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ABSTRACT

Offline reinforcement learning has become one of the most practical RL settings.
However, most existing works on offline RL focus on the standard setting with
scalar reward feedback. It remains unknown how to universally transfer the ex-
isting rich understanding of offline RL from the reward-based to the preference-
based setting. In this work, we propose a general framework to bridge this gap.
Our key insight is transforming preference feedback to scalar rewards via binary
reward labeling (BRL), and then any reward-based offline RL algorithms can be
applied to the dataset with the reward labels. The information loss during the
feedback signal transition is minimized with binary reward labeling in the prac-
tical learning scenarios. We theoretically show the connection between several
recent PBRL techniques and our framework combined with specific offline RL al-
gorithms. By combining reward labeling with different algorithms, our framework
can lead to new and potentially more efficient offline PBRL algorithms. We em-
pirically test our framework on preference datasets based on the standard D4RL
benchmark. When combined with a variety of efficient reward-based offline RL
algorithms, the learning result achieved under our framework is comparable to
training the same algorithm on the dataset with actual rewards in many cases and
better than the recent PBRL baselines in most cases.

1 INTRODUCTION

Reinforcement learning (RL) is an important learning paradigm for solving sequential decision-
making problems (Sutton & Barto, 2018). Compared to the standard (reward-based) RL that requires
access to reward feedback (Schulman et al., 2017), preference-based RL (PBRL) (Wirth et al., 2017)
only requires preference feedback over a pair of trajectories, making it more accessible in practice.
In the offline learning setting, the agent only needs a pre-collected dataset of preference labels before
training, making it even more convenient (Zhu et al., 2023). When humans provide preference labels,
PBRL is known as reinforcement learning from human feedback (RLHF) (Stiennon et al., 2020), a
popular framework for aligning large language models.

Despite the success in offline PBRL (Kim et al., 2023; Dai et al., 2023; Hejna & Sadigh, 2024),
the topic is less studied compared to the offline RL in the standard reward feedback setting (Li
et al., 2024; Levine et al., 2020; Fujimoto & Gu, 2021; Kidambi et al., 2020; Wu et al., 2019;
Cheng et al., 2022; Tarasov et al., 2024). The critical feature in offline learning is ‘pessimism’ (Li
et al., 2024). The learning agent should be pessimistic about the policies whose behaviors are not
included in the dataset. Many pessimistic learning algorithms with theoretical insights have been
developed for the standard offline RL setting. However, most empirical works for offline PBRL only
adopt limited specific pessimistic learning approaches, such as applying certain regularization to the
learning policy (Rafailov et al., 2024; Stiennon et al., 2020), which are shown to be less efficient
compared to recent SOTA methods in the standard RL setting (Cheng et al., 2022; Tarasov et al.,
2024).

The difference between the current PBRL and standard RL only comes from the feedback signal’s
format. Both settings assume the environment as a Markov decision process (MDP) and aim to find
the policy that achieves a high cumulative reward (i.e., is aligned with the reward function). The
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Figure 1: Illustration of the binary reward labeling (BRL) framework. Given a dataset consisting
of preference feedback as input, the BRL framework labels the dataset with the rewards that best
explain the preference signals from the dataset. With a dataset of reward labels, the learning agent
can train on the dataset with any efficient offline RL algorithms such as IQL (Kostrikov et al., 2021)
or CQL (Kumar et al., 2020) and enjoy high learning efficiency.

question arises whether one can utilize the existing well-developed standard offline RL algorithms
to solve the PBRL problem. Wang et al. (2024) has theoretically demonstrated this feasibility in
online learning under certain conditions. This work aims to develop a framework that bridges the
gap between PBRL and standard RL so that one can solve a PBRL problem with a standard offline
RL algorithm. To construct such a framework, one faces the following difficulties:

• Standard offline RL algorithms are very different from each other. Model-based algorithms (Ki-
dambi et al., 2020; Yu et al., 2020) learn an environment model and then run online learning
algorithms on the model. Model-free algorithms (Cheng et al., 2022; Fujimoto & Gu, 2021) learn
a pair of actor-critic models directly to infer the optimal policy without modeling the environment.
The framework needs to apply to all kinds of learning algorithms.

• Preference feedback contains arguably less information than reward feedback. It is impractical to
recover the actual rewards from limited preference feedback. The framework needs to make the
standard offline RL algorithms work with incomplete information from preference feedback.

In this work, we build a novel framework called ‘BRL’ based on a reward labeling technique that
labels the preference dataset with scalar rewards. The critical insight is that we only need to consider
transforming feedback signals from preference to reward format while minimizing information loss.
The standard offline RL algorithm can handle the pessimistic learning afterward. Note that reward
labeling fundamentally differs from reward modeling, which is widely considered in recent PBRL
studies (Kim et al., 2023; Stiennon et al., 2020). Reward modeling aims to infer rewards at state ac-
tions that are not in the dataset. In contrast, reward labeling focuses on interpreting the rewards for
the state actions inside the preference dataset. To minimize the information loss in the transforma-
tion, we want to find the optimal reward labels that best explain the state actions in the dataset. We
show that a simple binary labeling technique already gives the optimal reward labels in a practical
case where the trajectories in the dataset have no overlap. We further empirically show that in the
general case where no matter whether there is an overlap between trajectories or not, the learning
algorithms achieve better performance on the reward labels given by the binary labeling technique
than on those given by the reward modeling technique. In Fig 1, we illustrate how our framework is
used. In summary, our contributions are as follows.

• We propose a general framework to bridge the gap between offline PBRL and standard offline RL.
Our framework involves labeling the dataset with the reward that maintains most information in
the preference signals. Afterward, one can train on the reward-labeled dataset with any standard
offline RL algorithms. Our framework can be easily implemented without modifying the original
RL algorithms. One can possibly construct more efficient PBRL algorithms by applying SOTA
standard RL algorithms to our framework.

• We mathematically analyze the combination of our framework with standard offline RL algo-
rithms. We show that current state-of-the-art PBRL techniques are closely related to the combi-
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nation of our framework and some specific standard offline RL algorithms regarding utilizing the
preference labels.

• We empirically show that our method performs significantly better on standard evaluation bench-
marks than existing SOTA methods. In many cases, our method can even compete with training
the same RL algorithm on the corresponding dataset of true reward labels.

2 RELATED WORKS

2.1 OFFLINE REWARD-BASED REINFORCEMENT LEARNING

Offline reward-based reinforcement learning, or standard offline RL, is the most popular offline RL
setting. The fundamental challenge for offline RL is known as ‘distribution mismatch’ (Levine et al.,
2020). It refers to the phenomenon that the data distribution in the dataset may not match the dis-
tribution induced by the optimal policy. Due to distribution mismatch, an efficient learner must be
‘pessimistic’ (Li et al., 2024). In general, it says that an agent should rely more on the policies
whose distributions match the dataset distribution better, as the agent cannot correctly evaluate other
policies not covered by the dataset. Many algorithms have been proposed to solve the problem fol-
lowing very different pessimistic learning techniques. Kidambi et al. (2020); Yu et al. (2020; 2021)
proposed model-based learning algorithms that learn a world model first and then apply online RL
to learn from the world model. Wu et al. (2019) proposes a behavior regularization approach closely
related to the regularization considered in the RLHF studies. Fujimoto & Gu (2021); Kostrikov et al.
(2021); Kumar et al. (2020); Levine et al. (2020) proposed model-free learning algorithms that don’t
need to learn the world model. Cheng et al. (2022) provide theoretical guarantees on the efficiency
of their model-free learning methods that the learned policy is always better than the behavior pol-
icy used to collect the dataset and can compete with the best policy covered by the dataset. Li et al.
(2024) mathematically interprets the essence of pessimistic learning algorithms.

2.2 OFFLINE PREFERENCE-BASED REINFORCEMENT LEARNING

Zhan et al. (2023); Zhu et al. (2023) theoretically investigate the problem of pessimistic learning
in the standard offline PBRL setting, the same as the one considered in this work. They propose
a method that is guaranteed to learn near-optimal policy depending on the dataset, but it remains
unknown how to implement these algorithms in practice. Stiennon et al. (2020); Ouyang et al.
(2022) studies the problem of language model fine-tuning, where humans provide the preference
labels. These works, also known as RLHF, do not apply to the general RL setting. These works also
only consider behavior regularization for pessimistic learning, which is shown to be less efficient
than other advanced pessimistic learning techniques.

A line of research studies a variant of the offline learning setting. Here, the learning agent can access
a preference dataset consisting of preference labels over trajectory pairs and a demonstration dataset
consisting of only trajectories. Kim et al. (2023) proposes to use a transformer architecture to ap-
proximate the reward model. Hejna & Sadigh (2024) proposes to adapt the IQL learning framework
to the preference-based learning setting. Zhang et al. (2023) proposes to learn a preference model
instead of a reward model and then learn a policy aligned with the preference model.

Another line of research Sadigh et al. (2017); Shin et al. (2021; 2023) studies the PBRL problem in
the active learning setting. In this case, the learning starts from a pre-collected behavior dataset with
no preference label. During training, the agent can query an expert to provide preference feedback
on a pair of trajectories sampled from the behavior dataset by the agent in an online manner. Then,
the agent learns a reward model from the preference feedback and applies RL algorithms to learn
from the reward model.

3 PRELIMINARIES

3.1 REINFORCEMENT LEARNING

First, we introduce the general RL framework, where an agent interacts with an environment at
discrete time steps. The environment is characterized by a Markov Decision Process (MDP) M =
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{S,A,R,D} where S is the state space, A is the action space, R is the reward function, and D is the
state transition dynamics. At each time-step, the environment is at a state s ∈ S, and the agent takes
an action a ∈ A, and then the environment transits to the next state s′ ∼ D(·|s, a) with an instant
reward r = R(s, a). Without loss of generality, we assume the rewards are bounded in [−1, 1]. A
policy π : S → ∆(A) represents a way to interact with the environment by sampling an action
from the distribution given by π(s) at a state s. Given an initial state s0, the performance of a policy
is evaluated through its discounted cumulative reward J(π) =

∑∞
t=0 E[γtR(st, at)|at ∼ π(st)],

where γ is a discount factor. In the standard RL framework, the learner can observe scalar reward
feedback for a state action, which is not the case for the preference-based setting.

3.2 PREFERENCE BASED REINFORCEMENT LEARNING (PBRL)

PBRL is a variant of RL where the feedback signals consist of preferences rather than scalar rewards.
Given a pair of sequences of states and actions, also known as trajectories, a preference model P
gives a preference for the trajectories. Formally, let T = (S,A)T be the space of trajectories
with length T , the preference model is a mapping P : T × T → [0, 1]. P (τ1, τ2) represents
the probability of the preference model preferring the first trajectory τ1 over the second one τ2.
Following recent PBRL studies, we assume the preference model is related to the reward function.
More specifically, there exists a monotonically increasing link function f : R → [0, 1] bounded in
[0, 1] such that P (τ1, τ2) = f(

∑
(s,a)∈τ1

R(s, a)−
∑

(s,a)∈τ2
R(s, a)). The popular Bradley-Terry

model, considered in many recent works, uses the sigmoid function as the link function. Our method
requires no specific knowledge of the link function in this work.

3.3 OFFLINE PBRL SETTING

This work studies PBRL in the standard offline setting Zhan et al. (2023). Here, the environment is
still characterized by an MDP M = {S,A,R,D}, but the learner cannot directly interact with the
environment or observe any reward signals from R. The learner knows the state and action spaces
S,A and can access a pre-collected dataset D of preference feedback. The dataset D contains N
tuples of data, and each tuple consists of a pair of trajectories and a preference label. The preference
labels in the dataset are generated by a preference model P unknown to the learning agent. For each
pair of trajectory (τ1, τ2), the preference model randomly generates a preference signals σ ∈ {1, 2}
through a Bernoulli trial with a probability p = P (τ1, τ2). The preference signal σ represents
the index of the preferred trajectory. For convenience, we call the preferred trajectory ‘the chosen
trajectory’ and the other trajectory ‘the rejected trajectory.’ Wang et al. (2023) considers a different
setting where multiple preference labels are generated for each pair of trajectories, and we will
extend our main method to this setting in the experiments. Note that the preference model P is
determined by a link function f and the reward function R of the environment, and both should
be unknown to the learner in principle. It is common among recent works that assume f to be a
sigmoid function, but in this work, our method does not require the knowledge of f . At a high level,
the agent’s goal is to reliably learn a policy from the preference dataset D with a high cumulative
reward based on the underlying reward function R.

4 BRIDGING PREFERENCE AND REWARD-BASED OFFLINE REINFORCEMENT
LEARNING

To utilize existing efficient reward-based RL algorithms for offline PBRL, we consider an informa-
tion translation approach that is applicable to universal reward-based RL algorithms. By assigning
a reward label for each state-action in the dataset, any reward-based RL algorithm can be trained on
the new dataset with the reward labels. Therefore, our task is to find the reward labels that contain
the closest information to the preference labels. Note that it is a common approach to train a reward
model (also known as reward modeling) and then use the reward model to generate the reward labels
Christiano et al. (2017), but this is not necessary in our case as we only need to assign reward labels
to the state-actions in the dataset.
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4.1 OPTIMAL REWARD LABELING

First, we introduce the basic metric to evaluate how well the rewards labels interpret the preference
labels. Given an offline preference dataset D = {(τ i1, τ i2, σi)}, i ∈ [N ]. Without loss of generality,
we assume σi ≡ 1. That is, the first trajectory in each pair is always the chosen trajectory, and
the second ones are always the rejected trajectories. In this case, we simplify the notation of the
dataset as D = {τ i1 ≻ τ i2}, i ∈ [N ]. Let (sij,t, a

i
j,t), j ∈ [2], t ∈ [T ] be the tth state-action pairs

of trajectory j from the ith data tuple, and let rij,t be the reward label for this state action pair. In
addition, the reward labels should be generated using the same reward model. In other words, there
exists a reward function R̂, such that rij,t = R̂(sij,t, a

i
j,t). Let f : R → [0, 1] be the monotonically

increasing link function between the rewards and the preference, the probability of preferring the
chosen trajectory τ i1 over τ i2 predicted by the rewards label is p = f(

∑
t r

i
1,t −

∑
t r

i
2,t). Then,

a monotonically decreasing loss function L : [0, 1] → R can be defined based on the probability
that the rewards predict the chosen trajectory. One can use the total prediction loss on preference
to evaluate the quality of the reward labels. We denote F (·) = L(f(·)) as the link-loss function
to represent the combination. Note that the loss and link functions are monotonically decreasing
and increasing, respectively. So, the link-loss function is monotonically decreasing. This link-loss
function has been widely considered in recent PBRL studies that consider reward modeling. For
reward modeling, the reward labels in the loss function are replaced by the reward predictions by
the reward model at the corresponding state actions. In these works, the common choice for f is the
sigmoid function, and L is the negative log of the KL divergence Christiano et al. (2017) .

The reward labels with minimal prediction loss have information closest to the preference dataset
among all possible reward labels. Formally, the optimal reward labels are defined as follows.
Definition 4.1 (Optimal reward label). Given a preference dataset D = {(τ i1 ≻ τ i2)}, i ∈ [N ]. Let r
be the reward labels for the dataset, and rij,t be the reward label for the state-action pair of trajectory
j at step t of the ith data tuple. Let F : R → R be a link-loss function to represent the prediction loss
of a reward label on a preference label. The optimal reward labels for this dataset are the solution to
the optimization problem as below:

argmin
r

∑
i∈[N ]

F (
∑
t∈[T ]

ri1,t −
∑
t∈[T ]

ri2,t))

s.t.∃R̂ : S ×A → [0, 1], rij,t = R̂(sij,t, a
i
j,t).

(1)

Here (sij,t, a
i
j,t), j ∈ [2], t ∈ [T ] are the tth state-action pairs of trajectory j from the ith data tuple

To minimize the information loss during the feedback signal transition, one should use the optimal
reward to re-label the dataset. In general cases, finding the exact solution can be complicated, and it
is common to use a deep neural network to approximate the reward function Christiano et al. (2017)
that minimizes the prediction loss. However, in practice, the same state-action pairs will usually
not appear multiple times in the dataset. For example, in RLHF, each prompt usually samples two
different answers to label (Touvron et al., 2023); in continuous control, the state and action spaces
are continuous, making it unlikely to visit the same state action twice. Note that the reward model
constraint requires the reward labels for the same state-action to be the same, and this makes no
difference if each state-action is unique in the dataset. In this case, we can directly derive the exact
solution to the optimal reward labels as shown in Lemma 4.2 below.
Lemma 4.2. Consider a preference dataset D = {(τ i1 ≻ τ i2)}, i ∈ [N ]. If each state-action pair is
unique in the dataset, the optimal reward labels are:

rij,t =

{
+1, ∀t ∈ [T ],∀i ∈ [N ], if j = 1

−1, ∀t ∈ [T ],∀i ∈ [N ], if j = 2
(2)

The proof for Lemma 4.2 is in the Appendix. Lemma 4.2 says that in the typical cases where there is
no overlap between the trajectories, the optimal reward labels are binary signals: for all state actions
from the chosen trajectories, the optimal reward labels are the maximal rewards; for all state actions
from the rejected trajectories, the optimal reward labels are the minimal rewards. Formally, Alg 1
shows how to apply an arbitrary offline reward-based RL algorithm to our framework.
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Algorithm 1: Binary Reward Labeling for Offline PBRL
Input: preference dataset, offline reward-based RL algorithm Alg
1. Label the state-actions in the dataset with the optimal reward labels according to Eq 2. The
resulting dataset with reward labels is DR.
2. Run algorithm Alg on the reward dataset DR to learn a policy π.
Output: π.

Next, we discuss the general case where the same state action appears in different chosen and re-
jected trajectories. As mentioned earlier, a common approach is to approximate the solution through
reward modeling with a deep neural network. Alternatively, one can still apply the binary labeling
technique from Lemma 4.2, and the labels for the repeated state actions in effect are the mean of the
binary rewards. This is only a sub-optimal solution. However, in Section 5, our empirical results
show that such a simple binary labeling method is efficient in both overlapped and no overlap cases
and is generally more efficient than the reward modeling method. Note that another advantage of
BRL compared to reward modeling is that it does not require learning a reward model.

4.2 THEORETICAL ANALYSIS

In this section, we show that existing PBRL techniques are closely related to some special cases of
combining specific offline RL algorithms with our framework. Under certain conditions, they can
even be equivalent.

Offline standard RL algorithms are model-based. First, we consider the case of model-based
algorithms. Usually, a model-based offline RL algorithm utilizes the reward signals to learn the
reward model of the environment (Yu et al., 2020; 2021). Formally, we characterize the reward
modeling process in a general model-based offline RL algorithm in Definition 4.3.
Definition 4.3. (reward modeling in model-based approaches) Given a reward-based dataset DR =
{(si, ai, ri), i ∈ [N ]}, the reward modeling process is solving the optimization problem

min
R̂

∑
(r,s,a)∈D

|R̂(s, a)− r|

, where R̂ : S ×A → [−1, 1] is a reward model.

Here, we extend Definition 4.3 to the case of the preference dataset with binary reward labeling.
Given a preference dataset D = {(τ i1 ≻ τ i2)}, i ∈ [N ], after applying the binary reward labeling
through Alg 1, the reward-based dataset DR consists of all state-actions from D. For each state-
action (s, a) ∈ DR, the reward label is +1 if the state-action comes from a chosen trajectory and
−1 otherwise. In this case, the optimization problem becomes

min
R̂

∑
i∈[N ]

∑
(s,a)∈τ i

1

|1− R̂(s, a)|+
∑

(s,a)∈τ i
2

|R̂(s, a) + 1| :=
∑
i∈[N ]

min
R̂

L1(τ
i
1, τ

i
2,R).

Next, we formally introduce the reward modeling process based on the preference dataset directly
in Definition 4.4. As we explained earlier, this process is similar to solving the optimal reward label
problem in Definition 4.1 and standard in current PBRL studies.
Definition 4.4. (reward modeling on preference signals) Given a preference-based dataset D =
{(τ i1 ≻ τ i2)}, i ∈ [N ], the reward modeling process is solving the optimization problem below:

min
R̂

∑
i∈[N ]

F
( ∑
(s,a)∈τ i

1

R̂(s, a)−
∑

(s,a)∈τ i
2

R̂(s, a)
)
:=

∑
i∈[N ]

min
R̂

L2(τ
i
1, τ

i
2,R).

Finally, in Theorem 4.5, we formally show the connection between the two methods.
Theorem 4.5. Given a preference dataset D = {(τ i1 ≻ τ i2)}, i ∈ [N ], reward modeling can be
performed either on the preference dataset directly as Definition 4.4 or on the reward dataset as
Definition 4.3 with the dataset generated binary reward labeling through Alg 1. The two methods
are connected in the following three cases:
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1. When there is no overlap between the trajectories in the dataset, the optimal solutions in both
methods are the same: argminR̂

∑
i∈[N ] L1(τ

i
1, τ

i
2, R̂) = argminR̂

∑
i∈[N ] L2(τ

i
1, τ

i
2, R̂)

2. If the link-loss function F is linear, then the optimization problems in both methods are equiv-
alent:

∑
i∈[N ] L1(τ

i
1, τ

i
2, R̂) = C1 ·

∑
i∈[N ] L2(τ

i
1, τ

i
2, R̂) + C2, where C1, C2 are constant

scalars.

3. Let w be the parameter of the reward function R. For each trajectory pair, the gradients of its
contribution to the optimization goal on the reward function parameter have the same direction

in the two methods: ∂L1(τ
i
1,τ

i
2,R̂)

∂w /∥∂L1(τ
i
1,τ

i
2,R̂)

∂w ∥ =
∂L2(τ

i
1,τ

i
2,R̂)

∂w /∥∂L2(τ
i
1,τ

i
2,R̂)

∂w ∥.

The proof for Theorem 4.5 can be found in the appendix. The first case shows that in the most prac-
tical scenario where there is no overlap between trajectories, the reward modeling in both methods
approximates the same optimal reward function. The second case shows that the reward modeling
in both methods is equivalent if the link-loss function is linear. The third case shows that the reward
model update based on each trajectory pair in both methods is the same. In conclusion, the way how
a model-based algorithm utilizes the preference signals for reward modeling under our framework
is closely related to that of the current reward-modeling PBRL approaches.

Offline standard RL algorithms are model-free.

In the case where our framework is combined with a reward-based algorithm, we find a similar
result. One can adapt a standard model-free offline RL algorithm to the PBRL setting with some
intuitive techniques as in Hejna & Sadigh (2024). We show that such methods utilize the preference
labels in the same way as our framework when combined with the same model-free algorithm under
the condition that the link-loss function F is linear. The detailed analysis is in the Appendix.

5 EXPERIMENTS

5.1 EXPERIMENTS SETUP

For the construction of the preference dataset, we sample pairs of trajectories from the offline RL
benchmark D4RL (Fu et al., 2020) and generate synthetic preference following the standard tech-
niques in previous PBRL studies (Kim et al., 2023; Christiano et al., 2017). Formally, we introduce
the process as follows.

1. Randomly sample pairs of trajectory clips from the original D4RL dataset. The length of the clip
is set to be 20 steps, which is similar to previous studies (Christiano et al., 2017).

2. For each pair of trajectory clips, find the probability of a trajectory to be preferred by applying
their regularized rewards in the D4RL datasets to the Bradley-Terry model. The regularized
rewards are bound in [−1, 1] to ensure consistency between different datasets.

3. For each pair of trajectory clips, generate a preference label through a Bernoulli trial with the
probability from the second step.

4. Return the preference dataset consisting of the trajectory clip pairs and the corresponding prefer-
ence labels.

To ensure that different types of datasets are covered, we chose D4RL datasets from different en-
vironments, including HalfCheetah, Walker2d, and Hopper, with different types of trajectories, in-
cluding medium, medium-expert, and medium-replay.

For the standard offline RL algorithms, to make sure that different types of learning algorithms are
covered, we choose state-of-the-art model-based algorithms including MOPO (Yu et al., 2020) and
COMBO (Yu et al., 2021), as well as model-free algorithms including IQL Kostrikov et al. (2021)
and CQL Kumar et al. (2020). We use OfflineRL-Kit Sun (2023) for the implementation of the
model-based algorithms and CORL Tarasov et al. (2024) for the model-free algorithms.

For the baseline methods, to the best of our knowledge, no existing empirical study works in exactly
the standard offline PBRL setting considered in our work. The works that consider our setting are
either theoretical studies with no empirical implementation (Zhan et al., 2023; Zhu et al., 2023)

7
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Oracle BRL RM IPL
HalfCheetah M 76.95 ± 1.75 75.93 ± 3.64 56.52 ± 0.74 39.71 ± 2.17
HalfCheetah MR 61.24 ± 3.14 61.72 ± 0.6 57.36 ± 1.6 21.14 ± 1.14
HalfCheetah ME 88.49 ± 2.61 92.17 ± 1.67 87.52 ± 3.98 34.91 ± 0.38
Hopper M 58.69 ± 4.67 36.39 ± 3.9 43.38 ± 1.0 51.15 ± 11.89
Hopper MR 76.07 ± 7.52 28.5 ± 10.29 24.44 ± 3.8 7.48 ± 0.42
Hopper ME 106.37 ± 3.73 97.57 ± 15.08 74.91 ± 13.68 28.44 ± 15.56
Walker2d M 76.6 ± 2.99 49.7 ± 11.06 58.55 ± 4.46 67.33 ± 7.66
Walker2d MR 42.0 ± 26.95 34.94 ± 12.21 13.26 ± 9.11 14.87 ± 3.97
Walker2d ME 87.54 ± 40.11 109.94 ± 1.76 90.1 ± 35.01 85.76 ± 10.43
Sum Totals: 673.95 586.86 506.04 350.79

Table 1: Performance of different learning algorithms on the dataset without overlapped trajectories.
‘M’ represents the medium dataset, ‘MR’ represents the medium replay dataset, and ‘ME’ represents
the medium expert dataset.

or empirical studies focusing on fine-tuning LLM (Ouyang et al., 2022; Rafailov et al., 2024) that
cannot be applied to general RL settings. We adopt the IPL algorithm from Hejna & Sadigh (2024)
as the existing SOTA method among related works. Different from our method, the IPL algorithm
requires access to a preference dataset and a behavior dataset. To ensure that the efficiency of IPL is
not underestimated, we allow the algorithm to work with the same preference dataset as our method
uses and the whole original D4RL dataset with no reward labels as the behavior dataset, which is
strictly more information than our method uses. Li et al. (2024) even point out that one can gain
high learning efficiency from access to only the D4RL behavior dataset. In addition, we choose the
basic reward modeling method (RM) as a natural baseline. The method first learns a reward model
from the preference dataset and then labels the dataset with the reward model. Next, any standard
RL algorithms can be applied afterward. This method is similar to the standard pipeline in PBRL
Ouyang et al. (2022), where the first step is reward modeling, and the second step is RL.

We choose the popular oracle widely considered in PBRL studies (Hejna & Sadigh, 2024; Kim et al.,
2023) where a standard offline RL algorithm is used to train on the dataset with true rewards from
the RL environment. The dataset contains the same state actions as the preference-based dataset.

5.2 LEARNING EFFICIENCY EVALUATION WITHOUT TRAJECTORY OVERLAP

Here, we study the most practical case where there is no overlap between trajectories, and each state-
action is unique. To straightforwardly compare the performance of different learning methods, we
represent the learning efficiency of an algorithm by the performance of the policy learned at the last
epoch. In the Appendix, we show the full training log with different learning methods on different
datasets. The scores in Table 1 is the standard D4RL score of the learned policy. We observe that
our method is better than other baseline methods in general. Note that IPL has additional access to
the whole D4RL behavior dataset, which is an advantage compared to our method. In many cases,
the learning result of our method can compete with the oracle that trains on the dataset with true
reward. We believe our method can sometimes compete with the oracle because the reward dataset
already contains more than enough information. As a result, even if the preference dataset contains
relatively less information, it is enough for an efficient learner to find a high-performing policy.
Our method is, in general, more efficient than the RM baseline. We believe the reason is that our
optimal rewards contain more accurate information than the reward model’s output with respect to
the preference signals.

5.3 OVERLAPPED TRAJECTORIES

Here, we empirically investigate the case where the trajectory clips in the dataset share the same
state-actions. Recall that when there is overlap between trajectories (state-actions in the dataset are
not unique), the binary labeling strategy is no longer optimal. The reward modeling is approximating
the optimal labels, which can be a stronger baseline in this case. Therefore, in this subsection,
we focus on comparing which reward labeling method can give more informative rewards leading
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to higher learning efficiency. Specifically, we consider two typical structures of overlap between
trajectories.

I: Same trajectory compared to multiple different trajectories. In this case, we study a more
practical scenario of overlapped trajectories: the same trajectory clip is compared with multiple
trajectory clips. More specifically, given a pool of trajectory clips, we sample a portion of them and
compare it with multiple different clips from the pool. We set the portion of number of comparisons
from low to high to cover a wide range of the degree of trajectory overlap.

Figure 2: Training log of learning with a method on datasets with overlapped trajectories. The
percentage is the portion of trajectories clips that are compared for multiple times compared to all
clips. The multiplier is the number of times of multiple comparison. To understand the degree of
overlap, in the case of 20%× 4, 80% of the trajectories pairs have a trajectory clip that is compared
for multiple times.

The results in Figure 2 show that the BRL method is more efficient than the reward modeling. To
understand the reason behind, we check the gap between the reward labels given by BRL and reward
modeling. We find that the gap is much larger in the BRL method compared to the reward modeling
method, indicating that the binary reward labels keep more information during the feedback signal
transition from preference to scalar rewards. The exact comparison results can be found in the
Appendix. This could be the reason why BRL method is more efficient.

II: The same trajectory pair compared multiple times. Here, we investigate the scenario where
multiple preference signals are given to the same pair of trajectory clips. This could happen if
multiple users are asked to provide preferences on the same trajectory pairs, and different users may
have different judgments. In this case, the preference labels represent an empirical probability of one
trajectory being preferred over the other one. Correspondingly, the loss for predicting the probability
given reward labels is given by: |p̄ − f(

∑
t r

i
σi,t −

∑
t r

i
σ̄i,t)| where p̄ is the empirical probability.

We add a regularization term to the loss to ensure the uniqueness of the optimal reward labels. In
this case, finding the optimal rewards requires the knowledge of the link function from rewards to
preferences. In experiments, we construct the dataset using the same process as before, except that
we generate 10 preference labels for each pair of trajectories.

The results in Figure 3 show that in the two datasets we test with, the BRL method is more effi-
cient or as efficient as the reward modeling method. In conclusion, compared to the standard reward
modeling method, with or without overlaps between trajectories, the BRL method generally per-
forms better than the reward modeling method. In addition, the BRL method requires no training
for function approximation, which is more computationally efficient.

9
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Figure 3: Training log of learning with a method on datasets where 10 preference labels are given
to each trajectory pair.

5.4 ABLATION STUDY

Different size of preference dataset: Here, we examine the efficiency of different methods utilizing
the preference signals. For this purpose, we run the algorithms on preference datasets of different
sizes. If an algorithm utilizes the preference signals efficiently, then its performance can increase
significantly as the number of preference signals increases. We observe in Fig 4 that the learning
efficiency of our method increases significantly as the number of preferences increases. In compari-
son, the learning efficiency of IPL and RM are almost the same for datasets of very different numbers
of preference signals. The oracle also has similar performance on the HalfCheetah medium-expert
dataset of different sizes. This is likely due to the fact that it always achieves maximal learning
efficiency on the dataset.

Figure 4: Training log of learning with a method on datasets of different sizes. The percentage in the
legends represents the ratio between the number of preference labels in the corresponding dataset
and that of the largest dataset.

In the appendix, we show the learning efficiency of combing BRL with different standard Offline
RL Algorithms.

6 CONCLUSION AND LIMITATION

In this work, we propose a framework BRL that bridges the gap between offline PBRL and standard
RL. We show that one can easily achieve high learning efficiency on PBRL problems by combining
BRL with any efficient standard offline RL algorithm. Our framework is limited to the typical
offline learning setting and does not answer the question of which trajectories are more worthy of
receiving preference labels. Our experimental evaluation is limited to continuous control problems,
the standard benchmark in RL studies.
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7 REPRODUCIBILITY

In the main paper, we explain the setting of the problem we study. The proofs for all theorems and
lemmas can be found in the appendix. The codes we use for the experiments can be found in the
supplementary materials.

REFERENCES

Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially trained actor critic
for offline reinforcement learning. In International Conference on Machine Learning, pp. 3852–
3878. PMLR, 2022.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and
Yaodong Yang. Safe rlhf: Safe reinforcement learning from human feedback. arXiv preprint
arXiv:2310.12773, 2023.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Joey Hejna and Dorsa Sadigh. Inverse preference learning: Preference-based rl without a reward
function. Advances in Neural Information Processing Systems, 36, 2024.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in neural information processing systems, 33:
21810–21823, 2020.

Changyeon Kim, Jongjin Park, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. Pref-
erence transformer: Modeling human preferences using transformers for rl. arXiv preprint
arXiv:2303.00957, 2023.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Anqi Li, Dipendra Misra, Andrey Kolobov, and Ching-An Cheng. Survival instinct in offline rein-
forcement learning. Advances in neural information processing systems, 36, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Dorsa Sadigh, Anca D Dragan, Shankar Sastry, and Sanjit A Seshia. Active preference-based learn-
ing of reward functions. 2017.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Daniel Shin, Daniel S Brown, and Anca D Dragan. Offline preference-based apprenticeship learning.
arXiv preprint arXiv:2107.09251, 2021.

Daniel Shin, Anca D Dragan, and Daniel S Brown. Benchmarks and algorithms for offline
preference-based reward learning. arXiv preprint arXiv:2301.01392, 2023.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–3021, 2020.

Yihao Sun. Offlinerl-kit: An elegant pytorch offline reinforcement learning library. https://
github.com/yihaosun1124/OfflineRL-Kit, 2023.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov.
Corl: Research-oriented deep offline reinforcement learning library. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Yuanhao Wang, Qinghua Liu, and Chi Jin. Is rlhf more difficult than standard rl? arXiv preprint
arXiv:2306.14111, 2023.

Yuanhao Wang, Qinghua Liu, and Chi Jin. Is rlhf more difficult than standard rl? a theoretical
perspective. Advances in Neural Information Processing Systems, 36, 2024.

Christian Wirth, Riad Akrour, Gerhard Neumann, and Johannes Fürnkranz. A survey of preference-
based reinforcement learning methods. Journal of Machine Learning Research, 18(136):1–46,
2017.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. Advances in neural information
processing systems, 34:28954–28967, 2021.

Wenhao Zhan, Masatoshi Uehara, Nathan Kallus, Jason D Lee, and Wen Sun. Provable offline
preference-based reinforcement learning. In The Twelfth International Conference on Learning
Representations, 2023.

Zhilong Zhang, Yihao Sun, Junyin Ye, Tian-Shuo Liu, Jiaji Zhang, and Yang Yu. Flow to better: Of-
fline preference-based reinforcement learning via preferred trajectory generation. In The Twelfth
International Conference on Learning Representations, 2023.

Banghua Zhu, Michael Jordan, and Jiantao Jiao. Principled reinforcement learning with human feed-
back from pairwise or k-wise comparisons. In International Conference on Machine Learning,
pp. 43037–43067. PMLR, 2023.

12

https://github.com/yihaosun1124/OfflineRL-Kit
https://github.com/yihaosun1124/OfflineRL-Kit


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A COMBINING BRL WITH MODEL-FREE STANDARD OFFLINE RL
ALGORTIHMS

It is typical for a model-free RL algorithm to learn the Q function of the environment (Fujimoto &
Gu, 2021; Cheng et al., 2022). The Q function represents the long-term rewards for choosing an
action at a state. In the reward-based setting, the Q function is learned with ‘Bellman Loss’ based on
the reward signals. Bellman loss acts as a criterion for the quality of the Q function. Given a tuple
(s, a, r, s′), the Bellman loss on the data tuple is defined as |Q(s, a) − (r + γ · maxa′ Q(s′, a′)|.
Formally, in Definition A.1, we characterize the Q-learning process in a typical model-free method.

Definition A.1. (Q-learning on reward signals in a general model-free RL method with binary re-
ward labels) Given a preference dataset D = {(τ i1 ≻ τ i2)}, i ∈ [N ]. Let DR be the corresponding
reward dataset with binary reward labels given by Alg 1. The Q-learning process for a general
model-free RL method is solving the optimization problem below:

min
Q̂

∑
i∈[N ]

( ∑
(s,a,s′)∈τ i

1

|Q̂(s, a)−(1+γ·max
a′

Q̂(s′, a′))|+
∑

(s,a,s′)∈τ i
2

|Q̂(s, a)−(−1+γ·max
a′

Q̂(s′, a′))|
)
.

For simplicity, we denote the optimization goal as minQ̂
∑

i∈[N ] L3(τ
i
1, τ

i
2, Q̂).

If one wants to modify a model-free reward-based algorithm to work with preference signals directly,
a straightforward way is to replace the Bellman error with the prediction error of the Q function on
the preference signals. Based on this method, Hejna & Sadigh (2024) developed the IPL algorithm
for PBRL by modifying the IQL algorithm (Kostrikov et al., 2021), a famous method for the standard
RL problem. Specifically, the underlying reward function for a Q function is given by r̂(s, a) =

Q̂(s, a)− γ ·max R̂(s′, a′). This underlying reward function can be used to predict the probability
that the chosen trajectory is preferred to represent the prediction of the Q function. To reflect that
the reward function is bounded, we require Q(s, a)− γ ·Q(s′, a) ∈ [−1, 1] for all (s, a, s′) ∼ D so
that the corresponding reward function of Q is bounded. Formally, in Definition A.2 we show how
a method to perform Q-learning directly on preference signals.

Definition A.2. (Q-learning on preference signals through a modified Bellman-Loss) Given a pref-
erence dataset D = {(τ i1 ≻ τ i2)}, i ∈ [N ], the Q-learning on preference signals through a modified
Bellman-Loss is solving the optimization problem below:

min
Q̂

∑
i∈[N ]

F
( ∑
(s,a,s′)∈τ i

1

(Q̂(s, a)− γ ·max
a′

Q̂(s′, a)))−
∑

(s,a,s′)∈τ i
2

(Q̂(s, a)− γ ·max
a′

Q̂(s′, a))
)
.

For simplicity, we denote the optimization goal as minQ̂
∑

i∈[N ] L4(τ
i
1, τ

i
2, Q̂).

The two methods are closely connected in the optimization problem they solve, and we formally
show their connection in three cases in Theorem A.3.

Theorem A.3. Given a preference dataset D = {(τ i1 ≻ τ i2)}, i ∈ [N ], q-learning can be performed
either on the preference dataset directly as Definition A.2 or on the reward dataset as Definition A.1
with the dataset generated binary reward labeling through Alg 1. The two methods are connected in
the following three cases:

1. When there is no overlap between the trajectories in the dataset, the opti-
mal solutions in both methods are the same: argminQ̂

∑
i∈[N ] L3(τ

i
1, τ

i
2, Q̂) =

argminQ̂
∑

i∈[N ] L4(τ
i
1, τ

i
2, Q̂)

2. If the link-loss function F is linear, then the optimization problems in both methods are
equivalent:

∑
i∈[N ] L3(τ

i
1, τ

i
2, Q̂) = C1 ·

∑
i∈[N ] L4(τ

i
1, τ

i
2, Q̂) + C2, where C1, C2 are

constant scalars.

3. Let w be the parameter of the reward function R. For each trajectory pair, the gradients of
its contribution to the optimization goal on the reward function parameter have the same
direction in the two methods: ∂L3(τ

i
1,τ

i
2,Q̂)

∂w /∥∂L3(τ
i
1,τ

i
2,Q̂)

∂w ∥ =
∂L4(τ

i
1,τ

i
2,Q̂)

∂w /∥∂L4(τ
i
1,τ

i
2,Q̂)

∂w ∥.
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B PROOF

B.1 PROOF FOR LEMMA 4.2

Denote the prediction loss, which is the goal of optimization, as G =
∑

i∈[N ] F (
∑

t∈[T ] r
i
σi,t −∑

t∈[T ] r
i
σ̄i,t)). For any i ∈ [N ] and t ∈ [T ], we have

∂G

∂riσi,t

= F ′(
∑
t∈[T ]

riσi,t −
∑
t∈[T ]

riσ̄i,t)) < 0,
∂G

∂riσ̄i,t

= F ′(
∑
t∈[T ]

riσi,t −
∑
t∈[T ]

riσ̄i,t)) > 0.

Therefore, the prediction loss is monotonically decreasing on riσi,t and monotonically increasing on
riσ̄i,t for all i ∈ [N ] and t ∈ [T ]. Given that the rewards are bound in [−1, 1], the optimal reward
that achieves minimal prediction loss is riσi,t = 1 and riσ̄i,t = −1 for all i ∈ [N ] and t ∈ [T ].

B.2 PROOF FOR THEOREM 4.5 AND A.3

In the first case, when there is no overlap between trajectories, by Lemma 4.2, the optimal reward
labels are the binary reward labels in Eq 2. For the two reward modeling processes, the optimal
solutions are the reward models that output exactly the same binary reward labels. For the two Q-
learning processes, the optimal solutions are the Q functions whose corresponding reward models
output exactly the same binary reward labels.

In the second case, recall that the rewards functions and the corresponding reward functions of the
Q functions are bounded. We can rewrite L1 and L3 as

L1 = 2 · T −
∑

(s,a)∈τ i
1

R̂(s, a)|+
∑

(s,a)∈τ i
2

|R̂(s, a) + 1|

L3 = 2 · T −
∑

(s,a,s′)∈τ i
1

(Q̂(s, a)− γ ·max
a′

Q̂(s′, a′)) +
∑

(s,a,s′)∈τ i
2

(Q̂(s, a)− γ ·max
a′

Q̂(s′, a′))

(3)

By comparing that with L2 and L4, we get the statements in the second case for both theorems.

In the third case, we check the gradients of the optimization goals at each trajectory pair:

L1 =
∑

(s,a)∈τ i
1

|1− R̂(s, a)|+
∑

(s,a)∈τ i
2

|R̂(s, a) + 1|

=
∑

(s,a)∈τ i
1

−R̂(s, a) +
∑

(s,a)∈τ i
2

R̂(s, a) + 2 · T

∂L1

∂w
=

∑
(s,a)∈τ i

1

−∂R̂(s, a, w)

∂w
+

∑
(s,a)∈τ i

2

∂R̂(s, a, w)

∂w

(4)

L2 =F
( ∑
(s,a)∈τ i

1

R̂(s, a)−
∑

(s,a)∈τ i
2

R̂(s, a)
)

∂L2

∂w
=F ′

( ∑
(s,a)∈τ i

1

R̂(s, a)−
∑

(s,a)∈τ i
2

R̂(s, a)
)

·
( ∑
(s,a)∈τ i

1

∂R̂(s, a, w)

∂w
−

∑
(s,a)∈τ i

2

∂R̂(s, a, w)

∂w

)
(5)
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L3 =
∑

(s,a,s′)∈τ i
1

|Q̂(s, a)− (1 + γ ·max
a′

Q̂(s′, a′))|+

∑
(s,a,s′)∈τ i

2

|Q̂(s, a)− (−1 + γ ·max
a′

Q̂(s′, a′))|

∂L3

∂w
=

∑
(s,a,s′)∈τ i

1

∂Q̂(s, a)− γ ·maxa′ Q̂(s′, a′))

∂w
−

∑
(s,a,s′)∈τ i

2

∂Q̂(s, a)− γ ·maxa′ Q̂(s′, a′))

∂w

(6)

L4 =F (
∑

(s,a,s′)∈τ i
1

(Q̂(s, a)− γ ·max
a′

Q̂(s′, a)))−

∑
(s,a,s′)∈τ i

2

(Q̂(s, a)− γ ·max
a′

Q̂(s′, a)))

∂L4

∂w
=F ′(

∑
(s,a,s′)∈τ i

1

(Q̂(s, a)− γ ·max
a′

Q̂(s′, a)))−

∑
(s,a,s′)∈τ i

2

(Q̂(s, a)− γ ·max
a′

Q̂(s′, a)))

·(
∑

(s,a,s′)∈τ i
2

∂Q̂(s, a)− γ ·maxa′ Q̂(s′, a))

∂w
−

∑
(s,a,s′)∈τ i

1

∂Q̂(s, a)− γ ·maxa′ Q̂(s′, a))

∂w
)

(7)

Comparing the results and utilizing the fact that the loss-link function is monotonically decreasing,
we get the statements in the third case from both theorems.

C ADDITIONAL EXPERIMENT RESULTS

Combing BRL with different standard Offline RL Algorithms: Here, we examine what is the
efficiency of our method when combined with different standard offline RL algorithms training on
the same dataset. We observe in Figure 5 that the learning efficiency is higher if one combines ORL
with CQL when learning on the HalfCheetah medium-expert dataset. In general, the efficacy of our
method is high as long as the offline RL is effective when training on the true rewards.

Figure 5: Comparison between the learning efficiency of ORL combined with different standard
offline RL algorithms.

In Figure 6, we show the training logs of algorithms learning on different datasets in the main result.
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Figure 6: Training log of learning with different methods on different datasets.
experiment name BRL Reward Gap RM Reward Gap
HalfCheetah-ME-(10%x2) 1.930 0.420
HalfCheetah-ME-(10%x4) 1.797 0.413
HalfCheetah-ME-(20%x2) 1.859 0.411
HalfCheetah-ME-(20%x4) 1.581 0.420

Table 2:

In Table 2, we show the gap between the reward labels given by BRL and RM on the preferred and
rejected trajectories. Note that the trajectories in the dataset are overlapped in this case.
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