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Abstract—Large Language Models (LLMs) have achieved
remarkable success across a range of applications, from code
generation to conversational AI. As LLMs grow in size and
capability, distributed inference across multiple computing nodes
becomes necessary to meet resource demands and performance
goals. However, this shift introduces critical security challenges,
particularly in the handling of sensitive user inputs and interme-
diate model states like key-value (KV) caches. In this paper, we
present SPADA—a Secure, Performant, and Distributed Archi-
tecture for LLM inference that addresses the core challenges of
secure execution, inter-node trust, and efficient communication
in distributed environments. SPADA integrates trusted execution
environments (TEEs), a decentralized trust establishment pro-
tocol, and a lightweight, encrypted communication pipeline. It
also introduces a secure and efficient mechanism for transmitting
distributed KV cache data. Our design ensures that distributed
inference pipelines maintain strong privacy guarantees without
sacrificing throughput or latency, offering a practical foundation
for secure LLM deployment at scale.

I. INTRODUCTION

Large Language Models (LLMs) have emerged as transfor-
mative technologies powering applications like open-domain
question answering, code generation, document summariza-
tion, and multi-turn conversational AI [3], [7], [20]. As these
models grow in size and complexity—spanning hundreds
of billions of parameters—the computational and memory
overhead for inference has increased significantly [8], [9],
[12], [23], [36]. To support real-time applications, substantial
effort has gone into performance optimization. Techniques like
mixed-precision inference, model quantization, speculative de-
coding, and key-value (KV) cache reuse are crucial to scaling
LLM inference. The adoption of high-performance hardware
accelerators like GPUs, TPUs, and custom inference chips
has improved throughput and latency. However, as LLM-based
applications demand longer contexts and greater interactivity,
these optimizations are nearing their limits, especially given
the finite memory and bandwidth of a single compute node.
Distributed LLM inference—partitioning the model and its
state across multiple nodes—has become necessary to scale
workloads efficiently [1], [15], [17], [38], [41].

While distributed inference offers performance benefits, it
introduces critical security and privacy challenges [6], [19],
[29], [33]. Decentralizing inference creates new attack sur-
faces: untrusted nodes may tamper with intermediate results,
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infer sensitive input prompts via timing or access patterns,
or impersonate other nodes [33], [35], [45]. KV caches,
storing intermediate attention keys and values for multi-turn
interactions [16], [31], [39], [44], often contain sensitive
information [14], [18], [21], [25], [43]. Transmitting these
caches without protection poses significant risks. Research has
primarily focused on performance and scalability [2], [5], [10],
[11], [13], [22], [26], [30], [32], [34], [42], leaving security
gaps. This issue is amplified in multi-tenant or cloud-hosted
environments, where infrastructure is shared among untrusted
parties, and sensitive data may be exposed or leaked [24].

Secure distributed inference requires addressing several
design challenges. Participating nodes must verify trustwor-
thiness before exchanging sensitive model states or user data.
Without guarantees, compromised nodes could disrupt exe-
cution or exfiltrate information. Strong intra-node isolation is
essential to preserve model integrity and confidentiality, partic-
ularly with co-located workloads or privileged software. Inter-
node communication must be encrypted and authenticated to
prevent eavesdropping, with minimal overhead [37]. Meeting
these goals without degrading performance, especially for
latency-sensitive applications, remains a complex problem.

To address these challenges, we present SPADA — a
Secure, Performant, and Distributed Architecture for LLM
inference. SPADA ensures end-to-end security for distributed
inference without compromising throughput or latency. It
leverages Trusted Execution Environments (TEEs), such as
Intel SGX and AMD SEV, to isolate the inference runtime,
model parameters, and KV cache within each node, ensuring
privileged software (e.g., hypervisors or OS kernels) cannot
access or tamper with sensitive state. SPADA introduces the
Decentralized Trust Establishment Protocol (DTEP) —
a lightweight protocol enabling mutually authenticated trust
across distributed TEEs without a centralized authority. This
design supports scalable deployments where nodes can join or
leave the system dynamically.

SPADA also incorporates a high-performance secure com-
munication layer optimized for cross-node KV cache ex-
change. This layer ensures confidentiality and integrity with
authenticated encryption while minimizing serialization and
transmission overhead. To enhance performance, SPADA sup-
ports parallelized cache fetches and pipelined token execution,
ensuring security mechanisms do not become a bottleneck.

Despite these strengths, SPADA introduces new engineering
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challenges. TEEs are memory-constrained and may introduce
syscall or paging overheads that affect inference speed. De-
signing a decentralized trust protocol robust to node churn,
failure, or compromise requires careful engineering and secure
key management. Synchronizing KV caches across enclaves
requires an efficient strategy to maintain consistency and avoid
latency spikes or deadlocks.

Our contributions are as follows:
• We identify key privacy and security challenges in dis-

tributed LLM inference, including threats from KV cache
sharing, inter-node communication, and untrusted infras-
tructure.

• We propose SPADA, a new architecture that integrates
TEE-based isolation, decentralized trust establishment,
and secure inter-node communication to ensure both
security and performance.

• We design and implement DTEP, a novel trust protocol
that supports dynamic, scalable trust relationships across
secure inference nodes.

• We develop a secure KV cache transport pipeline that
introduces minimal overhead while providing strong pri-
vacy guarantees.

II. BACKGROUND AND MOTIVATION

A. LLM Inference
Large Language Models (LLMs) based on the Transformer

architecture use dot-product attention to compute Query (Q),
Key (K), and Value (V) embeddings that capture token re-
lationships. Inference is divided into two phases: prefill and
decoding. In the prefill phase, the input prompt is tokenized
and processed in parallel to compute and store K/V embed-
dings as the KV cache. In the decoding phase, tokens are
generated autoregressively; each new token’s Q attends to
cached K/Vs, avoiding recomputation. Without KV caching,
inference would have quadratic time complexity, making long
prompts and multi-turn interactions impractical. KV reuse is
thus essential for low-latency, high-throughput inference in
real-time applications.

B. TEE
Trusted Execution Environments (TEEs) are secure areas

within modern processors that provide isolated execution envi-
ronments to protect the confidentiality and integrity of data and
code. TEEs operate by creating hardware-enforced boundaries
that prevent unauthorized access from other software on the
same system, including the operating system, hypervisor, or
even physical attackers with root privileges. Technologies such
as Intel Software Guard Extensions (SGX) and AMD Secure
Encrypted Virtualization (SEV) enables sensitive computations
to run securely within these enclaves, shielding them from
a wide range of threats. TEEs are particularly valuable in
cloud and edge computing settings, where resources are shared
across multiple tenants and trust assumptions are limited.
By offering hardware-based isolation, TEEs enable secure
processing of sensitive data without requiring trust in the
underlying system software or infrastructure.

C. Motivation and Challenges

TABLE I: Personal Information Counts in C4 and Pile [4].

Personal Information Type C4 Pile

User Name 1,444,683,066 3,273,163,949
Phone Number 19,592,273 23,191,595
Email Number 9,056,833 13,336,793
US Bank Number 7,139,838 69,763,678
Credit Card Number 61,405 741,815
US SSN 2,352,339 12,541,022
IP Address 1,890,090 14,975,663

Total 1,484,780,621 3,407,722,116

As shown in Table I, the analysis of the C4 and Pile
corpora reveals an abundance of personally identifiable to-
kens [27]——over 1.44 billion user names, nearly 20 million
phone numbers, 9 million email addresses, 7 million U.S.
bank numbers, and millions more credit-card numbers, SSNs
and IP addresses. Such pervasive distribution of sensitive data
imposes stringent security requirements on any LLM serving
platform.

Designing a secure, high-performance, and distributed LLM
inference system requires overcoming several tightly inter-
twined and non-trivial challenges, each of which plays a
critical role in ensuring the system’s overall effectiveness.
The successful execution of LLM inference in a distributed
environment depends on the interplay between security, per-
formance, and scalability, all of which need to be addressed
in a seamless manner. The following challenges highlight the
key areas that must be tackled to build a reliable and efficient
distributed LLM inference system.

• Inter-node Trust Establishment: A fundamental chal-
lenges in a distributed LLM inference system is estab-
lishing mutual trust among participating nodes before
exchanging sensitive information. In such setting, nodes
may share user-specific data—including KV cache entries
and intermediate embeddings—beyond merely model pa-
rameters. In the absence of a verifiable trust mechanism,
compromised or or malicious nodes can impersonate
peers, manipulate inference states, or exfiltrate private
data.These risks are exacerbated in cross-domain deploy-
ments, where nodes span heterogeneous administrative
boundaries and are exposed to threats such as man-in-
the-middle or spoofing attacks. The lack of a centralized
trust authority further complicates secure coordination.
Therefore, establishing decentralized and verifiable trust
relationship between nodes are essential. This trust mech-
anism are foundational to ensure authenticity, confiden-
tially, and integrity across the inference pipeline.

• Intra-node Isolation and Protection: Even within
trusted nodes, security risks persist due to untrusted co-
resident workloads or adversarial software. The LLM in-
ference process exposes privacy-sensitive artifacts—such
as user prompts, attention maps, and generated to-
kens—that are vulnerable to memory scraping, privilege
escalation, or side-channel leakage. In these context,
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enforcing strong intra-node isolation is critical. Trusted
Execution Environments (TEEs) offer a promising solu-
tion to these issues by providing an isolated environment
for sensitive computation. However, while TEEs offer
strong security guarantees, they come with certain lim-
itations, particularly in terms of memory capacity, I/O
bandwidth, and programming constraints. For resource-
intensive applications like LLM inference, ensuring that
the TEEs can operate efficiently while maintaining strong
security guarantees is a major challenge. The balance
between securing the model execution and managing the
resource constraints of TEEs is essential to maintain high-
performance inference while safeguarding sensitive data.

• Secure and Low-Overhead Communication: In a dis-
tributed LLM inference system, the communication be-
tween nodes must be secure to ensure the protection of
sensitive data such as user inputs, intermediate results,
and cached context embeddings. As these communica-
tions often involve highly sensitive user information,
strong encryption and authentication mechanisms are
necessary to prevent unauthorized access, eavesdropping,
or data manipulation. However, implementing robust se-
curity protocols should not come at the expense of system
performance. Low-latency communication is essential in
real-time LLM inference systems to ensure fast response
times and high throughput. The challenge, therefore, lies
in finding a balance between securing data transmission
and minimizing the performance overhead associated
with encryption and authentication. This requires the
design of lightweight communication protocols that can
maintain the security of data exchanges without introduc-
ing significant delays. The efficiency of these protocols
becomes even more critical as the scale of the distributed
system grows, as each additional node introduces more
potential points of communication and, consequently,
greater risk of performance bottlenecks.

• Secure and Efficient Transmission of Distributed
KV Cache: A critical component of distributed LLM
inference is the efficient management and sharing of
KV caches across multiple nodes. The KV cache plays
a pivotal role in optimizing inference performance by
storing intermediate states such as attention-key (K) and
attention-value (V) embeddings. These caches are es-
sential for maintaining context across multiple inference
steps, especially in long-running or multi-turn interac-
tions. However, since KV caches may contain sensitive
user data or context from previous interactions, their
secure transmission between nodes is paramount. Without
proper protection, there is a risk of data leakage during
the transfer of KV cache entries. Ensuring that the KV
cache data is encrypted and transmitted securely across
distributed nodes while maintaining performance is a
delicate balance. The process of encrypting and securely
transmitting KV cache entries must not introduce sig-
nificant delays or computational overhead, as this would
undermine the overall performance of the system. Effi-
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Fig. 1: Overview of the SPADA architecture

cient serialization, lightweight encryption, and optimized
transmission protocols are necessary to ensure that KV
cache data is transmitted swiftly and securely, enabling
continuous context sharing across nodes while upholding
strong privacy guarantees. This challenge is particularly
important because the KV cache is a key performance
optimization for LLM inference, and any inefficiency in
its secure transmission could significantly degrade the
system’s overall performance.

D. Threat Model

The threat model for distributed LLM inference focuses
on protecting sensitive data and model states from a range
of potential security risks, including unauthorized access,
eavesdropping, and data tampering. Key threats include mali-
cious or compromised nodes attempting to intercept or alter
intermediate results [40], leakage of sensitive user inputs via
unprotected KV caches [28], and attacks on the communi-
cation channels between nodes [25], [31], [43]. To mitigate
these risks, the system employs encryption and authentication
for secure data transmission, TEEs to isolate model parameters
and data, and decentralized trust protocols to ensure secure,
mutually authenticated node interactions. These measures aim
to maintain data confidentiality, integrity, and privacy while
ensuring robust performance in distributed settings.

III. SYSTEM DESIGN

To meet the stringent requirements of secure, perfor-
mant, and distributed LLM inference, we propose SPADA—a
Secure, Performant, and Distributed Architecture that tightly
integrates TEEs, decentralized trust mechanisms, and opti-
mized, enclave-aware communication protocols. SPADA is
designed to mitigate the unique threats and performance
constraints introduced by distributing large-scale LLM infer-
ence across potentially untrusted infrastructure. This section
presents the core components of SPADA, each addressing a
major challenge identified in secure and scalable LLM infer-
ence: trust establishment among nodes, intra-node protection,
secure inter-node communication, and privacy-preserving KV
cache transfer, shown in figure 1.

A. Decentralized Inter-node Trust Establishment

Distributed inference pipelines rely on the frequent ex-
change of sensitive intermediate states—such as KV cache
entries, embeddings, and token predictions—across physically
or administratively disparate nodes. In such environments,
establishing mutual trust is a prerequisite for secure collab-
oration. Traditional centralized trust models based on PKI
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or certificate authorities are ill-suited for federated or elas-
tic deployments. SPADA introduces a Decentralized Trust
Establishment Protocol (DTEP) that leverages TEE-backed
remote attestation to verify node authenticity without relying
on central infrastructure.

Each node in SPADA is provisioned with a hardware-backed
attestation capability (e.g., Intel SGX’s EPID or ECDSA
attestation, AMD SEV’s attestation report), which crypto-
graphically proves the integrity of its runtime and workload
to remote peers. During protocol bootstrapping, participat-
ing nodes exchange signed attestation evidence and verify
each other’s enclave identity, configuration, and measurement
hash. This process establishes a shared root of trust across
nodes operating under different domains or cloud providers.
Using enclave-internal Diffie-Hellman key exchange, SPADA
securely derives symmetric session keys that are never exposed
outside the enclave. This secure key material underpins all
subsequent data transfers and prevents unauthorized nodes
from participating in the distributed inference graph.

B. Intra-node Isolation and TEE-based Protection

Even with secure inter-node communication, inference
workloads remain vulnerable to a wide spectrum of intra-node
threats—including privilege escalation, memory snooping, and
malicious co-tenants. To mitigate these risks, SPADA lever-
ages TEEs to enforce strong isolation guarantees within
each node, safeguarding sensitive inference artifacts such as
user inputs, attention scores, and generation history from other
co-located processes.

SPADA encapsulates the entire model execution
pipeline—including token embedding, Transformer blocks
computations, and KV cache management—within a
hardware-isolated enclave. This design ensures that adversaries
with root or hypervisor-level access cannot inspect or tamper
with internal inference states. However, TEEs inherently
impose strict constraints on memory footprint, execution
models, and I/O access due to their limited secure resources.

To address these challenges, SPADA incorporates a suite of
memory- and compute-efficient techniques: quantized operator
pipelines reduce model size, activation checkpointing mitigates
memory pressure, and enclave-local cache eviction policies
manage the constrained secure memory effectively. Addition-
ally, SPADA employs batched enclave calls and asynchronous
execution pipelines to reduce context switch overhead and
maximize parallelism. Together, these optimizations enable
SPADA to deliver low-latency, privacy-preserving inference
while operating within the limitations of secure enclaves.

C. Secure and Low-Overhead Inter-node Communication

LLM inference is particularly sensitive to communication
latency due to its sequential generation pattern and the size of
intermediate state, especially in decoder-only Transformers.
SPADA addresses this with a secure and latency-optimized
communication layer that integrates cryptographic protec-
tions directly into the enclave execution flow.

SPADA terminates TLS sessions inside the enclave using
enclave-compatible libraries such as WolfSSL or Rustls-TEE,
ensuring that both session keys and plaintext payloads are
confined within trusted boundaries. Unlike traditional models
where TLS termination occurs in untrusted user space or OS
layers, SPADA’s approach eliminates a wide class of man-
in-the-middle and key-exfiltration attacks. To reduce commu-
nication overhead, SPADA employs a binary protocol with
fixed-length headers and aligned memory buffers, enabling
zero-copy data transfer from enclave memory to the network
stack. This design avoids unnecessary serialization or mem-
ory duplication that would otherwise incur overhead within
the constrained TEE memory region. Furthermore, to defend
against traffic analysis, SPADA pads messages and aggregates
them into burst-mode packets, obfuscating timing and payload
size correlations.

D. Secure and Efficient Distributed KV Cache Transmission

At the core of Transformer-based LLM inference lies the
KV cache, which stores past attention keys and values and en-
ables the model to process each token in constant time during
decoding. In a distributed execution model, where attention
heads or layers are partitioned across nodes, transmitting
KV cache blocks becomes essential. However, most of these
caches come from user’ prompt, which contains highly sensi-
tive informations, including user privacy information, system
prompts, etc., which must be protected during transmission.

SPADA introduces a secure and bandwidth-efficient cache
propagation mechanism that encrypts all KV cache frag-
ments using per-session keys derived during mutual attestation.
Each transmitted segment is appended with a unique nonce,
sequence number, and MAC, enabling strict detection of tam-
pering and replay attacks. To reduce communication volume,
SPADA incorporates delta encoding of KV cache blocks,
transmitting only the subset of keys and values that have
changed between decoding steps. This is particularly effective
for sparse updates common in multi-turn conversations and
autoregressive decoding. Additionally, SPADA applies token-
level attention predictions to preemptively prefetch relevant
cache blocks, overlapping communication with computation
and reducing perceived latency. Together, these optimizations
allow SPADA to securely propagate cache state with minimal
impact on throughput, even as context lengths scale into
thousands of tokens.

IV. CONCLUSION

The rising computational demands of LLM inference have
made distributed execution a necessity. Yet, this distribution
expands the attack surface and creates an urgent need for
security primitives that protect sensitive user data and model
states without compromising performance. In this work, we
introduced SPADA, a secure, performant, distributed inference
architecture that integrates trusted execution environments, de-
centralized trust protocols, and low-overhead secure commu-
nication. Through mechanisms—including mutual attestation,
enclave-based model execution, encrypted cache pipelines,
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and delta-aware KV cache transmission—SPADA achieves
strong privacy guarantees while maintaining responsiveness
for interactive applications. While implementation remains
ongoing, SPADA lays the groundwork for a scalable approach
to secure LLM inference, paving the way for trustworthy de-
ployment of large-scale AI models in federated, heterogeneous
environments.
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