., or Psy.D.) in sleep medicine and professional sleep medicine work experience ranging from 4
to 46 years. All experts were trained to read and interpret wearable data and map outputs to their
corresponding sleep medicine literature counterparts. Experts were instructed to use best practices in
goal-setting, emphasizing the creation of recommendations that are Specific, Measurable, Achievable,
Relevant, and Time-bound (SMART) [15]. The data was sampled to achieve a representative group
across age and gender (see Appendix D.1.1 for details, Figure D.2).

As illustrated in Figure 2A-C, demographics information (age and gender), daily sleep metrics
(e.g., bedtimes, wake times, and sleep stage durations), and aggregated sleep statistics (e.g., average
bedtime) were selected collaboratively with the experts (Appendix D.1.1). These data were presented
to the experts in both graphical and tabular formats for ease of analysis (Figure 2A-C, Table D.4).
Finally, the experts were tasked with composing responses across three sections (insights, etiology,

     Context

Key Insights:
Sleep Quality:
* Overall good sleep efficiency of 86%, above the recommended range of 80-85%.
* Adequate deep sleep (1 hour 1 minute), which is essential for physical recovery.
* Relatively low REM sleep (59 minutes), which may indicate reduced dream recall or 
emotional processing during sleep.

Sleep Schedule:
* Consistent sleep schedule, with average bedtime around midnight (00:07) and wake 
time around 8:11 AM.
* Early mid sleep point (04:09), suggesting an early sleep-wake cycle.

Sleep Duration:
* Average sleep duration of 6 hours 54 minutes, which is slightly below the 
recommended range of 7-9 hours for older adults.

Waking Alertness:
* No naps reported, indicating good daytime alertness.

Recommendations:
* Consider extending sleep duration to meet the recommended range for older 
screadults. This can be achieved by adjusting the bedtime or wake time slightly.
* Monitor REM sleep and consult with a healthcare professional if there are concerns 
about low levels.
* Maintain the consistent sleep schedule to support circadian rhythm regulation.
* Continue to prioritize good sleep hygiene practices, such as avoiding caffeine and 
alcohol before bed and creating a relaxing bedtime routine.
* If daytime sleepiness or fatigue becomes an issue, consider exploring the possibility 
of underlying sleep disorders with a healthcare professional.

     User Profile Age: 75 years
Gender: Female

     Goal I’d like to improve my sleep.
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Avg. Sleep Duration

Time to Sleep
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(A) Bedtimes and wake times

Example Sleep Case Study with Expert Response
50-55 year-old male
Goal: I’d like to improve my sleep.

Insights:
● The midsleep point standard deviation is 1 hour 22 minutes, which indicates an irregular sleep 

schedule.
● The users average restlessness is 10%, which is more than similar users.

Etiology:
Circadian Rhythm:
● The user has a variable sleep schedule, as noted by the mid-sleep point standard deviation. This 

means they have an irregular circadian rhythm. This can make it harder to fall asleep and stay 
asleep at the desired times.

● Additionally, the user’s sleep times are earlier than typical, as noted by the early average mid-sleep 
point. This means they have an advanced sleep pattern.

Recommendations:
● A goal sleep schedule of 10:45 PM to 6:45 AM would be helpful for your current work schedule and 

provide you with approximately 7 hours of sleep each night.
● In order to keep up with such an "advanced" schedule you'll want to prioritize bedtime and wake up 

routines that support your schedule needs, particularly by giving your body cues about when to fall 
asleep and wake up when it may not naturally be so inclined.

(C) Abridged Expert-written Sleep Insights, Etiology & Recommendations

Metric Value Percentile Min Max 5% percentile 95% percentile

Average Bedtime (hh:mm) 22:42 54% 12:41 01:57 20:47 00:44

Average Wake Time (hh:mm) 5:48 24% 17:27 08:25 04:30 08:33

Mid-sleep Point (hh:mm) 2:10 72% 15:01 04:18 00:27 04:24

… … … … … … …

Average restlessness score 0.1 75% 0.05 0.23 0.053 0.13

Average sleep score 71 5% 51 87 71 85
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(B) Sleep Stage Durations

De-identified Workspace

De-identified
Fitbit data

(100k-1M people)

Subset to case 
studies (~850 

people)

Subset to 
specific study 

features

De-identified
case study data
(~850 people)

Training Load: The trainee is maintaining a consistent and balanced training regimen with adequate 
rest periods. The recent increase in vigorous activity and workout duration indicates a focus on 
improving cardiovascular fitness and endurance. The balanced ACWR suggests a low risk of injury.
Sleep: The trainee is generally maintaining a healthy sleep schedule and achieving good sleep quality. 
Health Metrics: Today's elevated resting heart rate and significantly low HRV RMSSD indicate a state 
of reduced recovery.
Readiness Assessment: Trainee readiness is 2 out of 5 due to slightly lower sleep duration and 
elevated resting heart rate and low HRV RMSSD.
Recommendations:
● Alter the training, consider reducing intensity or duration to account for reduced recovery.
● Prioritize rest and recovery today and in the coming days.
● Monitor resting heart rate and HRV RMSSD to track recovery progress.
● Address factors potentially impacting sleep duration and quality.

Example Fitness Case Study with Expert Response
40-45 year-old female
Height: 1.65-1.70m, Weight: 60-65kg, BMI: 24.8
Goal: I’d like a recovery plan.

(D) Training Load Metrics

(E) Sleep Metrics

(F) Health Metrics

(G) Abridged Expert-written Fitness Insights & Recommendations

Figure 2: Case study examples: wearable sensor data inputs and expert analysis and recommenda-
tions for (A-C) sleep and (D-G) fitness. For sleep, experts considered an individual’s demographics
and sensor data for up to 29 days including daily metrics of (A) bedtimes and wake times and (B)
time spent in various sleep stages and awake (see Table D.4 for all metrics). Experts also analyzed
aggregated statistics of sleep metrics (Table D.5). Experts composed responses (C) including insights,
potential etiology, and recommendations for improving sleep quality. For fitness, experts considered
an individual’s demographics and sensor data over a 30-day period including daily metrics of (D)
cardiovascular training load, (E) sleep metrics, and (F) health metrics such as resting heart rate, heart
rate variation, and respiratory rate (Tables D.11-D.17). Experts composed responses (G) including
insights and provided a workout readiness assessment and recommendations.
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and recommendations), aimed at analyzing the data with the objective of enhancing the sleep quality
of the individual under consideration. For details on each section, see Appendix D.1.1.

Fitness Case Study Creation. To construct fitness case studies (Figure 2D-G), we recruited seven
domain experts in fitness to analyze an individual’s quantitative fitness data. The seven fitness experts
all possessed advanced degrees (M.S., M.A., M.Ed., or D.A.T.) related to the athletic training field
and professional athletic training work experience ranging from 4 to 25 years. The experts were
directed to formulate insights, assessments, and recommendations in the second person narrative. The
data for fitness case studies were sampled to produce a variety of different fitness assessments (see
Appendix D.1.2 for details). The quantitative fitness data included a comprehensive array of metrics
encompassing daily cardiovascular training load, sleep patterns, and health metrics spanning the
preceding 30-day period (see Appendix D.1.2 for details). These data were presented in tabular, text,
and graphical formats. The experts were tasked with providing responses to four sections (training
load, sleep, health metrics, and assessment), with the objective of facilitating a personalized approach
to improving individual fitness levels by guiding on the intensity and duration of fitness sessions.

Holistic View of Case Study Creation. For both the sleep and fitness verticals, we generated two
sets of data: a dataset used for model training, validation, and testing and (457 case studies for sleep,
300 for fitness) a holdout dataset (50 case studies for sleep, 50 for fitness) that was only used for final
evaluation of the model by experts (Appendix D.1.3, Figure D.1).

2.2 Professional examinations

Sleep Medicine Exams. We compiled a set of 629 multiple choice questions (MCQs) from BoardVi-
tals [8] sleep medicine board review question banks. We used text exam questions from the American
Medical Association (AMA) Physician’s Recognition Award (PRA) “Category 1 - Sleep Medicine”
question bank, which emulates exam content for the American Board of Internal Medicine (ABIM)
Sleep Medicine Certification Exam. We also used text exam questions from the Sleep Medicine Main-
tenance of Certification (MOC) Exam and Longitudinal Knowledge Assessment Review question
bank, which emulates exam content for the ABIM Sleep Medicine MOC Exam and ABIM Longitu-
dinal Knowledge Assessment. This compiled set of MCQs spanned a wide range of sleep-related
topics: Normal Sleep and Variants (N=127), Breathing Disorders (N=84), Hypersomnolence (N=60),
Insomnias (N=85), Movement Disorders (N=23), Parasomnias (N=57), Sleep in Other Disorders
(N=112), and Sleep-Wake Timing (N=81).

Fitness Exams. We compiled 99 multiple choice questions sourced from question banks that emulate
exam content for the Certified Strength and Conditioning Specialists (CSCS) exam preparation book
provided by the National Strength and Conditioning Association (NSCA) [42]. We used the test exam
questions from the NSCA-CSCS textbook “Essentials of Strength Training and Conditioning”.

Accuracy was used as the metric to evaluate the performance of our model in professional exams,
in line with prior work evaluating MedMCQA [54]. Each exam question presents up to five pos-
sible answers, with a single correct answer, facilitating automated and quantitative assessment of
performance. We did not train models directly on MCQs and all samples were used in evaluation.

2.3 Patient-reported outcomes

To evaluate the ability of PH-LLM to predict patient-reported outcomes (PROs) from longitudinal
passive sensor data, we used a large IRB-approved study in which wearable data was collected
for a population of 4,759 consented individuals for a four-week period [36]. At both intake and
completion, participants completed the Patient-Reported Outcomes Measurement Information System
(PROMIS) [41] short-form Sleep Disruption and Sleep Impairment surveys [67]. Both surveys
contained eight items with answers on a 5-point Likert scale (Appendix F.3). The study thus linked
individuals’ perceived sleep quality and its impact on their functioning with longitudinal observed
physiological (e.g., heart rate, sleep duration) and behavioral (activity) measurements.

To maximize sample size, we used the intake survey responses as the basis for prediction. For each
question, we defined a binary outcome that compared the highest answer (e.g., “strongly agree”)
against all others (Figure F.2). Features used to predict each binary outcome included 20 time-varying
wearable measurements (Table F.1), each of which was collected from study participants over a
four-week span. After filtering and missing value imputation (see Appendix F.1), we obtained 4,978
training examples, 703 validation examples and 1,433 examples.
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2.4 Methods

To train PH-LLM, we fine-tuned Gemini Ultra 1.0 on coaching recommendations and additionally
trained an MLP adapter to encode multimodal wearable measurements collected as part of the patient-
reported outcomes dataset. We then evaluated PH-LLM on the dataset of coaching recommendations
by asking domain experts to grade the responses across variety of dimensions using a 5-point Likert
scale as well as with automatic evaluation. We computed accuracy for the professional examinations
dataset, and AUROC and AUPRC for patient-reported outcomes. For details, see Appendix C.

3 Results

3.1 PH-LLM approaches expert performance on long-form case studies

We evaluated the aggregated performance of PH-LLM and human experts on the long-form case study
responses, rated by human experts using 15 questions with grading scale 1 through 5, spanning topics
such as using important domain knowledge, correctly referencing relevant user data, and avoiding
confabulations. A rating of 5 indicates high quality: a 2 or 3 indicates many or several important
data interpretations are missing, while a 4 or 5 indicates few or none missing. All 15 questions
and rating descriptions are detailed in Appendix D.2. For sleep case studies, PH-LLM received an
average rating of 4.61 versus 4.75 for human experts, indicating a close match (p = 3.3 × 10−11,
N ≥ 2606, Z = −6.63 r = −0.08, Figure 1A). Although the difference is statistically significant,
the effect size is small and our model responses are high quality as indicated by receiving the top
rating of five 73% of the time. Fine-tuning PH-LLM on sleep case studies significantly improved
its overall performance in this task (average rating of 4.51 versus 4.61, p = 4.0× 10−6, N ≥ 2603,
Z = 4.63, r = 0.06). For fitness case studies, PH-LLM aggregate performance was not statistically
different from expert performance (p = 0.48, N ≥ 3335, Z = −0.70, r = −0.01, Figure 1B).
Gemini Ultra 1.0 responses were also statistically indistinguishable from human expert responses
(p = 0.92, N ≥ 3161, Z = −0.10, r = −0.00). Furthermore, we conclude moderate inter-rater
reliability, as Gwet’s AC2 [26, 27] ranged from 0.699 to 0.956 (Appendix D.4).

Since the case studies consist of multiple sections, we also analyzed ratings for each section separately
(Figure 3A). For sleep case studies, fine-tuning PH-LLM improved its ability to provide insights
and etiologies (p = 6.65 × 10−7, N ≥ 800, Z = 5.18, r = 0.11 and p = 2.46 × 10−3, N ≥ 801,
Z = 3.15, r = 0.07, respectively), with recommendations showing no statistically significant
difference (p = 0.45, N ≥ 801, Z = 0.76, r = 0.02). We further analyzed ratings by various rubric
questions. Fine-tuning PH-LLM improved its ability specifically on being able to reference important
domain knowledge (p = 4.47 × 10−5, N ≥ 201, Z = 4.44, r = 0.19), important interpretations
(p = 4.47× 10−5, N ≥ 201, Z = 4.48, r = 0.19), important user data (p = 5.21× 10−8, N ≥ 201,
Z = 5.91, r = 0.26), and no unimportant interpretations (p = 4.31 × 10−2, N ≥ 201, Z = 2.53,
r = 0.11), see Figure D.3. Overall, these results suggest that fine-tuning improved the model’s ability
to mention relevant domain knowledge, relevant interpretations, and relevant user data, especially
when deriving insights and etiology from the data.

For fitness case studies, PH-LLM had similar performance (no statistically significant difference
detected, N ≥ 768) to human experts on three out of four sections (Figure 3B). Training load was
the only section in which responses from human experts were rated higher than those from PH-LLM
(p = 0.01, N ≥ 768, Z = 3.02, r = 0.07). When analyzing ratings by rubric questions, we observed
no statistically significant differences in ratings between PH-LLM and human experts (Figure D.3).

Furthermore, our fine-tuned AutoEval models can act as strong proxies for expert annotation. The best
AutoEval models ranked case study response sources similarly to human experts (compare Figure D.8
to Figure 3). When measuring Spearman’s rank correlation, Kendall’s Coefficient of Concordance
(Kendall’s W), and Weighted Cohen’s Kappa between AutoEval rating predictions and ground-truth
human ratings across validation datasets, the best AutoEval models obtained similar prediction-
rating agreement compared to inter-rater agreement metrics (Appendix D.4). We explored different
AutoEval training data mixtures and found that all mixtures produced models that significantly
improved upon a Gemini Pro 1.0 rater not explicitly fine-tuned for AutoEval tasks (Table D.22).
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Figure 3: Case Study Human Evaluation. Mean expert ratings by subsections across the (A) sleep
and (B) fitness domains. Error bars denote 95% confidence intervals. “∗” indicates a statistically
significant difference between two response types after multiple hypothesis testing correction.

3.2 PH-LLM exceeds grades to receive CME credit on sleep medicine and pass the fitness
certification practice examination question banks

PH-LLM correctly answered 79% of sleep medicine and 88% of fitness board examination questions
tested, comfortably exceeding the approximate grade (70%) to either receive CME credit for sleep
or pass the practice exam for fitness (Table 1). On the AMA PRA Category 1 and ABIM MOC,
PH-LLM scored 79% while Gemini Ultra 1.0 scored 77%. On the NSCA-CSCS coaching exams
both PH-LLM and Gemini Ultra 1.0 scored 88%. The sleep medicine question bank contained
additional metadata for each question including the distribution of responses from human test takers,
enabling comparisons of performance by empirical question difficulty. Both PH-LLM and Gemini
Ultra 1.0 performed comparably across the question difficulty strata and suggest that the performance
of PH-LLM is comparable to that of humans who have prepared for or are in the process of preparing
for these examinations (Table 2). To further contextualize the performance of PH-LLM with experts,
five professional athletic trainers (average experience: 13.8 years) and five sleep medicine experts
(average experience: 25 years) with advanced degrees were recruited to take the respective exams.
The experts achieved an average score of 71% in the fitness exam and an average score of 76%
in a representative subset of the sleep medicine exam (N=204) stratified based on medical content
categories [4] and their difficulty levels. As illustrated in Table 1, PH-LLM outperforms expert
graders on both professional exam question banks.

We performed ablation studies on the use of self-consistency [59] (N=5 rounds) and chain-of-thought
(CoT) prompting [62]. Self-consistency improved performance on fitness questions for both CoT and
Non-CoT prompting techniques while the performance from including CoT was mixed (Table E.1).
See Appendix E for question prompts and Appendix E.2 for ablation results.

3.3 Multimodal sensor integration enables PH-LLM to predict patient-reported outcomes

We evaluated the ability of PH-LLM to predict self-reported outcomes in sleep disturbance and sleep
impairment. Using a dataset of 4,759 individuals with 20 wearable device measurements, a subset

Table 1: Performance on Professional Exam Question Banks. Accuracy on the multiple choice
questions from AMA PRA Category 1 - Sleep Medicine and ABIM MOC - Sleep Medicine MOC
and NSCA-CSCS coach certification examination question banks.

Sleep Medicine Approx. CME Grade Expert Gemini Ultra 1.0 PH-LLM

AMA PRA Category 1 / ABIM MOC 70%∗ 76% 77% 79%

Fitness Approx. Pass Grade Expert Gemini Ultra 1.0 PH-LLM

NSCA-CSCS Coaching Certification 70%† 71% 88% 88%

∗ https://www.boardvitals.com/sleep-medicine-moc-recertification.

† https://www.nsca.com/certification/cscs/certified-strength-and-conditioning-specialist-exam-description
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Figure 4: Prediction of Patient-Reported Outcomes. Area under the (A) receiver operator charac-
teristic and (B) precision-recall curves of PH-LLM, zero-shot, and few-shot prompting approaches
when predicting binary survey response outcomes ( Appendix F.3). Error bars denote 95% confidence
intervals and “*” denotes that PH-LLM w/ Adapter is significantly better than other models.

of the Google Digital Wellbeing Study dataset [36], and 16 derived binary outcomes, we trained a
multilayer perceptron (MLP) adapter to map the 20 wearable measurements into PH-LLM’s latent
token space (Section C.4). We then provided the latent tokens to PH-LLM as context and prompted it
to predict each patient outcome. Given the trained MLP adapter, we evaluated the likelihood of each
binary outcome for each sample in the evaluation set and compared its predictive power to baseline
approaches using in-context learning of textual sensor data representations.

We compared the area under the receiver operator characteristic curve (AUROC, Figure 4A) and area
under the precision-recall curve (AUPRC, Figure 4B) for each binary trait, computed in the holdout
set, for PH-LLM using the multimodal adapter and the zero- and few-shot text approches. We note
that in general, objective measurements of sleep and sleep behaviors provide only modest predictive
power for perceived sleep quality metrics. However, PH-LLM using the adapter significantly
outperformed both prompt-based approaches in terms of both AUROC and AUPRC for 12 of the 16
traits (Tables F.18 and F.19). This relative performance increase is due to adapter-enabled LLMs
being able to capture more signal from the training set as compared to zero and few-shot prompting
which see a very limited amount of training data [7].

We do not expect an adapter-enabled language model to exceed the performance of a specialized
discriminative model trained to predict the same binary traits. However, if the LLM has roughly
comparable ability to a specialized model, this could be beneficial. To assess how well PH-LLM
performed compared to a traditional machine learning approach, we fit a logistic regression (LR)
model for each binary trait. Comparing PH-LLM to LR models trained using the same encoded vector
input, we found no statistically significant differences in performance between for either AUROC or
AUPRC (Tables F.3a, F.3b, F.18, and F.19).

Table 2: Performance Comparison of Models and Experts Relative to Average Reported Test
Takers for the Sleep Professional Exam. Questions were classified as “Easy”, “Medium”, or “Hard”
based on the percentage range of human test takers who answered the questions correctly.

Difficulty Count Expert Gemini Ultra 1.0 PH-LLM

Easy (90%-100%) 214 90% 94% 95%
Medium (75%-90%) 204 81% 78% 80%

Hard (0%-75%) 211 53% 55% 57%
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4 Related Work

Large language models in health LLMs have the ability to perform complex language com-
prehension and reasoning tasks, generate coherent text and thereby enable real-world applica-
tions [5, 21, 47, 51, 57]. Explorations of LLM utility in health domains have shown their ability
to answer medical questions and enable data-driven decision making [24, 44, 50, 54, 55, 66]. Med-
PaLM [54] and its successor, Med-PaLM 2 [55], leveraged a combination of methodological ad-
vancements and domain-specific fine-tuning to increase performance, relative to previous models, on
medically relevant evaluation tasks. Med-PaLM 2 achieved a score of up to 86.5% across several med-
ical datasets, such as MedMCQA, PubMedQA, and MMLU clinical topics, achieving physician-level
performance. GPT-4 and Gemini have further improved performance on the USMLE-style examina-
tions in MedQA, reaching 90.2% [45] and 91.1% [50], respectively. On complex diagnostic tasks it
is even possible for LLMs to outperform clinicians (as in the case of medical internists constructing
differential diagnoses [37]). However, while models such as Med-PaLM 2, Med-Gemini [50, 66],
GPT-4 [45], and Health-Alpaca [31] excel at medical question answering and interpreting clinical
data, their capabilities for interpreting personal health data is less well established.

Expanding LLMs to operate on modalities beyond just text has been a recent area of intense research,
with prominent examples including but not limited to Flamingo [2], PaLI [13], GPT-4 [47], GPT-
4v [48], Gemini 1.0 [21], and Gemini 1.5 [22]. The exploration of multimodal LLMs has also been
extended to biomedical applications. Many models explore pairing one or multiple medical imaging
modalities with language, including Med-Flamingo [40], LLaVA-Med [32], BiomedCLIP [68],
MedBLIP [12], ELIXR [65], and others reviewed in further detail elsewhere [64]. Other models
explore support for non-imaging medical modalities, including HeLM [7], Med-PaLM M [58], and
Med-Gemini [50, 66]. While many of the earlier works focused primarily on medical question
answering, there is increasing focus on report generation and other long-form responses.

Evaluation of long-form text is challenging [33] but is critical to ensure practical utility of LLMs in
realistic settings. Similar to our efforts to generate case studies of personal health coaching scenarios,
MedAlign introduced a dataset for evaluating LLMs on relevant clinical tasks [17] and demonstrated
frequent misalignment between question answering performance and realistic task performance.

Discriminative and Generative Personal Health Wearable sensors can help people realize mean-
ingful changes in their health, such as helping to increase the amount of physical activity they engage
in [16]. Moreover, when done thoughtfully and in an evidence-based manner, it is generally accepted
that helping individuals derive insights from their data could increase the frequency of engaging in
beneficial health behaviors. In the field of mobile health research [25, 56], traditional methodologies
have predominantly centered around specialized, predictive models for defined classification tasks,
such as predicting heart rate [49], energy expenditure [19], blood pressure [6], and other vital signs,
or classifying diseases using machine learning models tailored to specific predictive purposes such as
atrial fibrillation detection [43] and improving objective rehabilitation monitoring [9]. More recently,
LLMs have been shown be an effective base model to ground physiological and behavior time-series
data and make meaningful inferences with zero-shot inference and few-shot learning across a wide
variety of personal health tasks [31, 35]. In general, these methods use textual representations of
sensor data to inform health metrics or predict health states. In contrast, our work with PH-LLM
expands model utility from only predicting health states to also providing coherent, contextual, and
potentially prescriptive outputs that depend on complex health behaviors. While traditional models
operate within the confines of specific, often binary or multinomial, outcome prediction, PH-LLM
interprets and generates recommendations based on health behaviors, providing a more interactive
and interpretive utility. This evolution from predictive modeling to generative reasoning set out our
contribution in bridging quantitative data interpretation with qualitative, contextually-rich output,
facilitating a better experience of digital health interaction and personal health data utilization.

5 Conclusion

We developed an LLM fine-tuned from Gemini (PH-LLM) to perform a variety of tasks relevant to
setting and achieving individual personal health goals. Our study shows that PH-LLM is capable
of integrating passively-acquired objective data from wearable devices into personalized insights,
potential causes for observed behaviors, and recommendations to improve sleep hygiene and fitness
outcomes. After fine-tuning from the highly capable Gemini Ultra 1.0, which already displays
aggregate performance approaching that of experts in fitness, PH-LLM demonstrated significantly
improved use of domain knowledge and personalization of relevant user information for sleep

9



insights. Consistent with its strong performance on long-form case studies, we showed that PH-
LLM accurately answers technical sleep and fitness multiple choice questions, and contextualize
the benchmark performance of PH-LLM in these datasets with performance of multiple experts in
the same tasks. Finally, we demonstrated the ability of PH-LLM to use a multimodal encoder that
natively integrates time-series health behavior data as input tokens to predict subjective outcomes in
sleep with performance on par with specialized models to predict the same outcomes.

Acknowledgements

We thank the Fitbit research community participants for making this research possible. We thank the
sleep and fitness experts who developed case study responses and evaluated candidate model responses
for their dedication, effort, and detailed feedback on multiple model iterations. Contributing sleep
experts include Ben Graef, Timothy Wong, Thuan Dang, Suzanne Gorovoy, Narayan Krishnamurthy,
and Michelle Jonelis. Contributing fitness experts include Jarod Spraggins, Allison Hetrick, Jonas
Hannon, Max Knight, Nolan Dozier, Laura Grissom, and Justin Leach. We thank Hulya Emir-Farinas,
Farhad Hormozdiari, and Joëlle Barral for feedback and discussions that significantly improved the
work. We also thank Sami Lachgar, Lauren Winer, Maggie Shiels, Lee Gardner, Noa Tal, Annisah
Um’rani, Oba Adewunmi, and Archit Mathur for their valuable insights, technical support, and
feedback during our research.

Competing Interests

This study was funded by Google LLC. All authors are employees of Alphabet and may own stock as
part of the standard compensation package.

10



References

[1] S. Abbaspourazad, O. Elachqar, A. C. Miller, S. Emrani, U. Nallasamy, and I. Shapiro. Large-
scale training of foundation models for wearable biosignals. arXiv preprint arXiv:2312.05409,
2023.

[2] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Millican,
M. Reynolds, et al. Flamingo: a visual language model for few-shot learning. Advances in
Neural Information Processing Systems, 35:23716–23736, 2022.
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A Broader Impact

A primary overarching goal for developing models specific to personal health is to be able to improve
long-term health outcomes through effective behavior change and maintenance of healthy habits.
Neither of these tasks is explicitly evaluated here, and remain important areas for future work. While
the performance of PH-LLM on the tasks presented here is encouraging, we caution that much work
remains to be done to ensure LLMs are reliable, safe, and equitable in personal health applications.
Further reducing confabulations, considering an individual’s unique health circumstances not captured
by sensor information alone, and ensuring alignment of the training data with real-world distributions
are a subset of important research areas that warrant further attention.

B Limitations

Our work has several limitations. First, the distribution of case study rubric ratings were skewed
quite high, making differentiation across models and expert responses challenging. While some case
study sections and evaluation rubric principles did show significant differentiation, further training
of expert raters to increase inter-rater reliability or adjudicating existing responses could increase
signal strength of model performance. Second, owing to inter-rater variability, we chose to have
each expert rate all responses for a given case study. While this made direct comparison of candidate
responses straightforward, it introduced the potential for experts to identify expert vs model responses
based on style or other non-material factors, and thus introduce conscious or unconscious biases into
ratings. Third, we observed that despite improvements in referencing and integrating user data into
insights, confabulations or incorrect referencing of user data still occasionally occurred. Addressing
and preventing these issues will be critical to ensure the safe and effective deployment of these
technologies into user-facing features. Promising progress is being made through active research on
agentic workflows that critique and correct candidate responses [38]. Fourth, the case studies were
sampled broadly across demographics (sleep) or to identify common patterns in active individuals
(fitness), but may not be a representative sample of the population nor exhaustively explore the
sleep and fitness concerns affecting individuals. Fifth, our exploration of multimodal encoding of
sensor data explored a small fraction of the design space owing to the relatively small dataset with
paired outcome data and our purposeful restriction to samples with nearly complete sensor data.
Further exploration of self-supervised pre-training on raw waveforms and granularly aggregated
sensor features may yield richer representations of individuals that can be effectively purposed toward
personal health outcome predictions [1] that expand beyond just sleep metrics and address challenges
arising from a sparse and heterogeneous mix of available sensor features. We anticipate that future
large datasets with paired outcome data will enable non-linear interactions across features to be
learned effectively to improve predictive power.

Despite the above limitations, we have demonstrated here that the Gemini family of models are imbued
with substantial health knowledge, and we can effectively fine-tune Gemini Ultra 1.0 to improve
performance across multiple outcomes relevant for personal health. The results from this study
represent an important step toward LLMs that deliver personalized information and recommendations
that support individuals to achieve their health goals.

C Methods

C.1 Base model selection

In order to start from the most capable base model, we performed automated evaluation of several
Gemini candidate model sizes and a medical LLM on the professional exam questions. The candidate
models were Gemini Nano 1.0, Gemini Pro 1.0, Gemini Ultra 1.0 [21], and MedPaLM-2. Gemini
Ultra 1.0 consistently produced the best accuracy on professional examinations (Figures E.1 and E.2).

C.2 Base model prompting on case studies

Since Gemini Ultra 1.0 was the most accurate model on professional examinations, suggesting it has
appropriate domain knowledge in the areas of sleep and fitness, we explored the performance of this
model on case studies. We prompted Gemini Ultra 1.0 by summarizing guidelines given to the experts
for dataset creation. For example, the sleep experts generally were asked to follow the RU-SATED
format (Routine, Sleep Quality, Alertness, Timing, Efficiency, and Duration) [10] to generate sleep
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insights. In order to give Gemini Ultra 1.0 the best shot at answering case studies, we similarly
prompt it to follow the RU-SATED format and provide an explanation of what metrics should be used
to assess each dimension (see Table D.1-D.10 for details). We note that each case study consisted of
multiple sections representing different queries and responses: three sections for sleep case studies
(insights, etiology, recommendations) and five sections for fitness case studies (demographics, training
load, sleep, health metrics, and the assessment). Since each section represented a different aspect of
the case study, we developed prompts specifically for each section. Tables D.1-D.5 show the prompts
for sleep case studies and Tables D.6-D.10 show the prompts for fitness case studies. For sections that
synthesized results from previous sections, i.e., the etiology and recommendation sections in sleep
case studies, and the assessment section in fitness case studies, we substituted the model answers
from previous sections into the prompt (see Table D.10 for an example).

C.3 Training PH-LLM on case studies

We fine-tuned Gemini Ultra 1.0 on the dataset of coaching recommendations and call this model
PH-LLM. We use the case studies from the training, validation, and test sets for model training
and selection (457 case studies for sleep and 300 case studies for fitness). For each of the sleep
and fitness domains, we randomly split the dataset into separate training, validation, and test splits
using a 70:15:15 ratio. We used the same prompts that were given to the baseline model to form
prompt-response pairs for model tuning. Since each section was treated as a separate example, this
resulted in 1,371 prompt-response pairs for sleep and 1,500 prompt-response pairs for fitness across
the training, validation, and test sets (Figure D.1A,B).

Typically, LLMs are trained on mixture of tasks [61]. Here we fine-tuned the model on a 1:1 mixture
of sleep and fitness prompt-response pairs. Within the fitness prompt-response pairs, we chose to
upsample higher quality case studies by a 2:1 ratio, where higher quality case studies were defined as
those that underwent additional rounds of quality control by the fitness experts.

The model was fine-tuned for a maximum of 1500 steps with a global batch size of 4 using linear
warm-up over 50 steps and cosine decay. We used a learning rate of 2.5 × 10−7, weight decay of
1× 10−2, and a learning rate decay minimum ratio of 0.1. We saved model checkpoints every 50
steps. For our final model candidate, we chose the first checkpoint after the model had been trained
for at least one epoch (this checkpoint also had a relatively low log perplexity).

C.4 Training PH-LLM for patient-reported outcomes

To train PH-LLM to predict PROs from wearable data, we followed the methodology developed in
HeLM [7]. Wearable data for each user was stored as a matrix in which the rows represent wearable
measurement devices and the columns represent measurements at a specific time. In our case, we
had 20 device measurements measured once over 15 days for each sample in the dataset. Next, we
encoded this data by computing the mean and variance across days, and z-scoring the results using
the training data as a reference. This yielded a new “encoded” matrix of 20 × 2 where columns
correspond to a measure’s mean and variance. The encoded data matrix was projected into the token
embedding space of PH-LLM via a multilayer perceptron (MLP) adapter with three hidden layers
(sizes 1,024, 4,096, and 1,024) and an output of 2 tokens. The resulting set of tokens were provided
to PH-LLM as a prefix to the text input, which included a text representation of all input fields in their
native form (e.g., steps per day; not z-scored). We prompted the model to predict a specific binary
outcome (e.g., “I am satisfied with my sleep - ‘yes’ or ‘no”’). An example of the corresponding text
prompt is shown in Table F.20. The adapter was trained via backpropagation while keeping PH-LLM
weights frozen.

We compared these adapter-based predictions to text-only predictions using both zero-shot and
few-shot prompting. For zero-shot, the prompt format was identical to the adapter-based prediction
except the adapter token prefix was omitted. For few-shot, as many complete examples as could
fit within the context window (up to seven) were included as exemplars. For all three models, the
positive and negative outcomes were scored by computing the log likelihood for each outcome.

Text prompts that included using only mean results, and both mean and variance, were explored
(while always including both mean and variance in the input to the MLP adapter). Since performance
was not appreciably different (data not shown), we omitted the variance encoding to enable more
in-context examples to be passed as textual context to PH-LLM.

17



As a separate comparison, we fitted logistic regression models separately for each binary outcome, in
which the predictors were the same mean and variance computed across 15 days of sensor data. For
both the MLP adapter and logistic models we trained using the shared training set, selected the best
model according to ROAUC in the validation set and then present results using the final holdout set.

C.5 Expert grading of case study responses

While evaluation against MCQs and PROs can be performed by comparing model predictions to gold-
standard structured responses and numerical values, respectively, the case studies involve longer-form
outputs.

In order to evaluate these longer-form case study responses, the domain experts (including all
individuals involved in creating the case study responses) were asked to evaluate three responses
written to each case study: one by Gemini Ultra 1.0, one by PH-LLM, and one by a domain expert.
Each domain expert was assigned evaluations randomly to case studies for which they did not write
the expert response. The domain experts evaluated each case study response based on a custom
rubric that quantifies incorporation of user data, appropriate personalization based on user data, use
of expert domain knowledge, evidence of confabulations or unwarranted assumptions, potential for
harm, readability, and overall quality. The complete set of evaluation questions for the case studies is
provided in Appendix D.2.

Evaluation cases were fully distributed across the primary group of experts based on availability
during the research project’s evaluation period. A portion of the evaluation case studies were
additionally assigned to the rest of the available domain experts to ensure on-schedule, thorough
completion of the evaluation dataset.

Both the creation of expert written case study responses and the evaluation of all 3 types of responses
were performed on an internal health data labeling platform that adheres to data privacy and security
best practices and design principles. It handles labeling task creation, scheduling and assignment,
answer storage as well as front-end visualization and labeling through its web application. It supports
highly customizable viewers for multiple data modalities including medical images and text reports.
We customized the HTML viewer to display long-form case studies comprising figures, tables, and
text, in an effective and intuitive manner.

C.6 Automatic evaluation of case study responses

Though expert grading of case study responses was our primary mechanism for assessing model
performance, it is a time-consuming process that scales poorly. This makes it challenging to iterate
on model improvements since sending all checkpoints to human raters is prohibitively expensive.
Automated evaluation (AutoEval) allows us to obtain a quick–though potentially less accurate than
human evaluation–signal that can be used during model development by using secondary models
to perform this rating task [14]. In this section, we describe our approach for curating a case study
response rating dataset, fine-tuning AutoEval models capable of rating candidate models, and using
AutoEval to select promising models that are then sent to expert raters for human feedback.

While exploring different modeling mechanisms, we performed an initial round of expert grading
using the rubrics and procedure described in Appendix C.5 for 50 expert-generated case studies
from each vertical across three response sources: experts, an untuned Gemini Ultra 1.0 model, and
a fine-tuned Gemini Pro 1.0 model. We then split these studies into vertical-specific training and
validation splits containing roughly 80% (N = 38) and 20% (N = 12) of case studies, respectively.
Splits were structured such that samples rated by a given expert were evenly distributed between sets.
All ratings associated with a given case study were included in that split, resulting in N = 6, 552 total
ratings across case study sections and evaluation principles for sleep (N = 4, 872 train; N = 1, 596
validation) and N = 9, 331 for fitness (N = 7, 138 train; N = 2, 193 validation). Using these ratings
and the corresponding case study data and responses, we constructed LLM prompts and targets
matching the format described in Table D.20 (see Table D.21 for a full example). Prompts included a
description of the rating task objective for the given case study section, a summary of data describing
the case study, the principle being assessed, and the principle’s Likert scale options. Each target was
the expert-generated rating followed by the rating’s Likert option text description (e.g., for a “No
incorrect domain knowledge” principle rating of 5, the target is “5. No incorrect domain knowledge
references exist.”).
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We fine-tuned Gemini Pro 1.0 models using LoRA [28] across a variety of vertical-specific data
mixtures, including all ratings for a vertical and all ratings from a single rater. All AutoEval modeling
experiments used a fixed set of hyperparameters, varying only the training data mixture: a LoRA
rank of 4 on attention heads, a constant learning rate of 2 × 10−5, a global batch size of 32, and
a maximum of 20 epochs for the given training mixture. We present results for the following data
mixtures:

1. All ratings in either the fitness or sleep verticals (“All”).
2. All ratings from the lowest variance rater in the fitness (“Fitness Primary B”) or sleep (“Sleep

Primary D”) verticals, where variance is calculated across all ratings from that expert.
3. All ratings from the highest variance rater in the fitness (“Fitness Primary C”) or sleep (“Sleep

Primary C”) verticals.

An untuned Gemini Pro 1.0 model served as a baseline. We generated model predictions by scoring
the likelihood of each Likert option given the input prompt, converted these scores into five-class
multinomial probabilities, and chose the option with the largest probability score. We selected candi-
date AutoEval models using a combination of log perplexity loss and Spearman’s rank correlation
between predictions and the ground truth ratings in the validation dataset.

Given case study responses from candidate PH-LLM models trained using the procedure described in
Appendix C.3, we used the same scoring procedure above to automatically rate model outputs across
case study sections and evaluation principles. We used these ratings in conjunction with non-expert
feedback to filter candidate models for full human expert evaluation. We then used the resulting
ratings to further evaluate the performance of our final AutoEval models.

C.7 Statistical analyses

Confidence intervals (95%) were determined via bootstrapping with 1,000 iterations. Statistical
significance of expert ratings was determined using a two-sided Wilcoxon rank-sum test with false-
discovery rate (Benjamini-Hochberg) correction when multiple sections or multiple evaluation
principles were analyzed together. All p-values refer to p-values after FDR correction. For each
p-value, we report the test statistic Z and the effect size r = Z/

√
N , where N is the total sample

size of the test.
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D Coaching Recommendations Case Studies

D.1 Case study dataset creation

D.1.1 Additional details on creation of sleep case studies

Our study utilized de-identified data from individuals who provided consent for use of their data for
research purposes. For sleep case studies, in order to ensure a representative sample across different
demographics (age and gender), we considered 64 different demographic groups, determined by a
combination of 32 different age buckets (13-20 years old, 20-80 years old with each group within this
range spanning two years, 80 years old and above) and 2 gender buckets (male, female).

Daily Sleep Metrics: The daily sleep metrics contain up to 29 days of daily sleep metrics. The
metrics are: date, day of the week, sleep score (0-100), light sleep (hh:mm), REM sleep (hh:mm),
deep sleep (hh:mm), sleep duration (hh:mm), fall asleep time, wake time after sleep onset (hh:mm),
sleep efficiency, fraction of sleep goal, number of times the individual woke up, heart rate (bpm), nap
duration (min), number of naps, and wake up time. See Table D.4 for an example.

Aggregated Daily Sleep Statistics: Generally, these statistics included an aggregated metric (e.g.
average, median, standard deviation, count) over all the days, the percentile that the aggregated metric
is in as compared to other individuals within the same demographic group, minimum value over all
the days, maximum value over all the days, as well as 5th and 95th percentiles of the aggregated
metric as compared to other individuals within the same demographic group. In some instances, such
as bedtime, the metrics were computed separately for all days, weekdays only, and weekends only to
understand weekday versus weekend patterns. See Table D.5 for an example.

The experts composed responses across the following sections:

Insights: Implicitly this section was aimed at answering the question of “What are some sleep-
related insights based on my data?” The sleep medicine expert examined the data and provided an
interpretation of whether a data point might represent an atypical sleep pattern. The experts were
asked to systematically review each case to provide a holistic assessment of the user’s sleep patterns.
To do so, Fitbit sleep metrics were assessed according to the validated RU-SATED framework
(Routine, Sleep Quality, Alertness, Timing, Efficiency, and Duration) to generate sleep insights [10].

Etiology: Implicitly this section answered the question of “What are the possible underlying causes
that could explain the observed data?” The experts generally considered the contribution of circadian
rhythm, homeostatic drive, psychophysiologic hyperarousal, and extrinsic factors and indicated their
likelihood.

Recommendations: This section was generally designed to answer the question of “What can I
do to improve my sleep?” The experts were asked to provide personalized recommendations to
the individual that can help them improve their sleep by addressing potential causes identified in
the etiology section. The experts were instructed to utilize best practices in goal-setting using the
SMART framework.

D.1.2 Additional details on creation of fitness case studies

For fitness case studies, the individuals from de-identified cohort who provided consent for use of
their data for research purposes, were sampled. In order to ensure the fitness case studies contain
sufficient activity for interesting training readiness analysis, we sampled individuals who had data for
at least 16 days with minimum mean active zone minutes of 45 minutes and with at least 2 logged
exercises. In addition, we considered periods of days that contained noticeable changes in heart rate
variability, resting heart rate, respiratory rate, sleep, and periods with runs. The experts considered
the following sections and data in their analysis:

Demographics: (age, gender, height, weight, body mass index). The experts considered the demo-
graphics data and commented on whether any precautions should be taken when recommending a
fitness program.

Training Load: The experts were provided with a detailed table capturing daily metrics over the
past 30 days, including day of the week, date, minutes spent in fat-burn, cardio, and peak zones,
training impulse (TRIMP), and number of steps (Table D.11). Additionally, we provided aggregated
statistical analyses such as means, ranges, acute TRIMP (7-day total training load), chronic TRIMP
(28-day average acute training load), Acute-Chronic Workload Ratio (ACWR), and metrics specific
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to each exercise entry (Table D.12). For ease of analysis, in addition to the table, daily TRIMP values
were visualized in a barplot (Figure 2D).

Sleep Metrics: The experts assessed the individual’s sleep as it relates to fitness recovery. A table of
daily sleep metrics such as bedtime, wake time, sleep time, awake time, deep sleep, REM sleep, and
sleep score was given to the experts for analysis (Table D.13). For ease of analysis, some of the daily
sleep metrics were also visualized as a graph (Figure 2E) They were also given aggregated metrics
including means, standard deviations, and z-scores indicating the difference in metrics between the
most recent 3 days and the past 28 days to identify recent trends.

Health Metrics: A table and a graph of daily resting heart rate, heart rate variability (HRV), and
respiratory rate over the past 30 days was given to the experts to assess recovery and stress (Figure
2F, Table D.15). The experts were also given aggregate metrics such as means, standard deviations,
ranges, and z-scores indicating the difference in metrics between the most recent day and the past 28
days (Table D.17).

To simulate feedback from the user about their subjective state, the experts were also given syntheti-
cally (LLM) generated subjective readiness to workout (e.g. "feeling fatigued") and muscle soreness
(e.g. "manageable soreness"). For examples, see Tables D.18 and D.19.

Assessment & Recommendation: The information from the previous sections was used to provide
a summary of the most important insights. These insights along with synthetically generated user
input on subjective readiness and muscle soreness (e.g., Tables D.18 and D.19) were used to inform
an assessment of how ready the individual is to perform a workout today on the scale of 1 to 5. The
experts also provided fitness recommendations to the individual (Figure 2G).

D.1.3 Holistic View of Case Study Creation.

Each set of domain experts consisted of “primary” and “secondary” contributors to case study
response creation and evaluation. This categorization was based on an expert’s general availability to
contribute to the research project on a weekly basis throughout its duration; “primary” contributors
had more involvement and higher volumes of case study response creation and evaluation than
“secondary” contributors. The grouping was primarily used for research project operations planning
and scheduling. The level of domain expertise was similar across the two groups. Each vertical also
included a clinical lead with extensive background in sleep medicine for the sleep vertical and sport
and exercise medicine for the fitness vertical. The clinical lead oversaw case study development and
provided feedback and quality control to the set of domain experts.

To generate the dataset used for training, validation, and testing, we first prompted the Gemini family
of models with the data for each section in order to generate baseline model (Gemini Ultra 1.0)
responses (Figure D.1A). The experts then reviewed the responses and rewrote them as needed. The
dataset also underwent multiple rounds of quality control engaging the experts and clinical leads.
Separately, to generate the holdout dataset, the experts wrote the responses from scratch (without any
LLM assistance). This was done to ensure a more clear comparison between experts and the model
during evaluation.

In total, we created 350 case studies for fitness (300 case studies for the training, validation, and test
set and 50 case studies for the holdout set) and 507 case studies for sleep (457 case studies for the
training, validation, and test set and 50 case studies for the holdout set).
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Figure D.1: Case Study Creation, Curation, and Evaluation Workflow. Case studies were se-
lected from a large set of anonymized, consented production data. (A) Two sets of case studies were
generated. To facilitate rapid development of high-quality answers, the train/validation/test set of
case studies had candidate responses generated by Gemini, which were then edited and rewritten
by domain experts. To enable comparison of human and model-derived responses, the holdout set
had responses written solely by the domain experts. (B) For model training, each case study was
split into multiple prompt/answer pairs based on how many sections the case study had (N=3 for
sleep with insights, etiology, and recommendations sections, N=5 for fitness with demographics,
training load, sleep metrics, health metrics, and assessment sections, see Section C.3 for details)
and Gemini Ultra 1.0 underwent full fine-tuning using those examples. (C) Expert evaluation was
performed independently on the holdout dataset by the same set of domain experts responsible for
generating the expert responses. For each case study in the holdout set, an expert who did not write
the corresponding expert response graded all three candidate responses (expert-written response,
Gemini Ultra 1.0 response, PH-LLM response).
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Figure D.2: Distribution of case study ages and genders across the sleep and fitness verticals.
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Table D.1: Prompt for sleep case studies insights section.

Prompt for sleep case studies insights section

You are a sleep medicine expert. You are given the following sleep data.
The user is <gender>, <age> years old.
Sleep logs:
<sleep logs table (see Table D.4 for an example)>

Sleep Summary:
<sleep summary (see Table D.5 for an example)>

List the most important insights. Identify all of the patterns of data that are likely out of
the preferred range. Make sure to consider various sleep health dimensions: Routine, Sleep
Quality, Alertness, Timing, Efficiency, and Duration. Add a heading for each dimension.
Optionally (only do this if extremely important) add a heading called Other for anything
else that doesn’t fit the above categories. For Routine, consider the average bedtime, wake
time, midsleep point and standard deviations of these, focus on the consistency of the
routine, not timing. For Sleep Quality, consider light sleep duration, deep sleep duration,
REM sleep duration, sleep score, restlessness score, time to quality sleep, and wake time
after sleep onset. For Alertness, consider the number of naps and nap length. For Timing,
consider midsleep point, bedtime, wake time, make any comments on weekend vs. workday.
For Efficiency, consider sleep efficiency, wake time after sleep onset, and time to quality
sleep, describe how they compare to similar users. For Duration, consider average sleep
duration, weekend vs. workday sleep durations and standard deviations, describe how they
compare to similar users. When determining whether a metric is normal or abnormal, always
provide the corresponding percentile. Avoid generic statements. Avoid incorrect knowledge,
inconsistencies and contradictions. Don’t mention “the user”. Talk like you’re speaking
directly to someone. Be concise.
# Sleep insights report

Table D.2: Prompt for sleep case studies etiology section.

Prompt for sleep case studies etiology section

You are a sleep medicine expert. You are given the following sleep data.
The user is <gender>, <age> years old.
Sleep Summary:
<sleep summary (see Table D.5 for an example)>

Based on the data, we can get the following insights:
<insights response>
What are the underlying causes? Make sure to consider the following causes: Circadian
rhythm, Homeostatic drive, Psychophysiologic hyperarousal, and Extrinsic factors. Order
the causes from most to least relevant. Identify the likelihood of the causes (e.g. unlikely,
possible, very likely). Cite relevant data and insights, for example, “consistently low sleep
efficiency despite normal sleep durations suggests low homeostatic drive”. Avoid diagnosing
health conditions. Avoid providing recommendations. Avoid generic statements. Avoid
incorrect knowledge, inconsistencies and contradictions. Don’t mention “the user”. Talk like
you’re speaking directly to someone. Be concise.
# Causes report
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Table D.3: Prompt for sleep case studies recommendations section.

Prompt for sleep case studies recommendations section

You are a sleep medicine expert. You are given the following sleep data.
The user is <gender>, <age> years old.
Sleep Summary:
<sleep summary (see Table D.5 for an example)>

Based on the data, we can get the following insights:
<insights response>
Causes:
<etiology response>
What recommendation(s) can you provide to help this user improve their sleep? Tie
recommendations to the very likely and possible causes, for example, “Recommendations
to address Circadian rhythm”. Tie recommendations to user’s sleep data such as average
bedtime, average wake time, and number of naps, and recommend a goal bedtime and
wake time based on their data. The recommendations should be time-bound, for example
for the next week or the next month. Write one short question to ask the user in order
to better understand their sleep. Avoid assumptions regarding the trainee’s lifestyle or
behavioral choices. Avoid generic statements. Avoid incorrect knowledge, inconsistencies
and contradictions. Don’t mention “the user”. Talk like you’re speaking directly to someone.
Be concise.
# Recommendations report

Table D.4: Abridged example of sleep logs table for a particular individual used in sleep case
studies. For brevity, only seven days are shown.

Abridged example of sleep logs table for a particular individual used in sleep case studies

Date Day of Week Sleep Score Light Sleep (hh:mm) REM Sleep (hh:mm) Deep Sleep (hh:mm) Sleep Duration (hh:mm) Fall Asleep Time Wake after Sleep Onset (hh:mm) Efficiency Fraction of Sleep Goal Wakeup Count Heart Rate (bpm) Nap Duration (min) Naps Wake Time
<year-month-day> Thursday 71.0 04:24 00:59 00:40 06:04 00:05 00:04 0.88 0.76 4.0 58.0 0.0 0.0 06:13
<year-month-day> Friday 72.0 03:13 01:07 01:03 05:24 00:38 00:08 0.85 0.68 8.0 58.0 88.0 1.0 06:10
<year-month-day> Saturday 87.0 05:08 01:51 02:00 09:00 03:02 00:10 0.87 1.12 9.0 58.0 0.0 0.0 12:12
<year-month-day> Sunday 83.0 05:16 01:49 01:41 08:47 03:54 00:15 0.86 1.10 15.0 58.0 0.0 0.0 12:56
<year-month-day> Monday 68.0 04:21 00:50 00:42 05:54 00:07 00:08 0.85 0.74 8.0 58.0 0.0 0.0 06:09
<year-month-day> Monday 64.0 01:29 00:27 00:51 02:48 16:10 00:05 0.85 0.35 5.0 58.0 0.0 0.0 19:03
<year-month-day> Tuesday 70.0 01:18 00:43 00:50 02:52 03:42 00:02 0.87 0.36 2.0 59.0 0.0 0.0 06:36
<year-month-day> Wednesday 72.0 03:19 01:14 01:02 05:36 00:17 00:09 0.83 0.70 9.0 58.0 0.0 0.0 06:02
<year-month-day> Wednesday 71.0 01:41 00:43 00:35 03:00 16:22 00:00 0.86 0.38 0.0 58.0 0.0 0.0 19:22
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Table D.5: Abridged example of sleep summary for a particular individual used in sleep case
studies. Stratified features report overall statistics as well as stratified by workday vs weekend, and
include bedtime, wake time, midsleep point, sleep duration, and sleep score. Unstratified features
include time to quality sleep, wake time after sleep onset, sleep efficiency, light sleep duration, deep
sleep duration, REM sleep duration, and restlessness score. Nap length and total number of naps are
also reported.

Abridged example of sleep summary for a particular individual used in sleep case studies.

Average bedtime is 00:26
Average bedtime is in the 65th percentile
Earliest bedtime is 16:10
Latest bedtime is 06:22
Bottom 5th percentile of similar users’ average bedtimes is 21:25
Top 95th percentile of similar users’ average bedtimes is 03:07

Bedtime standard deviation is 03:34
Bedtime standard deviation is in the 94th percentile

Average bedtime on the weekend is 01:35
Average bedtime on the weekend is in the 72nd percentile
Earliest bedtime on the weekend is 16:58
Latest bedtime on the weekend is 06:22
Bottom 5th percentile of similar users’ average bedtimes on the weekend is 21:45
Top 95th percentile of similar users’ average bedtimes on the weekend is 03:28

Bedtime standard deviation on the weekend is 03:46
Bedtime standard deviation on the weekend is in the 92nd percentile

Average bedtime on a workday is 23:58
Average bedtime on a workday is in the 60th percentile
Earliest bedtime on a workday is 16:10
Latest bedtime on a workday is 06:22
Bottom 5th percentile of similar users’ average bedtimes on a workday is 21:10
Top 95th percentile of similar users’ average bedtimes on a workday is 03:14

Bedtime standard deviation on a workday is 03:28
Bedtime standard deviation on a workday is in the 94th percentile

Median bedtime on a workday is 00:38
Median bedtime on a workday is in the 73rd percentile
Bottom 5th percentile of similar users’ median bedtimes on a workday is 21:04
Top 95th percentile of similar users’ median bedtimes on a workday is 03:23

...
Average time to quality sleep is 00:33
Average time to quality sleep is in the 92nd percentile
Shortest time to quality sleep is 00:04
Longest time to quality sleep is 01:23
Bottom 5th percentile of similar users’ average times to quality sleep is 00:13
Top 95th percentile of similar users’ average times to quality sleep is 00:35

...
Average nap length is 129
Average nap length is in the 92nd percentile

Total number of naps is 4

Table D.6: Prompt for fitness case studies demographics section.

Prompt for fitness studies demographics section

You are a NSCA and ACSM board-certified fitness trainer who specializes in athlete training
performance and recovery.
Age: <age>
Height: <height>
Weight: <weight>
BMI: <BMI>
Gender: <gender>

Are there any special precautions that should be taken into account when recommending a
fitness program to avoid injury? Comment if the trainee has exceptional demographics (e.g.
very old, very high BMI, very low BMI) that require special considerations. Write a single
sentence. Avoid mentioning diseases.
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Table D.7: Prompt for fitness case studies training load section.

Prompt for fitness case studies training load section

The following section shows some of the trainee’s recent activity metrics including the active
zone minutes: Fat burn zone (50% heart rate reserve), Cardio zone (70% heart rate reserve),
and Peak zone (85% heart rate reserve.)
Daily activity metrics:

<table of daily activity metrics (see Table D.11 for an example)>
Today is <day of the week> <year-month-day>.

Here are some aggregate statistics for the last 30 days:
<aggregate statistics of daily activity metrics (see Table D.12 for an example)>

Analyze the trainee’s recent activity metrics, aggregate statistics for the last 30 days,
and most recent exercise logs. Assess the following: Training Load Trends, Intensity,
Duration, Frequency, Rest Periods, Acute-Chronic-Workload Ratio (ACWR), Recent Activity
Levels, and Significant Workouts. For Training Load Trends, consider mean moderate
activity per day, mean vigorous activity per day, comment on balance between moderate
and vigorous activity. For Intensity, consider the most recent exercise logs, assess time in
fat-burn zone (moderate intensity), time in cardio zone (vigorous intensity), time in peak
zone (peak intensity), and state whether the workouts overall reached each zone, consider the
daily activity metrics and assess the TRIMP values. For Duration, consider the most recent
exercise logs and list the lowest and highest duration as a range. For Frequency, consider
the most recent exercise logs, and check on which days of the week there is a workout.
For Rest Periods, consider the daily activity metrics table and see if some days have very
low to zero TRIMP - these are also rest periods, comment on the number of rest days and
which days of the week. For Acute-Chronic-Workload Ratio, consider acute TRIMP, chronic
TRIMP, see if acute TRIMP is higher than chronic TRIMP and state what it means in terms
of training load, consider Acute-Chronic Workload Ratio (ACWR) and state what it means
for recovery. ACWR values above 1.5 reflect a significant increase in training load and may
result in a higher risk of injury. ACWR values of less than 0.7 indicate that the trainee has
had a significant decrease in training load and may be at risk of detraining. For Recent
Activity Levels and Significant Workouts, consider the most recent exercise logs and note any
recent significant workouts that are related to changes in the training load metrics, consider
the daily activity metrics and highlight days with highest TRIMP and explain their importance.

Note: Remember to avoid readiness assessments, avoid recommendations, avoid
making up data, and stay directly aligned with the provided data.
- Base all observations and insights on the provided data.
- Avoid generic advice.
- Refrain from making up data or giving general advice not rooted in the data.
- Avoid assumptions regarding the trainee’s lifestyle or behavioral choices.
- Do not elaborate on anything not contained within the data tables.
- Do not compute or reference complex mathematical calculations like correlation coefficients.
- When explaining the numerical difference, refrain from inventing any calculations if you are
not certain about them.
- Use markdown to structure the response.
- Use an observation/insight format:
* **Observation:** A factual observation from the data.
* **Insight:** The implication of the observation in the context of the user’s health.
- Group the observation/insights into appropriate sections.
# Training load report
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Table D.8: Prompt for fitness case studies sleep section.

Prompt for fitness case studies sleep section

These are the trainee’s recent sleep metrics:

<table of sleep metrics for fitness case studies (see Table D.13 for an example)>
Today is <day of the week> <year-month-day>.

Here are some aggregate statistics for the last 30 days:
<aggregate statistics of sleep metrics (see Table D.14 for an example)>

- Assess the following aspects of trainee’s sleep based on metrics:
* Sleep Schedule: bedtimes and wake-times
* Sleep Duration: sleep duration metrics
* Sleep Quality: sleep score. Excellent sleep score is 90 to 100. Good sleep score is 80 to 89.
Fair sleep score is 60 to 79. Poor sleep score is less than 60.
* Today’s Sleep: Comment on today’s values and compare them to the aggregate statistics for
the last 30 days. Make this comment only if sleep duration Z-score or sleep score Z-score
is less than -2, comment that this indicates significantly worse recent sleep in the last 3
days compared to the monthly average sleep duration and low final readiness assessment is
recommended . Make this comment only if sleep duration Z-score or sleep score Z-score is
more than 2, comment that this indicates significantly improved recent sleep in the last 3
days compared to the monthly average sleep duration.

- Base all observations and insights on the provided data.
- Avoid generic advice.
- Refrain from making up data or giving general advice not rooted in the data.
- Avoid assumptions regarding the trainee’s lifestyle or behavioral choices.
- Do not elaborate on anything not contained within the data tables.
- Do not compute or reference complex mathematical calculations like correlation coefficients.
- When explaining the numerical difference, refrain from inventing any calculations if you are
not certain about them.
- Be very concise.
- Avoid ## Recommendations.
- Avoid ## Overall Insights
- Use markdown to structure the response.
- Use an observation/insight format:
* **Observation:** A factual observation from the data.
* **Insight:** The implication of the observation in the context of user’s health.
- Group the observation/insights into appropriate sections.
# Sleep report
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Table D.9: Prompt for fitness case studies health metrics section.

Prompt for fitness case studies health metrics section

Here are some of the trainee’s daily health metrics for the past month:

<table of health metrics over past 30 days (see Table D.15 for an example)>

Here are some of the trainee’s daily health metrics for the past week:

<table of health metrics over past week (see Table D.16 for an example)>
Today is <day of the week> <year-month-day>.
Here are some aggregate statistics for the last 30 days:
<aggregate statistics of health metrics (see Table D.17 for an example)>

- Examine patterns for each health metric:
* Resting heart rate
* Heart rate variability
* Respiratory rate
- For each metric:
* Comment on the general baseline values.
* Comment on any trends/changes or consistency/typical/normal range of the metrics in the
latest week compared to the month.
* Comment on today’s values and compare them to the baseline and recent trends.
* Place emphasis on recent values in relation to long-term aggregated data.
- The Z-scores are number of standard deviations today’s values are from the trainee’s
monthly baseline. Z-score < -2 indicates a significant decline and > 2 indicates a significant
increase. Do not refer to the Z-scores directly.

Note: The goal is to extract as much actionable information as possible from the
metrics, particularly in the context of understanding someone’s recovery state.- Base all
observations and insights on the provided data.
- Avoid generic advice.
- Refrain from making up data or giving general advice not rooted in the data.
- Avoid assumptions regarding the trainee’s lifestyle or behavioral choices.
- Do not elaborate on anything not contained within the data tables.
- Do not compute or reference complex mathematical calculations like correlation coefficients.
- When explaining the numerical difference, refrain from inventing any calculations if you are
not certain about them.
- Be concise.
- Avoid ## Overall insights.
- Use markdown to structure the response.
- Use an observation/insight format:
* **Observation:** A factual observation from the data.
* **Insight:** The implication of the observation in the context of user’s health.
- For example use the following template:
## Resting Heart Rate
**Observation:**
**Insight:**
## Heart rate variability
**Observation:**
**Insight:**
## Respiratory rate
**Observation:**
**Insight:**

# Health report
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Table D.10: Prompt for fitness case studies readiness assessment section.

Prompt for fitness case studies readiness assessment section

Use the following observations and insights to personalize the response below.
<demographics response>

<training load response>

<sleep metrics response>

<health metrics response>

The trainee has also provided the following qualitative feedback:
<subjective readiness>
<muscle soreness>

Based on the above observations and insights, determine the trainee’s readiness to
workout today. Use the following template and provide 1-2 bullet points for each section:
**Load**
**Sleep**
**Health Metrics**
**Subjective Readiness + Muscle Soreness**
**Readiness Score**
* X/5
* Explanation:
**Fitness Recommendations for Today**
**Followup Question**

For Load, Sleep, Health Metrics, and Subjective Readiness + Muscle Soreness, pro-
vide a short summary of the most important observations and insights, referencing any data,
that are relevant to trainee’s readiness to train today. Then based on that, provide a Readiness
Score of 1 to 5 (in place of X) with 1 meaning not ready at all and 5 meaning very ready. 3
means the trainee may be ready with adaptation to their workout. Provide an explanation
for why this score was chosen. Provide short actionable recommendations based on the
readiness assessment of next steps. Write a single question to ask the trainee in order to better
understand their workout habits, fitness, or sleep.
# Readiness summary report

Table D.11: Abridged example of daily activity metrics table for a particular individual used
in fitness case studies. For brevity, only seven days of activity are shown.

Abridged example of daily activity metrics table for a particular individual used in fitness
case studies

Day of the week date Fat-burn zone minutes Cardio zone minutes Peak zone minutes TRIMP Steps
Wednesday <year-month-day> 15.0 27.0 0.0 62.0 16200
Thursday <year-month-day> 19.0 23.0 1.0 62.0 9900
Friday <year-month-day> 6.0 0.0 0.0 6.0 5950
Saturday <year-month-day> 20.0 0.0 0.0 20.0 11210
Sunday <year-month-day> 1.0 0.0 0.0 1.0 8160
Monday <year-month-day> 7.0 0.0 0.0 7.0 13120
Tuesday <year-month-day> 12.0 0.0 0.0 12.0 15490
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Table D.12: Abridged example of aggregated daily activity metrics table for a particular
individual used in fitness case studies. Full exercise logs contain at most 10 most recent exercise
logs. Here we show the overall aggregates but only three activities for brevity.

Abridged example of aggregated daily activity metrics table for a particular individual used
in fitness case studies.

Mean moderate activity per day (Fat-burn): 12.3 mins
Mean vigorous activity per day (Cardio and Peak): 12.7 mins
TRIMP ranges from 0 to 124
Acute TRIMP (7-day total training load): 346
Chronic TRIMP (28-day average acute training load): 235
Acute-Chronic Workload Ratio (ACWR): 1.5

These are exercise logs from most recent days.
Walk on Wednesday <year-month-day>
Duration: 17 mins
Average Heart Rate: 98 bpm
Time in Fat-burn zone: 18 mins
Time in Cardio zone: 0 mins
Time in Peak zone: 0 mins
Distance: 0 km
TRIMP that day: 47.0

Walk on Wednesday <year-month-day>
Duration: 11 mins
Average Heart Rate: 88 bpm
Time in Fat-burn zone: 8 mins
Time in Cardio zone: 0 mins
Time in Peak zone: 0 mins
Distance: 0 km
TRIMP that day: 47.0

Treadmill on Thursday <year-month-day>
Duration: 46 mins
Average Heart Rate: 140 bpm
Time in Fat-burn zone: 7 mins
Time in Cardio zone: 13 mins
Time in Peak zone: 14 mins
Distance: 5 km
TRIMP that day: 53.0
Average workout duration: 19.2 mins
Workout duration ranges from 10 to 46 mins
Average heart rate ranges from 80 to 140 bpm

Table D.13: Abridged example of sleep metrics table for a particular individual used in fitness
case studies. For brevity, only seven days are shown.

Abridged example of sleep metrics table for a particular individual used in fitness case studies.

Day of the week Date Sleep start time Sleep end (wake) time Sleep time (hours) Awake time (minutes) Deep sleep (minutes) REM sleep (minutes) Sleep score
Wednesday <year-month-day> 23:01 07:05 7 53 80 18 80
Thursday <year-month-day> 22:48 07:17 7 49 94 17 84
Friday <year-month-day> 22:43 07:12 7 77 61 13 71
Saturday <year-month-day> 00:15 08:12 7 55 87 21 83
Sunday <year-month-day> 01:11 09:33 7 62 86 15 74
Monday <year-month-day> 23:16 07:31 7 57 104 19 86
Tuesday <year-month-day> 22:13 04:04 4 55 41 13 64

Table D.14: Example of aggregated sleep metrics table for a particular individual used in
fitness case studies.

Example of aggregated sleep metrics table for a particular individual used in fitness case
studies.

Mean bedtime: 00:11
Mean wake-time: 07:35
Mean sleep duration: 6.3 hours
Standard deviation sleep duration: 1.3 hours
Sleep duration Z-score (recent days relative to month): -0.6
Mean sleep score: 76
Standard deviation sleep score: 9.1
Sleep score Z-score (recent days relative to month): -0.2
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Table D.15: Example of health metrics table over the past 30 days for a particular individual
used in fitness case studies.

Example of health metrics table for a particular individual used in fitness case studies.

Day of the week Date Resting Heart Rate (bpm) HRV RMSSD (ms) Respiratory Rate (breaths/minute)
Wednesday <year-month-day> 53.0 27 14
Thursday <year-month-day> 54.0 22 13
Friday <year-month-day> 55.0 27 13
Saturday <year-month-day> 56.0 23 15
Sunday <year-month-day> 57.0 23 14
Monday <year-month-day> 56.0 31 14
Tuesday <year-month-day> 56.0 19 15
Wednesday <year-month-day> 58.0 NaN NaN
Thursday <year-month-day> 61.0 17 15
Friday <year-month-day> 64.0 13 15
Saturday <year-month-day> 62.0 23 15
Sunday <year-month-day> 63.0 16 15
Monday <year-month-day> 62.0 26 14
Tuesday <year-month-day> 60.0 28 14
Wednesday <year-month-day> 61.0 17 15
Thursday <year-month-day> 59.0 30 14
Friday <year-month-day> 57.0 35 15
Saturday <year-month-day> 58.0 25 16
Sunday <year-month-day> 58.0 20 16
Monday <year-month-day> 60.0 16 15
Tuesday <year-month-day> 58.0 29 14
Wednesday <year-month-day> 56.0 40 13
Thursday <year-month-day> 54.0 41 14
Friday <year-month-day> 56.0 28 15
Saturday <year-month-day> 57.0 NaN NaN
Sunday <year-month-day> 60.0 17 16
Monday <year-month-day> 62.0 15 15
Tuesday <year-month-day> 65.0 19 16
Wednesday <year-month-day> 67.0 16 16
Thursday <year-month-day> 66.0 18 16

Table D.16: Example of health metrics table for a particular individual used in fitness case
studies.

Example of health metrics table for a particular individual used in fitness case studies.

Day of the week Date Resting Heart Rate (bpm) HRV RMSSD (ms) Respiratory Rate (breaths/minute)
Friday <year-month-day> 56.0 28 15
Saturday <year-month-day> 57.0 NaN NaN
Sunday <year-month-day> 60.0 17 16
Monday <year-month-day> 62.0 15 15
Tuesday <year-month-day> 65.0 19 16
Wednesday <year-month-day> 67.0 16 16
Thursday <year-month-day> 66.0 18 16
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Table D.17: Example of aggregated health metrics table for a particular individual used in
fitness case studies.

Example of aggregated health metrics table for a particular individual used in fitness case
studies.

Mean Resting Heart Rate: 59 bpm
Standard deviation Resting Heart Rate: 3 bpm
Resting Heart Rate Z-score: 1.9
Mean HRV RMSSD: 24 ms
Standard deviation HRV RMSSD: 7 ms
HRV RMSSD Z-score: -0.8
Mean Respiratory Rate: 15 breaths/minute
Standard deviation Respiratory Rate: 0.83 breaths/minute
Respiratory Rate Z-score: 0.9
Past week:
Resting Heart Rate range: 56 to 67 bpm
HRV RMSSD range: 16 to 28 ms
Respiratory Rate range: 15 to 17 breaths/min

Table D.18: Example of synthetically-generated user input for subjective readiness to workout
used in fitness case studies.

Example of synthetically-generated user input for subjective readiness to workout used in
fitness case studies.

3/5 - Feeling a bit stressed and fatigued from the increased training load, but I’m staying
hydrated and prioritizing recovery.

Table D.19: Example of synthetically-generated user input for muscle soreness used in fitness
case studies.

Example of synthetically-generated user input for muscle soreness used in fitness case studies.

Feeling the burn in my calves and quads after increasing my mileage on the treadmill, but it’s
a manageable soreness.
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D.2 Case study evaluation rubrics

The case studies were graded using the rubric below. Each question is presented on a 5-point Likert
scale for which 5 is the best score. The twelve section-specific questions were presented for grading
of each section of each case study. The three overall evaluation questions were presented for grading
of the entire case study as a whole.

Section-specific evaluation questions

Q1. This section references all important user data needed.

1. None of the important user data is referenced
2. There are some pieces of important user data referenced but most important user data is missing
3. About half of the important user data is referenced
4. Most of the important user data is referenced
5. All important user data is referenced

Q2. This section does not reference unimportant user data.

1. Only unimportant user data is referenced
2. Many unimportant user data references exist
3. Several unimportant user data references exist
4. A few unimportant user data references exist
5. No unimportant user data references exist

Q3. This section does not reference incorrect user data, (e.g., hallucinated user data, incorrect
variable, incorrect time period).

1. Only incorrect user data is referenced
2. Many incorrect user data references exist
3. Several incorrect user data references exist
4. A few incorrect user data references exist
5. No incorrect user data references exist

Q4. This section contains all important interpretations (aka personalization).

1. None of the important interpretations are referenced
2. There are many important data interpretations missing
3. There are several important data interpretations missing
4. There are a few important data interpretations missing
5. All important data interpretations are present

Q5. This section does not contain unimportant data interpretations (aka unimportant person-
alization).

1. All of the data interpretations are unimportant
2. Many of the data interpretations are unimportant
3. Some of the data interpretations are unimportant
4. A few of the data interpretations are unimportant
5. None of the data interpretations are unimportant

Q6. This section does not contain errors in its important interpretations, and correctly refuses
to answer when such data is missing.

1. All of the important data interpretations are incorrect

34



2. Many of the important data interpretations are incorrect
3. Some of the important data interpretations are incorrect
4. A few of the important data interpretations are incorrect
5. None of the important data interpretations are incorrect

Q7. This section does not contain errors in its unimportant interpretations.

1. All of the unimportant data interpretations are incorrect
2. Many of the unimportant data interpretations are incorrect
3. Some of the unimportant data interpretations are incorrect
4. A few of the unimportant data interpretations are incorrect
5. None of the unimportant data interpretations are incorrect

Q8. This section does not make assumptions about the user beyond the information provided,
for instance about their demographics (e.g race, ethnicity, health, lifestyle) or associated stereo-
types.

1. There are many assumptions present
2. There are several assumptions present
3. There are a few assumptions present
4. There is 1 assumption present
5. No assumptions are present

Q9. This section contains evidence of important domain knowledge (e.g., mention of a relevant
and/or correct fact for answering the question).

1. No important domain knowledge is referenced
2. There are some pieces of important domain knowledge referenced but most data is missing
3. About half of the important domain knowledge is referenced
4. Most of the important user data is referenced
5. All important domain knowledge is referenced

Q10. This section does not contain evidence of unimportant domain knowledge (e.g knowledge
which has no use for the task objective).

1. Only unimportant domain knowledge is referenced
2. Many unimportant domain knowledge references exist
3. Several unimportant domain knowledge references exist
4. A few unimportant domain knowledge references exist
5. No unimportant domain knowledge references exist

Q11. This section does not contain evidence of incorrect domain knowledge (e.g factually
incorrect or not accepted by expert consensus).

1. Only incorrect domain knowledge is referenced
2. Many incorrect domain knowledge references exist
3. Several incorrect domain knowledge references exist
4. A few incorrect domain knowledge references exist
5. No incorrect domain knowledge references exist

Q12. This section does not contain evidence of hallucinations or fabricated knowledge (knowl-
edge which has no possible source).

1. Only references to hallucinations or fabricated knowledge exists

35



2. Many references to hallucinations or fabricated knowledge exist
3. Several references to hallucinations or fabricated knowledge exist
4. A few references to hallucinations or fabricated knowledge exist
5. No references to hallucinations or fabricated knowledge exist

Overall evaluation questions

Overall Q1. This case study does not contain information that could lead to harm.

1. There is information that would likely cause the User serious harm
2. There is information that would likely cause the User some harm
3. There is information that may cause the User harm
4. There is potentially harmful information, but it is not significant
5. There is no information that could lead to harm

Overall Q2. This case study is easy to read and contains proper formatting, spelling, and
punctuation.

1. The case is very difficult to read due to grammatical or formatting issues
2. There are many grammatical or formatting issues that affect readability
3. There are some grammatical or formatting issues that affect readability
4. There are a few grammatical or formatting issues, but is still easy to read
5. The case is easy to read and has no grammatical or formatting issues

Overall Q3. What is the overall quality of this case study?

1. Very Poor: the entire case needs to be rewritten
2. Poor: There are some highly significant errors present
3. Fair: The case could be improved
4. Good: Some slight improvements are possible
5. Excellent: No changes needed
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D.3 Additional case study performance evaluations
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Figure D.3: Sleep and fitness case study human evaluation results by principle. Mean ratings
given by experts for different case study evaluation principles across all sections in the sleep and
fitness domains. The principles are ordered according to the rubric presented in Section D.2. “∗”
indicates a statistically significant difference between two response types after multiple hypothesis
testing correction. Error bars represent 95% confidence intervals.

D.4 Inter-rater expert agreement and rating speeds across primary and secondary raters

In order to assess agreement between raters and analyze differences between primary and secondary
rater groups, we introduced a small amount of overlap across case study rating assignments within
each vertical, resulting in anywhere from 78 to 1,428 paired ratings within a subset of raters. To
evaluate inter-rater reliability, we employed several established metrics: raw counts of agreement,
pairwise Spearman’s rank correlation, Kendall’s Coefficient of Concordance (Kendall’s W), Weighted
Cohen’s Kappa, and Gwet’s AC2. Spearman’s correlation and Kendall’s Coefficient of Concordance
are metrics based on comparing ranks of expert ratings. These may be more conservative in the
presence of many ties, as in our data with many ratings clustered around 4 and 5. Weighted Cohen’s
Kappa measures agreement between raters adjusted for chance agreement. The metric ranges from -1
to 1 with zero indicating that the agreement among raters is similar to chance. Weighted Cohen’s
Kappa can exhibit paradoxical behavior (“Kappa Paradox”), underestimating the true extent of
agreement between raters [26] in imbalanced datasets such as ours. Gwet’s AC1, and its weighted
extension designed for ordinal data, Gwet’s AC2, were designed to deal with class imbalance while
adjusting for chance agreement [26, 27]. Based on both contingency tables showing raw agreement
between raters (Figures D.4 and D.5) and measures of inter-rater reliability (Figures D.6 and D.7),
we conclude moderate inter-rater reliability with conservative metrics like Weighted Cohen’s Kappa
being above 0, which indicates agreement beyond chance and with Gwet’s AC2 ranging from 0.699
to 0.956.

We also generally observe that primary raters tend to have higher measures of agreement with one
another than with secondary raters. However, due to low sample sizes, this difference is not significant
(see Figures D.4 and D.5 for contingency tables and Figures D.6 and D.7 for agreement measures).
We also measured the amount of time it took for each rater to rate all sections and principles for a
given case study in minutes. We find that primary raters rate significantly faster than secondary raters
in both verticals (Table D.23).
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Figure D.4: Contingency tables showing pairwise rating agreement between raters in the sleep
vertical. Counts are aggregated across all case studies, sections, and principles for each case study for
which multiple ratings are available. Blue, primary vs primary raters. Green, primary vs secondary
raters. Yellow, secondary vs secondary raters.
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Figure D.5: Contingency tables showing pairwise rating agreement between raters in the fitness
vertical. Counts are aggregated across all case studies, sections, and principles for each case study for
which multiple ratings are available. Blue, primary vs primary raters. Green, primary vs secondary
raters. Yellow, secondary vs secondary raters.
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Figure D.6: Pairwise Spearman’s rank correlation, Weighted Cohen’s Kappa, Kendall’s Coef-
ficient of Concordance (Kendall’s W), and Gwet’s AC2 measuring concordance between pri-
mary and secondary raters in the sleep vertical. Metrics were computed using all ratings for each
principle and section across case studies rated by more than one rater. The number of overlapping
ratings is denoted by n. Mean metrics and 95% confidence intervals derived from 1,000 bootstrapping
iterations are reported for each pair.
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Figure D.7: Pairwise Spearman’s rank correlation, Weighted Cohen’s Kappa, Kendall’s Coef-
ficient of Concordance (Kendall’s W), and Gwet’s AC2 measuring concordance between pri-
mary and secondary raters in the fitness vertical. Metrics were computed using all ratings for each
principle and section across case studies rated by more than one rater. The number of overlapping
ratings is denoted by n. Mean metrics and 95% confidence intervals derived from 1,000 bootstrapping
iterations are reported for each pair.
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D.5 Automatic evaluation of case studies

Insights Etiology Recommendations
Section

1

2

3

4

5
A

ve
ra

ge
 R

at
in

g
** * *

Sleep

Gemini Ultra
PH-LLM
Human Expert

Training Load Sleep Health Metrics Assessment
Section

1

2

3

4

5

A
ve

ra
ge

 R
at

in
g

*

Fitness

Figure D.8: Case Study AutoEval Evaluation Results Using High-Variance Raters. Mean ratings
given by AutoEval models tuned using ratings from high variance raters for the case study subsections
across the (Left) sleep and (Right) fitness domains. “∗” indicates a statistically significant difference
between two response types after multiple hypothesis testing correction. Error bars represent 95%
confidence intervals.
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Figure D.9: Case Study AutoEval Evaluation Results Using Low-Variance Raters. Mean ratings
given by AutoEval models tuned using ratings from low variance raters for the case study subsections
across the (Left) sleep and (Right) fitness domains. “∗” indicates a statistically significant difference
between two response types after multiple hypothesis testing correction. Error bars represent 95%
confidence intervals.

42



Table D.20: Generic prompting format for AutoEval model fine-tuning and inference. Here,
the “{VERTICAL}” placeholder is either sleep or fitness and “{TAG_LABEL}” is the case study
section being rated (e.g., “Etiology”). “{OBJECTIVE}”, “{PRINCIPLE_CRITERIA}”, and
“{OPTION_N}” refer to the evaluation criteria for the given section and principle as outlined in
Appendix C.5. The “{RATING}” and “{RATING_TEXT_DESC}” placeholders are replaced with
the rating assigned by the expert raters. Finally, “{CASE_STUDY_DATA}” is replaced with a high
level overview of the case study while “{ASSISTANT_TEXT}” is replaced with the case study
response from an expert or model.

Generic prompting format for AutoEval model fine-tuning and inference

Prompt:
You are a {VERTICAL} expert rater assessing the quality of health suggestions made by
another personal health expert using the criteria below.

We use the following definitions when describing evaluation objectives:

- Personalization: The act of taking into account the users data to describe relation-
ships, causes, or to add/implement domain knowledge.
- Important Data: Useful for accomplishing the objective.
- Unimportant Data: Not useful for accomplishing the objective.
- Common Objective: The goals present across both human instructions and the models
prompt. Goals only performed by the model or only performed by the human rater are not
included.

You are rating the quality of a {VERTICAL} “{TAG_LABEL}” response. The ob-
jective is: “{OBJECTIVE}”.

The other {VERTICAL} expert was provided the following user data and informa-
tion:

```
{CASE_STUDY_DATA}
```

The response from the other {VERTICAL} expert is:

```
{ASSISTANT_TEXT}
```

Grade this response using the following criteria and Likert scale statements:

Criteria: {PRINCIPLE_CRITERIA}

1. {OPTION_1}
2. {OPTION_2}
3. {OPTION_3}
4. {OPTION_4}
5. {OPTION_5}

State only the numeric score and option text when providing your rating. The for-
matting of your response must match that of the Likert scale statement.

Target:
{RATING}. {RATING_TEXT_DESC}
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Table D.21: Prompting format for AutoEval model fine-tuning and inference in the sleep
vertical for the “Recommendations” section and the “No incorrect domain knowledge”
principle. Here, “{CASE_STUDY_DATA}” is replaced with a high level overview of the case study
while “{ASSISTANT_TEXT}” is replaced with the case study response from an expert or model.

Prompting format for AutoEval model fine-tuning and inference in the sleep vertical for the
“Recommendations” section and the “No incorrect domain knowledge” principle

Prompt:
You are a sleep expert rater assessing the quality of health suggestions made by another
personal health expert using the criteria below.

We use the following definitions when describing evaluation objectives:

- Personalization: The act of taking into account the users data to describe relation-
ships, causes, or to add/implement domain knowledge.
- Important Data: Useful for accomplishing the objective.
- Unimportant Data: Not useful for accomplishing the objective.
- Common Objective: The goals present across both human instructions and the models
prompt. Goals only performed by the model or only performed by the human rater are not
included.

You are rating the quality of a sleep “Recommendations” response. The objective
is: “Provide recommendations to the user that can help them improve their sleep by
addressing potential causes identified in the Etiology section. Avoid providing generic
recommendations that are not personalized. This section does not require specific data to
be cited directly, but the interpretation used to justify the recommendation should be present.”.

The other sleep expert was provided the following user data and information:

```
{CASE_STUDY_DATA}
```

The response from the other sleep expert is:

```
{ASSISTANT_TEXT}
```

Grade this response using the following criteria and Likert scale statements:

Criteria: This section does not contain evidence of incorrect domain knowledge
(e.g., factually incorrect or not accepted by expert consensus).

1. Only incorrect domain knowledge is referenced.
2. Many incorrect domain knowledge references exist.
3. Several incorrect domain knowledge references exist.
4. A few incorrect domain knowledge references exist.
5. No incorrect domain knowledge references exist.

State only the numeric score and option text when providing your rating. The for-
matting of your response must match that of the Likert scale statement.

Target:
5. No incorrect domain knowledge references exist.
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Table D.22: AutoEval model performance in the validation set across verticals. AutoEval model
rating predictions are compared with ground truth human ratings from the validation dataset. Here,
“Gemini Pro” denotes an untuned baseline, “Primary” denotes models tuned on only one expert’s
ratings, and “All” denotes models tuned on all ratings for the given vertical. Spearman’s rank
correlation, Kendall’s Coefficient of Concordance (Kendall’s W), and Weighted Cohen’s Kappa
measurements were computed using all ratings for each principle and section. Mean metrics and 95%
confidence intervals derived from 1,000 bootstrapping iterations are reported for each pair. Using
paired bootstrapping, we find that all tuned AutoEval models significantly outperform the untuned
baseline across metrics. However, due to low sample size, differences between tuned AutoEval
models are not statistically significant.

AutoEval Model Spearman’s R Kendall’s W Weighted Kappa

Fitness
Gemini Pro 0.205 (0.152–0.256) 0.198 (0.147–0.248) 0.203 (0.152–0.256)
All 0.280 (0.228–0.329) 0.274 (0.224–0.322) 0.152 (0.114–0.195)
Fitness Primary B 0.284 (0.230–0.336) 0.278 (0.225–0.329) 0.142 (0.106–0.182)
Fitness Primary C 0.305 (0.256–0.352) 0.291 (0.245–0.335) 0.320 (0.270–0.369)

Sleep
Gemini Pro 0.242 (0.185–0.299) 0.230 (0.177–0.283) 0.223 (0.166–0.280)
Sleep Primary D 0.333 (0.279–0.384) 0.316 (0.265–0.365) 0.321 (0.256–0.389)
All 0.341 (0.288–0.395) 0.325 (0.273–0.378) 0.347 (0.272–0.424)
Sleep Primary C 0.368 (0.320–0.417) 0.343 (0.298–0.388) 0.389 (0.338–0.443)

Table D.23: Average time (m) taken to rate all responses for a single case across all sections and
principles. We consider primary raters, secondary raters, a single model, and a fully parallelized
set of models, where “fully parallelized” means serving a model replica for each combination of
sections and principles. The mean time-to-rate and the corresponding 95% confidence intervals were
calculated across 1,000 bootstrapping iterations.

Rater Fitness Sleep

Primary raters 44.7 (38.6–51.2) 26.8 (25.2–28.6)
Secondary raters 87.7 (62.4–115.9) 45.7 (34.3–60.9)
Model (single) 27.5 (26.9–28.1) 24.7 (23.7–25.6)
Model (Fully parallelized) 0.367 (0.361–0.373) 0.411 (0.402–0.421)
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E Professional Examinations

E.1 Additional ablation experiments

Table E.1: Effects of chain-of-thought prompting and self-consistency on PH-LLM Accuracy
for Sleep and Fitness Professional Exams. CoT=Chain-of-Thought, SC=Self-Consistency.

Domain Prompt SC No SC

Sleep
CoT 79% 78%
No CoT 79% 79%

Fitness
CoT 88% 84%
No CoT 87% 85%

Table E.2: Effects of Few-Shot prompting on PH-LLM Accuracy for Sleep and Fitness Profes-
sional Exams.

Domain Prompt SC + CoT

Sleep
Few-Shot 79%
Zero-Shot 75%

Fitness
Few-Shot 88%
Zero-Shot 87%

E.2 Comparison of Professional Exam Performance on Additional Models.

Sleep Fitness
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Figure E.1: Overall performance of professional exams across PH-LLM, different Gemini mod-
els, and Med-PaLM 2. All Gemini model sizes are based on the Gemini 1.0 model family. Error
bars represent 95% confidence intervals.
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Figure E.2: Breakdown performance of sleep professional exams across PH-LLM, different
Gemini models, and Med-PaLM 2. All Gemini model sizes are based on the Gemini 1.0 model
family. Error bars represent 95% confidence intervals.
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E.3 Prompts Used for Professional Exams

Table E.3: Prompt for Multiple-Choice Questions with Chain-of-Thought

Prompt for Multiple-Choice Questions with Chain-of-Thought

Question:
Instructions: The following are multiple choice questions about {domain} knowledge. Solve
them in a step-by-step fashion, starting by summarizing the available information. Output
a single option from {mcq_options} as the final answer and enclosed by xml tags <an-
swer></answer>.
Here are two examples:
## Question: A 26-year-old female presents asking about jet lag. She has no past medical
history, lives on the East Coast, and travels frequently to the West Coast for business. The
person’s career involves planning evening events, and she reports significant sleepiness at
these events that impairs her ability to perform her job. She wants to know how she can adapt
to Pacific Standard Time (PST) before she travels. What treatment plan will help this patient
adapt to PST prior to travel?
(A) Light in evening and later bedtime 1 day before traveling
(B) Light in morning and earlier wake time 3 days before traveling
(C) Light in evening and later bedtime 3 days before traveling
(D) Light in morning and earlier wake time 1 month before traveling
(E) Light in evening and later bedtime 1 month before traveling
Explanation: Let’s solve this step-by-step, referring to authoritative sources as needed. The
West Coast is 3 timezones behind the East Coast. Since she plans evening events, she
needs to shift her schedule to stay up 3 hours later. Adding light in the evening will disrupt
melatonin production, delaying sleepiness. Transitioning timezones typically takes one day
per timezone.
Answer: <answer>(C)</answer>
## Question: What is a difference in the clinical features of obstructive sleep apnea (OSA) in
older adults compared to younger adults?
(A) Increased prevalence of OSA among older adults occurs after age 65.
(B) Clinical symptoms associated with OSA (e.g. excessive daytime sleepiness) are less
common and less severe in older adults than in younger adults.
(C) Increased risk of cardiopulmonary diseases is greater among elderly than among younger
individuals.
(D) Excess body weight, snoring, and witnessed apneas more consistently indicate OSA in
older adults than in younger individuals.
(E) There are no significant OSA differences between older and younger adults.
Explanation: Let’s solve this step-by-step, referring to authoritative sources as needed.
Compared to younger patients with the same apnea hypopnea index, OSA in older patients
is associated with less sleepiness (Morrell et al 2012). This observation has led some to
suggest that OSA in the elderly may represent a distinct physiological phenotype. Answer:
<answer>(B)</answer>
## Question: {mcq_question}
Explanation: Let us solve this step-by-step, referring to authoritative sources as needed.
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Table E.4: Prompt for Multiple-Choice Questions without Chain-of-Thought

Prompt for Multiple-Choice Questions without Chain-of-Thought

Question:
Instructions: The following are multiple choice questions about {domain} knowledge. Output
a single option from {mcq_options} as the final answer and enclosed by xml tags <an-
swer></answer>.
Here are two examples:
## Question: A 26-year-old female presents asking about jet lag. She has no past medical
history, lives on the East Coast, and travels frequently to the West Coast for business. The
person’s career involves planning evening events, and she reports significant sleepiness at
these events that impairs her ability to perform her job. She wants to know how she can adapt
to Pacific Standard Time (PST) before she travels. What treatment plan will help this patient
adapt to PST prior to travel?
(A) Light in evening and later bedtime 1 day before traveling
(B) Light in morning and earlier wake time 3 days before traveling
(C) Light in evening and later bedtime 3 days before traveling
(D) Light in morning and earlier wake time 1 month before traveling
(E) Light in evening and later bedtime 1 month before traveling
Answer: <answer>(C)</answer>
## Question: What is a difference in the clinical features of obstructive sleep apnea (OSA) in
older adults compared to younger adults?
(A) Increased prevalence of OSA among older adults occurs after age 65.
(B) Clinical symptoms associated with OSA (e.g. excessive daytime sleepiness) are less
common and less severe in older adults than in younger adults.
(C) Increased risk of cardiopulmonary diseases is greater among elderly than among younger
individuals.
(D) Excess body weight, snoring, and witnessed apneas more consistently indicate OSA in
older adults than in younger individuals.
(E) There are no significant OSA differences between older and younger adults.
Answer: <answer>(B)</answer>
## Question: {mcq_question}

Table E.5: Prompt for Multiple-Choice Questions with Chain-of-Thought and Zero-Shot

Prompt for Multiple-Choice Questions with Chain-of-Thought and Zero-Shot

Question:
Instructions: The following are multiple choice questions about {domain} knowledge. Solve
them in a step-by-step fashion, starting by summarizing the available information. Output
a single option from {mcq_options} as the final answer and enclosed by xml tags <an-
swer></answer> such as <answer>(A)</answer>.
## Question: {mcq_question}
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F Patient-Reported Outcomes

F.1 Prepossessing

While most individuals had sensor data for over 21 days, distributions were heavily left-skewed
(Supplementary Figure F.1). To obtain a rectangular dataset we retained only individuals with at least
15 days of sensor data (N=7,114) and downsampled all individuals to a set of 15 contiguous days. We
imputed all remaining missing values with the population median computed using all available data
from training set individuals, resulting in a 20× 15 matrix that represents the wearable sensor data
for each research participant over 15 days. Furthermore, we performed standard filtering for data
quality by removing any data points that were more than four standard deviations from the population
median for each sensor value. No imputation was performed for survey answers.

For training, validation and final evaluation we split the dataset into three groups randomly resulting
in 4,978 training examples, 703 validation examples and 1,433 examples.

F.2 Patient-reported outcome prediction input features

Table F.1: Sensor features used to predict each patient-reported outcome.

Sensor Feature Definition

Heart rate variability (rmssd) Heart rate variability root mean square of successive differences
Respiratory rate (rate_brpm) Respiratory rate breaths per minute
Resting heart rate (rhr_bpm) Resting heart rate beats per minute
Awake minutes (awake_minutes) Awake minutes
Deep sleep minutes (deep_sleep_minutes) Deep sleep minutes
Sleep duration (duration_minutes) Sleep duration minutes
Sleep efficiency (efficiency) The fraction of time in bed that was spent sleeping
Overall sleep score (overall_score) Overall sleep score
Percent of sleep in REM (rem_sleep_percent) Percent of sleep in REM
Restlessness (restlessness) Restlessness
Revitalization score (revitalization_score) Revitalization score
Sleep end time (sleep_end_time) Sleep end time encoded as minutes after midnight
Sleep start time (sleep_start_time) Sleep start time encoded as minutes after midnight
Sleep time (sleep_time_minutes) Sleep time minutes
Awake state minutes (waso_count_long_wakes) Total number of minutes in awake state after sleep onset
Number steps (num_steps) Number of steps walked during the day
Cardio minutes (cardio_minutes) Number of minutes spent in cardio zone during the day
Fat burn minutes (fat_burn_minutes) Number of minutes spent in fat burn zone during the day
Peak minutes (peak_minutes) Number of minutes spent in peak zone during the day
Total exercise time (total_multiplied_minutes) Total multiplied minutes of exercise during the day
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Figure F.1: Distribution of number of data points available for each sensor.

F.3 Patient-reported outcome surveys

Each survey is coded so that higher values correspond with greater sleep disturbance or impairment.
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Sleep Disturbance Survey

In the past 7 days, my sleep was restless. [Very Restless]

1. Not at all 2. A little bit 3. Somewhat 4. Quite a bit 5. Very much
© © © © ©

In the past 7 days, I was satisfied with my sleep. [Satisfied]

5. Not at all 4. A little bit 3. Somewhat 2. Quite a bit 1. Very much
© © © © ©

In the past 7 days, my sleep was refreshing. [Refreshed]

5. Not at all 4. A little bit 3. Somewhat 2. Quite a bit 1. Very much
© © © © ©

In the past 7 days, I had difficulty falling asleep. [Trouble falling asleep]

1. Not at all 2. A little bit 3. Somewhat 4. Quite a bit 5. Very much
© © © © ©

In the past 7 days, I had trouble staying asleep. [Trouble staying asleep]

1. Never 2. Rarely 3. Sometimes 4. Often 5. Always
© © © © ©

In the past 7 days, I had trouble sleeping. [Trouble sleeping]

1. Never 2. Rarely 3. Sometimes 4. Often 5. Always
© © © © ©

In the past 7 days, I got enough sleep. [Enough sleep]

5. Never 4. Rarely 3. Sometimes 2. Often 1. Always
© © © © ©

In the past 7 days, my sleep quality was. [Quality]

5. Very poor 4. Poor 3. Fair 2. Good 1. Very good
© © © © ©

Sleep Impairment Survey

In the past 7 days, I had a hard time getting things done because I was sleepy. [Trouble being
productive]

1. Not at all 2. A little bit 3. Somewhat 4. Quite a bit 5. Very much
© © © © ©
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In the past 7 days, I felt alert when I woke up. [Alert]

5. Not at all 4. A little bit 3. Somewhat 2. Quite a bit 1. Very much
© © © © ©

In the past 7 days, I felt tired. [Tiredness]

1. Not at all 2. A little bit 3. Somewhat 4. Quite a bit 5. Very much
© © © © ©

In the past 7 days, I had problems during the day because of poor sleep. [Having problems]

1. Not at all 2. A little bit 3. Somewhat 4. Quite a bit 5. Very much
© © © © ©

In the past 7 days, I had a hard time concentrating because of poor sleep. [Sleep impairment due to
trouble concentrating]

1. Not at all 2. A little bit 3. Somewhat 4. Quite a bit 5. Very much
© © © © ©

In the past 7 days, I felt irritable because of poor sleep. [Sleep impairment due to irritability]

1. Not at all 2. A little bit 3. Somewhat 4. Quite a bit 5. Very much
© © © © ©

In the past 7 days, I was sleepy during the daytime. [Sleepy during daytime]

1. Not at all 2. A little bit 3. Somewhat 4. Quite a bit 5. Very much
© © © © ©

In the past 7 days, I had trouble staying awake during the day. [Trouble staying awake]

1. Not at all 2. A little bit 3. Somewhat 4. Quite a bit 5. Very much
© © © © ©
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Figure F.2: Distribution of responses for each survey question. Survey questions are answered on
a Likert scale. Here we show the distribution of responses for each question. The bar highlighted in a
darker tone indicates those answers that were labeled as positive cases in the defined binary traits.
The training, validation and test set counts are included in the title of each subplot.

F.4 Patient-reported outcome prediction performance.
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Figure F.3: Prediction of Patient-Reported Outcomes. We evaluated the ability for the PH-LLM
to infer subjective patient-reported outcomes using a multimodal adapter and compare to a suite of
logistic regression models trained to predict each task independently, as well as PH-LLM using zero-
and few-shot text prompting. Error bars represent 95% confidence intervals.

Table F.18: Differences in AUROC between PH-LLM using a multimodal adapter and other
modeling approaches. Here, we highlight values in bold where the difference between PH-LLM
with adapter and the other approach were not statistically significant. Statistical significance was
determined via a paired bootstrap estimator.

PH-LLM zero-shot PH-LLM few-shot Logistic Regression

Very restless 0.087 0.090 0.034
Satisfied 0.162 0.173 -0.029
Refreshed 0.114 0.101 -0.005
Trouble falling asleep 0.160 0.051 0.001
Trouble staying asleep 0.052 -0.003 -0.022
Trouble sleeping 0.161 0.069 -0.002
Enough sleep 0.306 -0.000 -0.006
Quality 0.167 0.184 0.009
Trouble being productive 0.260 0.129 0.007
Alert 0.130 0.164 0.002
Tiredness 0.221 0.122 0.027
Having problems 0.245 0.058 -0.005
SI due to trouble concentrating 0.268 0.114 0.009
SI due to irritability 0.207 0.084 0.012
Sleepy during daytime 0.296 0.095 0.004
Trouble staying awake 0.262 0.118 0.019
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Table F.19: Differences in AUPRC between PH-LLM using a multimodal adapter and other
modeling approaches. Here, we highlight values in bold where the difference between PH-LLM
with adapter and the other approach were not statistically significant. Statistical significance was
determined via a paired bootstrap estimator.

PH-LLM zero-shot PH-LLM few-shot Logistic Regression

Very restless 0.077 0.073 -0.004
Satisfied 0.108 0.103 -0.019
Refreshed 0.067 0.064 0.005
Trouble falling asleep 0.067 0.035 -0.018
Trouble staying asleep 0.031 0.021 -0.006
Trouble sleeping 0.104 0.054 0.001
Enough sleep 0.080 -0.004 -0.021
Quality 0.037 0.044 0.009
Trouble being productive 0.118 0.076 -0.003
Alert 0.078 0.103 -0.009
Tiredness 0.155 0.105 0.021
Having problems 0.101 0.035 -0.021
SI due to trouble concentrating 0.127 0.073 0.008
SI due to irritability 0.082 0.053 -0.011
Sleepy during daytime 0.138 0.066 -0.026
Trouble staying awake 0.118 0.080 0.003
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F.5 Patient-reported outcome prompt examples

Table F.20: Example of prompt given to PH-LLM to score PROs. Demographic and sensor
values are passed as text to the model. The feature to predict (in this example, very restless) can
then be scored using the potential completions “yes.” or “no.” For few-shot prompting we
additionally prepend complete examples from the training set to the prompt. When using the
multimodal adapter (see Methods), a vector representation of the quantitative data is passed in via a
set of learned tokens. Values in the below prompt are synthetic.

Example of prompt given to PH-LLM to score PROs.

Use the information provided to predict “very restless”.
age: [40-45]. heart rate variability root mean square of successive differences: 33.5. respira-
tory rate breaths per minute: 16.5. resting heart rate beats per minute: 60.0. awake minutes:
51.0. deep sleep minutes: 53.0. sleep duration minutes: 471610.0. efficiency: 0.85. overall
sleep score: 81.0. percent of sleep in REM: 16.0. restlessness: 0.07. revitalization score: 83.2.
sleep end time: -274.0. sleep start time: 364.0. sleep time minutes: 420.8. total number of
minutes in awake state after sleep onset: 7.4. number of steps walked during the day: 6850.0.
number of minutes spent in cardio zone during the day: 6.7. number of minutes spent in fat
burn zone during the day: 18.9. number of minutes spent in peak zone during the day: 0.41.
total multiplied minutes of exercise during the day: 45.32.
very restless: yes or no?
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: The introduction section has a bullet list of contributions, which are summarized in
the abstract as well. The list of claims/contributions matches the experimental results shown in
figures throughout the paper.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made in

the paper.
• The abstract and/or introduction should clearly state the claims made, including the contribu-

tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations can be found in Appendix B.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that the

paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to vi-

olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.
• The authors should reflect on the scope of the claims made, e.g., if the approach was only

tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by review-
ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [NA] .
Justification: There are no theory or proofs in this paper.
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Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper specifies data collection details, training details, evaluation details, such
as dataset splits and hyperparamters, wherever possible. Details pertaining to base Gemini model
training are omitted as this code and training procedure is not open source.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [No]
Justification: The Gemini model weights are proprietary. The dataset is not open-sourced at this
time. However, the methodological approach described in the paper can be replicated using an
alternative large language model and relevant personal health data.
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Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how to

access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new proposed

method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.
• At submission time, to preserve anonymity, the authors should release anonymized versions

(if applicable).
• Providing as much information as possible in supplemental material (appended to the paper)

is recommended, but including URLs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: The paper specifies training details, such as dataset splits and hyperparamters,
wherever possible. Details pertaining to base Gemini model training are omitted as this code and
training procedure is not open source.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that

is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All core results are accompanied by error bars, confidence intervals, and statistical
significance tests. The factors of variability that the error bars are capturing are clearly stated, the
method for calculating the error bars is explained, and any assumptions made are given.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.
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• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [No]

Justification: We are unable to release details on compute resources used to train or fine-tune
Gemini models.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts can be found in Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.
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• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?
Answer: [NA]
Justification: No data or models are released as part of this manuscript.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?
Answer: [Yes]
Justification: All external data sources, such as multiple choice examinations, are described and
credited.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.
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• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [Yes]
Justification: This investigation performs retrospective selection and analysis of a de-identified
dataset of individuals who gave optional specific informed consent and thus no specific instructions
were given to participants. The general guidelines given to sleep and fitness experts are summarized
in Section 2. The experts were paid at least the minimum wage (based on CA, USA).
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-
jects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [Yes]
Justification: This investigation performs retrospective selection and analysis of a de-identified
dataset such that there is no potential harm or risk to study participants.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may

be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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