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ABSTRACT

Recent spatial omics research leverages the assumption that spatial information
enhances model performance on the cell type annotation task. This study investi-
gates and challenges that assumption by conducting benchmark experiments com-
paring the performance of spatial and non-spatial models. We show that graph-
based spatial models do not consistently outperform non-spatial models, provide
theories to explain our findings, and make recommendations for future work on
spatial encoding strategies.

1 INTRODUCTION

Spatial omics technologies measure the spatial distribution of molecular features (e.g., genes, pro-
teins, metabolites) in tissue sections, placing them in a histological context. The introduction of
these technologies has prompted the development of methods for new computational tasks, such as:
identification of spatially variable genes (Svensson et al.,[2018;[Sun et al., 2020; [Zhang et al.,|2023)),
characterization of cell-cell interactions (Arnol et al., 2019; Fischer et al.,2021)), delineation of spa-
tial domains (Hu et al., 2021} Zhao et al., 2021} [Dong & Zhang] [2022; [Kim et al.| |2022; [Varrone
et al.,[2023)), and the discovery of novel cell states (Backdahl et al.| 2021} Cable et al.,|2022). Since
their late 20th-century inception, advancements in spatial omics have included readouts at higher
spatial resolution, larger fields of view, and the ability to analyze more features. Current technolo-
gies offer detailed insights into cellular heterogeneity, tissue architecture, disease pathology, and
cellular responses, enhancing our understanding of biological processes (Moses & Pachter, [2022).

Cell type annotation is the task of assigning biologically meaningful labels to each cell. It is an
integral part of any cell-focused analysis (spatial or non-spatial) as these labels are often necessary
for biological interpretation of any downstream analysis. Cell types represent groups of cells with
similar intrinsic properties (e.g., B-cells or T-cells) that are robust to changes in a cell’s environment.
Annotation of cell types in spatial omics datasets is typically done using either manual annotation,
co-embedding with a reference dataset followed by label transfer (semi-supervised learning tasks)
(Xu et al., [2021}; |Shen et al.l 2022), or using classifiers trained on one or more reference datasets
(supervised learning tasks) (Alquicira-Hernandez et al.,[2019; |Abdelaal et al., 2019). Manual anno-
tation is a time-consuming process that tends to be subjective and requires domain expertise but is
often considered as the gold standard. Leveraging machine learning methods and reference datasets
usually facilitates and scales the annotation process, but relies on accurate models and reference
datasets that cover the full cell type label space. With the emergence of foundational models for
omics data, the idea of reliable, fully automatic cell type annotation is becoming increasingly tangi-
ble (Cui et al., [2023} |Heimberg et al.,[2023)). There is still uncertainty about the best design choices
when designing such foundational models (or smaller models) for this purpose. For example, it has
been stated that — for spatial data — including information about the spatial relationships among cells
in addition to their molecular profiles boosts performance on the cell type annotation task (Brbié
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et al., |2022; [Shen et al.| [2022; |Shaban et al., 2024)); however, to the best of our knowledge, there
hasn’t been any systematic evaluation of this hypothesis.

In this paper we seek to address this gap in understanding; we present a benchmarking study de-
signed to empirically test whether common strategies of explicitly encoding spatial relationships
alongside gene expression data significantly improve performance on the cell type annotation task.
Following the state-of-the-art methods (Fischer et al.,[2021; [Hu et al., 2021} [Brbi¢ et al.| 2022)) for
encoding spatial context in spatial omics data, we model the spatial data as a graph: cells are rep-
resented as nodes, molecular features as node features, and the cell type of each cell as its node
label. In this graph, edges connect spatially proximal cells. We then frame the cell annotation prob-
lem as a supervised node classification problem; models are trained to predict node labels given the
graph structure and node features. The performance of spatial models (utilizing both node features
and graph structure) is compared with that of non-spatial models (only utilizing the node features)
across several spatial omics datasets (including transcriptomics and proteomics).

To summarize, our key contributions are as follows:

1. A systematic inquiry as to whether common strategies of explicitly encoding spatial rela-
tionships improve model performance.

2. An assessment of model robustness to noise in spatial biology data, including: i) technical
noise in features (e.g., amplification bias); and ii) noisy ground truth labels.

3. Recommendations for best practices for the community when working on similar tasks.

2 RELATED WORKS

Previous works have explored how spatial and non-spatial models perform in a task related to cell
type annotation, namely domain identification (Heumos et al., 2023)), which involves assigning spa-
tial domain labels to cells. Domain identification and cell type annotation differ in the types of labels
that are assigned. The domain identification task is akin to a region segmentation task in computer
vision. Spatial domains, also known as spatial clusters or regions, represent areas in the tissue with
unique characteristics, such as different cell type compositions, and can include anatomical regions
(e.g., the hippocampus and cortex in the context of the brain). Methods for domain identification
vary in their design: some use only molecular features, whereas others incorporate spatial relation-
ships or additional data from histological images (Satija et al., 2015} [Pham et al.| 2020} Tan et al.,
2020; |Dries et al.,[2021; Hu et al.,|2021}; |Zhao et al.,|2021; Xu et al., |2022; |Yang et al., [2022; Long
et al., |2023). Analogously to the cell type annotation task, it has been suggested that the explicit
encoding of spatial relationships between cells could help with the domain identification task.

Cheng et al.|(2023)) created seven semi-synthetic datasets with ground truth domain labels and com-
pared domain identification models based on accuracy and robustness to perturbations, including
image perturbations and sequencing depth variations. The compared methods include both spatial
models (Pham et al., 2020; Hu et al.} 2021; |Zhao et al.,|2021) and non-spatial models (Satija et al.,
2015} Dries et al., 2021). It was found that spatial models did not outperform non-spatial models
consistently and that spatial models were more sensitive to perturbations than non-spatial models. In
the study, they argue that the investigated models encode spatial structure suboptimally, concluding
that the parameterization of spatial context needs improvement.

Liu et al.| (2024) benchmarked eight spatial methods based on variants of GNN models (Hu et al.,
2021 Dong & Zhang| [2022; |Li et al.,[2022; Ren et al.,|2022; |Xu et al.,|2022; | Zong et al., 2022} Long
et al.,[2023;|Wang et al.,2023)), but did not include a non-spatial baseline. The authors concluded that
model architecture and the explicit modeling of spatial context impacted the model’s performance,
emphasizing the need for careful consideration and evaluation of model design choices.

3 EXPERIMENTAL DESIGN

Below, we describe the design of our benchmark study and briefly introduce the most common
strategies for modeling spatial omics data with graphs.
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Study Setup We compare six models: three non-spatial baselines (random assignment, k-nearest
neighbors (kKNN), and a fully connected neural network (FCNN)) and three spatial models (GCN
(Kipf & Welling| [2017)), GAT (Velickovi¢ et al., 2018), and STELLAR (Brbi¢ et al,, 2022)). For
spatial models, we focus our study on graph-based representations of the spatial data and systemat-
ically explore the design space of graph neural networks. Specifically, we contrast variants of graph
neural networks (GNNs): neural networks that involve a form of message passing. We compare all
models on four public datasets: three transcriptomic datasets (MOSTA, ARTISTA, and STARmap)
and one proteomics dataset (TonsilBE). The datasets vary w.r.t. the number of measured features,
the number of cell types, the ground truth cell labeling strategy, and tissue type. For a summary of
the datasets, see Table [} more extensive descriptions of each dataset can be found in Appendix [6.1]

Graph Design To represent spatial data, we build a spatial graph in which each observation (i.e.,
cell) is a node. Each node has a set of associated attributes: the gene or protein expression vector.
Edges represent spatial proximity (Fischer et al., 20215 Hu et al., 2021} |Brbi¢ et al., [2022)). Different
criteria have been used to determine connectivity. Popular ones include distance-based criteria, kNN,
and Delaunay triangulation. We focus on a kNN approach as it allows us to evaluate the impact of
different topologies of the input graph on the cell type annotation task. More specifically, the graph
used for the node classification task is created by connecting each cell to its k nearest neighbors
(w.r.t. Euclidean distance) in the spatial plane; different graph topologies are obtained by changing
the value of k.

Spatial Models We focus our study on three spatial encoding strategies, which correspond to
three variants of graph-based spatial models that differ in their neighbor aggregation strategies and
expressive power.

* GCN models: are, here, models that consist of one or more sequential GCN layers — as presented
in Kipf & Welling| (2017)) — in which each node is updated by aggregating its own and its neigh-
bors’ features. In the GCN layer, the contribution of each neighbor is fixed throughout the training
but can vary between nodes.

* GAT models: are, here, similar to GCN models but use GAT (Graph Attention) layers rather
than GCN layers (VelickoviC et al., |2018). GAT layers are similar to GCN layers, except that
they leverage self-attention during the aggregation. In essence, the model learns how to weigh the
neighbors’ contributions in the aggregation.

* STELLAR: is a spatial cell type classification model introduced in (Brbic et al.|[2022]). It consists
of a fully connected layer followed by a ReLU activation and a GraphSAGE (Hamilton et al.,
2017) message passing layer. We consider STELLAR as one of the current SOTA methods for
this task, as its authors showed how it outperformed existing baselines.

Non-spatial Models The three non-spatial baselines are invariant to edge permutations and added
as a baseline to put the spatial models’ performances into context.

* Random: In the random model, we sample cell type labels from a categorical distribution with
the probabilities set to the cell type proportions in the test set.

* kNN: In the kNN model, for a given cell to be labeled, we identified the k nearest neighbors in the
train set (in feature space) and assigned the most frequent label to the cell. For datasets with high
feature dimensions, a PCA step is introduced and tuned per dataset.

* FCNN: In the FCNN, we used one or more fully connected (FC) layers. The input is feature
expression, meaning there’s no notion of spatial relationships.

Hyperparameters All models are optimized with the Adam optimizer and trained with a cross-
entropy loss. We run a hyperparameter search on the learning rate, weight decay, number of hidden
units, number of layers, dropout rate, model/layer normalization, and type of activation function (see
Appendix Table[)). The STELLAR model architecture follows the authors’ original implementation
(Brbic et al.|, [2022)) but a hyperparameter search was used to identify the best set of hyperparameters
to use for each dataset. All models were implemented in PyTorch.

In light of the diverse and high-dimensional nature of spatial omics datasets, spatial models are
equipped with an adaptive FC layer, aimed at refining node features into a denser representation.
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Table 1: Dataset characteristics.

Dataset Resolution Modality Label Source #Features  #Cell Types
TonsilBE  Single Cell Proteomics Manual Annotations 44 9
STARmap Single Cell Transcriptomics Single Cell Reference 1022 26
MOSTA Single Cell  Transcriptomics ~ Manual Annotations 27557 17
ARTISTA  Single Cell Transcriptomics  Manual Annotations 26540 13

Table 2: Classification performance (average F1 Score and standard deviation across classes) of
different non-spatial and spatial models on different cell type labeling datasets.

Model Type Models TonsilBE STARmap MOSTA ARTISTA
Random 0.11 £0.09 0.04 £0.04 0.06 = 0.05 0.07 +0.05

Non-spatial kNN 0.84 £0.05 0.39 £0.30 0.09 +0.18 0.08 £0.12
FCNN 0.904+0.03 0.63+0.30 0.60+0.11 0.68+0.20
STELLAR  0.63 £0.28 0.63 £ 0.30 0.60 &+ 0.28 0.67 +0.20

Spatial GCN 0.90+0.04 0.71+0.23 0.60+0.19 0.68 1 0.20
GAT 0.68 £0.12 0.59 +0.27 0.60 &+ 0.26 0.60 + 0.23

This layer’s inclusion and its dimensionality are optimized as hyperparameters for each model-
dataset pairing. For all spatial models, we also optimize the number of neighbors used when con-
structing the spatial kNN graph. For the purpose of classification, an FC layer is appended to each
of the spatial models (out_features=n_classes). The only hyperparameter to be explored in
the kNN classifier is the value of k (number of feature neighbors). All experiments were repeated
ten times to evaluate models’ sensitivity to initialization.

Robustness Evaluation In addition to contrasting models based on their classification perfor-
mance, we examine the robustness of different model architectures to noisy data. Our objective is to
shed light on how different architectures, particularly those with spatial encoding capabilities, with-
stand the adverse effects of noisy data. To systematically explore this, we introduce two specific
types of controlled noise during training:

1. Label Noise: We simulate real-world scenarios where data annotations are prone to errors by
randomly altering the labels for 20, 50, 80, 100% of the instances in a dataset with K distinct cat-
egories. This alteration is conducted by reassigning labels from a uniform K-categorical distri-
bution, thereby introducing a measurable level of uncertainty and error into the training process,
akin to the noise encountered in large-scale data annotation projects.

2. Feature Noise: To simulate the variability and noise inherent in spatial omics data, we add
multivariate Gaussian noise to 20, 50, 70,100% of the features (across all cells). This step is
designed to challenge the model’s ability to extract robust and discriminative features from noisy
inputs, a fundamental capability for any learning system intended for real-world applications.

4 RESULTS

All of our experiments follow the same setup: a model is trained on the training set to predict
node labels given the graph; the “best” model w.r.t. hyperparameter choice is taken as the top-
performing model on the validation dataset; performance is then reported on the held-out test dataset
(see Appendix [6.1]for more information about the datasets and the splits).

Models’ performance Table [2| shows the performance results obtained on all four datasets for
the best-performing model. Based on our experiments, we see no strong evidence in favor of the
hypothesis that explicitly encoding spatial relationships — using graph representations — alongside
molecular expression significantly improves performance on the cell type annotation task. In fact,
the non-spatial baseline FCNN model performs on-par with the spatial models across all datasets
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except STARmap, implying, at most, marginal gains by adding spatial information. In addition,
spatial models are less robust to minor levels of noise in the input label or feature space, as shown
in Figure[T]

Interestingly, the GCN model’s superior performance on the STARmap dataset hints at a potentially
beneficial alignment of spatial and molecular data under certain conditions. One important distin-
guishing factor of the STARmap dataset is its unique ground truth labeling strategy. STARmap
cell type labels were derived from hierarchical clustering of gene expression and are linked to both
cellular differentiation stages and spatial domains (e.g., olfactory versus spinal cord regions) (Wang
et al., 2018)); this distinguishing aspect may elucidate the observed advantage of spatial models. This
suggests that the GCN model’s effectiveness is particularly pronounced in scenarios where cell type
definitions are inherently tied to spatial domains.

Our conclusion resonates with previous studies examining performance of spatial models on the
domain identification task. We can see multiple reasons for this to be true:

1. Ill-posed task: Ground truth cell type annotations tend to rely heavily on marker expression and
less on spatial cues, and thus induce a strong dependency between feature expression and label.
As a consequence, feature expression might be fully sufficient to retrieve the cell type labels,
making the spatial information superfluous.

2. Suboptimal spatial encoding: In line with recent studies, our approach utilizes graphs and
GNNss to represent and encode spatial data. GNNs leverage homophily (also known as local
smoothness), the principle that similar nodes tend to connect. However, the prevalent heterophily
in cell spatial graphs can dilute distinct features, raising questions about the efficacy of this spatial
encoding method (refer to Appendix [6.3). In addition to the homophily assumption, we assume
that the graph structure matters, i.e., that it contains valuable information about the relation-
ships between nodes. It’s important to note that while spatial adjacency may influence cellular
interactions, it might not fully encapsulate the complex environmental factors—Ilike signaling
molecules—that are crucial for determining cell function and identity.

3. Over-smoothing: The effectiveness of GNNs on certain tasks has been attributed to their smooth-
ing ability. However, GNNs are prone to over-smoothing, a situation in which noise and infor-
mation are mixed and nodes of different classes become too similar (Hasanzadeh et al., |2020)).
Over-smoothing even to a low degree could make it difficult to separate cell types that are spa-
tially proximal and similar in feature space.

Impact of graph topology In Table[3] we present the results obtained when varying neighborhood
sizes during the design of the input graph. By varying k, the neighborhood size, we can realize
modest performance gains. Optimizing k is especially important for the GAT. Attention weights can
theoretically help the model to focus on informative neighbors. However, if the attention mechanism
struggles to appropriately downweight less relevant neighbors, a node’s representation might be
diluted with noisy or irrelevant information.

Sensitivity to label and feature noise Our experiments show that the FCNN is consistently more
robust to label noise than any of the spatial models (see Figure [I). Introducing label noise (giving
similar nodes different labels) likely exacerbates over-smoothing, which affects spatial models only,
explaining the performance gap between spatial and non-spatial models.

The impact of feature noise is contingent on the dataset. For example, models trained on the Ton-
silBE dataset — a dataset characterized by a notably lower feature count than others (see Table [T)
— show heightened sensitivity to noise. The presence of redundant features in other datasets en-
ables models to compensate for perturbed features by leveraging correlated, unperturbed ones, thus
preserving noise resilience.

In high-dimensional input settings, the FCNN outperforms spatial models in withstanding feature
noise. The inherent design of an FCNN, which processes inputs in isolation without accounting
for inter-data relationships, means that any perturbation tends to have a localized effect, minimally
influencing the network’s overall functionality. In contrast, GNNs, through their message passing
mechanism, propagate the impact of a perturbed node across neighbors, potentially altering their
representations significantly. Notably, GAT models exhibit a pronounced vulnerability to feature
noise, underscoring a critical area for future enhancements in graph-based architectures.
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Table 3: Impact of different spatial neighborhood sizes on cell type labeling performance. Reported
performance values correspond to the average F1 Score and standard deviation across 10 repeated
runs for each spatial neighborhood size.

Models k-neighbors TonsilBE STARmap MOSTA ARTISTA
3 0.63+0.01 0.62+0.01 0.574+0.01 0.67+0.01
STELLAR 6 0.624+0.01 0.62+£0.01 0.56+0.01 0.664+0.01
10 0.63+0.02 0.63+0.01 0.57+0.02 0.664+0.01
20 0.60+£0.02 0.62+0.01 0.604+0.01 0.664+0.01
3 0.89+£0.05 0.69+£0.01 0.544+0.01 0.68=+0.02
GCN 6 0.90+£0.04 0.70+£0.02 0.584+0.01 0.65+0.01
10 0.90+£0.04 0.71+£0.02 0.604+0.01 0.66=+0.01
20 0.90£0.04 0.71+£0.02 0.564+0.01 0.654+0.01
3 0.64+0.12 0.58+0.02 0.604+0.01 0.604+0.01
GAT 6 0.68+£0.12 0.58+£0.01 0.554+0.01 0.53+0.01
10 0.68£0.12 0.54+£0.01 0.474+0.01 0.47+0.02
20 0.68+0.12 0.58+0.01 0.47+0.01 0.454+0.02
TonsilBE STARmap MOSTA ARTISTA
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Figure 1: Evaluation of models’ robustness to two sources of variation. The top panel compares
spatial and non-spatial models under varied label noise, while the bottom panel examines the impact
of increasing input noise. The non-spatial model is more robust to both noise types, especially in
high-dimensional datasets. Among spatial models, the GAT is notably more sensitive to noise.

5 DISCUSSION

In this study, we have evaluated common strategies for encoding spatial relationships between cells.
Our results challenge the prevailing assumption that information about the spatial relationships
among cells improves performance on the cell type annotation task. We also show that non-spatial
models are more robust to common sources of noise in spatial data. By studying the relationship be-
tween spatial information and model performance, our work contributes to a deeper understanding
of the limitations of current strategies of encoding spatial information.

Our findings underscore the importance of various factors, including data characteristics, model
architecture, and optimization strategies, in determining the optimal approach for node annotation
tasks. If annotation uncertainty is high, we recommend authors choose a robust model design such
as the FCNN. Furthermore, we encourage authors to perform a permissive feature selection, as we
find that feature redundancy improves robustness to feature noise. Lastly, we observe that optimiz-
ing only a newly introduced model, but not the baselines, is a common practice that inflates the
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performance and perceived benefits of the former at the cost of robustness and reproducibility. To
support fair model comparisons in future work, we recommend that authors specify the hyperpa-
rameter selection procedure and the range of hyperparameters that was considered.
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6 APPENDIX

6.1 DATA

Below is a more thorough description of the four datasets used in our study:

MOSTA: A single cell resolution spatial transcriptomics dataset generated from mouse embryos
— across several developmental timepoints — using the Stereo-seq platform (Chen et al., [2022). The
ground truth labels were assigned by clustering of the cells followed by manual annotation using a
priori known marker genes. Three sections from three mice in the same developmental stage (E15.5)
were split into the train, validation, and test sets (one section each). The data was pre-processed
using SCTransform (negative binomial regression) (Hafemeister & Satija, 2019); we applied no
further preprocessing. For details, see the original publication (Chen et al.| 2022).

ARTISTA: A single cell resolution spatial transcriptomics dataset surveying the expression of
26’540 genes in the axolotl telencephalon, generated using the Stereo-seq platform. Ground truth
labels were assigned using the same process as for the MOSTA dataset, i.e., by relying on canonical
marker genes. From the comprehensive set of data, which encompasses six developmental stages
as well as seven regenerative stages that were activated upon injury, we selected three samples that
were collected 20 days post-injury to be split into the train, validation, and test sets (one section
each). The data was processed in the same way as the MOSTA dataset. For details, see [Wei et al.
(2022).

STARmap: A spatial transcriptomics dataset generated from the adult mouse brain and spinal cord
using the STARmap technology (Wang et al.l [2018). Ground truth cell annotations were assigned
using label transfer, where the authors relied on a reference scRNA-seq dataset presented in |[Zeisel
et al|(2018). scRNA-seq annotations were derived from hierarchical clustering of gene expression
profiles. We chose three brain sections from the same anatomical plane (sagittal) to be split into
our train, validation, and test sets (one section each). This data had also already been pre-processed
upon download; pre-processing steps were as follows: normalization such that the sum of feature
values for each cell was equal to the median cell-wise total transcript count, log1p-transformation,
regressing out the total counts, and finally scaling to unit variance and zero mean for each feature.
SeeShi et al.| (2023) for more details.

TonsilBE: A single cell resolution spatial proteomics dataset generated from healthy human tonsil
tissue and diseased tissue from a patient with Barrett’s esophagus (BE) using the CODEX technol-
ogy (Goltsev et al.| |2018). Ground truth cell type annotations were assigned manually after cluster-
ing the data and assessing the expression of known cell type markers in each cluster. We chose two
healthy sections to be split into the train and validation set; a diseased tissue section (BE) constituted
our test set. The data had already been pre-processed (with z-score normalization) upon download.
For more details, see|Brbic et al.| (2022)).

6.2 DATA AVAILABILITY

Both the MOSTA and the ARTISTA dataset are available in the Spatial Transcript Omics DataBase
under https://db.cngb.org/stomics/mosta/ and https://db.cngb.org/stomics/artista/, respectively. The
STARmap PLUS data can be downloaded from the Single Cell Portal. Lastly, the TonsilBE data can
be downloaded from Dryad.
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6.3 SPATIAL DISTRIBUTION OF CELL TYPES

TonsilBE

StarMAP

MOSTA

ARTISTA

Figure 2: Visualization of the spatial distribution of cell types in the different datasets used in this
study. Colors represent different cell types and points correspond to different cells.

6.4 HYPERPARAMETER SPACE

Table 4: Range of hyperparameter values explored during model training.

Hyperparameter Values Explored

Learning rate [le—4,1e—3,3e—3,2e—3,1e—2, le—1]
Weight decay [0.0, 5e—3]

Dropout percentage [0.0, 0.5, 0.8]

Number of layers [1,3,5,8]

Number of hidden units [64, 128, 256, 1024]

Number of spatial neighbors  [3, 6, 10, 20]
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