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Large Language Model

Different Modes

1. When the driving situation may be 
dangerous, remind me to take over driving.
2. When I'm tired, please play the song.
3. When I raise my fist, please help me turn 
on the music.
......

Different Views

Face View NIR 
Mode

Depth 
Mode

......

Body View Outside View

Health Monitoring

Sage Deer: The driver’s current heart 
rate and blood oxygen are 85 bpm 
and 98%.

Fatigue Monitoring

Sage Deer: The driver is in good 
spirits and shows no signs of fatigue.

User: What's the driver's current heart 
rate and oxygen status?

User: What is the 
current fatigue status of 
the driver?

Driver Behavior Understanding

Sage Deer: A 30-year-old male driver, 
who does not wear glasses, engaged in 
normal driving activities. 

User: What was the driver's behavior?

T

Driver Gesture Understanding

Sage Deer: With one hand on the 
steering wheel, the driver tries to 
adjust the radio with the other. 

User: What was the driver's gesture?

Emotion Understanding

Sage Deer: The driver sat in the seat, 
and its emotions were very calm. 

User: What was the 
driver's emotion?

Scene Understanding

Sage Deer: The current is a complex 
urban road section, there is a yellow taxi 
in front, please note the distance from 
this car.

User: What is the current traffic situation?

Phys-STMap

Aligned Face 
Video

General responses:
A 30-year-old male driver, who does not wear glasses, engaged 
in driving activities. He is peacefull, and his heart rate and blood 
oxygen are 85 bpm and 98%......

Super-Aligned responses:
Since the user has set the music to turn on when he raises 
his fist, car will <turn on the music> for the driver.

Personal Preference

Learnable Retrieval
Augmented Generation

Super-Aligned Safety Reaction
Sage Deer: Because the 
user trusts the driverless 
algorithm and the current 
environment is safer, 
<takeover request> is 
issued to try to take over.

Super-Aligned Reaction

Sage Deer: Since the user has 
set the music to turn on when 
he raises his fist, car will 
<turn on the music> for the 
driver.

Driving Behavior Decision

Sage Deer: At present, 
driving on a crowded urban 
road, the road speed is 
relatively slow, and the 
vehicle is recommended to 
go straight. 

RGB Video
 Tokenizer

NIR Video
 Tokenizer

Depth Video
 Tokenizer

Physiological 
Tokenizer

Updatable DocumentationMicrovariatio
n

Question

Figure 1: Sage Deer uses the pre-trained video encoders (visual tokenizers) to tokenize the different
modes and views of the video, especially the physiological encoder used to extract the physiological
signals of face video. Using tokenized visual embedding, large language models can provide
general responses for physiological indicators, emotional states, gestures, human behavior, and scene
understanding. It is worth emphasizing that the individual needs of the user can be edited in a
single document. We then query this information with learnable retrieval augmentation generation,
generating results super aligned with user preferences.

ABSTRACT

The intelligent driving cockpit, an important part of intelligent driving, needs to
match different users’ comfort, interaction, and safety needs. This paper aims to
build a super-aligned and generalist driving agent, sage deer. Sage Deer achieves
two highlights: (1) Super alignment: It achieves different reactions according to
different people’s preferences and biases. (2) Generalist: It can understand the
user’s physiological indicators, facial emotions, hand movements, body movements,
driving scenarios, and behavioral decisions. (3) Multimodal: He can understand
RGB, NIR, and depth video to build more robust perception, understanding, and
reasoning. To achieve the above requirements, we design retrieval-enhanced
multimodal frameworks. We collected multiple data sets and built a large-scale
benchmark. This benchmark measures the deer’s perceptual decision-making
ability and the super alignment’s accuracy.

1 INTRODUCTION

Owing to advancements in artificial intelligence and high performance computing hardware, intelli-
gent connected vehicles have garnered significant attention from both academia and governmental
bodies due to their profound potential to revolutionize future transportation paradigms Li et al.
(2023b); Teng et al. (2023). By integrating advanced sensors, artificial intelligence algorithms, and
technologies, s possess the capability to perceive their environment, make informed decisions, and
execute control, which will significantly enhance vehicle safety, optimize traffic flow, and deliver a
comfortable and convenient driving experience.

The intelligent driving cockpit serves as the interface for human interaction with s, offering a seamless
and user-focused experience through the provision of real-time data, personalized settings, and
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intuitive controls Li et al. (2023b); Yang et al. (2022). This advanced system enhances communication
between the driver, passengers, and the vehicle, increases safety via comprehensive monitoring
systems, and improves comfort by adapting to individual preferences and varying driving conditions.

However, the pursuit of a universal intelligent driving cockpit that encapsulates both general principles
and individual-specific requirements is inherently complex. Individuals possess distinct driving habits
and needs, necessitating the development of an agent that aligns with their preferences. However, it
is impractical to train a unique model for each individual user. Existing research Cui et al. (2023b;a);
Li et al. (2023c; 2022); Liu & Zhang (2020); Tao et al. (2024) on intelligent driving cockpits
predominantly emphasizes rigid decision-making and control by integrating external environmental
perception data and in-vehicle occupant status, which usually overlooks the individual preferences
and limits the adaptability of cockpit system.

Recent advancements in multi-modal large models have demonstrated their capabilities in understand-
ing and reasoning with multi-modal inputs, including videos and natural language. Sima et al. Sima
et al. (2023) proposed the utilization of large language models to perform end-to-end autonomous
driving through a visual question answering manner. While Wang et al. Wang et al. (2023) proposed
DriveMLM, which can perform close-loop autonomous driving in realistic simulators by mitigate
the gap between language decisions and vehicle control commands. As for in-vehicle situations,
multi-modal large models are also applied to driver health monitoring Hecht et al. (2018), driving
decision individuation with simple strategy Cui et al. (2023b). A robust and personalized intelligent
driving cockpit can incorporate driving scenario understanding, language interaction, user behavior
and sentiment analysis, processing of personalized driver needs, and intelligent decision-making.
However, the above mentioned research has yet to achieve comprehensive functionality and full-
modal information processing and reasoning. Thus, there remains a significant gap between current
capabilities and the envisioned intelligent driving cockpit.

To bridge the gap between current approaches in providing a personalized driving experience and com-
prehensive omni-modal information processing, we propose a super-aligned and generalist driving
agent, sage deer. We present a retrieval-augmented framework designed to develop a super-aligned
and generalist agent for smart cockpits. This framework is characterized by three core strengths:
comprehensive tokenization of multi-mode and multi-view videos, robust generalist understanding,
and super-aligned responses. To effectively integrate diverse visual and physiological data, we
tokenize inputs from multiple sensing modalities—including RGB, near-infrared (NIR), and depth
cameras—using a pre-trained ResNet18 for feature extraction, followed by mapping to a language
space with a two-layer linear layer. Multi-view perspectives are similarly tokenized with distinct
perspective markers to ensure comprehensive scene interpretation. Additionally, physiological infor-
mation is processed through spatio-temporal representations and encoded into tokens, enabling the
model to monitor driver states accurately. The framework employs a retrieval-augmented generation
mechanism that leverages an updatable document containing both fundamental and personalized
information, enhancing the large language model’s (LLM) ability to generate contextually relevant
responses without extensive fine-tuning. Expert knowledge fusion further integrates domain-specific
insights, allowing the system to dynamically adapt based on real-time physiological and environ-
mental data. This holistic approach ensures high-quality scene understanding, precise physiological
monitoring, and personalized, context-aware interactions, significantly improving the alignment and
generalization capabilities of agents within complex cockpit environments.

Contribution

1. Established a multi-view and multi-modal evaluation protocol for the intelligent cockpit, involving
unified evaluation of the driver’s physiology, emotion, behavior, driving scene understanding, and
decision-making.

2. An intelligent driving cockpit super alignment evaluation protocol involving generalization ability
for different needs was established.

3. Designed a set of algorithms that align human preferences without fine-tuning.
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Table 1: Comparison of public driving cockpit perception datasets. "Naturalistic" refers to people’s
natural driving behavior, while "Induced" refers to people’s intervention and design of scenes.
Reaction is the response given by the intelligent cockpit according to different user needs. Question
Answering refers to the verbal inquiry interaction between the user and the cockpit.

Dataset Views Naturalistic Induced Multimodal Physiological Indicator Behavior Emotion Traffic Context Vehicle Condition Reaction Question Answering

SEU Zhao et al. (2012) 1 – ✓ – – ✓ – – – – –
Tran Tran et al. (2018) 1 – ✓ – – ✓ – – – – –

Zhang Zhang et al. (2020) 2 – ✓ ✓ – ✓ – – – – –
StateFarm sta (2016) 1 – ✓ – – ✓ – – – – –

AUC-DD Eraqi et al. (2019) 1 ✓ – – – ✓ – – – – –
LoLi Saad et al. (2020) 1 ✓ – ✓ – ✓ – – – – –

Brain4Cars Jain et al. (2016) 2 ✓ – – – ✓ – – – – –
Drive&Act Martin et al. (2019) 6 – ✓ ✓ – ✓ – – – – –

DMD Ortega et al. (2020) 3 – ✓ ✓ – ✓ – – – – –
DAD Kopuklu et al. (2021) 2 – ✓ ✓ – ✓ – – – – –
DriPE Guesdon et al. (2021) 1 ✓ – – – – – – – – –
LBW Kasahara et al. (2022) 2 ✓ – – – – – – – – –
MDAD Jegham et al. (2019) 2 ✓ – ✓ – ✓ – – – – –
3MDAD Jegham et al. (2020) 2 ✓ – ✓ – ✓ – – – – –

DEFE Li et al. (2021a) 1 – ✓ – – – ✓ – – – –
DEFE+ Li et al. (2021b) 1 – ✓ ✓ – – ✓ – – – –

Du Du et al. (2020) 1 – ✓ ✓ – – ✓ – – – –
KMU-FED Jeong & Ko (2018) 1 ✓ – – – – ✓ – – – –

MDCS Oh et al. (2022) 2 ✓ – ✓ – – ✓ – – – –
AIDE Yang et al. (2023a) 4 ✓ – – – ✓ ✓ ✓ ✓ – –

Sage Deer 4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2 RELATED WORK

Multi-modality Large Model in Driving Multi-modality large models are widely used in au-
tonomous driving, such as automatic planning and control Mao et al. (2023); Cui et al. (2023a),
perception Wang et al. (2020), and driver health monitoring Hecht et al. (2018) among others. By
aggregating multi-modal information (e.g., vision, speech, point cloud, etc.) Yang et al. (2023b),
multi-modal large models can more effectively help autonomous driving systems perceive the scene
inside and outside the vehicle, and make more intelligent decisions.

In the vehicle’s user-facing interface, the driver’s emotions, health, posture, and actions can help the
autonomous driving system interact dynamically and adapt to various driving styles. Cui et al. Cui
et al. (2023b;a) first proposed to precisely enhance the decision-making process of autonomous
driving by perceiving multi-modal information inside and outside the vehicle. Although these
methods can perceive multi-modal information, they adopt a single strategy for different users and
cannot make adaptive decisions for different users. Subsequent improvements Cui et al. (2023c);
Yang et al. (2024) attempt to promote fine-grained understanding of user language and enhance the
control performance of the vehicle system, but these methods overlook the impact of hidden emotions,
health, and action information on vehicle safety and efficiency.

In this paper, we super-align various modal information of users, which not only includes the
user’s own interaction, but also perceives the user’s health, emotions, posture, behavior, and other
information, thereby enhancing the intelligence of the vehicle system.

Retrieval-Augmented Generation Retrieval-Augmented Generation (RAG) enhances the accuracy
of knowledge-intensive tasks by retrieving relevant information from an external knowledge base,
which can be continuously updated Gao et al. (2023). Specifically, RAG first collects external
information and saves old user queries Ma et al. (2023), organizes the knowledge, aligns it, and
stores it in a repository provided by the user. Then, an efficient index is built to retrieve image data.
Afterward, RAG retrieves internal information based on the prompts provided by the user, which
mainly relies on priority ranking and retrieval. Finally, RAG merges the proposed query and selected
information inputs it into a large model and returns a more accurate response. Based on this, RAG
can help answer questions that vary according to specific needs while also aggregating the dialogue
history scenario, enabling the model to remember customized information effectively.

In this paper, we use RAG to store customized information of users, including their driving habits and
behaviors, which helps build a more human-centered vehicle driving agent, and can use customized
requirements of specific users.
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Question
What are the emotional and physiological indicators 
of the driver?
Answer
The driver is peacefull, and his heart rate and blood 
oxygen are 85 bpm and 98%. 
Question
What is the behavior of the driver?
Answer
The driver gaze looks down at the road, his left hand 
on the steering wheel, his right hand clenched in the 
air, as if trying to adjust the radio.

Individual needs
1. When the driving scene is complicated, remind me to take 
over driving.
2. When I'm tired, please play the song.
3. When I raise my fist, please help me turn on the music.
......

A 30-year-old male driver, who does not 
wear glasses, engaged in driving activities. 
He is peacefull, and his heart rate and 
blood oxygen are 85 bpm and 98%. 
Throughout the video, his gaze remains 
consistently on the road, demonstrating a 
focus on his driving environment. His 
hands, however, exhibit a particular 
behavior ...

Raw Caption
A man is driving without glasses. His face 
was expressionless. Throughout the video, 
he keeps his eyes on the road, showing 
his concern for the driving environment. 
The vehicle is driving on a crowded city 
road. His hand rose slowly ......

Accurate labele

Accurate Summary

Since the user has set the music to turn on when he raises his fist, car will <turn on the music> for the driver.

Super-Aligned Respose

Updatable Needs

Instruction 
Construction

General Respose

Figure 2: (a) We use existent multimodal model tools to generate captions for the videos likes (Li
et al., 2023a; Zhang et al., 2023a). (b) Then, we set a reasonable prompt to merge the information
from different videos. (c) We took advantage of the existing tags (including physiological indicators,
emotional indicators, action indicators, behavioral indicators, scene understanding, and reasoning
decision-making) to correct and supplement the captain. (d) Next, we use GPT4 (Achiam et al., 2023)
as an assistant to build question-answering pairs for different tasks (including physiological indicators,
emotion, behavior, and so on.). (e) We design multiple user preferences, and GPT4 responds to the
current scenario based on user preferences.

3 DATA CURATING AND BEACHMARKING

3.1 DATA COLLECTION

Our goal is to create a driving generalist (physiological estimation, emotional estimation, gesture
estimation, body motion estimation, driving behavior estimation, driving behavior detection, and
driving decision-making) in the intelligent cockpit. We selected three of the most recent multi-view
multi-task driving datasets AIDE and DMD. In addition, we use the latest contactless physiological
measurement technology to monitor the user’s health, which can estimate heart rate and blood oxygen
only with a camera. We collected 5 datasets (VIPL-HR, V4V, PURE, BUAA-rPPG and UBFC).

3.2 GENERAL INSTRUCTION CONSTRUCTION

To construct natural language descriptions for sage deer, we use existent multimodal model tools
(InternVideo (Wang et al., 2022), Tag2Text (Huang et al., 2023), or GRiT (Wu et al., 2022)) to
generate captions for the frame sampled at equal intervals automatically. Likes (Li et al., 2023a;
Zhang et al., 2023a), we set the reasonable prompt to merge the information of different frames.
Existing image caption methods are often inaccurate or insufficiently annotated for an intelligent
cockpit system. So, we took advantage of the existing tags (including physiological indicators,
emotional indicators, action indicators, behavioral indicators, scene understanding, and reasoning
decision-making) in the dataset to correct and supplement the captain. Next, we use GPT4 (Achiam
et al., 2023) as an assistant to build question-answering pairs for different tasks. We used GPT4 to
summarize, fuse, and correct these captains. See supplementary materials for details.

3.3 SUPER-ALIGNED REACTION

Users have different needs for driving cockpit, especially interactivity and trustworthiness. Interac-
tivity means creating gestures, emotions, and body movements and tailoring cockpit feedback to
user needs. Trustworthiness refers to personalized warning feedback on user fatigue, bad mood, and
bad behavior. For this purpose, we use GPT4 to design the needs of different users and give specific
feedback according to the needs of users and the information of the current scenario.
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Different Views Different Modes

Pre-trained Video Encoder 1 Pre-trained Video Encoder i

Large language model
    Updatable Documentation

...

<bos> <bos> <eos><fea_1> <eos><bos> <eos><fea_i>... ... <Task>

Basic knowledge
1. The law: drive on the left in Hong Kong.
2  The task relationship: people with low 
heart rates tend to be fatigued.
......
Individual needs
1. When the driving scene is complicated, 
remind me to take over driving.
2. When I'm tired, please play the song.
3. When I raise my fist, please help me 
turn on the music.
......

......

Video 1 Video 2 Video 3 Video 4 Video i Video i+1

Chunk

Tokenizer

Encoder

R
e

trie
v

al

......

General responses:
A 30-year-old male driver, who does not wear glasses, engaged 
in driving activities. He is peacefull, and his heart rate and blood 
oxygen are 85 bpm and 98%. Throughout the video, his gaze 
remains consistently on the road, demonstrating a focus on his 
driving environment. His hands, however, exhibit a particular 
behavior ...
Spuer-aligned responses:
Since the user has set the music to turn on when he raises his 
fist, car will turn on the music for the driver.

Compressed 
knowledge

Tokenizing Multi-Mode And Multi-View Videos

Retrieval-Augmented Generation

Figure 3: Overview of our framework. RGB, depth and NIR videos of different modes are extracted
by a pre-trained encoder and converted into tokens. These tokens concatenate problems and retrieve
enhanced linguistic features. Where the search augmentation generated to language features are now
features that will be generated by the interchangeable document, via chunk, tokenizer, and further
encoder. Ultimately, the LLM will respond based on the updatable document content and video
content.

4 METHOD

We build a retrieval-augmented framework to build a super-aligned and generalist agent in the cockpit.
This framework has three strengths: (1) Any mode and view video tokenization. (2) Generalists
understand. (3) Super-aligned reactions.

4.1 TOKENIZING MULTI-MODE AND MULTI-VIEW VIDEOS

For driving cockpit, leveraging multiple modes and perspectives can significantly enhance the model’s
ability to interpret complex scenes, especially under challenging conditions such as poor weather
or low-light environments. This subsection outlines our approach to tokenizing multi-mode and
multi-view videos, ensuring that the model effectively integrates diverse visual information and
physiological indicators.

Tokenizing Multi-Model. To robustly monitor user and scene information under adverse conditions,
we incorporate multiple sensing modalities, including RGB, near-infrared (NIR), and depth cameras.
We uniformly use the ImageNet pre-trained ResNet18 as each frame rate feature extractor, and then
we cat all the frames together to get the video features. Finally, a simple two-layer linear layer
is mapped to the language spaceemface ∈ C × L. C is the number of channels characteristic of
the language model, and L is a hyperparameter representing how many tokens are used to present
the video features. In particular, to better understand the physiological indicators of faces in the
video. To allow LLM to distinguish between different modes, we added identifiers for visual features.
For example, add corresponding start and end symbols to the front and back of a face RGB video
embedding emrgb ∈ C × L, < RGB bos > emrgb < RGB cos >. Other videos are processed
the same way and then fed into the LLM.

Tokenizing Multi-View. Input of multiple perspective information is necessary, such as viewing
information around the entire vehicle or monitoring the scene and driver at the same time. Similarly
to multi-model, we uniformly use the ImageNet pre-trained ResNet18 as the feature extractor for each

5
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frame rate. This is followed by mapping a simple two-layer linear layer to the language space. Then,
we also use perspective markers to mark different perspectives, for example, emfront ∈ C × L,
< Front RGB bos > emfront < Front RGB cos >.

Tokenizing Physiological Information. Through a contactless video of a person’s face, we can
obtain physiological indicators such as heart rate, blood oxygen and respiration. But directly feeding
a long video into our model is very low effect. Following (Lu et al., 2023), we first convert the
video into a spatio-temporal representation (STMap) and then extract the features with ResNet18
and convert them into tokens emphys ∈ C × L through two linear layers. Similarly, we’ve added
identifiers, < Phys bos > emphys < Phys cos >

Final representation. In addition, the user’s questions are concated with vision tokens and sent to
the LLM. The losses and training strategy of our visual instruction tuning are the same as those of
MLLM (Li et al., 2023a; Zhang et al., 2023a; Muhammad Maaz & Khan, 2023).

4.2 RETRIEVAL-AUGMENTED GENERATION

The training of large language models is very expensive, and it is easy to lose the ability to generalize
in a small training data. User needs for a smart cockpit are often very different, but we can’t fine-tune
the LLM to each user’s specific preferences. To do this, we have adopted a retrieval-augmented
generation framework ash shown in Fig. 3.

Specifically, we built an updatable document. This document includes some basics and personal
requirements. Then we chunk the document, here we use a very concise way to divide the document
by sentences. Each sentence is then tokenized, and then the sentence is the same length by filling
in the tokens. A four-layer convolutional encoder is then used to compress the literal token into a
1/8-length feature. Then, we calculate the similarity between visual features and text features, and
only retain the first N features with high similarity. Splicing into visual features. Then, we calculate
the similarity between visual features and text features, and only retain the first N features with high
similarity. These retrieved temporal features are spliced onto visual features.

4.3 EXPERT KNOWLEDGE FUSION

Reasonable knowledge and carefully crafted prompts can significantly enhance the potential of Large
Language Models (LLMs), enabling them to generate more nuanced and context-aware outputs. In
the context of the smart cockpit, there exists a strong and intricate relationship between various
factors such as physiological indicators, emotions, behaviors, and the vehicle itself. Understanding
these correlations is crucial for optimizing driver assistance systems, improving safety, and providing
a more personalized driving experience. To this end, we conducted a systematic investigation of
task correlations in collaboration with vehicle human factors experts, enabling us to explore these
dependencies in greater detail.

The Relationship Between Physiological State and Emotion: Classical studies in psychophysiology
(e.g., James-Lange, Schachter-Singer) have long established that physiological states, such as heart
rate variability, skin conductance, and muscle tension, are closely linked to emotional responses. In
the context of smart cockpits, real-time monitoring of physiological signals can provide valuable
insights into the emotional state of the driver. For instance, elevated heart rate and increased skin
conductance may be indicative of stress or anxiety, particularly in challenging driving scenarios.
Recognizing this connection allows the system to adapt accordingly, offering calming feedback or
assistance in real-time.

In addition, we investigated prior knowledge of other tasks, including: The Relationship Between
Physiological State and Behavior,The Relationship Between Physiological State and Behavior, The
Relationship Between Physiological State and Behavior. These relationships are not isolated but
rather dynamically interact in real-world driving scenarios. By leveraging real-time data on cabin
conditions — including environmental factors, driver behavior, and physiological/emotional states —
the smart cockpit can generate a wider range of more accurate and contextually appropriate responses.
This dynamic adaptation not only enhances the comfort and safety of the driver but also improves the
overall driving experience. For example, in high-stress situations, the system may offer enhanced
alerts or autonomous driving support, while in calm conditions, it might prioritize fuel efficiency or
offer entertainment options.

6
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Table 2: Baseline compared the performance of our approach on the super alignment protocol.
Baseline is to splice user requirements directly into visual features and feed them into the LLM,
taking advantage of the long-range modeling capabilities of the LLM itself.

Method AIDE DMD
BLEU SPICE BLEU SPICE

Baseline 0.184 0.301 0.191 0.296
Ours 0.214 0.315 0.204 0.305

By embracing the interconnected nature of these factors, intelligent systems in smart cockpits can
better understand the human-driver interaction, anticipating needs and providing tailored responses
that enhance both safety and the overall driving experience. Importantly, this approach underscores
the potential of LLMs when incorporated with domain-specific knowledge, allowing them to generate
more context-sensitive and accurate outputs in real time. Integrating such knowledge-driven, prompt-
based systems into smart cockpits represents a significant leap in creating more intuitive, responsive,
and adaptive vehicle environments.

5 EXPERIMENTS

5.1 DATASETS.

We found two recent data sets of very comprehensive annotations for assisted driving. The DMD is
a driver monitoring dataset, an extensive dataset that includes real and simulated driving scenarios:
distraction, eye distribution, drowsiness, handwheel interaction, and contextual data, in 41 hours
of RGB, depth, and infrared video from 3 cameras, capturing the faces, bodies, and hands of 37
drivers. AIDE proposes an assisted driving awareness dataset that takes into account contextual
information both inside and outside the vehicle in a natural scenario. AIDE enables overall driver
monitoring through multi-perspective Settings of the driver and the scene, multi-modal annotations
of the face, body, posture, and gestures, and four practical task designs for driver understanding.
we collect five rPPG face video datasets ( VIPL-HR Niu et al. (2019), PURE Stricker et al. (2014),
UBFC-rPPG Bobbia et al. (2019), V4V Revanur et al. (2021), and BUAA-MIHR Xi et al. (2020)),
mostly with subjects remaining still, and some with head movements.

5.2 TRAINING DETAILS.

We tain our model on A6000 for 2 epochs. The learning rate, and weight decay are set to 0.001, and
0.02, respectively. The maximum sentence length is set to 64. That is, if the sentence is too long,
excess parts will be discarded, and if the sentence is too short, 0 will be filled to make the length
uniform. All image vision encoders use the pre-trained resnet 18 on imagenet as the pre-trained
model, and these vision encoders are fine-tuned. For the feature extraction of physiological signals,
we use the pre-trained model of NEST-rPPG Lu et al. (2023) and do not fine-tune it.

5.3 BASELINES AND EVALUATION METRICS

We compare our proposed framework’s anomaly understanding performance with SOTA video
understanding baselines. We select five baselines: Video-ChatGPT (Muhammad Maaz & Khan,
2023), VideoChat (Li et al., 2023a), Video-LLaMA (Zhang et al., 2023a), LLaMA-Adapter (Zhang
et al., 2023b), and Video-LLaVA (Lin et al., 2023). Our comparison aims to determine whether these
baselines can fully understand and interpret video anomalies.

To accurately evaluate our model’s performance, we adopt BLEU Bilingual Evaluation Under-
study(BLEU) and SPICE (Papineni et al., 2002) to measure word overlap between the model-
generated text and the ground truth. This approach enables us to objectively assess the similarity and
consider various levels of granularity at the text level, thus clearly indicating how well the model
understands and describes anomalies.
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Table 3: Generalist capabilities on AIDE data sets.

Method Emotion Behavior Scene Condition
BLEU SPICE BLEU SPICE BLEU SPICE BLEU SPICE

Video-ChatGPT 0.200 0.280 0.170 0.205 0.190 0.330 0.195 0.320
VideoChat 0.205 0.285 0.175 0.210 0.195 0.335 0.200 0.325
Video-Llama 0.217 0.312 0.183 0.223 0.207 0.352 0.211 0.337
Llama-Adapter 0.215 0.310 0.190 0.225 0.210 0.340 0.189 0.321
Video-LLaVA 0.202 0.290 0.172 0.205 0.190 0.330 0.195 0.320
Ours 0.232 0.331 0.194 0.242 0.225 0.369 0.223 0.360

Table 4: Generalist capabilities on DMD data sets.

Method Action Gaze Hand
BLEU SPICE BLEU SPICE BLEU SPICE

Video-ChatGPT 0.175 0.250 0.150 0.185 0.160 0.310
VideoChat 0.190 0.260 0.160 0.185 0.160 0.310
Video-Llama 0.205 0.275 0.170 0.205 0.180 0.325
Llama-Adapter 0.202 0.265 0.170 0.201 0.175 0.320
Video-LLaVA 0.195 0.295 0.155 0.220 0.170 0.315
Ours 0.235 0.315 0.195 0.230 0.210 0.340

5.4 GENERALIST PERFORMANCE

Our model can estimate the driver’s emotion, physiological indicators, gaze, physical behavior,
hand behavior, driving scene and vehicle state. In order to more clearly evaluate the ability of the
model in different subtasks, we conducted systematic evaluation on two multi-task datasets, fatigue
and physiological indicators. First, we used the default dataset partitioning on the AIDE dataset
to train and test the results shown in Table 3. As you can see from the table, our algorithm has
improved tremendously. This is mainly because, using expert knowledge, LLM can better integrate
the connections between tasks.

Further, we verify our algorithm on DMD data set. As shown in Table 4, our algorithm achieves
excellent performance on all tasks. All these results prove the effectiveness of our algorithm. Of
course, our algorithm is very concise, only through RAG to retrieve the relevant expert knowledge to
improve the accuracy of the reply. Further, we give an example of our model’s dialogue to illustrate
the generalist power of our model 4.

5.5 SUPER-ALIGNED PERFORMANCE

Different users have different needs for driving a smart cockpit, which requires us to super-align our
users’ biases. One of the simplest ways is to put all the user’s preferences in the form of text at the
top of the LLM input, and then use the LLM’s own long-distance modeling capabilities to bias it.
This most straightforward approach is considered our Baseline. Our approach is to complete the
super alignment with a learned RAG. The performance of these two methods is shown in Table 2.

As shown in Table 2, our approach has improved dramatically. This shows that LLM itself has a
limited ability to understand long texts, and it is difficult to make different responses to the results
according to its visual features and prior knowledge. This explains the need for our RAG framework.

6 CONCLUSION

In this study, we successfully curated and benchmarked comprehensive data to develop Sage Deer,
a super-aligned and generalist driving agent for intelligent cockpits. Our data collection strategy
integrated three state-of-the-art multi-view and multi-task driving datasets—AIDE, DMD, VIPL-HR,
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Generalist Ability

User

......

Soga Dear

The driver was about 30 years old, did not wear glasses and was 
engaged in driving activities. He was calm, his heart rate and blood 
oxygen were 85 bpm and 98%. He was very focused and his eyes were 
on the road. His hands seemed to be trying to adjust the radio.

Please briefly describe the basic situation of the driver, especially the 
emotional and physiological indicators.

User Is there anything that needs attention at the moment?

Your current driving behavior and physiological indicators are normal. At 
present, the road is the traffic artery of the city, and there are many 
vehicles, which is worth continuing to improve the spirit. Soga Dear

User What is the current driving scene like?

Soga Dear
We're in a city driving scenario, and there's an intersection ahead. The 
road is very crowded and slow due to the road construction on the right. 
There is a yellow vehicle directly in front of you, please keep your 
attention.

Figure 4: Generalist ability. Soga deer can reply to different tasks and has the ability to reply to an
open domain.

V4V, PURE, BUAA-rPPG, and UBFC—alongside cutting-edge contactless physiological measure-
ment technologies to monitor vital health indicators such as heart rate and blood oxygen levels
using only camera inputs. To construct robust natural language instructions, we employed advanced
multimodal models (InternVideo, Tag2Text, GRiT) for automatic video captioning, which were then
refined and enhanced with existing tags and supplemented through GPT-4-generated question-answer
pairs tailored to various driving-related tasks. Additionally, we addressed diverse user needs by
leveraging GPT-4 to design personalized interactions, ensuring that the intelligent cockpit could
provide tailored feedback based on individual preferences and real-time scenarios. Our benchmarking
framework evaluates the agent’s ability to interpret physiological data, emotional states, gestures,
body movements, driving behaviors, and decision-making processes across multiple modalities. The
integration of retrieval-augmented generation and expert knowledge fusion within our framework
ensures that Sage Deer delivers accurate, context-aware, and personalized responses, significantly
advancing the capabilities of intelligent driving cockpits in enhancing driver comfort, safety, and
interaction.

REFERENCES

State farm distracted driver detection, 2016. https://www.kaggle.com/c/
state-farm-distracted-driver-detection.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.

9

https://www.kaggle.com/c/state-farm-distracted-driver-detection
https://www.kaggle.com/c/state-farm-distracted-driver-detection


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

arXiv preprint arXiv:2303.08774, 2023.

Serge Bobbia, Richard Macwan, Yannick Benezeth, Alamin Mansouri, and Julien Dubois. Unsu-
pervised skin tissue segmentation for remote photoplethysmography. Pattern Recognition Letters,
124:82–90, 2019.

Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye, and Ziran Wang. Drive as you speak: Enabling
human-like interaction with large language models in autonomous vehicles. 2024 IEEE/CVF
Winter Conference on Applications of Computer Vision Workshops (WACVW), pp. 902–909, 2023a.
URL https://api.semanticscholar.org/CorpusID:262054629.

Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye, and Ziran Wang. Receive, reason, and react: Drive as
you say with large language models in autonomous vehicles. ArXiv, abs/2310.08034, 2023b. URL
https://api.semanticscholar.org/CorpusID:263908840.

Can Cui, Zichong Yang, Yupeng Zhou, Yunsheng Ma, Juanwu Lu, and Ziran Wang. Personalized
autonomous driving with large language models: Field experiments. 2023c. URL https:
//api.semanticscholar.org/CorpusID:266335383.

Guanglong Du, Zhiyao Wang, Boyu Gao, Shahid Mumtaz, Khamael M Abualnaja, and Cuifeng Du.
A convolution bidirectional long short-term memory neural network for driver emotion recognition.
IEEE Transactions on Intelligent Transportation Systems, 22(7):4570–4578, 2020.

Hesham M Eraqi, Yehya Abouelnaga, Mohamed H Saad, and Mohamed N Moustafa. Driver
distraction identification with an ensemble of convolutional neural networks. Journal of Advanced
Transportation, 2019, 2019.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu
Guo, Meng Wang, and Haofen Wang. Retrieval-augmented generation for large language models:
A survey. ArXiv, abs/2312.10997, 2023. URL https://api.semanticscholar.org/
CorpusID:266359151.

Romain Guesdon, Carlos Crispim-Junior, and Laure Tougne. Dripe: A dataset for human pose
estimation in real-world driving settings. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 2865–2874, 2021.

Tobias Hecht, Anna Feldhütter, Jonas Radlmayr, Yasuhiko Nakano, Yoshikuni Miki, Corbinian
Henle, and Klaus Bengler. A review of driver state monitoring systems in the context of
automated driving. Advances in Intelligent Systems and Computing, 2018. URL https:
//api.semanticscholar.org/CorpusID:56790391.

Xinyu Huang, Youcai Zhang, Jinyu Ma, Weiwei Tian, Rui Feng, Yuejie Zhang, Yaqian Li, Yandong
Guo, and Lei Zhang. Tag2text: Guiding vision-language model via image tagging. arXiv preprint
arXiv:2303.05657, 2023.

Ashesh Jain, Hema S Koppula, Shane Soh, Bharad Raghavan, Avi Singh, and Ashutosh Saxena.
Brain4cars: Car that knows before you do via sensory-fusion deep learning architecture. arXiv
preprint arXiv:1601.00740, 2016.

Imen Jegham, Anouar Ben Khalifa, Ihsen Alouani, and Mohamed Ali Mahjoub. Mdad: A multimodal
and multiview in-vehicle driver action dataset. In International Conference on Computer Analysis
of Images and Patterns, pp. 518–529, 2019.

Imen Jegham, Anouar Ben Khalifa, Ihsen Alouani, and Mohamed Ali Mahjoub. A novel public
dataset for multimodal multiview and multispectral driver distraction analysis: 3mdad. Signal
Processing: Image Communication, 88:115960, 2020.

Mira Jeong and Byoung Chul Ko. Driver’s facial expression recognition in real-time for safe driving.
Sensors, 18(12):4270, 2018.

Isaac Kasahara, Simon Stent, and Hyun Soo Park. Look both ways: Self-supervising driver gaze
estimation and road scene saliency. In European Conference on Computer Vision (ECCV), pp.
126–142, 2022.

10

https://api.semanticscholar.org/CorpusID:262054629
https://api.semanticscholar.org/CorpusID:263908840
https://api.semanticscholar.org/CorpusID:266335383
https://api.semanticscholar.org/CorpusID:266335383
https://api.semanticscholar.org/CorpusID:266359151
https://api.semanticscholar.org/CorpusID:266359151
https://api.semanticscholar.org/CorpusID:56790391
https://api.semanticscholar.org/CorpusID:56790391


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Okan Kopuklu, Jiapeng Zheng, Hang Xu, and Gerhard Rigoll. Driver anomaly detection: A dataset
and contrastive learning approach. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), pp. 91–100, 2021.

KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang, Limin Wang, and
Yu Qiao. Videochat: Chat-centric video understanding. arXiv preprint arXiv:2305.06355, 2023a.

Wenbo Li, Yaodong Cui, Yintao Ma, Xingxin Chen, Guofa Li, Guanzhong Zeng, Gang Guo, and
Dongpu Cao. A spontaneous driver emotion facial expression (defe) dataset for intelligent vehicles:
Emotions triggered by video-audio clips in driving scenarios. IEEE Transactions on Affective
Computing, 2021a.

Wenbo Li, Guanzhong Zeng, Juncheng Zhang, Yan Xu, Yang Xing, Rui Zhou, Gang Guo, Yu Shen,
Dongpu Cao, and Fei-Yue Wang. Cogemonet: A cognitive-feature-augmented driver emotion
recognition model for smart cockpit. IEEE Transactions on Computational Social Systems, 9(3):
667–678, 2021b.

Wenbo Li, Guanzhong Zeng, Juncheng Zhang, Yan Xu, Yang Xing, Rui Zhou, Gang Guo, Yu Shen,
Dongpu Cao, and Fei Wang. Cogemonet: A cognitive-feature-augmented driver emotion recogni-
tion model for smart cockpit. IEEE Transactions on Computational Social Systems, 9:667–678,
2022. URL https://api.semanticscholar.org/CorpusID:249101490.

Wenbo Li, Dongpu Cao, Ruichen Tan, Tianze Shi, Zhenhai Gao, Jun Ma, Gang Guo, Hongyu Hu,
Jinshan Feng, and Lixin Wang. Intelligent cockpit for intelligent connected vehicles: Definition,
taxonomy, technology and evaluation. IEEE Transactions on Intelligent Vehicles, 2023b.

Wenbo Li, Jiyong Xue, Ruichen Tan, Cong Wang, Zejian Deng, Shen Li, Gang Guo, and Dongpu Cao.
Global-local-feature-fused driver speech emotion detection for intelligent cockpit in automated
driving. IEEE Transactions on Intelligent Vehicles, 2023c.

Bin Lin, Bin Zhu, Yang Ye, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning united visual
representation by alignment before projection. arXiv preprint arXiv:2311.10122, 2023.

Chenhui Liu and Wei Zhang. Learning the driver acceleration/deceleration behavior under high-speed
environments from naturalistic driving data. IEEE Intelligent Transportation Systems Magazine,
14(3):78–91, 2020.

Hao Lu, Zitong Yu, Xuesong Niu, and Ying-Cong Chen. Neuron structure modeling for generalizable
remote physiological measurement. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 18589–18599, 2023.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao, and Nan Duan. Query rewriting for
retrieval-augmented large language models. ArXiv, abs/2305.14283, 2023. URL https:
//api.semanticscholar.org/CorpusID:258841283.

Jiageng Mao, Yuxi Qian, Hang Zhao, and Yue Wang. Gpt-driver: Learning to drive with gpt. 2023.

Manuel Martin, Alina Roitberg, Monica Haurilet, Matthias Horne, Simon Reiß, Michael Voit, and
Rainer Stiefelhagen. Drive&act: A multi-modal dataset for fine-grained driver behavior recognition
in autonomous vehicles. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 2801–2810, 2019.

Salman Khan Muhammad Maaz, Hanoona Rasheed and Fahad Khan. Video-chatgpt: Towards
detailed video understanding via large vision and language models. ArXiv 2306.05424, 2023.

Xuesong Niu, Shiguang Shan, Hu Han, and Xilin Chen. Rhythmnet: End-to-end heart rate estimation
from face via spatial-temporal representation. IEEE Transactions on Image Processing, 29:
2409–2423, 2019.

Geesung Oh, Euiseok Jeong, Rak Chul Kim, Ji Hyun Yang, Sungwook Hwang, Sangho Lee, and
Sejoon Lim. Multimodal data collection system for driver emotion recognition based on self-
reporting in real-world driving. Sensors, 22(12):4402, 2022.

11

https://api.semanticscholar.org/CorpusID:249101490
https://api.semanticscholar.org/CorpusID:258841283
https://api.semanticscholar.org/CorpusID:258841283


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Juan Diego Ortega, Neslihan Kose, Paola Cañas, Min-An Chao, Alexander Unnervik, Marcos Nieto,
Oihana Otaegui, and Luis Salgado. Dmd: A large-scale multi-modal driver monitoring dataset
for attention and alertness analysis. In European Conference on Computer Vision (ECCV), pp.
387–405, 2020.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311–318, 2002.

Ambareesh Revanur, Zhihua Li, Umur A Ciftci, Lijun Yin, and László A Jeni. The first vision for
vitals (v4v) challenge for non-contact video-based physiological estimation. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 2760–2767, 2021.

Mohamed H Saad, Mahmoud I Khalil, and Hazem M Abbas. End-to-end driver distraction recog-
nition using novel low lighting support dataset. In IEEE International Conference on Computer
Engineering and Systems (ICCES), pp. 1–6, 2020.

Chonghao Sima, Katrin Renz, Kashyap Chitta, Li Chen, Hanxue Zhang, Chengen Xie, Ping Luo,
Andreas Geiger, and Hongyang Li. Drivelm: Driving with graph visual question answering. arXiv
preprint arXiv:2312.14150, 2023.

Ronny Stricker, Steffen Müller, and Horst-Michael Gross. Non-contact video-based pulse rate
measurement on a mobile service robot. In The 23rd IEEE International Symposium on Robot and
Human Interactive Communication, pp. 1056–1062. IEEE, 2014.

Xiaoming Tao, Dingcheng Gao, Wenqi Zhang, Tianqi Liu, Bing Du, Shanghang Zhang, and Yanjun
Qin. A multimodal physiological dataset for driving behaviour analysis. Scientific Data, 11, 2024.
URL https://api.semanticscholar.org/CorpusID:269111060.

Siyu Teng, Xuemin Hu, Peng Deng, Bai Li, Yuchen Li, Yunfeng Ai, Dongsheng Yang, Lingxi Li,
Zhe Xuanyuan, Fenghua Zhu, et al. Motion planning for autonomous driving: The state of the art
and future perspectives. IEEE Transactions on Intelligent Vehicles, 2023.

Duy Tran, Ha Manh Do, Weihua Sheng, He Bai, and Girish Chowdhary. Real-time detection of
distracted driving based on deep learning. IET Intelligent Transport Systems, 12(10):1210–1219,
2018.

Wenhai Wang, Jiangwei Xie, ChuanYang Hu, Haoming Zou, Jianan Fan, Wenwen Tong, Yang Wen,
Silei Wu, Hanming Deng, Zhiqi Li, et al. Drivemlm: Aligning multi-modal large language models
with behavioral planning states for autonomous driving. arXiv preprint arXiv:2312.09245, 2023.

Yi Wang, Kunchang Li, Yizhuo Li, Yinan He, Bingkun Huang, Zhiyu Zhao, Hongjie Zhang, Jilan
Xu, Yi Liu, Zun Wang, et al. Internvideo: General video foundation models via generative and
discriminative learning. arXiv preprint arXiv:2212.03191, 2022.

Ziran Wang, Yougang Bian, Steven E. Shladover, Guoyuan Wu, Shengbo Eben Li, and Matthew J.
Barth. A survey on cooperative longitudinal motion control of multiple connected and automated
vehicles. IEEE Intelligent Transportation Systems Magazine, 12:4–24, 2020. URL https:
//api.semanticscholar.org/CorpusID:210931452.

Jialian Wu, Jianfeng Wang, Zhengyuan Yang, Zhe Gan, Zicheng Liu, Junsong Yuan, and Lijuan
Wang. Grit: A generative region-to-text transformer for object understanding. arXiv preprint
arXiv:2212.00280, 2022.

Lin Xi, Weihai Chen, Changchen Zhao, Xingming Wu, and Jianhua Wang. Image enhancement
for remote photoplethysmography in a low-light environment. In 2020 15th IEEE International
Conference on Automatic Face and Gesture Recognition (FG 2020), pp. 1–7. IEEE, 2020.

Dingkang Yang, Shuai Huang, Zhi Xu, Zhenpeng Li, Shunli Wang, Mingcheng Li, Yuzheng Wang,
Yang Liu, Kun Yang, Zhaoyu Chen, et al. Aide: A vision-driven multi-view, multi-modal, multi-
tasking dataset for assistive driving perception. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 20459–20470, 2023a.

12

https://api.semanticscholar.org/CorpusID:269111060
https://api.semanticscholar.org/CorpusID:210931452
https://api.semanticscholar.org/CorpusID:210931452


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jianjun Yang, Shanshan Xing, Yimeng Chen, Ruizhi Qiu, Chunrong Hua, and Dawei Dong. A
comprehensive evaluation model for the intelligent automobile cockpit comfort. Scientific Reports,
12(1):15014, 2022.

Yi Yang, Qingwen Zhang, Ci Li, Daniel Simões Marta, Nazre Batool, and John Folkesson. Human-
centric autonomous systems with llms for user command reasoning. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) Workshops, pp. 988–
994, January 2024.

Zhenjie Yang, Xiaosong Jia, Hongyang Li, and Junchi Yan. Llm4drive: A survey of large
language models for autonomous driving. ArXiv, abs/2311.01043, 2023b. URL https:
//api.semanticscholar.org/CorpusID:264935408.

Chaoyun Zhang, Rui Li, Woojin Kim, Daesub Yoon, and Paul Patras. Driver behavior recognition
via interwoven deep convolutional neural nets with multi-stream inputs. IEEE Access, 8:191138–
191151, 2020.

Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
model for video understanding. arXiv preprint arXiv:2306.02858, 2023a. URL https://
arxiv.org/abs/2306.02858.

Renrui Zhang, Jiaming Han, Chris Liu, Peng Gao, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu,
Hongsheng Li, and Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-init
attention. arXiv preprint arXiv:2303.16199, 2023b.

CH Zhao, BL Zhang, Jie He, and Jie Lian. Recognition of driving postures by contourlet transform
and random forests. IET Intelligent Transport Systems, 6(2):161–168, 2012.

A APPENDIX

You may include other additional sections here.

13

https://api.semanticscholar.org/CorpusID:264935408
https://api.semanticscholar.org/CorpusID:264935408
https://arxiv.org/abs/2306.02858
https://arxiv.org/abs/2306.02858

	Introduction
	Related Work
	Data Curating and Beachmarking
	Data collection
	General Instruction Construction
	Super-Aligned Reaction

	Method
	Tokenizing Multi-Mode And Multi-View Videos
	Retrieval-Augmented Generation
	Expert Knowledge Fusion

	Experiments
	Datasets.
	Training Details.
	Baselines and Evaluation Metrics
	Generalist Performance
	Super-Aligned Performance

	Conclusion
	Appendix

