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Figure 1: Sage Deer uses the pre-trained video encoders (visual tokenizers) to tokenize the different
modes and views of the video, especially the physiological encoder used to extract the physiological
signals of face video. Using tokenized visual embedding, large language models can provide
general responses for physiological indicators, emotional states, gestures, human behavior, and scene
understanding. It is worth emphasizing that the individual needs of the user can be edited in a
single document. We then query this information with learnable retrieval augmentation generation,
generating results super aligned with user preferences.

ABSTRACT

The intelligent driving cockpit, an important part of intelligent driving, needs to
match different users’ comfort, interaction, and safety needs. This paper aims to
build a super-aligned and generalist driving agent, sage deer. Sage Deer achieves
two highlights: (1) Super alignment: It achieves different reactions according to
different people’s preferences and biases. (2) Generalist: It can understand the
user’s physiological indicators, facial emotions, hand movements, body movements,
driving scenarios, and behavioral decisions. (3) Multimodal: He can understand
RGB, NIR, and depth video to build more robust perception, understanding, and
reasoning. To achieve the above requirements, we design retrieval-enhanced
multimodal frameworks. We collected multiple data sets and built a large-scale
benchmark. This benchmark measures the deer’s perceptual decision-making
ability and the super alignment’s accuracy.

1 INTRODUCTION

Owing to advancements in artificial intelligence and high performance computing hardware, intelli-
gent connected vehicles have garnered significant attention from both academia and governmental
bodies due to their profound potential to revolutionize future transportation paradigms |Li et al.
(2023b); [Teng et al.| (2023). By integrating advanced sensors, artificial intelligence algorithms, and
technologies, s possess the capability to perceive their environment, make informed decisions, and
execute control, which will significantly enhance vehicle safety, optimize traffic flow, and deliver a
comfortable and convenient driving experience.

The intelligent driving cockpit serves as the interface for human interaction with s, offering a seamless
and user-focused experience through the provision of real-time data, personalized settings, and
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intuitive controls|Li et al.| (2023b)); | Yang et al.|(2022). This advanced system enhances communication
between the driver, passengers, and the vehicle, increases safety via comprehensive monitoring
systems, and improves comfort by adapting to individual preferences and varying driving conditions.

However, the pursuit of a universal intelligent driving cockpit that encapsulates both general principles
and individual-specific requirements is inherently complex. Individuals possess distinct driving habits
and needs, necessitating the development of an agent that aligns with their preferences. However, it
is impractical to train a unique model for each individual user. Existing research |Cui et al.|(2023bfa);
L1 et al.| (2023cj [2022); |Liu & Zhang| (2020); [Tao et al. (2024) on intelligent driving cockpits
predominantly emphasizes rigid decision-making and control by integrating external environmental
perception data and in-vehicle occupant status, which usually overlooks the individual preferences
and limits the adaptability of cockpit system.

Recent advancements in multi-modal large models have demonstrated their capabilities in understand-
ing and reasoning with multi-modal inputs, including videos and natural language. Sima et al.|Sima
et al.| (2023) proposed the utilization of large language models to perform end-to-end autonomous
driving through a visual question answering manner. While Wang et al. 'Wang et al.|(2023) proposed
DriveMLM, which can perform close-loop autonomous driving in realistic simulators by mitigate
the gap between language decisions and vehicle control commands. As for in-vehicle situations,
multi-modal large models are also applied to driver health monitoring [Hecht et al.|(2018)), driving
decision individuation with simple strategy [Cui et al.[|(2023b). A robust and personalized intelligent
driving cockpit can incorporate driving scenario understanding, language interaction, user behavior
and sentiment analysis, processing of personalized driver needs, and intelligent decision-making.
However, the above mentioned research has yet to achieve comprehensive functionality and full-
modal information processing and reasoning. Thus, there remains a significant gap between current
capabilities and the envisioned intelligent driving cockpit.

To bridge the gap between current approaches in providing a personalized driving experience and com-
prehensive omni-modal information processing, we propose a super-aligned and generalist driving
agent, sage deer. We present a retrieval-augmented framework designed to develop a super-aligned
and generalist agent for smart cockpits. This framework is characterized by three core strengths:
comprehensive tokenization of multi-mode and multi-view videos, robust generalist understanding,
and super-aligned responses. To effectively integrate diverse visual and physiological data, we
tokenize inputs from multiple sensing modalities—including RGB, near-infrared (NIR), and depth
cameras—using a pre-trained ResNet18 for feature extraction, followed by mapping to a language
space with a two-layer linear layer. Multi-view perspectives are similarly tokenized with distinct
perspective markers to ensure comprehensive scene interpretation. Additionally, physiological infor-
mation is processed through spatio-temporal representations and encoded into tokens, enabling the
model to monitor driver states accurately. The framework employs a retrieval-augmented generation
mechanism that leverages an updatable document containing both fundamental and personalized
information, enhancing the large language model’s (LLM) ability to generate contextually relevant
responses without extensive fine-tuning. Expert knowledge fusion further integrates domain-specific
insights, allowing the system to dynamically adapt based on real-time physiological and environ-
mental data. This holistic approach ensures high-quality scene understanding, precise physiological
monitoring, and personalized, context-aware interactions, significantly improving the alignment and
generalization capabilities of agents within complex cockpit environments.

Contribution

1. Established a multi-view and multi-modal evaluation protocol for the intelligent cockpit, involving
unified evaluation of the driver’s physiology, emotion, behavior, driving scene understanding, and
decision-making.

2. An intelligent driving cockpit super alignment evaluation protocol involving generalization ability
for different needs was established.

3. Designed a set of algorithms that align human preferences without fine-tuning.
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Table 1: Comparison of public driving cockpit perception datasets. "Naturalistic" refers to people’s
natural driving behavior, while "Induced" refers to people’s intervention and design of scenes.
Reaction is the response given by the intelligent cockpit according to different user needs. Question
Answering refers to the verbal inquiry interaction between the user and the cockpit.

Dataset Views Naturalistic Induced Multimodal Physiological Indicator ~Behavior Emotion  Traffic Context ~ Vehicle Condition ~Reaction Question Answering

SEUZhao et al. {2012} 1 - v - - v - -

Tran|Iran et al. (J018] 1 - v - v - -
Zhang|Zhang et al. {2020 2 - v v - ' - - - - -
StateFarm/sta§2016 1 - v - - v - - - - -
AUC-DD|Eraqi et al.|(2019 1 ' - - - v - - - - -
LoLi|Saad et al. {2020 1 ' - v - ' - - - - -
Brain4Cars|Jain et al. {2016] 2 v - - - v - - - - -
Drive&Act/Martin et al. {2019] 6 - v ' - v - - - - -
DMD|Ortega et al. §2020] 3 - v v - v - - - - -
DAD|KopukIu et al. €202 [ 2 - v v - v - - - - -
DriPE|Guesdon et al. {2021 1 v - - - - - - - - -
LBW/|Kasahara et al.(2027] 2 v - - - - - - - - -
MDADJegham et al. {2019 2 v - v - v - - - - -
3MDAD{Jegham et al. (2020} 2 v - v - v - - - - -
DEFE[L1 et al {202 1a] 1 - v - - - v - - - -
DEFE+|Li1 et al. [(2021b| 1 - v v - - v - - - -
Du [Du et al {2020] 1 - v v - - v - - - -
KMU-FED!Jeong & Ko2018] 1 v - - - - v - - - _
MDCS Oh et al. (2022 2 v - v - - v - - - -
AIDE|Yang et al. (2023a; 4 ' - - - ' v v v - -
Sage Deer 4 ' v v ' ' v v v v v

2 RELATED WORK

Multi-modality Large Model in Driving Multi-modality large models are widely used in au-
tonomous driving, such as automatic planning and control [Mao et al.| (2023); |Cui et al.| (2023a),
perception Wang et al.|(2020), and driver health monitoring [Hecht et al.|(2018) among others. By
aggregating multi-modal information (e.g., vision, speech, point cloud, etc.) [Yang et al.| (2023b),
multi-modal large models can more effectively help autonomous driving systems perceive the scene
inside and outside the vehicle, and make more intelligent decisions.

In the vehicle’s user-facing interface, the driver’s emotions, health, posture, and actions can help the
autonomous driving system interact dynamically and adapt to various driving styles. Cui et al. (Cui
et al.[ (2023bja)) first proposed to precisely enhance the decision-making process of autonomous
driving by perceiving multi-modal information inside and outside the vehicle. Although these
methods can perceive multi-modal information, they adopt a single strategy for different users and
cannot make adaptive decisions for different users. Subsequent improvements [Cui et al.| (2023c);
Yang et al.[(2024) attempt to promote fine-grained understanding of user language and enhance the
control performance of the vehicle system, but these methods overlook the impact of hidden emotions,
health, and action information on vehicle safety and efficiency.

In this paper, we super-align various modal information of users, which not only includes the
user’s own interaction, but also perceives the user’s health, emotions, posture, behavior, and other
information, thereby enhancing the intelligence of the vehicle system.

Retrieval-Augmented Generation Retrieval-Augmented Generation (RAG) enhances the accuracy
of knowledge-intensive tasks by retrieving relevant information from an external knowledge base,
which can be continuously updated |Gao et al.| (2023). Specifically, RAG first collects external
information and saves old user queries [Ma et al.[ (2023), organizes the knowledge, aligns it, and
stores it in a repository provided by the user. Then, an efficient index is built to retrieve image data.
Afterward, RAG retrieves internal information based on the prompts provided by the user, which
mainly relies on priority ranking and retrieval. Finally, RAG merges the proposed query and selected
information inputs it into a large model and returns a more accurate response. Based on this, RAG
can help answer questions that vary according to specific needs while also aggregating the dialogue
history scenario, enabling the model to remember customized information effectively.

In this paper, we use RAG to store customized information of users, including their driving habits and
behaviors, which helps build a more human-centered vehicle driving agent, and can use customized
requirements of specific users.
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Figure 2: (a) We use existent multimodal model tools to generate captions for the videos likes
et al.l [2023a; [Zhang et al.l [2023a)). (b) Then, we set a reasonable prompt to merge the information
from different videos. (c) We took advantage of the existing tags (including physiological indicators,
emotional indicators, action indicators, behavioral indicators, scene understanding, and reasoning
decision-making) to correct and supplement the captain. (d) Next, we use GPT4 (Achiam et al.}[2023)
as an assistant to build question-answering pairs for different tasks (including physiological indicators,
emotion, behavior, and so on.). (e) We design multiple user preferences, and GPT4 responds to the
current scenario based on user preferences.

3 DATA CURATING AND BEACHMARKING

3.1 DATA COLLECTION

Our goal is to create a driving generalist (physiological estimation, emotional estimation, gesture
estimation, body motion estimation, driving behavior estimation, driving behavior detection, and
driving decision-making) in the intelligent cockpit. We selected three of the most recent multi-view
multi-task driving datasets AIDE and DMD. In addition, we use the latest contactless physiological
measurement technology to monitor the user’s health, which can estimate heart rate and blood oxygen
only with a camera. We collected 5 datasets (VIPL-HR, V4V, PURE, BUAA-rPPG and UBFC).

3.2 GENERAL INSTRUCTION CONSTRUCTION

To construct natural language descriptions for sage deer, we use existent multimodal model tools
(InternVideo (Wang et all, [2022)), Tag2Text (Huang et al., 2023)), or GRiT 2022)) to
generate captions for the frame sampled at equal intervals automatically. Likes 2023a;
Zhang et al, 20234), we set the reasonable prompt to merge the information of different frames.
Existing image caption methods are often inaccurate or insufficiently annotated for an intelligent
cockpit system. So, we took advantage of the existing tags (including physiological indicators,
emotional indicators, action indicators, behavioral indicators, scene understanding, and reasoning
decision-making) in the dataset to correct and supplement the captain. Next, we use GPT4
2023)) as an assistant to build question-answering pairs for different tasks. We used GPT4 to
summarize, fuse, and correct these captains. See supplementary materials for details.

3.3 SUPER-ALIGNED REACTION

Users have different needs for driving cockpit, especially interactivity and trustworthiness. Interac-
tivity means creating gestures, emotions, and body movements and tailoring cockpit feedback to
user needs. Trustworthiness refers to personalized warning feedback on user fatigue, bad mood, and
bad behavior. For this purpose, we use GPT4 to design the needs of different users and give specific
feedback according to the needs of users and the information of the current scenario.
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Figure 3: Overview of our framework. RGB, depth and NIR videos of different modes are extracted
by a pre-trained encoder and converted into tokens. These tokens concatenate problems and retrieve
enhanced linguistic features. Where the search augmentation generated to language features are now
features that will be generated by the interchangeable document, via chunk, tokenizer, and further
encoder. Ultimately, the LLM will respond based on the updatable document content and video
content.

4 METHOD

We build a retrieval-augmented framework to build a super-aligned and generalist agent in the cockpit.
This framework has three strengths: (1) Any mode and view video tokenization. (2) Generalists
understand. (3) Super-aligned reactions.

4.1 TOKENIZING MULTI-MODE AND MULTI-VIEW VIDEOS

For driving cockpit, leveraging multiple modes and perspectives can significantly enhance the model’s
ability to interpret complex scenes, especially under challenging conditions such as poor weather
or low-light environments. This subsection outlines our approach to tokenizing multi-mode and
multi-view videos, ensuring that the model effectively integrates diverse visual information and
physiological indicators.

Tokenizing Multi-Model. To robustly monitor user and scene information under adverse conditions,
we incorporate multiple sensing modalities, including RGB, near-infrared (NIR), and depth cameras.
We uniformly use the ImageNet pre-trained ResNet18 as each frame rate feature extractor, and then
we cat all the frames together to get the video features. Finally, a simple two-layer linear layer
is mapped to the language spaceem ¢qcc € C' x L. C'is the number of channels characteristic of
the language model, and L is a hyperparameter representing how many tokens are used to present
the video features. In particular, to better understand the physiological indicators of faces in the
video. To allow LLM to distinguish between different modes, we added identifiers for visual features.
For example, add corresponding start and end symbols to the front and back of a face RGB video
embedding em,q, € C' X L, < RGB bos > em,q, < RGB cos >. Other videos are processed
the same way and then fed into the LLM.

Tokenizing Multi-View. Input of multiple perspective information is necessary, such as viewing
information around the entire vehicle or monitoring the scene and driver at the same time. Similarly
to multi-model, we uniformly use the ImageNet pre-trained ResNet18 as the feature extractor for each
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frame rate. This is followed by mapping a simple two-layer linear layer to the language space. Then,
we also use perspective markers to mark different perspectives, for example, emron: € C X L,
< Front RGB bos > emfrons < Front RGB cos >.

Tokenizing Physiological Information. Through a contactless video of a person’s face, we can
obtain physiological indicators such as heart rate, blood oxygen and respiration. But directly feeding
a long video into our model is very low effect. Following (Lu et al., 2023), we first convert the
video into a spatio-temporal representation (STMap) and then extract the features with ResNet18
and convert them into tokens emypys € C' X L through two linear layers. Similarly, we’ve added
identifiers, < Phys bos > emppys < Phys cos >

Final representation. In addition, the user’s questions are concated with vision tokens and sent to
the LLM. The losses and training strategy of our visual instruction tuning are the same as those of
MLLM (Li et al} 2023a; Zhang et al., 2023a; Muhammad Maaz & Khanl [2023).

4.2 RETRIEVAL-AUGMENTED GENERATION

The training of large language models is very expensive, and it is easy to lose the ability to generalize
in a small training data. User needs for a smart cockpit are often very different, but we can’t fine-tune
the LLM to each user’s specific preferences. To do this, we have adopted a retrieval-augmented
generation framework ash shown in Fig.[3]

Specifically, we built an updatable document. This document includes some basics and personal
requirements. Then we chunk the document, here we use a very concise way to divide the document
by sentences. Each sentence is then tokenized, and then the sentence is the same length by filling
in the tokens. A four-layer convolutional encoder is then used to compress the literal token into a
1/8-length feature. Then, we calculate the similarity between visual features and text features, and
only retain the first N features with high similarity. Splicing into visual features. Then, we calculate
the similarity between visual features and text features, and only retain the first N features with high
similarity. These retrieved temporal features are spliced onto visual features.

4.3 EXPERT KNOWLEDGE FUSION

Reasonable knowledge and carefully crafted prompts can significantly enhance the potential of Large
Language Models (LLMs), enabling them to generate more nuanced and context-aware outputs. In
the context of the smart cockpit, there exists a strong and intricate relationship between various
factors such as physiological indicators, emotions, behaviors, and the vehicle itself. Understanding
these correlations is crucial for optimizing driver assistance systems, improving safety, and providing
a more personalized driving experience. To this end, we conducted a systematic investigation of
task correlations in collaboration with vehicle human factors experts, enabling us to explore these
dependencies in greater detail.

The Relationship Between Physiological State and Emotion: Classical studies in psychophysiology
(e.g., James-Lange, Schachter-Singer) have long established that physiological states, such as heart
rate variability, skin conductance, and muscle tension, are closely linked to emotional responses. In
the context of smart cockpits, real-time monitoring of physiological signals can provide valuable
insights into the emotional state of the driver. For instance, elevated heart rate and increased skin
conductance may be indicative of stress or anxiety, particularly in challenging driving scenarios.
Recognizing this connection allows the system to adapt accordingly, offering calming feedback or
assistance in real-time.

In addition, we investigated prior knowledge of other tasks, including: The Relationship Between
Physiological State and Behavior,The Relationship Between Physiological State and Behavior, The
Relationship Between Physiological State and Behavior. These relationships are not isolated but
rather dynamically interact in real-world driving scenarios. By leveraging real-time data on cabin
conditions — including environmental factors, driver behavior, and physiological/emotional states —
the smart cockpit can generate a wider range of more accurate and contextually appropriate responses.
This dynamic adaptation not only enhances the comfort and safety of the driver but also improves the
overall driving experience. For example, in high-stress situations, the system may offer enhanced
alerts or autonomous driving support, while in calm conditions, it might prioritize fuel efficiency or
offer entertainment options.
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Table 2: Baseline compared the performance of our approach on the super alignment protocol.
Baseline is to splice user requirements directly into visual features and feed them into the LLM,
taking advantage of the long-range modeling capabilities of the LLM itself.

AIDE DMD
BLEU SPICE BLEU SPICE

Baseline 0.184  0.301  0.191  0.296
Ours 0214 0315 0.204  0.305

Method

By embracing the interconnected nature of these factors, intelligent systems in smart cockpits can
better understand the human-driver interaction, anticipating needs and providing tailored responses
that enhance both safety and the overall driving experience. Importantly, this approach underscores
the potential of LLMs when incorporated with domain-specific knowledge, allowing them to generate
more context-sensitive and accurate outputs in real time. Integrating such knowledge-driven, prompt-
based systems into smart cockpits represents a significant leap in creating more intuitive, responsive,
and adaptive vehicle environments.

5 EXPERIMENTS

5.1 DATASETS.

We found two recent data sets of very comprehensive annotations for assisted driving. The DMD is
a driver monitoring dataset, an extensive dataset that includes real and simulated driving scenarios:
distraction, eye distribution, drowsiness, handwheel interaction, and contextual data, in 41 hours
of RGB, depth, and infrared video from 3 cameras, capturing the faces, bodies, and hands of 37
drivers. AIDE proposes an assisted driving awareness dataset that takes into account contextual
information both inside and outside the vehicle in a natural scenario. AIDE enables overall driver
monitoring through multi-perspective Settings of the driver and the scene, multi-modal annotations
of the face, body, posture, and gestures, and four practical task designs for driver understanding.
we collect five rPPG face video datasets ( VIPL-HR N1u et al.| (2019), PURE |Stricker et al.|(2014),
UBFC-rPPG Bobbia et al.|(2019), V4V Revanur et al.| (2021), and BUAA-MIHR [Xi et al.|(2020)),
mostly with subjects remaining still, and some with head movements.

5.2 TRAINING DETAILS.

We tain our model on A6000 for 2 epochs. The learning rate, and weight decay are set to 0.001, and
0.02, respectively. The maximum sentence length is set to 64. That is, if the sentence is too long,
excess parts will be discarded, and if the sentence is too short, 0 will be filled to make the length
uniform. All image vision encoders use the pre-trained resnet 18 on imagenet as the pre-trained
model, and these vision encoders are fine-tuned. For the feature extraction of physiological signals,
we use the pre-trained model of NEST-rPPG |Lu et al.[(2023) and do not fine-tune it.

5.3 BASELINES AND EVALUATION METRICS

We compare our proposed framework’s anomaly understanding performance with SOTA video
understanding baselines. We select five baselines: Video-ChatGPT (Muhammad Maaz & Khan,
2023)), VideoChat (Li et al.| 2023a)), Video-LLaMA (Zhang et al.| 2023a)), LLaMA-Adapter (Zhang
et al., 2023b), and Video-LLaVA (Lin et al.,|2023). Our comparison aims to determine whether these
baselines can fully understand and interpret video anomalies.

To accurately evaluate our model’s performance, we adopt BLEU Bilingual Evaluation Under-
study(BLEU) and SPICE (Papineni et al., |2002) to measure word overlap between the model-
generated text and the ground truth. This approach enables us to objectively assess the similarity and
consider various levels of granularity at the text level, thus clearly indicating how well the model
understands and describes anomalies.
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Table 3: Generalist capabilities on AIDE data sets.

Method Emotion Behavior Scene Condition
BLEU SPICE BLEU SPICE BLEU SPICE BLEU SPICE

Video-ChatGPT 0.200 0.280 0.170 0205 0.190 0.330 0.195 0.320
VideoChat 0205 028 0.175 0210 0.195 0335 0200 0.325
Video-Llama 0.217 0312 0.183 0.223 0.207 0352 0.211 0.337
Llama-Adapter 0215 0310 0.190 0225 0.210 0340 0.189 0.321
Video-LLaVA 0202 0290 0.172 0205 0.190 0330 0.195 0.320
Ours 0.232 0331 0.194 0.242 0.225 0369 0.223  0.360

Table 4: Generalist capabilities on DMD data sets.

Action Gaze Hand
Method
BLEU SPICE BLEU SPICE BLEU SPICE

Video-ChatGPT 0.175 0250 0.150 0.185 0.160 0.310
VideoChat 0.190 0260 0.160 0.185 0.160 0.310
Video-Llama 0205 0275 0.170 0205 0.180  0.325
Llama-Adapter 0.202 0.265 0.170  0.201  0.175  0.320
Video-LLaVA 0.195 0295 0.155 0220 0.170  0.315
Ours 0235 0315 0.195 0230 0210 0.340

5.4 GENERALIST PERFORMANCE

Our model can estimate the driver’s emotion, physiological indicators, gaze, physical behavior,
hand behavior, driving scene and vehicle state. In order to more clearly evaluate the ability of the
model in different subtasks, we conducted systematic evaluation on two multi-task datasets, fatigue
and physiological indicators. First, we used the default dataset partitioning on the AIDE dataset
to train and test the results shown in Table [3] As you can see from the table, our algorithm has

improved tremendously. This is mainly because, using expert knowledge, LLM can better integrate
the connections between tasks.

Further, we verify our algorithm on DMD data set. As shown in Table[d] our algorithm achieves
excellent performance on all tasks. All these results prove the effectiveness of our algorithm. Of
course, our algorithm is very concise, only through RAG to retrieve the relevant expert knowledge to
improve the accuracy of the reply. Further, we give an example of our model’s dialogue to illustrate
the generalist power of our model 4}

5.5 SUPER-ALIGNED PERFORMANCE

Different users have different needs for driving a smart cockpit, which requires us to super-align our
users’ biases. One of the simplest ways is to put all the user’s preferences in the form of text at the
top of the LLM input, and then use the LLM’s own long-distance modeling capabilities to bias it.
This most straightforward approach is considered our Baseline. Our approach is to complete the
super alignment with a learned RAG. The performance of these two methods is shown in Table

As shown in Table [2] our approach has improved dramatically. This shows that LLM itself has a
limited ability to understand long texts, and it is difficult to make different responses to the results
according to its visual features and prior knowledge. This explains the need for our RAG framework.

6 CONCLUSION

In this study, we successfully curated and benchmarked comprehensive data to develop Sage Deer,
a super-aligned and generalist driving agent for intelligent cockpits. Our data collection strategy
integrated three state-of-the-art multi-view and multi-task driving datasets—AIDE, DMD, VIPL-HR,
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i Please briefly describe the basic situation of the driver, especially the
emotional and physiological indicators.

The driver was about 30 years old, did not wear glasses and was
| engaged in driving activities. He was calm, his heart rate and blood

|
|
| oxygen were 85 bpm and 98%. He was very focused and his eyes were | _
| on the road. His hands seemed to be trying to adjust the radio. 1

|

i What is the current driving scene like?

We re in a city driving scenario, and there's an intersection ahead. The 1
| road is very crowded and slow due to the road construction on the right. |
| There is a yellow vehicle directly in front of you, please keep your 1
| attention. 1

|

1 Your current driving behavior and physiological indicators are normal. At

| present, the road is the traffic artery of the city, and there are many |
| vehicles, which is worth continuing to improve the spirit. | _

Figure 4: Generalist ability. Soga deer can reply to different tasks and has the ability to reply to an
open domain.

V4V, PURE, BUAA-rPPG, and UBFC—alongside cutting-edge contactless physiological measure-
ment technologies to monitor vital health indicators such as heart rate and blood oxygen levels
using only camera inputs. To construct robust natural language instructions, we employed advanced
multimodal models (InternVideo, Tag2Text, GRiT) for automatic video captioning, which were then
refined and enhanced with existing tags and supplemented through GPT-4-generated question-answer
pairs tailored to various driving-related tasks. Additionally, we addressed diverse user needs by
leveraging GPT-4 to design personalized interactions, ensuring that the intelligent cockpit could
provide tailored feedback based on individual preferences and real-time scenarios. Our benchmarking
framework evaluates the agent’s ability to interpret physiological data, emotional states, gestures,
body movements, driving behaviors, and decision-making processes across multiple modalities. The
integration of retrieval-augmented generation and expert knowledge fusion within our framework
ensures that Sage Deer delivers accurate, context-aware, and personalized responses, significantly
advancing the capabilities of intelligent driving cockpits in enhancing driver comfort, safety, and
interaction.
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You may include other additional sections here.
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